JP2004242132A - Piezoelectric vibration device - Google Patents

Piezoelectric vibration device Download PDF

Info

Publication number
JP2004242132A
JP2004242132A JP2003030377A JP2003030377A JP2004242132A JP 2004242132 A JP2004242132 A JP 2004242132A JP 2003030377 A JP2003030377 A JP 2003030377A JP 2003030377 A JP2003030377 A JP 2003030377A JP 2004242132 A JP2004242132 A JP 2004242132A
Authority
JP
Japan
Prior art keywords
extraction electrode
outer frame
electrode
vibration device
piezoelectric vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030377A
Other languages
Japanese (ja)
Other versions
JP3915117B2 (en
Inventor
Shunsuke Sato
俊介 佐藤
Yoshimasa Minami
恵将 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2003030377A priority Critical patent/JP3915117B2/en
Publication of JP2004242132A publication Critical patent/JP2004242132A/en
Application granted granted Critical
Publication of JP3915117B2 publication Critical patent/JP3915117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable piezoelectric vibration device which prevents disconnection of an extraction electrode, forms an electrode with the higher flexibility of design and has stable electric properties. <P>SOLUTION: This piezoelectric vibration device 1 configured by forming a central portion, an outer frame portion and a step portion connecting the central portion and the outer frame portion integrally has an exciting electrode 21 and a first extraction electrode 23 formed in the central portion, and a second extraction electrode 25 formed in the central portion and the outer frame portion. The first extraction electrode extends toward a particular area where step portions with different surface directions adjoin each other. The second extraction electrode is formed on and connected electrically to the upper surface of the first extraction electrode in the particular area and formed from the particular area to an edge part of the outer frame portion of the piezoelectric vibration device via the respective step portions with different surface directions to constitute an external connection terminal. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水晶振動子等に代表される圧電振動デバイスに係る。特に、主振動部を備えた中央部と、この中央部を囲むように形成された外枠部と、前記中央部と前記外枠部をつなぐ段差部が圧電材料により一体形成された、メサ構造または逆メサ構造で構成されてなる圧電振動デバイスの電極構造に関する。
【0002】
【従来の技術】
通信機器の高周波数化やマイクロコンピュータの動作周波数の高周波数化に伴って、水晶振動子や水晶フィルタ等の圧電振動デバイスも高周波数化が要求されつつある。一般に、高周波数化に対応した水晶振動板(水晶板)として、ATカット水晶板の厚みすべり振動がよく用いられており、周知のとおりその周波数は水晶振動板の厚さで決定され、周波数と厚さとは反比例する。例えば、基本振動周波数として600MHzを得ようとした場合、3μm以下の極薄型の水晶振動板が必要になる。このような極薄板の加工は、研磨作業が難しく製造歩留まりを向上させることが困難であった。
【0003】
この課題を解決するために、特許文献1に開示されているように、水晶振動板の中央部分にエッチング等の加工技術によって凹部を設け、この凹部の底部に薄肉加工した主振動部(中央部)を構成し、段差部を介して、その周囲の厚肉の補強部(外枠部)によって振動領域を補強した所謂逆メサ型と呼ばれる構成が提案されている。この種の水晶振動板は、薄肉化された主振動部とその周囲に形成された補強部とを有する水晶振動板に、励振電極及び引出電極を形成した構成となっている。このような構成を採用することにより、主振動部を従来のものよりもかなり薄くすることができ、また、歩留まりの向上も図ることができる。
【0004】
【特許文献1】
特開平2−231808号公報
【0005】
【発明が解決しようとする課題】
ところで、上述したような水晶振動板では、引出電極を前記主振動部と前記外枠部をつなぐ段差部を有しており、当該引出電極が細い場合、製造時等に、この段差部の頂部(稜部)において、前記引出電極の断線を招くことがあった。特に水晶振動板は異方性圧電結晶体であるのでエッチングされる方向(結晶軸)によってエッチングされる速度が異なる。エッチングされる速度の早い順番は、Z’>+X>−X>Y’となる(ATカット水晶の場合、Z軸からθ°ずれた新たな軸をZ’と称し、Y軸からθ°ずれた新たな軸をY’と称している。)。このため、方向によって段差部の傾斜角度が異なるので、鋭角になる頂部(稜部)と鈍角になる頂部(稜部)が混在し、鋭角になる段差部における引出電極の断線率は極めて高いものであった。特許文献1では、凹部が形成される側の全面に電極を構成することで、上述の断線を防止することを提案している。
【0006】
しかしながら、特許文献1の構成では、一方の主面の電極が全面電極であるので、励振電極以外の引出電極部分でも電極が対向する領域が存在するため、これらの電極の位置ずれや面積ばらつきにより、CI値(クリスタルインピーダンス)等の電気的特性に悪影響を与え、より安定した電気的特性が得にくいという問題がある。また、一方の主面の電極が全面電極であるので、励振電極や引出電極などの設計自由度も制限される。
【0007】
さらに、特許文献1の構成では、一方の主面のみに凹部を構成するものにしか適用できないので、主振動部を薄肉加工する場合、両方の主面に凹部を構成するのにくらべてより段部の深さが深くなるため、より高周波化(主振動部の薄型化)されるになるにしたがい加工時間が長くなり、主振動部の面荒れによる歩留まり低下を招きやすい。
【0008】
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、高周波化に対応できる主振動部と外枠部をつなぐ段差部を有した圧電振動デバイスにおいて、引出電極の断線を防止するとともにより設計自由度の高い電極形成が行え、かつより電気的特性の安定した信頼性の高い圧電振動デバイスを提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、主振動部を備えた中央部と、この中央部を囲むように形成された外枠部と、前記中央部と前記外枠部をつなぐ段差部が圧電材料により一体形成されてなる圧電振動デバイスであって、圧電振動デバイスの中央部に形成された励振電極と第1の引出電極と、圧電振動デバイスの中央部と外枠部に形成された第2の引出電極とを有し、前記第1の引出電極は、面方向の異なる段差部がお互い近接する特定領域に向かって延出され、前記第2の引出電極は、前記特定領域で前記第1の引出電極の上面に形成され電気的に接続されており、かつ、この特定領域から前記面方向の異なるそれぞれの段差部を経由して圧電振動デバイスの外枠部の端部へと形成され外部接続端子を構成してなることを特徴とする。
【0010】
より具体的には、前記中央部が多角形状からなり、前記面方向の異なる段差部がお互い近接する特定領域が、前記中央部の角部分であることを特徴とする。
【0011】
また、主振動部を備えた中央部と、この中央部を囲むように形成された外枠部と、前記中央部と前記外枠部をつなぐ段差部が圧電材料により一体形成されてなる圧電振動デバイスであって、前記中央部の一部が、前記外枠部の端縁近傍にまで延出された中央延出部が形成されており、圧電振動デバイスの中央部に形成された励振電極と第1の引出電極と、圧電振動デバイスの中央延出部と外枠部に形成された第2の引出電極とを有し、前記第1の引出電極は、前記中央延出部の面方向の異なる段差部がお互い近接する特定領域に向かって延出され、前記第2の引出電極は、前記特定領域で前記第1の引出電極の上面に形成され電気的に接続されており、かつ、この特定領域から前記面方向の異なるそれぞれの段差部を経由して圧電振動デバイスの外枠部の端部へと形成され外部接続端子を構成してなることを特徴とする。
【0012】
【発明の効果】
本発明の特許請求項1によれば、圧電振動デバイスの励振電極を外部接続端子へ延出する引出電極を励振電極と一体に形成される第1の引出電極と、段差部を経由して外部接続端子を構成する第2の引出電極を別々に構成するとともにこれらを電気的に接続することで、別工程での電極形成が可能となるため、より断線を起こしにくい引出電極の形成が行える。
【0013】
また、第1の引出電極と第2の引出電極は、面方向の異なる段差部がお互い近接する特定領域のみに延出され、お互いに電気的に接続されているので、励振電極以外の領域で異極の電極が表裏面で対向することがなく、電極形成時のばらつきにより、CI値(クリスタルインピーダンス)等の電気的特性に悪影響を及ぼすことがなく、より安定した電気的特性が得られるとともに、より設計自由度の高い電極形成が行える。
【0014】
また、第2の引出電極は面方向の異なるそれぞれの段差部を経由して圧電振動デバイスの外枠部の端部へと形成されているので、1つの段差部の頂部(稜部)において、前記第2の引出電極の一部が断線することがあっても、他の段差部で導通を確保することができる。特に水晶振動板の場合では、前記第2の引出電極が、鋭角になる段差部の頂部のみを経由するのでなく、より鈍角になる段差部の頂部も経由するので、当該鈍角側の段差部の頂部では第2の引出電極が断線することがなく、安定した導通を確保できる。
【0015】
本発明の特許請求項2によれば、上述の作用効果に加えて、前記中央部が多角形状からなり、当該中央部の角部分を前記面方向の異なる段差部がお互い近接する特定領域とすることで、前記各引出電極の形成する際の位置決めが容易であり、精度の高い電極形成が行えるとともに、段差部の頂部中央に比べて、機械的な接触が起こりにくく、断線の危険性が極めて低い構成となる。
【0016】
本発明の特許請求項3によれば、圧電振動デバイスの励振電極を外部接続端子へ延出する引出電極を励振電極と一体に形成される第1の引出電極と、段差部を経由して外部接続端子を構成する第2の引出電極を別々に構成するとともにこれらを電気的に接続することで、別工程での電極形成が可能となるため、より断線を起こしにくい引出電極の形成が行える。
【0017】
また、第1の引出電極と第2の引出電極は、中央延出部の面方向の異なる段差部がお互い近接する特定領域のみに延出され、お互いに電気的に接続されているので、励振電極以外の領域で異極の電極が表裏面で対向することがなく、電極形成時のばらつきにより、CI値(クリスタルインピーダンス)等の電気的特性に悪影響を及ぼすことがなく、より安定した電気的特性が得られるとともに、より設計自由度の高い電極形成が行える。
【0018】
さらに、第1の引出電極と第2の引出電極は、前記中央部の一部が、前記外枠部の端縁近傍にまで延出された中央延出部に形成されているので、面方向の異なる段差部が前記各引出電極に近接した状態で配置され、段差部の頂部における機械的な接触が起こりにくく、断線の危険性が飛躍的に低減できる構成となる。前記中央部の一部が、前記外枠部の端縁近傍にまで延出された中央延出部に形成されているので、中央部に形成された励振電極に悪影響を及ぼすことなく、第2の引出電極が形成できる。
【0019】
また、第2の引出電極は中央延出部の面方向の異なるそれぞれの段差部を経由して圧電振動デバイスの外枠部の端部へと形成されているので、1つの段差部の頂部(稜部)において、前記第2の引出電極の一部が断線することがあっても、他の段差部で導通を確保することができる。特に水晶振動板の場合では、前記第2の引出電極が、鋭角になる段差部の頂部のみを経由するのでなく、より鈍角になる段差部の頂部も経由するので、当該鈍角側の段差部の頂部では第2の引出電極が断線することがなく、安定した導通を確保できる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。本実施形態では、圧電振動デバイスとしてATカット水晶振動子を構成する水晶振動板に本発明を適用した場合について説明する。
【0021】
(第1実施形態)
−水晶振動板1の構成−
図1は、本発明の第1の形態に係る水晶振動板1の平面図、図2は図1の底面図。図3は図1におけるA−A線に沿った断面図である。図4〜図6は本形態の製造方法を示した図である。
【0022】
本形態に係る水晶振動板1は、例えば平面矩形状のATカットの水晶振動板からなり、逆メサ構造の中央部11と、これを取り囲む外枠部12と、前記中央部と前記外枠部をつなぐ内部側壁としての段差部13,14とが一体的に構成されている。
【0023】
前記中央部11は、表面側の段差部13として、例えば、面方向の異なる段差部131,132,133,134が形成され、裏面側の段差部14として、例えば、面方向の異なる段差部141,142,143,144が形成され、各表裏主面に極薄肉の主振動部(圧電振動領域)を構成する方形状の凹部が形成されている。前記外枠部12は、前記中央部に比較して数倍の厚さ寸法を有する補強部として形成されている。なお、本発明の水晶振動板では、表裏方向をY軸方向であり(表側を+Y’軸とし、裏側を−Y軸とする)、前記段差部131と133が延在する方向が水晶振動板のX軸方向であり(前記段差部131の方向を+X軸とし、前記段差部133の方向を−X軸とする)、前記段差部132と134が延在する方向が水晶振動板のZ’軸方向である(前記段差部132の方向を+Z軸とし、前記段差部134の方向を−Z’軸とする)。このような凹部の成形は後述するウェットエッチング法により行われる。
【0024】
前記表裏面の凹部の中央部には、それぞれ励振電極21,22が形成されている。前記励振電極21は、第1の引出電極23により、端部から面方向の異なる段差部131,132がお互い近接する中央部の角部分151に向かって延出されており、前記角部に近接する段差部131,132を経由して、外枠部12の角部121へと形成されている。前記励振電極22は、第1の引出電極24により、端部から面方向の異なる段差部141,144がお互い近接する中央部の角部分164に向かって延出されており、前記角部に近接する段差部141,144を経由して、外枠部12の角部122へと形成されている。これらの電極は、真空蒸着法等により行われ、各電極材料としては、例えば、クロムの上面に金が積層されたものからなる。
【0025】
