JP2006074272A - Crystal vibrating plate and its manufacturing method - Google Patents

Crystal vibrating plate and its manufacturing method Download PDF

Info

Publication number
JP2006074272A
JP2006074272A JP2004253469A JP2004253469A JP2006074272A JP 2006074272 A JP2006074272 A JP 2006074272A JP 2004253469 A JP2004253469 A JP 2004253469A JP 2004253469 A JP2004253469 A JP 2004253469A JP 2006074272 A JP2006074272 A JP 2006074272A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric vibration
crystal
vibration region
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253469A
Other languages
Japanese (ja)
Inventor
Fumio Fujisaki
文生 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2004253469A priority Critical patent/JP2006074272A/en
Publication of JP2006074272A publication Critical patent/JP2006074272A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the outer shape of a crystal vibrating plate is formed by cutting work in a conventional high frequency crystal resonator, a metallic film or the like cannot be formed on the surface of a side on which a container connecting electrode is formed on a reinforcing part constituting the crystal vibrating plate, so that it is difficult to make container connecting electrodes formed on front and rear main surfaces of the reinforcing part conductive. <P>SOLUTION: In the crystal vibrating plate comprising a rectangular piezoelectric oscillation area oscillated at a required frequency and a reinforcing part formed thicker than the piezoelectric oscillation area so as to surround the outer periphery of the piezoelectric oscillation area and having a rectangular outer peripheral shape integrally with the piezoelectric oscillation area, grooves penetrated into the front and rear surfaces of the reinforcing part on the outer peripheral side face of the reinforcing part on which container connecting electrodes are formed, and inter-electrode connecting electrodes for electrically connecting the container connecting electrodes formed on the front and rear surfaces of the reinforcing part are formed on surfaces of the grooves. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水晶振動子に使用される水晶振動板及びその製造方法に関し、特に100MHz以上の高周波数で厚みすべり振動する水晶振動板及びその製造方法に関する。   The present invention relates to a quartz crystal plate used for a quartz resonator and a manufacturing method thereof, and more particularly, to a quartz plate and a manufacturing method thereof that undergo thickness shear vibration at a high frequency of 100 MHz or higher.

従来より、携帯用通信機器等の電子機器には基準信号発生源等として水晶振動子が用いられており、その水晶振動子の気密容器の中には水晶素板の主面上に各種電極を形成した水晶振動板が用いられている。
Conventionally, a crystal resonator is used as a reference signal generation source in an electronic device such as a portable communication device, and various electrodes are provided on the main surface of the crystal base plate in an airtight container of the crystal resonator. A formed crystal diaphragm is used.

かかる従来の水晶振動板うち、特に厚みすべり基本波振動として数百MHz以上の振動を励起するような水晶振動板としては、所望の基本波周波数で励振する圧電振動領域部と、その圧電振動領域部の周囲に圧電振動領域部と一体で且つ圧電振動領域部よりも厚みの厚い補強部と、この圧電振動領域部及び補強部の表面の所定の箇所に、金、銀又は合金を用いた多層構造の各種電極とにより構成されてものが各種考案されている。   Among such conventional quartz diaphragms, in particular, as a quartz diaphragm that excites vibrations of several hundred MHz or more as a thickness-slip fundamental wave vibration, a piezoelectric vibration region portion that excites at a desired fundamental frequency, and its piezoelectric vibration region A reinforcing portion that is integral with the piezoelectric vibration region portion and is thicker than the piezoelectric vibration region portion, and a multilayer that uses gold, silver, or an alloy at predetermined locations on the surface of the piezoelectric vibration region portion and the reinforcing portion. Various devices having various structures have been devised.

詳細に説明すると、まず所望の周波数で励振する矩形状の圧電振動領域部が形成されている。その周囲にこの圧電振動領域部と一体で形成され、且つ圧電振動領域部よりも厚みの厚い外周形状が矩形状の補強部が形成されている。後述する先行技術文献に開示の水晶振動板の場合、圧電振動領域部と補強部との厚み差を一方の主面側のみで構成し、他方の主面側では圧電振動領域部と補強部との間に段差のない平板構造とした水晶素板を開示している。   More specifically, a rectangular piezoelectric vibration region that is excited at a desired frequency is formed. A reinforcing portion having a rectangular outer peripheral shape which is formed integrally with the piezoelectric vibration region portion and is thicker than the piezoelectric vibration region portion is formed around the periphery. In the case of the quartz diaphragm disclosed in the prior art document to be described later, the thickness difference between the piezoelectric vibration region portion and the reinforcement portion is configured only on one main surface side, and the piezoelectric vibration region portion and the reinforcement portion on the other main surface side. Discloses a quartz base plate having a flat structure with no step between them.

ATカット水晶振動子において振動モードは厚みすべり振動であり、その周波数は圧電振動領域部の厚みに反比例ため、高周波化を図るには圧電振動領域部の厚さを薄くする必要がある。現在、ATカット水晶素板を単に平板状に形成した場合は、落下などの衝撃に耐えうる強度的に、厚みが約17μm(基本波振動で約100MHz)、図5のように圧電振動領域部の周囲に、圧電振動領域部の厚みより厚い補強部を一体で形成したような水晶振動子の場合は、圧電振動領域部の厚みが約5μm(基本波振動で約350MHz)以下のものが作成されている。
In the AT-cut quartz resonator, the vibration mode is thickness shear vibration, and the frequency thereof is inversely proportional to the thickness of the piezoelectric vibration region portion. Therefore, in order to increase the frequency, it is necessary to reduce the thickness of the piezoelectric vibration region portion. At present, when an AT-cut quartz base plate is simply formed in a flat plate shape, the thickness is about 17 μm (about 100 MHz for fundamental wave vibration), and the piezoelectric vibration region portion as shown in FIG. In the case of a quartz crystal resonator in which a reinforcing part thicker than the thickness of the piezoelectric vibration area is integrally formed around the piezoelectric element, a piezoelectric vibration area having a thickness of about 5 μm (about 350 MHz for fundamental vibration) is created. Has been.

