JP2006073849A - Manufacturing method and manufacturing device of semiconductor element - Google Patents

Manufacturing method and manufacturing device of semiconductor element Download PDF

Info

Publication number
JP2006073849A
JP2006073849A JP2004256659A JP2004256659A JP2006073849A JP 2006073849 A JP2006073849 A JP 2006073849A JP 2004256659 A JP2004256659 A JP 2004256659A JP 2004256659 A JP2004256659 A JP 2004256659A JP 2006073849 A JP2006073849 A JP 2006073849A
Authority
JP
Japan
Prior art keywords
substrate
manufacturing
solar cell
patterning
deposited film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004256659A
Other languages
Japanese (ja)
Inventor
Masahito Yonezawa
雅人 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004256659A priority Critical patent/JP2006073849A/en
Publication of JP2006073849A publication Critical patent/JP2006073849A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a semiconductor element manufacturing process, to suppress materials and fuel and light expenses to be consumed in the process to a small amount, then to simplify a manufacturing device and to lower the price of it by omitting expensive devices and processes exclusive for patterning. <P>SOLUTION: The method is disclosed for performing patterning with a substrate itself as a mask by folding the end of the substrate at the time of forming a semiconductor layer on the substrate. Patterning is executed by bending the substrate end just by an auxiliary roller installed in a substrate carrier. By the manufacturing method and manufacturing device, the need of the expensive devices and processes exclusive for patterning such as a metal mask and a laser is eliminated. Also, by the simplification of a device group, equipment depreciations are reduced. Then, the manufacture cost price of a solar battery is lowered drastically as well. As a result, an inexpensive solar battery is easily manufactured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

半導体薄膜堆積形成で、マスク法によるパターニングに関する技術分野である。基板の搬送はロールツーロール法を使用する。可撓性基板は、PET、PEN、セルロース等の樹脂基板、SUS等の金属薄板、紙を含む。半導体薄膜で作製する半導体素子は、光電変換素子、太陽電池、ダイオードを含む。半導体薄膜堆積形成方法には、プラズマCVD、スパッタリング、蒸着、塗布、スプレー法を含む。 This is a technical field related to patterning by a mask method in semiconductor thin film deposition. The substrate is transported using a roll-to-roll method. The flexible substrate includes a resin substrate such as PET, PEN, and cellulose, a metal thin plate such as SUS, and paper. A semiconductor element manufactured using a semiconductor thin film includes a photoelectric conversion element, a solar cell, and a diode. Semiconductor thin film deposition forming methods include plasma CVD, sputtering, vapor deposition, coating, and spraying.

安価な太陽電池を製造するため、太陽電池製造装置の簡素化及び低価格化は急務である。製造工程を簡素化すれば、工程で消費する材料、光熱費は少量で済み、製造装置の簡素化及び低価格化は容易になる。 In order to manufacture an inexpensive solar cell, it is urgent to simplify and lower the price of the solar cell manufacturing apparatus. If the manufacturing process is simplified, the amount of materials and utility costs consumed in the process can be reduced, and the manufacturing apparatus can be simplified and reduced in price easily.

安価な太陽電池の一種として非単結晶シリコン薄膜太陽電池の開発が行われている。非単結晶シリコンは、アモルファスシリコン、微結晶シリコン、多結晶シリコンを指す。 Non-single crystal silicon thin film solar cells are being developed as a kind of inexpensive solar cells. Non-single crystal silicon refers to amorphous silicon, microcrystalline silicon, and polycrystalline silicon.

図1(1)に一般的な薄膜太陽電池の断面図を示す。薄膜太陽電池は半導体層103の一方の面から光105を入射させ厚さ方向に電位差106を発生させる。薄膜半導体の光入射側には、光を透過する透明電極104を設ける。薄膜半導体の、光入射側と反対側には裏面電極102を設ける。透明電極及び裏面電極には、それぞれ導線を接続し、外部に電流を取り出す。 FIG. 1A is a cross-sectional view of a general thin film solar cell. In the thin film solar cell, light 105 is incident from one surface of the semiconductor layer 103 to generate a potential difference 106 in the thickness direction. A transparent electrode 104 that transmits light is provided on the light incident side of the thin film semiconductor. A back electrode 102 is provided on the side opposite to the light incident side of the thin film semiconductor. Conductive wires are connected to the transparent electrode and the back electrode, respectively, and current is taken out to the outside.

しかし、透明電極、裏面電極各々に導線を接続する場合、透明電極と裏面電極を接触させないように注意すべきである。各電極は厚さ1μm程度で高抵抗の薄膜半導体層103によって隔てられているだけである。特に裏面電極は透明電極及び薄膜半導体層に覆われている為直接接続できない。裏面電極へ、透明電極側から接続しようとすると、透明電極側との接触及び電流漏れを防ぐ為特殊な工夫をしなければならない。例えば、図1(2)に示すように、透明電極と半導体層のみを絶縁物112によって分断する事である。また、図1(3)に示すように、透明電極に導線113を接続する場合も、圧着すると半導体層を突き破り透明電極と裏面電極が接触してしまう。透明電極と裏面電極を接触させると、両電極間の電位差が失われる。 However, when connecting a conductive wire to each of the transparent electrode and the back electrode, care should be taken not to contact the transparent electrode and the back electrode. Each electrode is only separated by a thin film semiconductor layer 103 having a thickness of about 1 μm and a high resistance. In particular, the back electrode cannot be directly connected because it is covered with the transparent electrode and the thin film semiconductor layer. When trying to connect to the back electrode from the transparent electrode side, special measures must be taken to prevent contact with the transparent electrode side and current leakage. For example, as shown in FIG. 1B, only the transparent electrode and the semiconductor layer are separated by an insulator 112. Moreover, as shown in FIG. 1 (3), also when connecting the conducting wire 113 to a transparent electrode, if it crimps | bonds, a semiconductor layer will be penetrated and a transparent electrode and a back electrode will contact. When the transparent electrode and the back electrode are brought into contact, the potential difference between the two electrodes is lost.