また、前記表裏面の外枠部の角部121,122には、前記励振電極21,22と電気的に接続され、外部接続端子を構成する第2の引出電曲25,26が形成されている。これらの第2の引出電極は、前記励振電極と第1の引出電極が形成された後、別工程により形成される。前記第2の引出電極25は、前記第1の引出電極23の一部と上部で重なるように、前記中央部の角部分151の近傍から前記角部に近接する段差部131,132を経由して、外枠部12の角部121へと形成され外部接続端子を構成してなる。前記第2の引出電極26は、前記第1の引出電極24の一部と上部で重なるように、前記中央部の角部分163の近傍から前記角部に近接する段差部143,144を経由して、外枠部12の角部122へと形成され外部接続端子を構成してなる。これらの電極は、真空蒸着法等により行われ、各電極材料としては、例えば、クロムの上面に銀、さらに上面にクロムが積層されたものからなる。これらの第2の引出電極は、前記第1の引出電極の幅より広く形成する事が好ましい。
【0026】
以上の構成により、第1の引出電極と第2の引出電極を別々に構成しているので、例えば、第2の引出電極をより最終工程に近くの別工程での電極形成が可能となるため、より断線を起こしにくい引出電極の形成が行える。また、第2の引出電極は面方向の異なる2つの段差部を経由して圧電振動デバイスの外枠部の端部へと形成されているので、1つの段差部の頂部(稜部)において、前記第2の引出電極の一部が断線することがあっても、他の段差部で導通を確保することができる。特に本実施形態のように水晶振動板を用いたの場合では、前記第2の引出電極が、鋭角になる段差部132,144の頂部の頂部のみを経由するのでなく、より鈍角になる段差部131,143の頂部も経由するので、当該鈍角側の段差部の頂部では第2の引出電極が断線することがなく、安定した導通を確保できる。
【0027】
なお、前記第2の引出電極の役割としては、第1の引出電極との導通し、外部接続端子として導電性接合材を介して後述するセラミックパッケージの外部電極パッドと接続される。従って、本願発明のように励振電極と第1の引出電極材料をクロム+金で構成し、第2の引出電極をクロム+銀+クロムとする事で、第1の引出電極と第2の引出電極との導通が安定し、かつ、導電性接合材(特にシリコン系)とのなじみもよいのでセラミックパッケージの外部電極パッドと導通も安定する。
【0028】
そして、図示していないが、このような圧電振動デバイスをアルミナ等のセラミックスからなるパッケージに収納し、前記各外部接続端子を外部に導出するためにセラミックパッケージの外部電極パッドと電気的接続を行い、蓋板にてパッケージ上面と気密接合することによって表面実装型の水晶振動子を得ることができる。
【0029】
なお、上記実施形態では、面方向の異なる段差部がお互い近接する特定領域として、方形状の中央部の1つの角部分にのみ、第1の引出電極を延出し、第2の引出電極と電気的に接続しているが、中央部として他の多角形状であってもよく、さらに複数の角部に第1の引出電極を延出し、第2の引出電極と電気的に接続してもよい。
【0030】
−水晶振動板1の加工方法−
次に、上記形態に係る水晶振動板1の加工方法について図4、図5、図6とともに説明する。
【0031】
図4<水晶振動板のエッチング>
1−水晶振動板1の表裏面の全面に対してCr及びAuの2層構造で成るレジスト膜MRを蒸着する。
2−その上面にネガティブタイプのレジスト膜NRを形成する。
3−フォトリソ技術を用いて、前記水晶振動板1の表裏面の中央部11に相当する領域を除く領域を露光、現像する。
4−前記中央部11に相当する領域のレジスト膜MR(AuとCr)をエッチング液によってメタルエッチングを行う。
5−前記ネガティブタイプのレジスト膜NRを除去して、フッ酸+フッ化アンモニウム溶液等のエッチング液によるウェットエッチングを行うことで、薄肉の中央部11、段差部13,14(図示せず)、及び外枠部12が形成される。
6−前記レジスト膜MRについて、エッチング液によって全面的にメタルエッチングを行う。
【0032】
図5<励振電極と第1の引出電極形成>
7−上述の工程後、前記水晶振動板1の表裏面の全面に対してCr及びAuの2層構造で成る電極膜M1を蒸着する。
8−その上面にポジティブタイプのレジスト膜PRを形成する。
9−フォトリソ技術を用いて、前記励振電極21,22(図示せず)と第1の引出電極23,24(図示せず)に相当する領域を除く領域を露光、現像する。
10−当該領域の電極膜M1(AuとCr)をエッチング液によってメタルエッチングを行う。
11−前記ポジティブタイプのレジスト膜PRを除去する。
【0033】
図6<第2の電極形成>
12−上述の工程後、前記水晶振動板1の中央部の角部分151、あるいは164(図示せず)の近傍から外枠部12の角部121、あるいは122(図示せず)にかけてCr、Ag及びCrの3層構造で成る電極膜M2を蒸着し、第2の引出電極25,26を形成する。この際、当該第2の引出電極は水晶振動板の外枠部の側端面にも形成されているので、外部接続端子として取り扱いが容易な構成となっている。
【0034】
以上の工程により図1〜図3に示すように、中央部11とそれを囲む段差部13,14によって連結された外枠部12を有する水晶振動板1が形成される。
【0035】
(第2実施形態)
次に、第2実施形態について説明する。本形態は、中央部2の形状の変形例であって、その他の構成は上述した第1実施形態のものと同様である。従って、ここでは第1実施形態との相違点についてのみ説明する。
【0036】
図7は、本発明の第2の形態に係る水晶振動板1の平面図、図8は図7の底面図。図9は図7におけるB−B線に沿った断面図である。
この図に示すように、本形態に係る水晶振動板1は、逆メサ構造の中央部11と、これを取り囲む外枠部12と、前記中央部と前記外枠部をつなぐ段差部13,14とが一体的に構成されており、中央部11の一部が当該中央部の一方の主面と同一平面で外枠部12の端縁近傍にまで延出された中央延出部111,112を具備してなる。
【0037】
前記中央延出部111は、表面側の段差部131と132の近接する部分から当該段差部131,132に連続して段差部1311と1312が形成され、さらに外枠部の角部121の近傍に段差部1313が形成されることで、中央部の一部が当該中央部の表側と同一平面(同じ深さ)で外枠部の端縁近傍にまで延出されている。
【0038】
前記中央延出部112は、表面側の段差部141と144の近接する部分から当該段差部141,144に連続して段差部1441と1442が形成され、さらに外枠部の角部122の近傍に段差部1443が形成されることで、中央部の一部が当該中央部の裏側と同一平面(同じ深さ)で外枠部の端縁近傍にまで延出されている。
【0039】
このように、本形態に係る水晶振動板1は、各表裏主面に極薄肉の主振動部(圧電振動領域)を構成する方形状の凹部と、この凹部の一部が外枠部の端縁近傍にまで延出された凹部が形成されている。このような凹部の成形はウェットエッチング法により行われる。
【0040】
前記表裏面の凹部の中央部には、それぞれ励振電極21,22が形成されている。前記励振電極21は、第1の引出電極23により、端部から前記中央延出部112の端部である段差部1313に向かって延出されている。前記励振電極22は、第1の引出電極24により、端部から前記中央延出部112の端部である段差部1443に向かって延出されている。これらの電極は、真空蒸着法等により行われ、各電極材料としては、例えば、クロムの上面に金が積層されたものからなる。
【0041】
また、前記表裏面の外枠部の角部121,122には、前記励振電極21,22と電気的に接続され、外部接続端子を構成する第2の引出電曲25,26が形成されている。これらの第2の引出電極は、前記励振電極と第1の引出電極が形成された後別工程により形成される。前記第2の引出電極25は、前記第1の引出電極23の一部と上部で重なるように、前記中央部延出部111の端部近傍から当該中央延出部の端部に近接する段差部1311,1312,1313を経由して、外枠部12の角部121へと形成され外部接続端子を構成してなる。前記第2の引出電極26は、前記第1の引出電極24の一部と上部で重なるように、前記中央部延出部112の端部近傍から当該中央延出部の端部に近接する段差部1441,1442,1443を経由して、外枠部12の角部122へと形成され外部接続端子を構成してなる。これらの電極は、真空蒸着法等により行われ、各電極材料としては、例えば、クロムの上面に銀、さらに上面にクロムが積層されたものからなる。これらの第2の引出電極は、前記第1の引出電極の幅より広く形成する事が好ましい。
【0042】
以上の構成により、第1の引出電極と第2の引出電極を別々に構成しているので、例えば、第2の引出電極をより最終工程に近くの別工程での電極形成が可能となるため、より断線を起こしにくい引出電極の形成が行える。また、第2の引出電極は中央延出部の端部に近接する面方向の異なる3つの段差部を経由して圧電振動デバイスの外枠部の端部へと形成されているので、1つの段差部の頂部(稜部)において、前記第2の引出電極の一部が断線することがあっても、他の段差部で導通を確保することができる。特に本実施形態では、前記中央部の一部が、前記外枠部の端縁近傍にまで延出された中央延出部に形成されているので、面方向の異なる段差部が前記各引出電極に近接した状態で配置され、段差部の頂部における機械的な接触が起こりにくく、断線の危険性が飛躍的に低減できる構成となる。前記中央部の一部が、前記外枠部の端縁近傍にまで延出された中央延出部に形成されているので、中央部に形成された励振電極に悪影響を及ぼすことなく、第2の引出電極が形成できる。
【0043】
なお、上記実施形態では、方形状の中央部の1つ角部に中央延出部を形成したものを例にしているが、方形状の中央部の辺部に中央延出部を形成してもよい、さらに複数の中央延出部を形成してもよく、かつ複数の中央延出部に第1の引出電極を延出し、第2の引出電極と電気的に接続してもよい。
【0044】
−その他の実施形態−
以上説明した各実施形態は何れも、表裏主面に凹部(段差部)を構成するについて説明しているが、表裏のうち一方の主面にのみ凹部(段差部)を構成するものにも適用できる。加えて、薄肉の中央部と、この中央部を囲むように形成された厚肉の外枠部と、前記中央部と前記外枠部をつなぐ段差部が水晶振動板により一体形成された逆メサ構造のものについて説明したが、厚肉の中央部と、この中央部を囲むように形成された薄肉の外枠部と、前記中央部と前記外枠部をつなぐ段差部が水晶振動板により一体形成されたメサ構造のものにも適用可能である。また、中央部と外枠部との間には階段状の内部側壁としての段差部を形成してよく、外枠部に応力が作用した場合であっても、それを容易に緩和することができ局部的な応力集中を回避できる。更に、上述した各実施形態では圧電振動デバイスとして水晶振動板を採用した場合について説明した。本発明はこれに限らずその他の圧電材料で成る圧電振動デバイスに対しても適用可能である。
【図面の簡単な説明】
【図1】第1実施形態に係る水晶振動板の平面図。
【図2】図1の底面図。
【図3】図1におけるA−A線に沿った断面図。
【図4】第1実施形態の製造方法を示した図。
【図5】第1実施形態の製造方法を示した図。
【図6】第1実施形態の製造方法を示した図。
【図7】第2実施形態に係る水晶振動板の平面図。
【図8】図7の底面図。
【図9】図7におけるB−B線に沿った断面図。
【符号の説明】
1 水晶振動板
11 中央部
12 外枠部
13,14 段差部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric vibrating device represented by a quartz oscillator or the like. In particular, a mesa structure in which a central portion having a main vibrating portion, an outer frame portion formed so as to surround the central portion, and a step portion connecting the central portion and the outer frame portion are integrally formed of a piezoelectric material. Alternatively, the present invention relates to an electrode structure of a piezoelectric vibration device having an inverted mesa structure.
[0002]
[Prior art]
Higher frequencies of communication devices and higher operating frequencies of microcomputers are also demanding higher frequencies of piezoelectric vibrating devices such as quartz resonators and quartz filters. Generally, thickness shear vibration of an AT-cut quartz plate is often used as a quartz plate (quartz plate) corresponding to a higher frequency, and as is well known, the frequency is determined by the thickness of the quartz plate. It is inversely proportional to thickness. For example, when trying to obtain a fundamental vibration frequency of 600 MHz, an ultra-thin quartz plate of 3 μm or less is required. In the processing of such an ultra-thin plate, the polishing operation is difficult, and it is difficult to improve the production yield.
[0003]
In order to solve this problem, as disclosed in Patent Literature 1, a concave portion is formed in a central portion of a quartz vibrating plate by a processing technique such as etching, and a main vibrating portion (central portion which is thin-walled) is formed on a bottom portion of the concave portion. ), And a so-called inverted mesa configuration in which a vibration region is reinforced by a thick reinforcing portion (outer frame portion) around the step portion through a step portion has been proposed. This type of quartz vibrating plate has a configuration in which an excitation electrode and an extraction electrode are formed on a quartz vibrating plate having a thinned main vibrating portion and a reinforcing portion formed around the main vibrating portion. By adopting such a configuration, the main vibrating portion can be made considerably thinner than the conventional one, and the yield can be improved.
[0004]
[Patent Document 1]
JP-A-2-231808
[Problems to be solved by the invention]
