JP2006073868A - Manufacturing method of micro power converter - Google Patents

Manufacturing method of micro power converter Download PDF

Info

Publication number
JP2006073868A
JP2006073868A JP2004256950A JP2004256950A JP2006073868A JP 2006073868 A JP2006073868 A JP 2006073868A JP 2004256950 A JP2004256950 A JP 2004256950A JP 2004256950 A JP2004256950 A JP 2004256950A JP 2006073868 A JP2006073868 A JP 2006073868A
Authority
JP
Japan
Prior art keywords
insulating substrate
magnetic insulating
main surface
protective resin
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004256950A
Other languages
Japanese (ja)
Inventor
Yoshitomo Hayashi
善智 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2004256950A priority Critical patent/JP2006073868A/en
Publication of JP2006073868A publication Critical patent/JP2006073868A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a micro power converter, wherein when cutting it, the generations of its burrs, cracks, and peelings are so prevented as to enhance the fastening strength of its thin-film magnetic induction element and to improve its reliability. <P>SOLUTION: In the manufacturing method of the micro power converter after forming its coils and its terminal electrodes, each second groove 12 having a wide width and each first groove 11 contacting with each second groove 12 are formed in its ferrite base material 100 by a dicing saw. Consequently, burrs formed in its first and second terminal electrodes 5, 6 are made small so as to be able to prevent the generation of cracks of its ferrite base material 100 and the peeling of its protective resin 8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、フェライト基板にコイルを形成し、その上に半導体チップを固着した超小型電力変換装置の製造方法に関する。   The present invention relates to a method for manufacturing a micro power converter in which a coil is formed on a ferrite substrate and a semiconductor chip is fixed thereon.

近年、電子情報機器、特に携帯型の各種電子情報機器の普及が著しい。それらの電子情報機器は、電池を電源とするものが多く、DC−DCコンバータなどの電力変換装置を内蔵している。通常、その電力変換装置は、スイッチング素子、整流素子、制御用ICなどの機能素子と、コイル、トランス、コンデンサ、抵抗などの受動素子の各個別部品をセラミック基板やプラスチックなどのプリント基板などの上にハイブリッド型のモジュールとして、構成されている。
この電力変換装置の小型化への要求は強く、近年、コイルとして薄膜磁気誘導素子などを搭載して、超小型化が図られている。
図8は、超小型電力変換装置に搭載される従来の薄膜磁気誘導素子の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)をX−X線で切断した要部断面図、同図(c)は同図(a)をY−Y線で切断した要部断面図である。
In recent years, electronic information devices, in particular, various portable electronic information devices have been widely used. Many of these electronic information devices use a battery as a power source, and incorporate a power conversion device such as a DC-DC converter. Usually, the power conversion device is composed of functional elements such as switching elements, rectifier elements, control ICs, and passive components such as coils, transformers, capacitors, resistors, etc., on a printed circuit board such as a ceramic substrate or plastic. It is configured as a hybrid type module.
There is a strong demand for miniaturization of this power converter, and in recent years, a thin film magnetic induction element or the like is mounted as a coil to achieve ultra miniaturization.
FIG. 8 is a configuration diagram of a conventional thin-film magnetic induction element mounted on a micro power converter, in which FIG. 8 (a) is a plan view of an essential part, and FIG. 8 (b) is an X- The principal part sectional drawing cut | disconnected by the X-ray | X_line and the same figure (c) are the principal part sectional drawings cut | disconnected the same figure (a) by the YY line | wire.

この薄膜磁気誘導素子は、フェライト基板51の表面に第1導体52を形成し、裏面に第2導体53を形成し、第1導体52と第2導体53をフェライト基板51を貫通する第1接続導体54で接続してソレノイド状のコイルとし、第1導体52と第2導体53をレジストなどの保護用樹脂58で被覆し、フェライト基板51の第1主面の周辺部に第1端子電極55を形成し、第2主面の周辺部に第2端子電極56を形成し、第1端子電極55と第2端子電極56を接続する第2接続導体57を形成して製作される。
図示しないが、この薄膜磁気誘導素子のフェライト基板51の第1主面側に集積回路を形成した図示しない半導体チップをバンプを介して接続し、第2主面に形成した第2端子電極56を介して第2主面と図示しない積層セラミックコンデンサアレイなどの電子部品を固着して超小型電力変換装置が形成される。
In this thin film magnetic induction element, a first conductor 52 is formed on the surface of the ferrite substrate 51, a second conductor 53 is formed on the back surface, and the first conductor 52 and the second conductor 53 pass through the ferrite substrate 51. The conductor 54 is connected to form a solenoidal coil, and the first conductor 52 and the second conductor 53 are covered with a protective resin 58 such as a resist, and the first terminal electrode 55 is formed on the periphery of the first main surface of the ferrite substrate 51. The second terminal electrode 56 is formed on the periphery of the second main surface, and the second connection conductor 57 that connects the first terminal electrode 55 and the second terminal electrode 56 is formed.
Although not shown, a semiconductor chip (not shown) having an integrated circuit formed on the first main surface side of the ferrite substrate 51 of the thin film magnetic induction element is connected via a bump, and a second terminal electrode 56 formed on the second main surface is provided. Thus, an electronic component such as a multilayer ceramic capacitor array (not shown) is fixed to the second main surface to form a micro power converter.