このような形状に加工した水晶素板に、圧電振動領域部の表裏主面上に励振用電極と、この励振用電極から補強部を介して引き出した引出電極と、補強部の外周辺のうち一辺の表裏縁部近傍に形成した前記引出電極と電気的に接続した容器接続用電極とを形成することで水晶振動板を形成している。   In the crystal base plate processed into such a shape, an excitation electrode on the front and back main surfaces of the piezoelectric vibration region portion, an extraction electrode drawn from the excitation electrode through the reinforcement portion, and an outer periphery of the reinforcement portion A quartz crystal diaphragm is formed by forming a container connection electrode electrically connected to the extraction electrode formed in the vicinity of the front and back edge portions on one side.

又、このような水晶振動板の製造方法としては、平板形状の水晶ウエハの一方の主面の所定の箇所に、矩形状に、フォトリソグラフィ法とエッチングにより複数個の凹状の窪みをマトリックス状に整列形成する。この凹部の底部の厚みを所望の周波数が振動する厚さまでエッチングし、圧電振動領域部とする。この圧電振動領域部は、その周囲にこの圧電振動領域部を支持補強するために水晶ウエハの厚みを厚さとする補強部を一体で形成するような位置に形成している。   In addition, as a method of manufacturing such a crystal diaphragm, a rectangular shape is formed at a predetermined position on one main surface of a flat plate-shaped crystal wafer, and a plurality of concave recesses are formed in a matrix by photolithography and etching. Align and form. The thickness of the bottom of the recess is etched to a thickness at which a desired frequency vibrates to form a piezoelectric vibration region. The piezoelectric vibration region portion is formed at a position where a reinforcing portion having a thickness of the quartz wafer is integrally formed around the piezoelectric vibration region portion so as to support and reinforce the piezoelectric vibration region portion.

この個々の圧電振動領域部の表裏主面上に、円形の励振電極が表裏で対向するように形成し、この励振電極から圧電振動領域部の周囲の補強部表裏面上に延出する引出電極を形成し、この引出電極は個々の補強部における一つの辺縁部に形成する表裏各々2つの容器接続用電極まで延出し、この容器接続用電極と電気的に接続するように形成する。   On the front and back main surfaces of the individual piezoelectric vibration area portions, circular excitation electrodes are formed so as to face each other, and the extraction electrodes extend from the excitation electrodes to the front and back surfaces of the reinforcing portions around the piezoelectric vibration area portions. The lead electrode is formed so as to extend to two container connection electrodes on the front and back sides formed on one edge of each reinforcing part and to be electrically connected to the container connection electrode.

その後、励振用電極、引出電極及び容器接続用電極を表裏主面上に形成した圧電振動領域部及び補強部を複数個整列配置して形成した水晶ウエハを、各々の補強部に定めた切断線に沿って切断し個片加工した複数個の水晶振動板を形成する。   Thereafter, a crystal wafer formed by arranging and arranging a plurality of piezoelectric vibration region portions and reinforcing portions formed on the front and back main surfaces of the excitation electrode, the extraction electrode, and the container connecting electrode on the front and back main surfaces, and a cutting line defined for each reinforcing portion A plurality of crystal diaphragms cut into pieces and processed into pieces are formed.

尚、このような水晶振動板及びその製造方法につきましては、以下のような先行技術文献が公知となっている。   In addition, the following prior art documents are well-known about such a crystal diaphragm and its manufacturing method.

特開2004―40693号公報Japanese Patent Laid-Open No. 2004-40693 特開2001−257560号公報JP 2001-257560 A

なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。   The applicant has not found any prior art documents related to the present invention other than the prior art documents specified by the prior art document information described above by the time of filing of the present application.

しかしながら、上述した従来の水晶振動板では、水晶振動板の外形形状を切断加工により形成しているため、水晶振動板を構成する補強部おいて容器接続用電極が形成されている辺の側面には金属膜などを形成できないため、補強部の表裏主面に形成した容器接続用電極間を導通することが困難であった。   However, in the above-described conventional quartz diaphragm, the outer shape of the quartz diaphragm is formed by cutting, so that the container connection electrode is formed on the side surface of the reinforcing portion constituting the quartz diaphragm. Since a metal film or the like cannot be formed, it is difficult to conduct between the container connection electrodes formed on the front and back main surfaces of the reinforcing portion.

このような容器接続用電極において、水晶振動板を水晶振動子容器の内部に搭載するときの容器側の素子接続用電極パッドと電気的導通を取る方法としては、電気的に接続する必要がある容器接続用電極及び素子接続用電極パッドを導通するために多量の導電性接着剤を、表裏の容器接続用電極、水晶振動板側面及び素子接続用電極パッドに塗布することがあるが、水晶振動子の小型化により、内部に水晶振動板を搭載する空間が著しく狭くなっていることから、多量の導電性接着剤を塗布することが難しくなってきた。   In such a container connection electrode, it is necessary to make electrical connection as a method for establishing electrical continuity with the container-side element connection electrode pad when the crystal diaphragm is mounted inside the crystal resonator container. A large amount of conductive adhesive may be applied to the front and back container connection electrodes, the side surfaces of the crystal diaphragm and the element connection electrode pads to conduct the container connection electrodes and the element connection electrode pads. Due to the miniaturization of the child, the space for mounting the quartz diaphragm is remarkably narrowed, so it has become difficult to apply a large amount of conductive adhesive.