By the way, in the above-mentioned crystal diaphragm, the extraction electrode has a step portion connecting the main vibrating portion and the outer frame portion, and when the extraction electrode is thin, a top portion of the step portion is used at the time of manufacturing or the like. At the (ridge), disconnection of the extraction electrode was sometimes caused. In particular, since the quartz vibrating plate is an anisotropic piezoelectric crystal, the etching speed is different depending on the etching direction (crystal axis). The order of the etching speed is Z ′> + X>−X> Y ′. (In the case of AT-cut quartz, a new axis shifted from the Z axis by θ ° is called Z ′, and the new axis is shifted by θ ° from the Y axis. The new axis is referred to as Y '.) For this reason, since the inclination angle of the stepped portion differs depending on the direction, the peak portion (ridge portion) that becomes an acute angle and the peak portion (ridge portion) that becomes an obtuse angle are mixed, and the disconnection rate of the extraction electrode at the step portion that becomes an acute angle is extremely high. Met. Patent Document 1 proposes that the above-described disconnection is prevented by forming an electrode on the entire surface on the side where the concave portion is formed.
[0006]
However, in the configuration of Patent Literature 1, since the electrode on one main surface is a full-surface electrode, there is also a region where the electrodes face each other even in the extraction electrode portion other than the excitation electrode. And adversely affect electrical characteristics such as CI value (crystal impedance), and it is difficult to obtain more stable electrical characteristics. Further, since the electrode on one main surface is a full-surface electrode, the degree of freedom in designing the excitation electrode, the extraction electrode, and the like is limited.
[0007]
Furthermore, since the configuration of Patent Document 1 can be applied only to a configuration in which a concave portion is formed only on one main surface, when the main vibrating portion is thin-walled, it is more stepped than when a concave portion is formed in both main surfaces. Since the depth of the portion becomes deeper, the processing time becomes longer as the frequency becomes higher (the thickness of the main vibrating portion is reduced), and the yield is likely to be reduced due to the surface roughness of the main vibrating portion.
[0008]
The present invention has been made in view of such a point, and an object of the present invention is to provide a piezoelectric vibrating device having a step portion connecting a main vibrating portion and an outer frame portion capable of coping with high frequency, and disconnection of an extraction electrode. An object of the present invention is to provide a highly reliable piezoelectric vibrating device in which the formation of electrodes with a higher degree of freedom in design can be performed while electrical characteristics are more stable.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a central part having a main vibrating part, an outer frame part formed so as to surround the central part, and a step part connecting the central part and the outer frame part. Is a piezoelectric vibration device integrally formed of a piezoelectric material, and is formed at an excitation electrode and a first extraction electrode formed at a central portion of the piezoelectric vibration device, and at a central portion and an outer frame portion of the piezoelectric vibration device. A second extraction electrode, wherein the first extraction electrode is extended toward a specific region in which step portions having different plane directions are close to each other, and the second extraction electrode is provided in the specific region. It is formed on and electrically connected to the upper surface of the first extraction electrode, and is formed from this specific region to the end of the outer frame portion of the piezoelectric vibration device via each stepped portion having the different surface direction. And an external connection terminal.
[0010]
More specifically, the central portion has a polygonal shape, and the specific region where the step portions having different surface directions approach each other is a corner portion of the central portion.
[0011]
Also, a piezoelectric vibrator in which a central portion provided with a main vibrating portion, an outer frame portion formed so as to surround the central portion, and a step portion connecting the central portion and the outer frame portion is integrally formed of a piezoelectric material. A device, wherein a part of the central portion is formed with a central extension portion extending to near an edge of the outer frame portion, and an excitation electrode formed at a central portion of the piezoelectric vibration device. A first extraction electrode, a second extension electrode formed on a central extension portion and an outer frame portion of the piezoelectric vibrating device, wherein the first extension electrode is provided in a plane direction of the central extension portion. Different step portions are extended toward a specific region adjacent to each other, and the second extraction electrode is formed on the upper surface of the first extraction electrode in the specific region and is electrically connected to the specific region. The piezoelectric vibration device is moved from a specific area through the steps having the different surface directions. Characterized by the between the ends of the outer frame portion formed by comprising constitute an external connection terminal.
[0012]
【The invention's effect】
According to the first aspect of the present invention, the extraction electrode that extends the excitation electrode of the piezoelectric vibration device to the external connection terminal is connected to the first extraction electrode that is formed integrally with the excitation electrode, and is externally connected via the step. By separately forming the second extraction electrodes that form the connection terminals and electrically connecting them, it is possible to form the electrodes in a separate process, so that the extraction electrodes that are less likely to be disconnected can be formed.
[0013]
Further, since the first extraction electrode and the second extraction electrode are extended only to a specific region where the step portions having different plane directions are close to each other and are electrically connected to each other, the first extraction electrode and the second extraction electrode are electrically connected to each other. Electrodes having different polarities do not face each other on the front and back surfaces, and variations in electrode formation do not adversely affect electrical characteristics such as a CI value (crystal impedance), thereby obtaining more stable electrical characteristics. Thus, an electrode having a higher degree of design freedom can be formed.
[0014]
In addition, since the second extraction electrode is formed at the end of the outer frame portion of the piezoelectric vibration device via each step portion having a different surface direction, at the top (ridge) of one step portion, Even if a part of the second extraction electrode is disconnected, conduction can be secured at another step. In particular, in the case of a quartz vibrating plate, the second extraction electrode passes not only through the top portion of the step portion that becomes acute but also through the top portion of the step portion that becomes more obtuse. At the top, the second extraction electrode is not disconnected, and stable conduction can be ensured.