この超小型電力変換装置に用いられる薄膜磁気誘導素子は、図8(b)、図8(c)の点線で示す大面積のフェライト基材200(切断した後はフェライト基板51となる)に、複数個のソレノイド状のコイルを形成し、コイルを取り囲むように複数個の第1、第2端子電極55、56となる第1、第2金属膜55a、56aをフェライト基材200の第1主面と第2主面にそれぞれ形成する。さらに、この金属膜55a、56aの中央部をフェライト基材200を貫通した貫通孔に形成した第2接続導体57で接続する。この第2接続導体57の中央部を通る直線上をダイシングソー71で切断する。切断した後、第1、第2金属膜55a、56aはそれぞれ第1端子電極55と第2端子電極56になる。
このように、大面積のフェライト基材200を第2接続導体57を通る直線上で、第1、第2主面の第1、第2金属膜55a、56aと被覆した保護用樹脂58とフェライト基材200とを切断することが特許文献1(但し、特許文献1ではコイルはトロイダル状の無端ソレノイドである)に開示されている。この切断は、通常、フェライト基材200の第2主面をダイシングシートに貼り付けて、第1、第2金属膜55a、56a極と保護用樹脂58とフェライト基材200とを、第2接続導体57を通る直線上で第1主面から第2主面に向けてダイシングソー71で1回で切断する。
The thin-film magnetic induction element used in this microminiature power converter is a large-area ferrite base material 200 (after being cut, becomes a ferrite substrate 51) shown in FIG. 8 (b) and FIG. 8 (c). A plurality of solenoidal coils are formed, and the first and second metal films 55a and 56a to be the first and second terminal electrodes 55 and 56 are formed so as to surround the coils. Formed on the surface and the second main surface, respectively. Further, the central portions of the metal films 55 a and 56 a are connected by a second connection conductor 57 formed in a through hole penetrating the ferrite base material 200. A dicing saw 71 cuts a straight line passing through the central portion of the second connection conductor 57. After cutting, the first and second metal films 55a and 56a become the first terminal electrode 55 and the second terminal electrode 56, respectively.
As described above, the protective resin 58 and the ferrite in which the large-area ferrite base material 200 is coated with the first and second metal films 55a and 56a on the first and second main surfaces on a straight line passing through the second connection conductor 57. Cutting the substrate 200 is disclosed in Patent Document 1 (however, in Patent Document 1, the coil is a toroidal endless solenoid). This cutting is usually performed by attaching the second main surface of the ferrite base material 200 to a dicing sheet, and connecting the first and second metal films 55a and 56a, the protective resin 58, and the ferrite base material 200 to the second connection. Cut along the straight line passing through the conductor 57 from the first main surface to the second main surface with the dicing saw 71 once.

また、前記とは異なるが、半導体ウェハから半導体チップを切り出す場合に、半導体チップの端部が欠けないように、半導体チップの両面から切断する方法が特許文献2に開示されている。
特開2004−72815号公報 図20 特開平6−89936号公報 図1、図2
Further, although different from the above, Patent Document 2 discloses a method of cutting from both sides of a semiconductor chip so that the end of the semiconductor chip is not chipped when the semiconductor chip is cut out from the semiconductor wafer.
Japanese Patent Laid-Open No. 2004-72815 FIG. Japanese Patent Laid-Open No. 6-89936 FIG. 1 and FIG.

しかし、特許文献1で開示されているように、第2接続導体57を通る直線上で切断すると、図8(a)のA部では図8(b)のように第1、第2金属膜55a、56bと第2接続導体57である金属をダイシングソー71で切断することになり、一方、図8(a)のB部では図8(c)のように保護用樹脂58とフェライト基材200をダイシングソー71で切断することになる。ダイシングソー71の切断条件をフェライト基材200に合わせると、第1、第2金属膜55a、56bと第2接続導体57である金属の切断面では図9のように大きなバリ72が発生し、また金属に合わせると図10のように切断時にフェライト基板51にクラック74が発生したり、図11のように、フェライト基板51と保護用樹脂58の間で剥離75が生じることがある。
また、特許文献2に開示れている場合には、切り出し線を一致させるための専用のマーカーを半導体チップの表面と裏面に形成する必要がある。
However, as disclosed in Patent Document 1, when cut along a straight line passing through the second connection conductor 57, the first and second metal films are formed at the portion A in FIG. 8A as shown in FIG. 8B. 55a, 56b and the metal that is the second connection conductor 57 are cut by the dicing saw 71, while in the portion B of FIG. 8 (a), the protective resin 58 and the ferrite base material as shown in FIG. 8 (c). 200 is cut with a dicing saw 71. When the cutting conditions of the dicing saw 71 are matched to the ferrite base material 200, large burrs 72 are generated as shown in FIG. 9 on the cut surfaces of the first and second metal films 55a and 56b and the second connection conductor 57, Further, when combined with a metal, a crack 74 may be generated in the ferrite substrate 51 at the time of cutting as shown in FIG. 10, or peeling 75 may occur between the ferrite substrate 51 and the protective resin 58 as shown in FIG.
Moreover, when it is disclosed in Patent Document 2, it is necessary to form dedicated markers for matching the cut-out lines on the front surface and the back surface of the semiconductor chip.

この発明の目的は、前記の課題を解決して、ダイシングソーの切断時に、バリやクラックおよび剥離の発生を防止して、薄膜磁気誘導素子の固着強度を高め、信頼性を向上させることができる超小型電力変換装置の製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems, prevent the occurrence of burrs, cracks and peeling at the time of cutting a dicing saw, increase the fixing strength of the thin-film magnetic induction element, and improve the reliability. An object of the present invention is to provide a manufacturing method of a micro power converter.