又、ワイヤーボンディングによる導通手段を用いる場合があるが、容器側の素子接続用電極パッドを水晶振動板の外形より外側に設けなくてはならず容器の小型化に支障がある。また工数も多くなり問題点が多い。   In some cases, conduction means by wire bonding may be used, but the element-side electrode pads on the container side must be provided outside the outer shape of the crystal diaphragm, which hinders miniaturization of the container. In addition, the man-hours increase and there are many problems.

更に、容器接続用電極中にスルーホールを形成し、表裏の容器接続用電極間を電気的に接続し、水晶振動板の容器側主面に形成した容器接続用電極と素子接続用電極パッドとを導電性接着剤などで固着導通する手段も考案されているが、水晶振動板の小型化が進むにつれ、水晶振動板の補強部に形成する容器接続用電極の大きさも著しく小さくなるため、スルーホールを形成するスペースを確保することが困難になっている。又、補強部内にスルーホールを形成することにより、補強部の強度低下が懸念される。   Furthermore, a through hole is formed in the container connection electrode, the container connection electrodes on the front and back sides are electrically connected, and the container connection electrode and the element connection electrode pad formed on the container side main surface of the crystal diaphragm Although a means for fixing and conducting the material with a conductive adhesive has been devised, the size of the container connecting electrode formed on the reinforcing portion of the quartz diaphragm is significantly reduced as the quartz diaphragm is downsized. It is difficult to secure a space for forming a hole. Moreover, there is a concern that the strength of the reinforcing portion is reduced by forming the through hole in the reinforcing portion.

上記課題を解決するために本発明の水晶振動板は、所望する周波数を励振する矩形状の圧電振動領域部と、この圧電振動領域部の外周を囲うように圧電振動領域部の厚さよりも厚く且つ外周形状が矩形状の補強部がこの圧電振動領域部と一体形成されており、更に圧電振動領域部の表裏主面上に励振用電極と、この励振用電極から補強部を介して引き出した引出電極と、補強部の外周辺のうち一辺の表裏縁部近傍に形成した引出電極と電気的に接続する容器接続用電極とを具備する水晶振動板において、この容器接続用電極が形成された補強部の外周辺側面に、補強部の表裏を繋ぐ溝が形成されており、且つこの溝の表面には補強部の表裏面に形成した容器接続用電極間を電気的に接続する電極間接続電極が形成されていることを特徴とする水晶振動板である。   In order to solve the above-mentioned problems, a quartz crystal diaphragm according to the present invention has a rectangular piezoelectric vibration region portion that excites a desired frequency, and is thicker than the thickness of the piezoelectric vibration region portion so as to surround the outer periphery of the piezoelectric vibration region portion. A reinforcing portion having a rectangular outer peripheral shape is integrally formed with the piezoelectric vibration region portion. Further, an excitation electrode is drawn on the front and back main surfaces of the piezoelectric vibration region portion, and is pulled out from the excitation electrode through the reinforcement portion. The container connection electrode is formed in a quartz crystal diaphragm including an extraction electrode and an extraction electrode formed in the vicinity of the front and back edges of one side of the outer periphery of the reinforcing portion. A groove that connects the front and back of the reinforcing portion is formed on the outer peripheral side surface of the reinforcing portion, and an inter-electrode connection that electrically connects the container connecting electrodes formed on the front and back surfaces of the reinforcing portion on the surface of the groove. An electrode is formed It is a crystal vibration plate.

又、上記記載の水晶振動板の製造方法としては、平板形状の水晶ウエハに、厚みすべり振動モードで所望する周波数を励振する厚みにまで、この水晶ウエハの一方の主面側から厚み加工した矩形状の複数個の圧電振動領域部を、フォトリソグラフィ法及びエッチングにより圧電振動領域部の周囲に水晶ウエハの厚みを厚さとする外周形状を矩形状とする補強部が形成される位置にマトリックス状に複数個整列形成し、圧電振動領域部の表裏主面上に励振用電極と、該励振用電極から圧電振動領域部の周囲に形成した補強部を介して、補強部のうち外周の一つの辺縁部まで延設した引出電極と、引出電極が延出した補強部の外周辺のうち一辺の表裏縁部近傍に引出電極と電気的に接続した容器接続用電極とを形成し、所定の位置で補強部を切断し個々の水晶振動板を形成する製造方法において、
個々の圧電振動領域部の周囲に形成した補強部のうち、容器接続用電極を形成する補強部の第1辺と、この第1辺と相対する別の水晶振動板の補強部の第2辺との間に補強部と一体で形成した捨代領域を形成する工程と、
個々の補強部の第1辺縁部の容器接続用電極を形成する領域と、第1辺に接する捨代領域とに跨るように水晶ウエハの表裏主面を貫通する貫通孔を形成する工程と、 補強部表裏面の容器接続用電極を形成する領域及び貫通孔の補強部側内面に電気的に接続する該容器接続用電極を形成する工程と、
水晶ウエハを該振動領域の周囲に所定の領域及び水晶ウエハの厚みの補強部を形成するように、所定の外形サイズで切断し個片加工した複数個の水晶振動板を形成する工程と
を具備することを特徴とする水晶振動板の製造方法である。
In addition, as a method for manufacturing the above-described quartz crystal plate, a rectangular crystal wafer having a thickness processed from one main surface side of the quartz wafer up to a thickness that excites a desired frequency in a thickness-shear vibration mode on a flat-plate shaped quartz wafer. A plurality of piezoelectric vibration region portions having a shape are arranged in a matrix at positions where a reinforcing portion having a rectangular outer peripheral shape with a thickness of a quartz wafer is formed around the piezoelectric vibration region portion by photolithography and etching. A plurality of alignments are formed, and one side of the outer periphery of the reinforcing part is provided via an excitation electrode on the front and back main surfaces of the piezoelectric vibration area part and a reinforcement part formed around the piezoelectric vibration area part from the excitation electrode. Forming an extraction electrode extending to the edge, and a container connection electrode electrically connected to the extraction electrode in the vicinity of the front and back edges of one side of the outer periphery of the reinforcing portion extending from the extraction electrode, at a predetermined position Cut the reinforcement with In the method of forming the individual crystal plate,
Of the reinforcing portions formed around each piezoelectric vibration region portion, the first side of the reinforcing portion that forms the container connection electrode and the second side of the reinforcing portion of another quartz crystal plate opposite to the first side Forming an abandonment area formed integrally with the reinforcing part between
Forming a through-hole penetrating the front and back main surfaces of the crystal wafer so as to straddle the region for forming the container connection electrode at the first edge of each reinforcing portion and the abandoned region in contact with the first side; A step of forming the container connection electrode that is electrically connected to the inner surface of the reinforcement portion side surface of the through hole and the region for forming the container connection electrode on the front and back surfaces of the reinforcement portion;
Forming a plurality of crystal diaphragms obtained by cutting a crystal wafer into a predetermined region and cutting into individual pieces so as to form a reinforcing portion having a predetermined region and a thickness of the crystal wafer around the vibration region. A method for manufacturing a quartz crystal diaphragm.