[0015]
According to the second aspect of the present invention, in addition to the above-described functions and effects, the central portion has a polygonal shape, and a corner portion of the central portion is a specific region where the step portions having different surface directions are close to each other. By doing so, it is easy to perform positioning when forming each of the extraction electrodes, and it is possible to form electrodes with high accuracy.In addition, mechanical contact is less likely to occur than at the center of the top of the step, and the risk of disconnection is extremely high. It has a low configuration.
[0016]
According to the third aspect of the present invention, the extraction electrode for extending the excitation electrode of the piezoelectric vibrating device to the external connection terminal is connected to the first extraction electrode formed integrally with the excitation electrode, and externally via the step portion. By separately forming the second extraction electrodes that form the connection terminals and electrically connecting them, it is possible to form the electrodes in a separate process, so that the extraction electrodes that are less likely to be disconnected can be formed.
[0017]
Further, since the first extraction electrode and the second extraction electrode are extended only to a specific region where the stepped portions of the central extension portion having different plane directions are close to each other and are electrically connected to each other, the excitation is performed. Electrodes having different polarities do not face each other in a region other than the electrodes, and variations in electrode formation do not adversely affect electrical characteristics such as a CI value (crystal impedance). Characteristics can be obtained and an electrode can be formed with a higher degree of design freedom.
[0018]
Further, since the first extraction electrode and the second extraction electrode are formed in a central extension portion extending to a portion near the edge of the outer frame portion, a part of the central portion is formed in a plane direction. Are arranged in a state of being close to the respective extraction electrodes, so that mechanical contact at the top of the step is unlikely to occur and the risk of disconnection can be drastically reduced. Since a part of the central part is formed in the central extension part extended to near the edge of the outer frame part, the second part does not adversely affect the excitation electrode formed in the central part. Can be formed.
[0019]
Further, since the second extraction electrode is formed at the end of the outer frame portion of the piezoelectric vibration device via each step portion having a different center direction of the central extension portion, the top portion of one step portion ( Even if a part of the second extraction electrode is disconnected at the ridge portion, conduction can be secured at another step portion. In particular, in the case of a quartz vibrating plate, the second extraction electrode passes not only through the top portion of the step portion that becomes acute but also through the top portion of the step portion that becomes more obtuse. At the top, the second extraction electrode is not disconnected, and stable conduction can be ensured.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a case will be described in which the present invention is applied to a quartz vibrating plate constituting an AT-cut quartz oscillator as a piezoelectric vibrating device.
[0021]
(First embodiment)
-Structure of crystal diaphragm 1-
FIG. 1 is a plan view of a quartz vibrating plate 1 according to a first embodiment of the present invention, and FIG. 2 is a bottom view of FIG. FIG. 3 is a sectional view taken along line AA in FIG. 4 to 6 are views showing the manufacturing method of the present embodiment.
[0022]
The quartz vibrating plate 1 according to the present embodiment is formed of, for example, a flat rectangular AT-cut quartz vibrating plate, and has a central portion 11 having an inverted mesa structure, an outer frame portion 12 surrounding the central portion 11, the central portion and the outer frame portion. And stepped portions 13 and 14 as internal side walls connecting them are integrally formed.
[0023]
In the central portion 11, for example, step portions 131, 132, 133, and 134 having different surface directions are formed as front surface side step portions 13, and as the rear surface side step portion 14, for example, step portions 141 having different surface directions. , 142, 143 and 144 are formed, and a rectangular concave portion forming an extremely thin main vibrating portion (piezoelectric vibrating region) is formed on each of the front and back main surfaces. The outer frame portion 12 is formed as a reinforcing portion having a thickness several times as large as that of the central portion. In the quartz vibrating plate of the present invention, the front and back directions are the Y-axis direction (the front side is the + Y ′ axis, and the back side is the −Y axis), and the direction in which the steps 131 and 133 extend is the quartz vibrating plate. (The direction of the step 131 is the + X axis, and the direction of the step 133 is the -X axis), and the direction in which the steps 132 and 134 extend is the Z ′ of the quartz vibrating plate. It is an axial direction (the direction of the step 132 is a + Z axis, and the direction of the step 134 is a -Z 'axis). The formation of such a concave portion is performed by a wet etching method described later.
[0024]
Excitation electrodes 21 and 22 are formed in the central portions of the concave portions on the front and back surfaces, respectively. The excitation electrode 21 is extended by a first extraction electrode 23 from an end toward a central corner 151 at which stepped portions 131 and 132 having different surface directions approach each other. It is formed to the corner 121 of the outer frame 12 via the stepped portions 131 and 132. The excitation electrode 22 has a first extraction electrode 24 extending from an end toward a corner 164 at a central portion where stepped portions 141 and 144 having different plane directions are close to each other, and is close to the corner. It is formed to the corner 122 of the outer frame 12 via the step portions 141 and 144 that are formed. These electrodes are formed by a vacuum deposition method or the like, and each electrode material is, for example, a material in which gold is laminated on the upper surface of chromium.
[0025]
Further, at the corners 121 and 122 of the outer frame portions on the front and back surfaces, second extraction electromagnets 25 and 26 which are electrically connected to the excitation electrodes 21 and 22 and constitute external connection terminals are formed. I have. These second extraction electrodes are formed in separate steps after the excitation electrode and the first extraction electrode are formed. The second extraction electrode 25 passes through the stepped portions 131 and 132 from the vicinity of the central corner portion 151 so as to overlap with a part of the first extraction electrode 23 at the upper portion. Thus, the external connection terminal is formed at the corner 121 of the outer frame 12. The second extraction electrode 26 passes through the steps 143 and 144 from near the corner 163 at the center to approach the corner so as to overlap a part of the first extraction electrode 24 at the upper part. Thus, it is formed on the corner 122 of the outer frame 12 to form an external connection terminal. These electrodes are formed by a vacuum deposition method or the like, and each electrode material is, for example, a material in which silver is laminated on the upper surface of chromium and chromium is further laminated on the upper surface. It is preferable that these second extraction electrodes are formed wider than the width of the first extraction electrodes.