前記の目的を達成するために、磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1導体もしくは前記磁性絶縁基板の第2主面に形成された第2導体からなる前記磁性絶縁基板の第1主面に形成された第1導体と前記磁性絶縁基板の第2主面に形成された第2導体と前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるコイル導体と、前記磁性絶縁基板の第1主面と第2主面の外周部にそれぞれ複数個形成され前記磁性絶縁基板を貫通する第2接続導体を介して互いに接続し、前記磁性絶縁基板を挟んで対向する第1端子電極および第2端子電極と、前記第1、第2導体上と前記磁性絶縁基板上を被覆する保護用樹脂とからなる薄膜磁気誘導素子を有する超小型電力変換装置の製造方法において、
複数個に切断して該磁性絶縁基板となる磁性絶縁基材に、前記薄膜磁気誘導素子を複数個形成する工程と、隣接する2個の前記第2端子電極となる金属膜と前記保護用樹脂と前記磁性絶縁基材に前記金属膜の中央部を通る直線上に第2溝を形成する工程と、隣接する前記第1端子電極が前記保護用樹脂を挟んで対向して形成され、該保護用樹脂と該保護用樹脂下の前記磁性絶縁基材に、直線状の前記第2溝に達する直線状の第1溝を形成して、前記薄膜磁気誘導素子を単体に分離する工程を含む製造方法とする。
To achieve the above object, the magnetic insulating substrate and the first conductor formed on the first main surface of the magnetic insulating substrate or the second conductor formed on the second main surface of the magnetic insulating substrate. A first conductor formed on the first main surface of the magnetic insulating substrate, a second conductor formed on the second main surface of the magnetic insulating substrate, and a connection conductor formed in a through-hole penetrating the magnetic insulating substrate. A plurality of coil conductors connected to each other, and a plurality of outer peripheral portions of the first main surface and the second main surface of the magnetic insulating substrate, respectively, and connected to each other through a second connecting conductor penetrating the magnetic insulating substrate; An ultra-thin magnetic induction element comprising a first terminal electrode and a second terminal electrode facing each other across the magnetic insulating substrate, and a protective resin covering the first and second conductors and the magnetic insulating substrate. In the manufacturing method of the small power converter,
A step of forming a plurality of the thin-film magnetic induction elements on a magnetic insulating base material to be cut into a plurality of magnetic insulating substrates, a metal film to be the two adjacent second terminal electrodes, and the protective resin Forming a second groove on a straight line passing through the central portion of the metal film on the magnetic insulating substrate, and the adjacent first terminal electrode is formed to face each other with the protective resin interposed therebetween, and the protection And a step of separating the thin film magnetic induction element into a single piece by forming a linear first groove reaching the linear second groove on the magnetic insulating base material under the protective resin and the protective resin The method.

また、前記第2溝の幅が、前記第1溝の幅より広いとよい。
また、前記第2溝の深さが前記薄膜磁気誘導素子の厚さの半分以下であるとよい。
また、前記第1溝および前記第2溝をそれぞれダイシングソーで形成するとよい。
また、磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1導体もしくは前記磁性絶縁基板の第2主面に形成された第2導体からなる前記磁性絶縁基板の第1主面に形成された第1導体と前記磁性絶縁基板の第2主面に形成された第2導体と前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるコイル導体と、前記磁性絶縁基板の第1主面と第2主面の外周部にそれぞれ複数個形成され前記磁性絶縁基板を貫通する第2接続導体を介して互いに接続し、前記磁性絶縁基板を挟んで対向する第1端子電極および第2端子電極と、前記第1、第2導体上と前記磁性絶縁基板上を被覆する保護用樹脂とからなる薄膜磁気誘導素子を有する超小型電力変換装置の製造方法において、
複数個に切断して前記磁性絶縁基板となる磁性絶縁基材に、前記薄膜磁気誘導素子を複数個形成する工程と、隣接する2個の前記第1端子電極が前記保護用樹脂を挟んで対向して形成され、隣接する2個の前記第2端子電極が前記保護用樹脂を挟んで対向して形成され、隣接する前記第1、第2端子電極同士に挟まれた前記保護用樹脂の中央部を通る直線上で前記保護用樹脂と該保護用樹脂下の前記磁性絶縁基材を切断して、前記薄膜磁気誘導素子を単体に分離する工程とを含む製造方法とする。
The width of the second groove may be wider than the width of the first groove.
The depth of the second groove may be less than half the thickness of the thin film magnetic induction element.
The first groove and the second groove may be formed with a dicing saw.
Further, the first main body of the magnetic insulating substrate comprising a magnetic insulating substrate and a first conductor formed on the first main surface of the magnetic insulating substrate or a second conductor formed on the second main surface of the magnetic insulating substrate. A coil conductor formed by connecting a first conductor formed on a surface, a second conductor formed on a second main surface of the magnetic insulating substrate, and a connection conductor formed in a through hole penetrating the magnetic insulating substrate. And a plurality of outer peripheral portions of the first main surface and the second main surface of the magnetic insulating substrate, which are connected to each other through a second connection conductor penetrating the magnetic insulating substrate and sandwiching the magnetic insulating substrate. Manufacturing method of micro power converter having thin-film magnetic induction element comprising first terminal electrode and second terminal electrode opposed to each other, and protective resin covering first and second conductors and magnetic insulating substrate In
A step of forming a plurality of the thin-film magnetic induction elements on a magnetic insulating base material that is cut into a plurality of parts and serving as the magnetic insulating substrate, and two adjacent first terminal electrodes are opposed to each other with the protective resin interposed therebetween The two adjacent second terminal electrodes are formed opposite to each other with the protective resin interposed therebetween, and the center of the protective resin is sandwiched between the adjacent first and second terminal electrodes. And cutting the protective resin and the magnetic insulating base material under the protective resin on a straight line passing through the section to separate the thin film magnetic induction element into a single unit.

この発明によれば、切断を第1主面側と第2主面側から2回に分けて行うことで、切断によるストレスを低減し、端子電極のバリの張り出し量を従来の半分以下に低減することができる。その際、切断時の位置袷に必要なマーカーを新規に設ける必要がない。
また、フェライト基板のクラックや保護用樹脂とフェライト基板との剥離を防止することができる。
また、切断箇所を端子電極とはせずに保護用樹脂とフェライト基材とすることで、バリを発生させず、フェライト基板に発生するクラックや保護用樹脂とフェライト基板との剥離を防止することができる。
その結果、薄膜磁気誘導素子の引っ張り破壊強度(剪断強度:はんだなどによる固着強度)が、従来の約1.5倍程度となり、信頼性の高い超小型電力変換装置を製造することができる。
According to this invention, cutting is performed in two steps from the first main surface side and the second main surface side, thereby reducing stress due to cutting and reducing the amount of burr protrusion of the terminal electrode to less than half the conventional amount. can do. At that time, it is not necessary to newly provide a marker necessary for the position at the time of cutting.
Also, cracks in the ferrite substrate and peeling between the protective resin and the ferrite substrate can be prevented.
In addition, by using protective resin and ferrite base material instead of the terminal electrode as a cutting point, no burrs are generated, and cracks generated in the ferrite substrate and peeling between the protective resin and the ferrite substrate are prevented. Can do.
As a result, the tensile breaking strength (shear strength: adhesion strength by solder or the like) of the thin film magnetic induction element is about 1.5 times that of the conventional one, and a highly reliable micro power converter can be manufactured.