上記記載の本発明の水晶振動板によれば、容器接続用電極が形成されている補強部の側面に補強部の表裏に形成した容器接続用電極に至る溝を形成し、この溝の内面に各々の容器接続用電極と電気的に接続する電極接続用電極を形成したことにより、補強部表裏主面の容器接続用電極を、補強部の強度を低下させることなく電気的に接続でき、且つ溝の形状や大きさを変化させることで、水晶振動板の小型化による容器接続用電極の狭小化にも対応できるようになる。又、容器接続用電極と素子接続用電極パッドとを固着導通する場合においても、導電性接着剤の塗布量を、水晶振動板補強部の容器側主面に形成した容器接続用電極と、この容器接続用電極と対向する位置に形成できる素子接続用電極パッドとの間の固着導通のみに使用する量に限定できるので、水晶振動板を使用する水晶振動子の小型化に効果を奏する。   According to the crystal diaphragm of the present invention described above, a groove reaching the container connection electrode formed on the front and back of the reinforcement portion is formed on the side surface of the reinforcement portion where the container connection electrode is formed, and the groove is formed on the inner surface of the groove. By forming the electrode connection electrode that is electrically connected to each container connection electrode, the container connection electrode on the front and back main surfaces of the reinforcement part can be electrically connected without reducing the strength of the reinforcement part, and By changing the shape and size of the groove, it is possible to cope with the narrowing of the container connection electrode due to the miniaturization of the crystal diaphragm. Further, even when the container connection electrode and the element connection electrode pad are fixed and conducted, the amount of the conductive adhesive applied to the container connection electrode formed on the container side main surface of the quartz diaphragm reinforcing portion, Since it can be limited to the amount used only for the fixed continuity between the electrode for connecting an element that can be formed at a position facing the container connecting electrode, it is effective in miniaturizing a crystal resonator using a crystal diaphragm.

更に、本発明の水晶振動板の製造方法によれば、補強部と捨代領域との切断線上に貫通孔を形成し、この貫通孔を縦割り方向で切断することにより、補強部及び捨代領域の側面に容易に溝を形成できる。また貫通孔の開口口が切断線を中心として補強部と捨代領域にかかる割合を変化させることにより補強部側の溝の大きさを任意に形成できるので、水晶振動板の形状の変化に容易に対応できる。   Furthermore, according to the method for manufacturing a quartz crystal diaphragm of the present invention, a through hole is formed on the cutting line between the reinforcing portion and the surplus region, and the through hole is cut in the longitudinal direction so that the reinforcing portion and the surrogate are cut. A groove can be easily formed on the side surface of the region. In addition, the size of the groove on the reinforcement part side can be arbitrarily formed by changing the ratio of the opening of the through hole between the reinforcement part and the removal area around the cutting line, so it is easy to change the shape of the quartz diaphragm It can correspond to.

因って、本発明による水晶振動板及びその製造方法を用いることにより、水晶振動板の小型化に対応でき、且つ上記水晶振動板を効率よく製造できる効果を奏する。   Therefore, by using the crystal diaphragm and the manufacturing method thereof according to the present invention, it is possible to cope with the downsizing of the crystal diaphragm and to efficiently manufacture the crystal diaphragm.

以下に図面を参照しながら本発明の実施形態について説明する。なお、各図においての同一の符号は同じ対象を示すものとする。 図1は、本発明の水晶振動板の斜視図である。図2は、図1記載の水晶振動板を水晶振動子容器に搭載した場合の搭載形態を図示しした構造図である。図3は、本発明における水晶振動板製造時における、水晶ウエハ状態時の形態を図示した斜視図である。図4は図3に図示した水晶ウエハの一部を拡大して示した部分拡大斜視図である。
尚、各図において、本説明に必ずしも必要としない部品又は構造体は図示していない。又、各図を明確にするために一部部品又は構造体を誇張して図示しており、部品及び構造体の厚み寸法については特に誇張してある。
Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol in each figure shall show the same object. FIG. 1 is a perspective view of a quartz crystal diaphragm according to the present invention. FIG. 2 is a structural diagram illustrating a mounting form when the crystal diaphragm shown in FIG. 1 is mounted on a crystal resonator container. FIG. 3 is a perspective view illustrating a form in a quartz wafer state when the quartz diaphragm is manufactured in the present invention. FIG. 4 is a partially enlarged perspective view showing a part of the quartz wafer shown in FIG. 3 in an enlarged manner.
In each drawing, parts or structures that are not necessarily required for this description are not shown. Further, in order to clarify each drawing, some parts or structures are exaggerated, and the thickness dimensions of the parts and structures are particularly exaggerated.