[0026]
With the above configuration, since the first extraction electrode and the second extraction electrode are separately configured, for example, the second extraction electrode can be formed in another process closer to the final process. In addition, it is possible to form an extraction electrode that is less likely to be disconnected. Further, since the second extraction electrode is formed at the end of the outer frame portion of the piezoelectric vibration device via two step portions having different surface directions, at the top (ridge) of one step portion, Even if a part of the second extraction electrode is disconnected, conduction can be secured at another step. In particular, in the case of using a quartz vibrating plate as in this embodiment, the second extraction electrode does not pass only through the tops of the tops of the steps 132 and 144 that become acute, but the steps that become more obtuse. Since it also passes through the tops of 131 and 143, the second extraction electrode does not break at the top of the step portion on the obtuse angle side, and stable conduction can be secured.
[0027]
The role of the second extraction electrode is to conduct to the first extraction electrode, and to be connected to an external electrode pad of a ceramic package described later via a conductive bonding material as an external connection terminal. Therefore, as in the present invention, the excitation electrode and the first extraction electrode are made of chromium + gold, and the second extraction electrode is made of chromium + silver + chromium, whereby the first extraction electrode and the second extraction electrode are made. The continuity with the electrodes is stable, and the connection with the conductive bonding material (especially silicon-based) is good, so the continuity with the external electrode pads of the ceramic package is also stabilized.
[0028]
Then, although not shown, such a piezoelectric vibration device is housed in a package made of ceramics such as alumina, and is electrically connected to external electrode pads of the ceramic package in order to lead the external connection terminals to the outside. Then, a surface mount type crystal resonator can be obtained by airtight bonding with the upper surface of the package with the cover plate.
[0029]
In the above-described embodiment, the first extraction electrode extends only at one corner of the square central portion as a specific area where the step portions having different plane directions are close to each other, and the second extraction electrode and the second extraction electrode are electrically connected to each other. Although it is electrically connected, it may be another polygonal shape as the center part, and the first extraction electrode may be extended to a plurality of corners and electrically connected to the second extraction electrode. .
[0030]
-Processing method of crystal diaphragm 1-
Next, a method of processing the quartz vibrating plate 1 according to the above embodiment will be described with reference to FIGS.
[0031]
Fig. 4 <Etching of quartz plate>
1- A resist film MR having a two-layer structure of Cr and Au is deposited on the entire front and back surfaces of the quartz vibrating plate 1.
2- Form a negative type resist film NR on the upper surface.
3- Using a photolithographic technique, an area excluding an area corresponding to the central portion 11 on the front and back surfaces of the quartz vibrating plate 1 is exposed and developed.
4-Metal etching is performed on the resist film MR (Au and Cr) in a region corresponding to the central portion 11 using an etchant.
5-By removing the negative type resist film NR and performing wet etching with an etching solution such as a hydrofluoric acid + ammonium fluoride solution, a thin central portion 11, step portions 13 and 14 (not shown), And the outer frame part 12 is formed.
6- Metal etching is performed on the entire surface of the resist film MR using an etchant.
[0032]
Fig. 5 <Formation of excitation electrode and first extraction electrode>
7- After the above-described process, an electrode film M1 having a two-layer structure of Cr and Au is deposited on the entire front and back surfaces of the quartz vibrating plate 1.
8- Form a positive type resist film PR on the upper surface.
Using 9-photolithography technology, regions other than regions corresponding to the excitation electrodes 21 and 22 (not shown) and the first extraction electrodes 23 and 24 (not shown) are exposed and developed.
10- Metal etching is performed on the electrode film M1 (Au and Cr) in the region using an etchant.
11-Removing the positive type resist film PR.
[0033]
FIG. 6 <Second electrode formation>
12-After the above-described steps, Cr and Ag are applied from the vicinity of the corner 151 or 164 (not shown) at the center of the quartz vibrating plate 1 to the corner 121 or 122 (not shown) of the outer frame 12. The second extraction electrodes 25 and 26 are formed by depositing an electrode film M2 having a three-layer structure of Cr and Cr. At this time, since the second extraction electrode is also formed on the side end surface of the outer frame portion of the quartz vibrating plate, the configuration is easy to handle as an external connection terminal.
[0034]
Through the above steps, as shown in FIGS. 1 to 3, the crystal diaphragm 1 having the central portion 11 and the outer frame portion 12 connected by the step portions 13 and 14 surrounding the central portion 11 is formed.
[0035]
(Second Embodiment)
Next, a second embodiment will be described. This embodiment is a modification of the shape of the central portion 2, and other configurations are the same as those of the above-described first embodiment. Therefore, only the differences from the first embodiment will be described here.
[0036]
FIG. 7 is a plan view of a quartz plate 1 according to a second embodiment of the present invention, and FIG. 8 is a bottom view of FIG. FIG. 9 is a sectional view taken along line BB in FIG.
As shown in this figure, the quartz vibrating plate 1 according to the present embodiment has a center portion 11 having an inverted mesa structure, an outer frame portion 12 surrounding the center portion, and step portions 13 and 14 connecting the center portion and the outer frame portion. And centrally extending portions 111 and 112 in which a part of the central portion 11 extends to the vicinity of an edge of the outer frame portion 12 on the same plane as one main surface of the central portion. Is provided.
[0037]