実施の最良の形態を以下の実施例を用いて説明する。   The best mode of implementation will be described with reference to the following examples.

図1〜図4は、この発明の第1実施例の超小型電力変換装置の製造方法を示す図で、工程順に示した工程図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。ここでは、フェライト基板上に固着する半導体チップは図示せず薄膜磁気誘導素子のみを示す。
500μm程度の厚さのフェライト基材100に複数個のコイル導体とこのコイル導体を囲むようにフェライト基材100(切断した後はフェライト基板1となる)上に端子電極を複数個形成する。コイル導体は、フェライト基材100の第1主面に形成した第1導体2と、フェライト基材100の第2主面に形成した第2導体3と、これらの第1、第2導体2、3を接続するフェライト基材100に開けた貫通孔に形成した第1接続導体4とで構成される。端子電極は、フェライト基材100の第1主面に形成した第1端子電極5と、この第1端子電極5とフェライト基材100を挟んで対向する位置のフェライト基材100の第2主面に形成し、第2端子電極6となる金属膜6aと、これらの第1、第2端子電極5、6を接続するフェライト基材100に開けた貫通孔に形成した第2接続導体7で構成される。第1導体2上とフェライト基材100の第1主面上に、また、第2導体3上とフェライト基材100の第2主面上にレジストなどの保護用樹脂8をそれぞれ形成する。また、前記の第1端子電極5は隣の第1端子電極5と離れており、その分離部分に保護用樹脂8が被覆されている。一方、第2端子電極6は隣の第2端子電極6とはひとつの金属膜6aで形成されている(図1)。
1 to 4 are diagrams showing a method for manufacturing a micro power conversion device according to a first embodiment of the present invention, which are process diagrams shown in the order of steps, in which FIG. (B) is principal part sectional drawing cut | disconnected by the XX line of the figure (a). Here, the semiconductor chip fixed on the ferrite substrate is not shown, and only the thin film magnetic induction element is shown.
A plurality of coil conductors and a plurality of terminal electrodes are formed on the ferrite base material 100 (which becomes the ferrite substrate 1 after cutting) so as to surround the coil conductors on the ferrite base material 100 having a thickness of about 500 μm. The coil conductor includes a first conductor 2 formed on the first main surface of the ferrite base material 100, a second conductor 3 formed on the second main surface of the ferrite base material 100, and the first and second conductors 2, 3 and a first connection conductor 4 formed in a through hole opened in the ferrite base material 100 connecting the three. The terminal electrode includes a first terminal electrode 5 formed on the first main surface of the ferrite base material 100, and a second main surface of the ferrite base material 100 at a position facing the first terminal electrode 5 with the ferrite base material 100 interposed therebetween. The metal film 6a to be the second terminal electrode 6 and the second connection conductor 7 formed in the through-hole formed in the ferrite base material 100 connecting the first and second terminal electrodes 5 and 6 to each other. Is done. A protective resin 8 such as a resist is formed on the first conductor 2 and the first main surface of the ferrite base material 100, and on the second conductor 3 and the second main surface of the ferrite base material 100, respectively. The first terminal electrode 5 is separated from the adjacent first terminal electrode 5, and a protective resin 8 is coated on the separated portion. On the other hand, the second terminal electrode 6 is formed of one metal film 6a with the adjacent second terminal electrode 6 (FIG. 1).

つぎに、金属膜6aの中央部をダイシングソーで切断し第2端子電極6を形成し、このダイシイグソーでフェライト基材100に到達するように第2溝12を形成する。このとき、フェライト基材100に形成される第2溝12の深さは、第2溝12を形成した後のフェライト基材100の強度を確保するために、フェライト基材100の厚さの半分以下とするとよい。ここでは第2溝12の深さは50μm〜100μm程度(フェライト基材100の厚さの1/10〜1/5)とし、その幅は120μm〜150μm程度とする。また、ダイシングソーの切断条件は金属に合わせる(図2)。
つぎに、隣接する第1端子電極5の間の保護用樹脂8が被覆している箇所に、第2溝12に達するような第1溝11をダイシングソーで形成し、フェライト基材100を切断する。このとき、第1溝11の幅を第2溝12の幅より狭くして、100μm程度とする。第1溝11を狭くするのは位置ずれが生じても、第1溝11と第2溝12で確実にフェライト基材100が切り離せるようにするためである。また、第2溝12を広くするのは、第2端子電極6をフェライト基板1の内側に位置させることで、第2端子電極6と固着する(第2端子電極6の側面も半田接合に利用する)図示しない積層セラミックコンデンサアレイなどの電子部品を小型化できるためである。また、ダイシングソーの切断条件はフェライト基材100に合わせる(図3)。
Next, the center portion of the metal film 6a is cut with a dicing saw to form the second terminal electrode 6, and the second groove 12 is formed so as to reach the ferrite substrate 100 with this dicing saw. At this time, the depth of the second groove 12 formed in the ferrite base material 100 is half the thickness of the ferrite base material 100 in order to ensure the strength of the ferrite base material 100 after the second groove 12 is formed. The following is recommended. Here, the depth of the second groove 12 is about 50 μm to 100 μm (1/10 to 1/5 of the thickness of the ferrite base material 100), and the width is about 120 μm to 150 μm. The cutting conditions of the dicing saw are matched to the metal (FIG. 2).
Next, a first groove 11 that reaches the second groove 12 is formed with a dicing saw at a location covered by the protective resin 8 between the adjacent first terminal electrodes 5, and the ferrite base material 100 is cut. To do. At this time, the width of the first groove 11 is made smaller than the width of the second groove 12 to be about 100 μm. The reason why the first groove 11 is narrowed is to ensure that the ferrite base material 100 can be separated by the first groove 11 and the second groove 12 even if a positional shift occurs. Further, the second groove 12 is widened by positioning the second terminal electrode 6 inside the ferrite substrate 1 so as to be fixed to the second terminal electrode 6 (the side surface of the second terminal electrode 6 is also used for soldering). This is because electronic parts such as a multilayer ceramic capacitor array (not shown) can be miniaturized. The cutting conditions of the dicing saw are matched with the ferrite base material 100 (FIG. 3).