図1及び図2に示す水晶振動板10は大略的に言って、所望の周波数で励振する矩形状の圧電振動領域部11が形成されている。その周囲にこの圧電振動領域部11と一体で形成され、且つ圧電振動領域部11よりも厚みが厚く且つ外周形状が矩形状の補強部12が形成され水晶素板13を構成している。図1では、圧電振動領域部11と補強部12との厚み差を水晶素板13の一方の主面側のみで構成し、他方の主面側では圧電振動領域部11と補強部12との間に段差のない平板構造としている。尚、図1に開示の水晶素板13では矩形状の圧電振動領域部11の周囲に形成した補強部12のうち、圧電振動領域部11の一つの辺方向に形成した第1補強部12aのみ他の辺に形成した補強部よりその主面面積が大きくなっているが、この大きさは圧電振動領域部11の励振形態に影響を与えない範囲で任意に決定される。   The crystal diaphragm 10 shown in FIGS. 1 and 2 is generally formed with a rectangular piezoelectric vibration region portion 11 that is excited at a desired frequency. A quartz base plate 13 is formed by forming a reinforcing portion 12 which is integrally formed with the piezoelectric vibration region portion 11 and is thicker than the piezoelectric vibration region portion 11 and has a rectangular outer peripheral shape. In FIG. 1, the thickness difference between the piezoelectric vibration region portion 11 and the reinforcement portion 12 is configured only on one main surface side of the quartz base plate 13, and the piezoelectric vibration region portion 11 and the reinforcement portion 12 are on the other main surface side. It has a flat plate structure with no step between them. In the quartz base plate 13 disclosed in FIG. 1, only the first reinforcing portion 12 a formed in one side direction of the piezoelectric vibration region portion 11 among the reinforcing portions 12 formed around the rectangular piezoelectric vibration region portion 11. Although the principal surface area is larger than the reinforcing portion formed on the other side, this size is arbitrarily determined within a range that does not affect the excitation mode of the piezoelectric vibration region portion 11.

図1の水晶素板13は水晶結晶体より所謂ATカットで切り出され平板加工されたものであり、圧電振動領域部11の振動モードは厚みすべり振動である。その周波数は圧電振動領域部11の厚みに反比例ため、高周波化を図るには圧電振動領域部11の厚さを薄くする必要がある。図1のように圧電振動領域部の周囲に、圧電振動領域部の厚みより厚い補強部を一体で形成したような水晶素板13の場合は、圧電振動領域部11の厚みが約5μm(基本波振動で約350MHz)以下のものまで作成可能である。   The crystal base plate 13 of FIG. 1 is cut out from a crystal crystal by so-called AT cut and processed into a flat plate, and the vibration mode of the piezoelectric vibration region portion 11 is thickness shear vibration. Since the frequency is inversely proportional to the thickness of the piezoelectric vibration region portion 11, it is necessary to reduce the thickness of the piezoelectric vibration region portion 11 in order to increase the frequency. In the case of the quartz base plate 13 in which a reinforcing portion thicker than the thickness of the piezoelectric vibration area is integrally formed around the piezoelectric vibration area as shown in FIG. 1, the thickness of the piezoelectric vibration area 11 is about 5 μm (basic Wave vibration can be created up to about 350 MHz.

このような形状に加工した水晶素板13に、圧電振動領域部10の表裏主面上に円形状の励振用電極14と、この励振用電極14から補強部を介して引き出した引出電極15と、補強部12の外周辺のうち一辺(第1補強部12a)の表裏縁部近傍に形成した前記引出電極15と電気的に接続した容器接続用電極16とを形成することで水晶振動板10を形成している。
On the crystal base plate 13 processed in such a shape, a circular excitation electrode 14 on the front and back main surfaces of the piezoelectric vibration region portion 10, and an extraction electrode 15 drawn from the excitation electrode 14 via a reinforcement portion, The crystal diaphragm 10 is formed by forming the container connection electrode 16 electrically connected to the extraction electrode 15 formed in the vicinity of the front and back edge portions of one side (first reinforcement portion 12a) of the outer periphery of the reinforcement portion 12. Is forming.

又、この容器接続用電極16が形成されている水晶素板13の側面には、水晶素板の表主面から裏主面に至る溝17が、水晶素板13両主面に対向するように形成されている容器接続用電極16同士を繋ぐような形態で形成されており、その溝17の内面上には、対向して形成してある容器接続用電極16間を電気的に接続するための電極間接続用電極18が形成されている。
Further, on the side surface of the crystal base plate 13 on which the container connecting electrode 16 is formed, a groove 17 extending from the front main surface to the back main surface of the crystal base plate faces the main surfaces of the crystal base plate 13. The container connection electrodes 16 are formed in such a manner as to be connected to each other, and the container connection electrodes 16 formed on the inner surface of the groove 17 are electrically connected to each other. For this purpose, an interelectrode connection electrode 18 is formed.