The central extension portion 111 has step portions 1311 and 1312 formed continuously from the portions adjacent to the step portions 131 and 132 on the front surface side, and the step portions 1311 and 1312 are further formed near the corner portion 121 of the outer frame portion. The step 1313 is formed at the center portion, so that a portion of the central portion extends to the vicinity of the edge of the outer frame portion on the same plane (same depth) as the front side of the central portion.
[0038]
The central extending portion 112 is formed with steps 1441 and 1442 continuously from the portions adjacent to the steps 141 and 144 on the front surface side and adjacent to the steps 141 and 144, and further near the corner 122 of the outer frame portion. The step portion 1443 is formed at the center portion, so that a part of the center portion extends to the vicinity of the edge of the outer frame portion on the same plane (same depth) as the back side of the center portion.
[0039]
As described above, the quartz vibrating plate 1 according to the present embodiment has a rectangular concave portion forming an ultra-thin main vibrating portion (piezoelectric vibrating region) on each of the front and back main surfaces, and a part of the concave portion is an end of the outer frame portion. A concave portion extending to near the edge is formed. The formation of such a concave portion is performed by a wet etching method.
[0040]
Excitation electrodes 21 and 22 are formed in the central portions of the concave portions on the front and back surfaces, respectively. The excitation electrode 21 is extended from an end toward a step 1313 which is an end of the central extension 112 by the first extraction electrode 23. The excitation electrode 22 is extended from the end toward the step 1443 which is the end of the central extension 112 by the first extraction electrode 24. These electrodes are formed by a vacuum deposition method or the like, and each electrode material is, for example, a material in which gold is laminated on the upper surface of chromium.
[0041]
Further, at the corners 121 and 122 of the outer frame portions on the front and back surfaces, second extraction electromagnets 25 and 26 which are electrically connected to the excitation electrodes 21 and 22 and constitute external connection terminals are formed. I have. These second extraction electrodes are formed in a separate step after the excitation electrode and the first extraction electrode are formed. The second extraction electrode 25 is formed so as to overlap a part of the first extraction electrode 23 at an upper portion, from a portion near an end of the central extension portion 111 to a position close to an end of the central extension portion. Via the parts 1311, 1312, 1313, they are formed on the corners 121 of the outer frame part 12 to constitute external connection terminals. The second extraction electrode 26 is formed so as to overlap a part of the first extraction electrode 24 at an upper portion from a portion near an end of the central extension 112 to an end of the center extension. It is formed on the corner 122 of the outer frame 12 via the parts 1441, 1442, 1443 to constitute an external connection terminal. These electrodes are formed by a vacuum deposition method or the like, and each electrode material is, for example, a material in which silver is laminated on the upper surface of chromium and chromium is further laminated on the upper surface. It is preferable that these second extraction electrodes are formed wider than the width of the first extraction electrodes.
[0042]
With the above configuration, since the first extraction electrode and the second extraction electrode are separately configured, for example, the second extraction electrode can be formed in another process closer to the final process. In addition, it is possible to form an extraction electrode that is less likely to be disconnected. Further, since the second extraction electrode is formed to the end of the outer frame portion of the piezoelectric vibration device via three step portions having different surface directions close to the end of the central extension portion, one second extraction electrode is formed. Even if a part of the second extraction electrode is disconnected at the top (ridge) of the step, conduction can be ensured at another step. In particular, in the present embodiment, since a part of the central portion is formed in the central extension portion extending to near the edge of the outer frame portion, a step portion having a different surface direction is formed by each of the extraction electrodes. , And mechanical contact at the top of the stepped portion is unlikely to occur, so that the risk of disconnection can be drastically reduced. Since a part of the central part is formed in the central extension part extended to near the edge of the outer frame part, the second part does not adversely affect the excitation electrode formed in the central part. Can be formed.
[0043]
In the above-described embodiment, an example is described in which a central extension is formed at one corner of a square central portion, but a central extension is formed at a side of the square central portion. Alternatively, a plurality of central extension portions may be formed, and the first extraction electrode may extend to the plurality of central extension portions, and may be electrically connected to the second extraction electrode.
[0044]
-Other embodiments-
In each of the embodiments described above, the concave portion (step portion) is formed on the front and back main surfaces, but the present invention is also applied to the case where the concave portion (step portion) is formed only on one of the front and back main surfaces. it can. In addition, an inverted mesa in which a thin center portion, a thick outer frame portion formed so as to surround the center portion, and a step portion connecting the center portion and the outer frame portion are integrally formed by a quartz vibrating plate. Although the structure is described, a thick central portion, a thin outer frame portion formed so as to surround the central portion, and a step portion connecting the central portion and the outer frame portion are integrally formed by a quartz vibrating plate. The present invention is also applicable to a formed mesa structure. In addition, a step portion may be formed between the center portion and the outer frame portion as a step-like inner side wall, so that even when stress acts on the outer frame portion, it can be easily relieved. As a result, local stress concentration can be avoided. Further, in each of the embodiments described above, the case where the quartz vibrating plate is adopted as the piezoelectric vibrating device has been described. The present invention is not limited to this, and is applicable to a piezoelectric vibration device made of another piezoelectric material.
[Brief description of the drawings]
FIG. 1 is a plan view of a crystal diaphragm according to a first embodiment.
FIG. 2 is a bottom view of FIG. 1;
FIG. 3 is a sectional view taken along line AA in FIG. 1;
FIG. 4 is a diagram showing a manufacturing method according to the first embodiment.
FIG. 5 is a diagram showing a manufacturing method according to the first embodiment.
FIG. 6 is a view showing a manufacturing method according to the first embodiment;
FIG. 7 is a plan view of a quartz plate according to a second embodiment.
FIG. 8 is a bottom view of FIG. 7;
FIG. 9 is a sectional view taken along the line BB in FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Quartz diaphragm 11 Center part 12 Outer frame parts 13, 14 Step part