つぎに、切断した後、図市しない半導体チップや電子部品を第1主面、第2主面に固着して、フェライト基板1に第1導体2、第2導体3および第1接続導体で構成されるソレノイドコイルが形成された薄膜磁気誘導素子を有する超小型電力変換装置が完成する(図4)。
尚、前記の第2溝12の形成は、図示しない半導体チップをバンプでフェライト基材100に固着する前にフェライト基材100に行っておいて、最終工程で第1溝11を形成して、フェライト基材100を切り離しても構わない。
このような切断方法とすることで、切断時において、第1、第2端子電極5、6に形成されるバリの張り出し量を従来の半分以下に低減することができる。また、フェライト基材100に発生するクラックや保護用樹脂8とフェライト基材100との剥離も防止される。
Next, after cutting, a semiconductor chip or electronic component (not shown) is fixed to the first main surface and the second main surface, and the ferrite substrate 1 is composed of the first conductor 2, the second conductor 3, and the first connection conductor. An ultra-compact power conversion device having a thin film magnetic induction element on which a solenoid coil is formed is completed (FIG. 4).
The second groove 12 is formed on the ferrite base material 100 before fixing a semiconductor chip (not shown) to the ferrite base material 100 with bumps, and the first groove 11 is formed in the final step. The ferrite base material 100 may be separated.
By using such a cutting method, the amount of protrusion of burrs formed on the first and second terminal electrodes 5 and 6 can be reduced to less than half that of the prior art. Further, cracks generated in the ferrite base material 100 and peeling between the protective resin 8 and the ferrite base material 100 are also prevented.

その結果、薄膜磁気誘導素子の固着強度(はんだなどによる固着強度)が、従来の約1.5倍程度となり、信頼性の高い超小型電力変換装置を製造することができる。
また、このような切断方法とすることで第2端子電極6の側面が露出する。この第2端子電極6の側面を露出させることで、図示しない積層セラミックコンデンサアレイなどの電子部品とのはんだ接合による固着強度を高めることができる。
また、半導体ウェハから半導体チップを切り出すときに必要となる切り出し線を一致させるための専用のマーカーは、薄膜磁気誘導素子をフェライト基材100から切り出す場合には、表面側の第1端子電極5と裏面側の金属膜6aとがそれぞれ互いにフェライト基材を挟んで対向するように形成されているため、この第1端子電極5に挟まれた保護用樹脂8と金属膜6aの中央部がそれぞれ表面と裏面の専用のマーカーの働きをする。そのため、半導体ウェハから半導体チップを切り出す工程で必要とされる切り出し用マーカーの形成は不要となり、薄膜磁気誘導素子を切り出す工程は、半導体チップの場合と比べて工数が減少し、低コスト化することができる。
As a result, the fixing strength of the thin-film magnetic induction element (fixing strength by solder or the like) is about 1.5 times that of the conventional one, and a highly reliable micro power converter can be manufactured.
Moreover, the side surface of the 2nd terminal electrode 6 is exposed by setting it as such a cutting method. By exposing the side surface of the second terminal electrode 6, it is possible to increase the fixing strength by soldering with an electronic component such as a multilayer ceramic capacitor array (not shown).
In addition, when a thin film magnetic induction element is cut out from the ferrite base material 100, a dedicated marker for matching a cut-out line required when cutting out a semiconductor chip from a semiconductor wafer is the same as the first terminal electrode 5 on the surface side. Since the metal film 6a on the back surface is formed so as to face each other with the ferrite base material sandwiched therebetween, the protective resin 8 sandwiched between the first terminal electrodes 5 and the central part of the metal film 6a are respectively on the surface. And acts as a dedicated marker on the back. Therefore, it is not necessary to form a marker for cutting required in the process of cutting out a semiconductor chip from a semiconductor wafer, and the process of cutting out a thin film magnetic induction element requires fewer man-hours and lowers costs compared to the case of a semiconductor chip. Can do.

尚、前記薄膜磁気誘導素子を構成するコイル導体の形状はソレノイド状であるが、フェライト基材100上に形成した図示しない渦巻き状であってももちろん構わない。   The shape of the coil conductor constituting the thin-film magnetic induction element is a solenoid shape, but it may of course be a spiral shape (not shown) formed on the ferrite substrate 100.