このような形状の水晶振動板10は図2のように水晶振動子20を構成する容器21の内部に搭載される。即ち、水晶振動板10は、圧電振動領域部11と補強部12との間に段差がある主面を容器21の内部底面に向けた形態で、且つ容器21の内部底面上に水晶振動板10に形成した容器接続用電極16に対応した位置に形成した素子接続用電極パッド22に、導電性接着剤23を介して固着導通している。この際に導電性接着剤23は、水晶振動板10の容器側主面に形成した容器接続用電極16と素子接続用電極パッド22との間を固着導通できる量のみ塗布されており、その一部は溝17に入り込むため、水晶振動板10の固着強度を向上させることもできる。又、この素子接続用電極パッド22の表面に突起を形成すると、その突起に水晶振動板10に形成した溝を嵌め合うことにより、水晶振動板10の搭載の際の位置合わせが可能となる。   The crystal diaphragm 10 having such a shape is mounted inside a container 21 constituting the crystal resonator 20 as shown in FIG. That is, the crystal diaphragm 10 has a configuration in which a main surface having a step between the piezoelectric vibration region portion 11 and the reinforcing portion 12 is directed to the inner bottom surface of the container 21, and on the inner bottom surface of the container 21. The element connection electrode pad 22 formed at a position corresponding to the container connection electrode 16 formed in the above is fixedly conducted through a conductive adhesive 23. At this time, the conductive adhesive 23 is applied only in such an amount that the container connection electrode 16 formed on the container-side main surface of the quartz crystal plate 10 and the element connection electrode pad 22 can be firmly connected. Since the portion enters the groove 17, the fixing strength of the crystal diaphragm 10 can be improved. Further, when a protrusion is formed on the surface of the element connection electrode pad 22, a groove formed in the crystal diaphragm 10 is fitted into the protrusion, thereby enabling alignment when the crystal diaphragm 10 is mounted.

次に上記のような水晶振動板を製造する方法としては、まず平板形状の水晶ウエハ30の一方の主面側から、厚みすべり振動モードで所望する周波数を励振する厚みにまで厚み加工した矩形状の複数個の圧電振動領域部11を、フォトリソグラフィ法及びエッチングにより、圧電振動領域部11の周囲に水晶ウエハ30の厚みを厚さとする外周形状を矩形状とする補強部12が形成され、且つ個々の圧電振動領域部11の周囲に形成した補強部12のうち、容器接続用電極16を形成する第1補強部12aの第1辺31と、この第1辺31と相対する別の水晶振動板の補強部12の第2辺32との間に、補強部12と一体で形成した捨代領域部33を形成する位置にマトリックス状に複数個整列形成する。   Next, as a method of manufacturing the above-described quartz crystal plate, first, a rectangular shape in which a thickness is processed from one main surface side of the flat crystal wafer 30 to a thickness for exciting a desired frequency in the thickness-shear vibration mode. A plurality of piezoelectric vibration region portions 11 are formed by a photolithography method and etching to form a reinforcement portion 12 having a rectangular outer peripheral shape having a thickness of the quartz wafer 30 around the piezoelectric vibration region portion 11, and Of the reinforcing portions 12 formed around the individual piezoelectric vibration region portions 11, the first side 31 of the first reinforcing portion 12 a that forms the container connection electrode 16 and another crystal vibration facing the first side 31. Between the second side 32 of the reinforcing part 12 of the plate, a plurality of arrayed areas are formed in a matrix at a position where the abandoned area part 33 formed integrally with the reinforcing part 12 is formed.

又、この圧電振動領域部11の形成と一緒に、個々の第1補強部12aの第1辺31縁部の容器接続用電極16を形成する領域と、第1辺31に接する捨代領域部33とに跨るように水晶ウエハ30の表裏主面を貫通する貫通孔34を形成する。   In addition to the formation of the piezoelectric vibration region portion 11, the region for forming the container connection electrode 16 at the edge of the first side 31 of each of the first reinforcing portions 12 a and the abandoned region portion in contact with the first side 31. A through-hole 34 penetrating the front and back main surfaces of the crystal wafer 30 is formed so as to straddle 33.

次に、上記のような外形加工を施した水晶ウエハ30の個々の圧電振動領域部11の表裏主面上に円形状の励振用電極14と、励振用電極14から圧電振動領域部11の周囲に形成した補強部12を介して、補強部12のうち外周の一つの辺縁部まで延設した引出電極15と、引出電極が延設した第1補強部12aの外周辺のうち第1辺31の表裏縁部近傍に引出電極15と電気的に接続した容器接続用電極16及び貫通孔34の第1補強部12a側内面に、水晶ウエハ30両主面に対向するように形成されている各々の容器接続用電極16同士を電気的に接続する電極間接続用電極18を蒸着法により形成する。このように各種電極を形成した後の形態を図3及び図4に示す。   Next, the circular excitation electrode 14 is formed on the front and back main surfaces of the individual piezoelectric vibration region portions 11 of the crystal wafer 30 subjected to the outer shape processing as described above, and the periphery of the piezoelectric vibration region portion 11 from the excitation electrode 14. The extraction electrode 15 extended to one edge of the outer periphery of the reinforcement portion 12 through the reinforcement portion 12 formed on the first portion, and the first side of the outer periphery of the first reinforcement portion 12a extended with the extraction electrode In the vicinity of the front and back edge portions of 31, the container connection electrode 16 electrically connected to the extraction electrode 15 and the inner surface of the through hole 34 on the first reinforcing portion 12 a side are formed so as to face both main surfaces of the crystal wafer 30. Interelectrode connection electrodes 18 for electrically connecting the container connection electrodes 16 to each other are formed by vapor deposition. The form after forming the various electrodes in this way is shown in FIGS.