Claims (3)

主振動部を備えた中央部と、この中央部を囲むように形成された外枠部と、前記中央部と前記外枠部をつなぐ段差部が圧電材料により一体形成されてなる圧電振動デバイスであって、
圧電振動デバイスの中央部に形成された励振電極と第1の引出電極と、圧電振動デバイスの中央部と外枠部に形成された第2の引出電極とを有し、
前記第1の引出電極は、面方向の異なる段差部がお互い近接する特定領域に向かって延出され、
前記第2の引出電極は、前記特定領域で前記第1の引出電極の上面に形成され電気的に接続されており、かつ、この特定領域から前記面方向の異なるそれぞれの段差部を経由して圧電振動デバイスの外枠部の端部へと形成され外部接続端子を構成してなることを特徴とする圧電振動デバイス。
A piezoelectric vibration device in which a central portion having a main vibrating portion, an outer frame portion formed so as to surround the central portion, and a step connecting the central portion and the outer frame portion are integrally formed of a piezoelectric material. So,
An excitation electrode and a first extraction electrode formed at the center of the piezoelectric vibration device, and a second extraction electrode formed at the center and the outer frame of the piezoelectric vibration device;
The first extraction electrode extends toward a specific region in which step portions having different plane directions are close to each other,
The second extraction electrode is formed on the upper surface of the first extraction electrode in the specific region and is electrically connected to the second extraction electrode, and from the specific region via each step portion having a different surface direction. A piezoelectric vibration device, which is formed on an end of an outer frame portion of the piezoelectric vibration device to form an external connection terminal.
前記中央部が多角形状からなり、前記面方向の異なる段差部がお互い近接する特定領域が、前記中央部の角部分であることを特徴とする特許請求項1記載の圧電振動デバイス。2. The piezoelectric vibrating device according to claim 1, wherein the central portion has a polygonal shape, and the specific region where the step portions having different surface directions approach each other is a corner portion of the central portion. 主振動部を備えた中央部と、この中央部を囲むように形成された外枠部と、前記中央部と前記外枠部をつなぐ段差部が圧電材料により一体形成されてなる圧電振動デバイスであって、
前記中央部の一部が、前記外枠部の端縁近傍にまで延出された中央延出部が形成されており、
圧電振動デバイスの中央部に形成された励振電極と第1の引出電極と、圧電振動デバイスの中央延出部と外枠部に形成された第2の引出電極とを有し、
前記第1の引出電極は、前記中央延出部の面方向の異なる段差部がお互い近接する特定領域に向かって延出され、
前記第2の引出電極は、前記特定領域で前記第1の引出電極の上面に形成され電気的に接続されており、かつ、この特定領域から前記面方向の異なるそれぞれの段差部を経由して圧電振動デバイスの外枠部の端部へと形成され外部接続端子を構成してなることを特徴とする圧電振動デバイス。
A piezoelectric vibration device in which a central portion having a main vibrating portion, an outer frame portion formed so as to surround the central portion, and a step connecting the central portion and the outer frame portion are integrally formed of a piezoelectric material. So,
A part of the central portion is formed with a central extension portion extended to near an edge of the outer frame portion,
An excitation electrode and a first extraction electrode formed at the center of the piezoelectric vibration device, and a second extraction electrode formed at the center extension and the outer frame of the piezoelectric vibration device;
The first extraction electrode is extended toward a specific region in which step portions having different surface directions of the central extension portion are close to each other,
The second extraction electrode is formed on the upper surface of the first extraction electrode in the specific region and is electrically connected to the second extraction electrode, and from the specific region via each step portion having a different surface direction. A piezoelectric vibration device, which is formed on an end of an outer frame portion of the piezoelectric vibration device to form an external connection terminal.
JP2003030377A 2003-02-07 2003-02-07 Piezoelectric vibration device Expired - Lifetime JP3915117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030377A JP3915117B2 (en) 2003-02-07 2003-02-07 Piezoelectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030377A JP3915117B2 (en) 2003-02-07 2003-02-07 Piezoelectric vibration device