図5〜図7は、この発明の第2実施例の超小型電力変換装置の製造方法を示す図で、工程順に示した工程図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。ここでは、フェライト基板上に固着する半導体チップは図示せず薄膜磁気誘導素子のみを示す。
500μm程度の厚さのフェライト基材100に複数個のコイル導体とこのコイル導体を囲むようにフェライト基材100に端子電極を複数個形成する。コイル導体は、フェライト基材100の第1主面に形成した第1導体2と、フェライト基材100の第2主面に形成した第2導体3と、これらの第1、第2導体2、3を接続するフェライト基材100に開けた貫通孔に形成した第1接続導体4とで構成される。端子電極は、フェライト基材100の第1主面に形成した第1端子電極5と、この第1端子電極5とフェライト基材100を挟んで対向する位置のフェライト基材100の第2主面に形成した第2端子電極9と、これらの第1、第2端子電極5、9を接続するフェライト基材100に開けた貫通孔に形成した第2接続導体7とで構成される。第1導体2上とフェライト基材100の第1主面上と、第2導体3上とフェライト基材100の第2主面上にレジストなどの保護用樹脂8をそれぞれ形成する。前記の第1端子電極5は隣の第1端子電極5と離れており、また、第2端子電極9は隣の第2端子電極9と離れている。これらの端子を分離している分離部分に保護用樹脂8がそれぞれ被覆されている。これらの保護用樹脂8が被覆されている箇所は第1主面側と第2主面側でフェライト基材100を挟んで対向する位置にある(図5)。
FIGS. 5 to 7 are views showing a manufacturing method of the micro power converter according to the second embodiment of the present invention, which are process drawings shown in the order of steps, in which FIG. (B) is principal part sectional drawing cut | disconnected by the XX line of the figure (a). Here, the semiconductor chip fixed on the ferrite substrate is not shown, and only the thin film magnetic induction element is shown.
A plurality of coil conductors and a plurality of terminal electrodes are formed on the ferrite substrate 100 so as to surround the coil conductors on the ferrite substrate 100 having a thickness of about 500 μm. The coil conductor includes a first conductor 2 formed on the first main surface of the ferrite base material 100, a second conductor 3 formed on the second main surface of the ferrite base material 100, and the first and second conductors 2, 3 and a first connection conductor 4 formed in a through hole opened in the ferrite base material 100 connecting the three. The terminal electrode includes a first terminal electrode 5 formed on the first main surface of the ferrite base material 100, and a second main surface of the ferrite base material 100 at a position facing the first terminal electrode 5 with the ferrite base material 100 interposed therebetween. And the second connection conductor 7 formed in the through-hole formed in the ferrite base material 100 connecting the first and second terminal electrodes 5 and 9. A protective resin 8 such as a resist is formed on the first conductor 2, the first main surface of the ferrite base material 100, the second conductor 3, and the second main surface of the ferrite base material 100. The first terminal electrode 5 is separated from the adjacent first terminal electrode 5, and the second terminal electrode 9 is separated from the adjacent second terminal electrode 9. Protective resins 8 are respectively coated on the separation portions separating these terminals. The locations where these protective resins 8 are coated are at positions facing each other with the ferrite base material 100 sandwiched between the first main surface side and the second main surface side (FIG. 5).

つぎに、第1主面上に隣接している第1端子電極5の間の保護用樹脂8が被覆している箇所をダイシングソーで切断し、フェライト基材100を切断部13で分離する。このときダイシングソーの切断条件はフェライト基材100に合わせる(図6)。
つぎに、切断した後、図示しない半導体チップや電子部品を第1主面、第2主面に固着して、フェライト基板1に第1導体2、第2導体3および第1接続導体で構成されるソレノイドコイルが形成された薄膜磁気誘導素子を有する超小型電力変換装置が完成する(図7)。
この切断方法では、切断する箇所は保護用樹脂8とフェライト基材100であるために、当然金属のバリはなく、また切断条件をフェライト基材100に合わせることで、フェライト基材100にクラックの導入や保護用樹脂8の剥離を防止できる。
Next, a portion covered with the protective resin 8 between the first terminal electrodes 5 adjacent on the first main surface is cut with a dicing saw, and the ferrite base material 100 is separated by the cutting portion 13. At this time, the cutting conditions of the dicing saw are matched to the ferrite base material 100 (FIG. 6).
Next, after cutting, a semiconductor chip or an electronic component (not shown) is fixed to the first main surface and the second main surface, and the ferrite substrate 1 is constituted by the first conductor 2, the second conductor 3, and the first connection conductor. An ultra-compact power conversion device having a thin film magnetic induction element formed with a solenoid coil is completed (FIG. 7).
In this cutting method, since the portions to be cut are the protective resin 8 and the ferrite base material 100, naturally there are no metal burrs, and by matching the cutting conditions to the ferrite base material 100, there is no crack in the ferrite base material 100. The introduction and the peeling of the protective resin 8 can be prevented.

また、この場合は金属を切断しないため、ダイシングソーの切断条件を変える必要がなく、ダイシングソーによる切断は第1主面から第2主面に向かって1回で行う。
尚、この切断を第1実施例のように2回に分けて行っても構わない。2回に分けて行うとクラックの導入や保護用樹脂の剥離は1回の場合と比べて起こりにくくなる。
In this case, since the metal is not cut, it is not necessary to change the cutting conditions of the dicing saw, and the cutting by the dicing saw is performed once from the first main surface to the second main surface.
This cutting may be performed in two steps as in the first embodiment. If it is performed twice, the introduction of cracks and the peeling of the protective resin are less likely to occur than in the case of one time.