次に、水晶ウエハ30を圧電振動領域部11の周囲に所定の領域及び該水晶ウエハの厚みの補強部12を形成するように予め定めた切断線Aにより切断することにより、貫通孔34の一部が形成されている捨代領域部33を分離し、各個片加工した複数個の水晶振動板10を形成する。   Next, the crystal wafer 30 is cut along a predetermined cutting line A so as to form a predetermined region and a thickness-reinforcing portion 12 around the piezoelectric vibration region portion 11, thereby forming one through hole 34. The separation region portion 33 where the portion is formed is separated, and a plurality of crystal diaphragms 10 each processed by a single piece are formed.

尚、本実施例において、貫通孔34の開口口形状は矩形状としているが、他に円形状や多角形状でもよい。又、本実施例では貫通孔34の形成位置を捨代領域部33と第1補強部12aとを分離する切断線上に、捨代領域部33と第1補強部12aとに均等にかかるように形成しているが、貫通孔34の開口口形状によっては、どちらかに偏った位置に形成しても良い。   In the present embodiment, the shape of the opening of the through hole 34 is rectangular, but it may be circular or polygonal. Further, in the present embodiment, the formation positions of the through holes 34 are equally applied to the separation region portion 33 and the first reinforcement portion 12a on the cutting line separating the separation region portion 33 and the first reinforcement portion 12a. Although formed, depending on the shape of the opening of the through-hole 34, it may be formed at a position biased to either.

図1は、本発明の水晶振動板の斜視図である。FIG. 1 is a perspective view of a crystal diaphragm according to the present invention. 図2は、図1記載の水晶振動板を水晶振動子用容器に搭載した場合の搭載形態を図示した略斜視図である。FIG. 2 is a schematic perspective view illustrating a mounting form when the crystal diaphragm shown in FIG. 1 is mounted on a crystal resonator container. 図3は、本発明における水晶振動板製造時における、水晶ウエハに個々の水晶振動板を作成した形態を図示する斜視図である。FIG. 3 is a perspective view illustrating a form in which individual crystal diaphragms are formed on a quartz wafer when the quartz diaphragm is manufactured according to the present invention. 図4は、図3記載の水晶ウエハの一部を拡大して示した部分拡大斜視図である。FIG. 4 is a partially enlarged perspective view showing a part of the crystal wafer shown in FIG. 3 in an enlarged manner.

符号の説明Explanation of symbols

10・・・水晶振動板
11・・・圧電振動領域部
12・・・補強部
12a・・第1補強部
13・・・水晶素板
14・・・励振用電極
15・・・引出電極
16・・・容器接続用電極
17・・・溝
18・・・電極間接続用電極
30・・・水晶ウエハ
33・・・捨代領域部
34・・・貫通孔
DESCRIPTION OF SYMBOLS 10 ... Crystal diaphragm 11 ... Piezoelectric vibration area | region 12 ... Reinforcement part 12a .... 1st reinforcement part 13 ... Crystal base plate 14 ... Excitation electrode 15 ... Extraction electrode 16 ... ..Electrode for container connection 17... Groove 18... Electrode for interelectrode connection 30... Crystal wafer 33.

Claims (2)