Publications (2)

Publication Number Publication Date
JP2004242132A true JP2004242132A (en) 2004-08-26
JP3915117B2 JP3915117B2 (en) 2007-05-16

Family

ID=32957282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030377A Expired - Lifetime JP3915117B2 (en) 2003-02-07 2003-02-07 Piezoelectric vibration device

Country Status (1)

Country Link
JP (1) JP3915117B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094806A (en) * 2007-10-09 2009-04-30 Epson Toyocom Corp Piezoelectric device and method of manufacturing the same
JP2011160094A (en) * 2010-01-29 2011-08-18 Daishinku Corp Piezoelectric vibration chip
JP2013098813A (en) * 2011-11-02 2013-05-20 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating piece and piezoelectric device
JP2013138443A (en) * 2013-01-21 2013-07-11 Seiko Epson Corp Vibration device
JP2014017863A (en) * 2013-09-26 2014-01-30 Daishinku Corp Tuning fork type piezoelectric vibration piece, and tuning fork type piezoelectric vibration device
JP2014030126A (en) * 2012-07-31 2014-02-13 Kyocera Crystal Device Corp Crystal device
JP2014138415A (en) * 2013-01-18 2014-07-28 Seiko Epson Corp Method for manufacturing vibration element
EP3644504A4 (en) * 2017-06-22 2020-06-10 Daishinku Corporation Crystal oscillation plate and crystal oscillation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094806A (en) * 2007-10-09 2009-04-30 Epson Toyocom Corp Piezoelectric device and method of manufacturing the same
JP2011160094A (en) * 2010-01-29 2011-08-18 Daishinku Corp Piezoelectric vibration chip
JP2013098813A (en) * 2011-11-02 2013-05-20 Nippon Dempa Kogyo Co Ltd Piezoelectric vibrating piece and piezoelectric device
JP2014030126A (en) * 2012-07-31 2014-02-13 Kyocera Crystal Device Corp Crystal device
JP2014138415A (en) * 2013-01-18 2014-07-28 Seiko Epson Corp Method for manufacturing vibration element
JP2013138443A (en) * 2013-01-21 2013-07-11 Seiko Epson Corp Vibration device
JP2014017863A (en) * 2013-09-26 2014-01-30 Daishinku Corp Tuning fork type piezoelectric vibration piece, and tuning fork type piezoelectric vibration device
EP3644504A4 (en) * 2017-06-22 2020-06-10 Daishinku Corporation Crystal oscillation plate and crystal oscillation device

Also Published As

Publication number Publication date
JP3915117B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP4967707B2 (en) Piezoelectric vibrator and manufacturing method thereof
US8575820B2 (en) Stacked bulk acoustic resonator
JP6017189B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP2021536158A (en) Thin-film bulk acoustic wave resonator and its manufacturing method
JP4665282B2 (en) AT cut crystal unit
JP2007214941A (en) Piezoelectric vibration chip and piezoelectric device
JP2008236439A (en) Quartz oscillating piece
JP5146222B2 (en) Piezoelectric vibration device
JP4360214B2 (en) Piezoelectric vibration device
JP3589211B2 (en) Piezoelectric vibration device
WO2004088840A1 (en) Piezoelectric thin film device and method of producing the same
JP3767425B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5402031B2 (en) Quartz crystal vibrating piece processing method and quartz wafer
JP3915117B2 (en) Piezoelectric vibration device
JP2003198300A (en) Manufacturing method of piezoelectric vibrating piece, mask for forming electrode of the piezoelectric vibrating piece, the piezoelectric vibrating piece, piezoelectric vibrator and piezoelectric oscillator
CN107534431B (en) Crystal oscillator and method for manufacturing same
JP3941736B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic apparatus using quartz crystal device
JP6649747B2 (en) Piezoelectric vibrating reed and piezoelectric vibrator
JP2007158566A (en) Piezoelectric vibration chip and piezoelectric device
JP6570388B2 (en) Piezoelectric vibrator element and piezoelectric vibrator
JP2004364019A (en) Piezoelectric vibration chip, piezoelectric vibrator, piezoelectric oscillator, gyroscope sensor, electronic apparatus, and manufacturing method
JP2017153033A (en) Crystal diaphragm, and crystal vibration device
WO2022158249A1 (en) Elastic wave device, filter device, and method for manufacturing elastic wave device
JP6611534B2 (en) Piezoelectric vibrator element and piezoelectric vibrator
CN114208027A (en) Piezoelectric vibrating plate, piezoelectric vibrating device, and method for manufacturing piezoelectric vibrating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070128

R150 Certificate of patent or registration of utility model

Ref document number: 3915117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term