この発明の第1実施例の超小型電力変換装置の工程図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図BRIEF DESCRIPTION OF THE DRAWINGS It is process drawing of the micro power converter device of 1st Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). 図1に続く、この発明の第1実施例の超小型電力変換装置の工程図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図It is process drawing of the micro power converter of 1st Example of this invention following FIG. 1, (a) is a principal part top view, (b) is the principal part cut | disconnected by the XX line of (a). Cross section 図2に続く、この発明の第1実施例の超小型電力変換装置の工程図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図FIG. 3 is a process diagram of the micro power converter according to the first embodiment of the present invention, following FIG. 2, wherein (a) is a plan view of the main part, and (b) is a main part cut along line XX of (a). Cross section 図3に続く、この発明の第1実施例の超小型電力変換装置の工程図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図FIG. 4 is a process diagram of the micro power converter according to the first embodiment of the present invention, following FIG. 3, wherein (a) is a plan view of the main part, and (b) is a main part cut along line XX of (a). Cross section この発明の第2実施例の超小型電力変換装置の工程図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図It is process drawing of the micro power converter of 2nd Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). 図5に続く、この発明の第2実施例の超小型電力変換装置の工程図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図FIG. 6 is a process diagram of the micro power converter according to the second embodiment of the present invention, following FIG. 5, wherein (a) is a plan view of the main part, and (b) is a main part cut along the line XX of (a). Cross section 図6に続く、この発明の第2実施例の超小型電力変換装置の工程図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図FIG. 7 is a process diagram of the micro power converter according to the second embodiment of the present invention, following FIG. 6, wherein (a) is a plan view of the main part, and (b) is a main part cut along line XX of (a). Cross section 超小型電力変換装置に搭載される従来の薄膜磁気誘導素子の構成図であり、(a)は要部平面図、(b)は(a)をX−X線で切断した要部断面図、(c)は同図(a)をY−Y線で切断した要部断面図It is a block diagram of the conventional thin film magnetic induction element mounted in a micro power converter, (a) is a principal part top view, (b) is principal part sectional drawing which cut | disconnected (a) by the XX line, (C) is the principal part sectional drawing which cut | disconnected the same figure (a) by the YY line. 切断時に大きなバリが発生した図Figure with large burrs generated during cutting 切断時にフェライト基板にクラックが発生し図A crack occurs in the ferrite substrate during cutting. 切断時にフェライト基板と保護用樹脂の間で剥離が発生した図Figure of separation between ferrite substrate and protective resin during cutting

符号の説明Explanation of symbols

1 フェライト基板
2 第1導体
3 第2導体
4 第1接続導体
5 第1端子電極
6 第2端子電極
6a 金属膜
7、9 第2接続導体
8 保護用樹脂
11 第1溝
12 第2溝
13 切断部
100 フェライト基材
DESCRIPTION OF SYMBOLS 1 Ferrite board | substrate 2 1st conductor 3 2nd conductor 4 1st connection conductor 5 1st terminal electrode 6 2nd terminal electrode 6a Metal film 7, 9 2nd connection conductor 8 Protection resin 11 1st groove | channel 12 2nd groove | channel 13 Cutting Part 100 Ferrite base material

Claims (5)

磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1導体もしくは前記磁性絶縁基板の第2主面に形成された第2導体からなる前記磁性絶縁基板の第1主面に形成された第1導体と前記磁性絶縁基板の第2主面に形成された第2導体と前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるコイル導体と、前記磁性絶縁基板の第1主面と第2主面の外周部にそれぞれ複数個形成され前記磁性絶縁基板を貫通する第2接続導体を介して互いに接続し、前記磁性絶縁基板を挟んで対向する第1端子電極および第2端子電極と、前記第1、第2導体上と前記磁性絶縁基板上を被覆する保護用樹脂とからなる薄膜磁気誘導素子を有する超小型電力変換装置の製造方法において、
複数個に切断して該磁性絶縁基板となる磁性絶縁基材に、前記薄膜磁気誘導素子を複数個形成する工程と、隣接する2個の前記第2端子電極となる金属膜と前記保護用樹脂と前記磁性絶縁基材に前記金属膜の中央部を通る直線上に第2溝を形成する工程と、隣接する前記第1端子電極が前記保護用樹脂を挟んで対向して形成され、該保護用樹脂と該保護用樹脂下の前記磁性絶縁基材に、直線状の前記第2溝に達する直線状の第1溝を形成して、前記薄膜磁気誘導素子を単体に分離する工程を含むことを特徴とする超小型電力変換装置の製造方法。
On the first main surface of the magnetic insulating substrate comprising a magnetic insulating substrate and a first conductor formed on the first main surface of the magnetic insulating substrate or a second conductor formed on the second main surface of the magnetic insulating substrate A coil conductor formed by connecting the formed first conductor, the second conductor formed on the second main surface of the magnetic insulating substrate, and the connection conductor formed in the through hole penetrating the magnetic insulating substrate; A plurality of outer peripheral portions of the first and second main surfaces of the magnetic insulating substrate are connected to each other via second connection conductors that penetrate the magnetic insulating substrate, and face each other with the magnetic insulating substrate interposed therebetween. In a method for manufacturing a micro power converter having a first terminal electrode and a second terminal electrode, and a thin film magnetic induction element comprising a protective resin covering the first and second conductors and the magnetic insulating substrate,
A step of forming a plurality of the thin-film magnetic induction elements on a magnetic insulating base material to be cut into a plurality of magnetic insulating substrates, a metal film to be the two adjacent second terminal electrodes, and the protective resin Forming a second groove on a straight line passing through the central portion of the metal film on the magnetic insulating substrate, and the adjacent first terminal electrode is formed to face each other with the protective resin interposed therebetween, and the protection Forming a linear first groove reaching the linear second groove in the magnetic resin and the magnetic insulating base material under the protective resin, and separating the thin film magnetic induction element into a single unit. The manufacturing method of the micro power converter characterized by these.
前記第2溝の幅が、前記第1溝の幅より広いことを特徴とする請求項1に記載の超小型電力変換装置の製造方法。 The method for manufacturing a micro power converter according to claim 1, wherein a width of the second groove is wider than a width of the first groove. 前記第2溝の深さが前記薄膜磁気誘導素子の厚さの半分以下であることを特徴とする請求項1〜2のいずれか一項に記載の超小型電力変換装置の製造方法。 3. The method for manufacturing a micro power converter according to claim 1, wherein a depth of the second groove is equal to or less than half of a thickness of the thin film magnetic induction element. 前記第1溝および前記第2溝をそれぞれダイシングソーで形成することを特徴とする請求項1〜3のいずれか一項に記載の超小型電力変換装置の製造方法。 4. The method for manufacturing a micro power converter according to claim 1, wherein the first groove and the second groove are each formed by a dicing saw. 5. 磁性絶縁基板と、該磁性絶縁基板の第1主面に形成された第1導体もしくは前記磁性絶縁基板の第2主面に形成された第2導体からなる前記磁性絶縁基板の第1主面に形成された第1導体と前記磁性絶縁基板の第2主面に形成された第2導体と前記磁性絶縁基板を貫通する貫通孔に形成された接続導体とをそれぞれ接続してなるコイル導体と、前記磁性絶縁基板の第1主面と第2主面の外周部にそれぞれ複数個形成され前記磁性絶縁基板を貫通する第2接続導体を介して互いに接続し、前記磁性絶縁基板を挟んで対向する第1端子電極および第2端子電極と、前記第1、第2導体上と前記磁性絶縁基板上を被覆する保護用樹脂とからなる薄膜磁気誘導素子を有する超小型電力変換装置の製造方法において、
複数個に切断して前記磁性絶縁基板となる磁性絶縁基材に、前記薄膜磁気誘導素子を複数個形成する工程と、隣接する2個の前記第1端子電極が前記保護用樹脂を挟んで対向して形成され、隣接する2個の前記第2端子電極が前記保護用樹脂を挟んで対向して形成され、隣接する前記第1、第2端子電極同士に挟まれた前記保護用樹脂の中央部を通る直線上で前記保護用樹脂と該保護用樹脂下の前記磁性絶縁基材を切断して、前記薄膜磁気誘導素子を単体に分離する工程とを含むことを特徴とする超小型電力変換装置の製造方法。
On the first main surface of the magnetic insulating substrate comprising a magnetic insulating substrate and a first conductor formed on the first main surface of the magnetic insulating substrate or a second conductor formed on the second main surface of the magnetic insulating substrate A coil conductor formed by connecting the formed first conductor, the second conductor formed on the second main surface of the magnetic insulating substrate, and the connection conductor formed in the through hole penetrating the magnetic insulating substrate; A plurality of outer peripheral portions of the first and second main surfaces of the magnetic insulating substrate are connected to each other via second connection conductors that penetrate the magnetic insulating substrate, and face each other with the magnetic insulating substrate interposed therebetween. In a method for manufacturing a micro power converter having a first terminal electrode and a second terminal electrode, and a thin film magnetic induction element comprising a protective resin covering the first and second conductors and the magnetic insulating substrate,
A step of forming a plurality of the thin-film magnetic induction elements on a magnetic insulating base material that is cut into a plurality of parts and serving as the magnetic insulating substrate, and two adjacent first terminal electrodes are opposed to each other with the protective resin interposed therebetween The two adjacent second terminal electrodes are formed opposite to each other with the protective resin interposed therebetween, and the center of the protective resin is sandwiched between the adjacent first and second terminal electrodes. A step of cutting the protective resin and the magnetic insulating base material under the protective resin on a straight line passing through the portion to separate the thin film magnetic induction element into a single unit, Device manufacturing method.
JP2004256950A 2004-09-03 2004-09-03 Manufacturing method of micro power converter Withdrawn JP2006073868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256950A JP2006073868A (en) 2004-09-03 2004-09-03 Manufacturing method of micro power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256950A JP2006073868A (en) 2004-09-03 2004-09-03 Manufacturing method of micro power converter