所望する周波数を励振する矩形状の圧電振動領域部と、該圧電振動領域部の外周を囲うように該圧電振動領域部の厚さよりも厚く且つ外周形状が矩形状の補強部が該圧電振動領域部と一体形成されており、更に該圧電振動領域部の表裏主面上に励振用電極と、該励振用電極から該補強部を介して引き出した引出電極と、該補強部の外周辺のうち一辺の表裏縁部近傍に形成した該引出電極と電気的に接続した容器接続用電極とを具備する水晶振動板において、該容器接続用電極が形成された該補強部の外周辺縁部に該補強部の表裏を繋ぐ溝が形成されており、且つ該溝の表面には該補強部の表裏面に形成した該容器接続用電極間を電気的に接続する電極間接続用電極が形成されていることを特徴とする水晶振動板。   A rectangular piezoelectric vibration region that excites a desired frequency, and a reinforcing portion that is thicker than the piezoelectric vibration region and has a rectangular outer shape so as to surround the outer periphery of the piezoelectric vibration region. And an excitation electrode on the front and back main surfaces of the piezoelectric vibration region portion, an extraction electrode drawn from the excitation electrode through the reinforcement portion, and an outer periphery of the reinforcement portion. In a crystal diaphragm comprising a container connecting electrode electrically connected to the lead electrode formed in the vicinity of the front and back edge portions on one side, the outer peripheral edge portion of the reinforcing portion on which the container connecting electrode is formed A groove that connects the front and back of the reinforcing portion is formed, and an electrode for interelectrode connection that electrically connects the container connecting electrodes formed on the front and back surfaces of the reinforcing portion is formed on the surface of the groove. A quartz crystal diaphragm characterized by comprising: 平板形状の水晶ウエハに、厚みすべり振動モードで所望する周波数を励振する厚みにまで該水晶ウエハの一方の主面側から厚み加工した矩形状の複数個の圧電振動領域部を、フォトリソグラフィ法及びエッチングにより、該圧電振動領域部の周囲に水晶ウエハの厚みを厚さとする外周形状を矩形状とする補強部が形成される位置にマトリックス状に複数個整列形成し、該圧電振動領域部の表裏主面上に励振用電極と、該励振用電極から該圧電振動領域部の周囲に形成した該補強部を介して、該補強部のうち外周の一つの辺縁部まで延設した引出電極と、該引出電極が延設した該補強部の外周辺のうち一辺の表裏縁部近傍に該引出電極と電気的に接続した容器接続用電極とを形成し、所定の位置で該補強部を切断し個々の水晶振動板を形成する製造方法において、
個々の圧電振動領域部の周囲に形成した該補強部のうち、該容器接続用電極を形成する補強部の第1辺と、該第1辺と相対する別の水晶振動板の補強部の第2辺との間に該補強部と一体で形成した捨代領域を形成する工程と、
個々の該補強部の第1辺縁部の該容器接続用電極を形成する領域と、該第1辺に接する捨代領域とに跨るように該水晶ウエハの表裏主面を貫通する貫通孔を形成する工程と、
該補強部表裏面の容器接続用電極を形成する領域及び該貫通孔の補強部側内面に電気的に接続する該容器接続用電極を形成する工程と、
該水晶ウエハを該振動領域の周囲に所定の領域及び該水晶ウエハの厚みの補強部を形成するように、所定の外形サイズで切断し個片加工した複数個の水晶振動板を形成する工程と
を具備することを特徴とする水晶振動板の製造方法。
A plurality of rectangular piezoelectric vibration region portions having a thickness processed from one main surface side of the quartz wafer up to a thickness for exciting a desired frequency in a thickness-shear vibration mode on a flat plate-shaped quartz wafer, a photolithography method and By etching, a plurality of matrix-shaped reinforcement portions are formed around the piezoelectric vibration region portion at positions where the outer peripheral shape having a thickness of the quartz wafer is rectangular, and the front and back surfaces of the piezoelectric vibration region portion are formed. An excitation electrode on the main surface, and an extraction electrode extending from the excitation electrode to one edge of the outer periphery of the reinforcement portion via the reinforcement portion formed around the piezoelectric vibration region portion; Forming a container connection electrode electrically connected to the extraction electrode in the vicinity of the front and back edges of one side of the outer periphery of the reinforcement portion extended by the extraction electrode, and cutting the reinforcement portion at a predetermined position Individual crystal diaphragms In the manufacturing method,
Of the reinforcing portions formed around the individual piezoelectric vibration region portions, the first side of the reinforcing portion that forms the container connection electrode and the first side of the reinforcing portion of another quartz crystal plate facing the first side. Forming an abandonment region formed integrally with the reinforcing portion between the two sides;
A through-hole penetrating the front and back main surfaces of the crystal wafer so as to straddle the region for forming the container connection electrode at the first edge of each reinforcing portion and the abandoned region in contact with the first side Forming, and
A step of forming the container connection electrode that is electrically connected to the region on the front and rear surfaces of the reinforcement portion where the container connection electrode is formed and the reinforcement portion side inner surface of the through hole;
Forming a plurality of crystal diaphragms by cutting the crystal wafer into pieces having a predetermined outer size so as to form a predetermined region and a reinforcing portion having a thickness of the crystal wafer around the vibration region; A method of manufacturing a quartz crystal diaphragm, comprising:
JP2004253469A 2004-08-31 2004-08-31 Crystal vibrating plate and its manufacturing method Pending JP2006074272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253469A JP2006074272A (en) 2004-08-31 2004-08-31 Crystal vibrating plate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253469A JP2006074272A (en) 2004-08-31 2004-08-31 Crystal vibrating plate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006074272A true JP2006074272A (en) 2006-03-16

Family

ID=36154433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253469A Pending JP2006074272A (en) 2004-08-31 2004-08-31 Crystal vibrating plate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006074272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011352A (en) * 2008-06-30 2010-01-14 Nippon Dempa Kogyo Co Ltd Crystal resonator manufacturing method, crystal resonator, and electronic component
KR102057908B1 (en) * 2014-09-05 2019-12-23 삼성전기주식회사 Crystal oscillator package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011352A (en) * 2008-06-30 2010-01-14 Nippon Dempa Kogyo Co Ltd Crystal resonator manufacturing method, crystal resonator, and electronic component
KR102057908B1 (en) * 2014-09-05 2019-12-23 삼성전기주식회사 Crystal oscillator package

Similar Documents

Publication Publication Date Title
JP4967707B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP4830069B2 (en) Piezoelectric wafer
JP5088686B2 (en) Vibrating piece and vibrating device
JP2004200917A (en) Piezoelectric vibrating piece, piezoelectric device employing the same, cellular telephone device employing the piezoelectric device, and electronic equipment employing the piezoelectric device
JP2007214941A (en) Piezoelectric vibration chip and piezoelectric device
JP2007013910A (en) Piezoelectric resonator
JP2011030198A (en) Stacked crystal resonator
JP4292825B2 (en) Method for manufacturing quartz vibrating piece
JP2005151423A (en) Piezoelectric vibration chip and piezoelectric device and method of manufacturing them, and mobile telephone apparatus using piezoelectric device, and electronic apparatus using piezoelectric device
JP3390348B2 (en) Quartz crystal resonator and manufacturing method thereof
JP2007318350A (en) Piezoelectric vibrating reed and manufacturing method thereof
JP2008167166A (en) Crystal vibrator
JP5251369B2 (en) Method for manufacturing piezoelectric vibrating piece
JP2007006375A (en) Piezoelectric resonator and manufacturing method thereof
JP4636170B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP2009065522A (en) Piezoelectric device and manufacturing method therefor
JP2008092505A (en) Crystal piece aggregate, crystal oscillating piece, and crystal device
JP2006074272A (en) Crystal vibrating plate and its manufacturing method
JP2006311310A (en) Piezoelectric vibrator
JP2010062795A (en) Piezoelectric vibration piece, method of manufacturing piezoelectric vibration piece, piezoelectric device, and method of manufacturing piezoelectric device
JP2006238207A (en) Crystal oscillating plate, and its manufacturing method
JP2004242132A (en) Piezoelectric vibration device
JP2004112843A (en) Piezoelectric device, manufacturing method of piezoelectric vibrating piece of the same, mobile phone device using the same, and electronics device using the same
JP4020010B2 (en) Piezoelectric vibrating piece, piezoelectric device using the piezoelectric vibrating piece, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
JP4795697B2 (en) Vibrator package