Publications (1)

Publication Number Publication Date
JP2006073868A true JP2006073868A (en) 2006-03-16

Family

ID=36154138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256950A Withdrawn JP2006073868A (en) 2004-09-03 2004-09-03 Manufacturing method of micro power converter

Country Status (1)

Country Link
JP (1) JP2006073868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153455A (en) * 2006-12-18 2008-07-03 Fuji Electric Device Technology Co Ltd Ultracompact power conversion device
JP2008153456A (en) * 2006-12-18 2008-07-03 Fuji Electric Device Technology Co Ltd Inductor and its manufacturing method
JP2011014747A (en) * 2009-07-02 2011-01-20 Tdk Corp Coil component, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153455A (en) * 2006-12-18 2008-07-03 Fuji Electric Device Technology Co Ltd Ultracompact power conversion device
JP2008153456A (en) * 2006-12-18 2008-07-03 Fuji Electric Device Technology Co Ltd Inductor and its manufacturing method
JP2011014747A (en) * 2009-07-02 2011-01-20 Tdk Corp Coil component, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
TWI450286B (en) Electronics parts to embed in a printed board and a printed board with an electronics parts
US8018311B2 (en) Microminiature power converter
JP6983527B2 (en) Current detection resistor
US20040179383A1 (en) Micro power converter with multiple outputs
US20090243389A1 (en) Multiple output magnetic induction unit and a multiple output micro power converter having the same
US11539291B2 (en) Method of manufacturing a power semiconductor system
US6762075B2 (en) Semiconductor module and producing method therefor
JPH05291063A (en) Magnetic induction element
KR100346899B1 (en) A Semiconductor device and a method of making the same
JP4107932B2 (en) Manufacturing method of electronic component mounting apparatus
JP2006073868A (en) Manufacturing method of micro power converter
CN112466597B (en) Inductor component
JP2000232018A (en) Chip type electronic parts and its manufacture
JP2004206736A (en) Semiconductor device and manufacturing method therefor
JP2008210828A (en) Semiconductor device and its manufacturing process
JP2009016732A (en) Semiconductor device, and manufacturing method thereof
JP3616504B2 (en) Electronic component base and assembly using the same
JP3859287B2 (en) SMD type coil and manufacturing method thereof
JPH08222438A (en) Inductance and transformer
JP2010147171A (en) Electronic circuit device
WO2020166550A1 (en) Method for manufacturing electronic component module, and electronic component module
US20230309228A1 (en) Isolator
JP2006344631A (en) Component built-in substrate
JP2009130179A (en) Micro transformer and manufacturing method therefor, and signal transmission device and manufacturing method therefor
JP2002343923A (en) Semiconductor module and manufacturing method therefor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Effective date: 20091112

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20100329

Free format text: JAPANESE INTERMEDIATE CODE: A761