前記透明電極、裏面電極各々と導線を接続する場合、図1(4)に示すように、透明電極、裏面電極、半導体層を各々ずらせて形成すると便利である。前記透明電極、裏面電極、半導体層を各々ずらせて、各形状に形成する方法をパターニングと呼ぶ。パターニングを用いて形成した電極の場合、図1(5)に示すように、導線と各電極を圧着しても透明電極、裏面電極間は接触しない。そして電流漏れは発生しない。 When connecting each of the transparent electrode and the back electrode to the conducting wire, it is convenient to form the transparent electrode, the back electrode, and the semiconductor layer by shifting each other as shown in FIG. A method of shifting the transparent electrode, the back electrode, and the semiconductor layer to form each shape is called patterning. In the case of an electrode formed by patterning, as shown in FIG. 1 (5), the transparent electrode and the back electrode are not contacted even when the lead wire and each electrode are pressure-bonded. And current leakage does not occur.

パターニングの従来技術に、マスクによる方法がある(例えば特許文献1、特許文献2)。図2にマスクによる方法を用いた太陽電池の製造工程を示す。(1)まず透明基板211上に透明電極201を形成する。(2)透明電極201上に樹脂202を印刷し形成する。(3)透明電極201をエッチングする。透明電極201の樹脂202で覆った部分はエッチングされずに残る。(4)樹脂202を剥離する。(5)メタルマスク221と透明電極201の位置を合わせる。そして半導体層203を堆積形成する。メタルマスク221の開口部に半導体層203が堆積形成される。(6)メタルマスク222と半導体層203の位置を合わせる。そして裏面電極204を堆積形成する。メタルマスク222の開口部に裏面電極204が堆積形成される。前記(1)から(6)記載の工程でパターニングは完成する。 As a conventional patterning technique, there is a method using a mask (for example, Patent Document 1 and Patent Document 2). FIG. 2 shows a manufacturing process of a solar cell using a method using a mask. (1) First, the transparent electrode 201 is formed on the transparent substrate 211. (2) A resin 202 is printed and formed on the transparent electrode 201. (3) The transparent electrode 201 is etched. The portion of the transparent electrode 201 covered with the resin 202 remains without being etched. (4) The resin 202 is peeled off. (5) The positions of the metal mask 221 and the transparent electrode 201 are aligned. Then, a semiconductor layer 203 is deposited. A semiconductor layer 203 is deposited and formed in the opening of the metal mask 221. (6) The positions of the metal mask 222 and the semiconductor layer 203 are aligned. Then, the back electrode 204 is deposited. A back electrode 204 is deposited and formed in the opening of the metal mask 222. Patterning is completed by the steps described in (1) to (6) above.

図2に於いて、透明電極201はフォトリソグラフィ方式と呼ばれるパターニング、半導体層203、裏面電極204はメタルマスク方式と呼ばれるパターニングで形成されている。フォトリソグラフィ方式と呼ばれるパターニングに於いては、印刷した樹脂がマスクとなり、マスクに覆われない部分の透明電極がエッチングされる。メタルマスク方式と呼ばれるパターニングに於いては、メタルマスクの開口部に半導体層、裏面電極層が堆積形成される。 In FIG. 2, the transparent electrode 201 is formed by patterning called a photolithography method, and the semiconductor layer 203 and the back electrode 204 are formed by patterning called a metal mask method. In patterning called a photolithography method, a printed resin serves as a mask, and a transparent electrode in a portion not covered with the mask is etched. In patterning called a metal mask method, a semiconductor layer and a back electrode layer are deposited and formed in an opening of a metal mask.

マスクによるパターニングの問題点はマスク自体の製作、維持管理が大変なことである。フォトグラフィー方式に於いては、マスクとなる樹脂、印刷版、印刷機、乾燥機、樹脂除去液等が必要である。メタルマスク方式に於いては、メタルマスク上に堆積膜が堆積し、一定の膜厚に達したときに清掃しなければならない。またメタルマスクを使い捨てにする場合、メタルマスクの面積は太陽電池本体基板と同じ面積分製造することが必要である。 The problem of patterning with a mask is that the mask itself is difficult to manufacture and maintain. In the photography system, a resin serving as a mask, a printing plate, a printing machine, a dryer, a resin removing liquid, and the like are required. In the metal mask method, a deposited film is deposited on the metal mask and must be cleaned when a certain film thickness is reached. Moreover, when making a metal mask disposable, it is necessary to manufacture the area of a metal mask by the same area as a solar cell main body board | substrate.

パターニングの従来技術は、他にレーザー切断による方法がある(例えば特許文献3、特許文献4)。図3にレーザー切断による方法を用いた太陽電池の製造工程を示す。(1)まず透明基板311上に透明電極301を堆積形成する。(2)レーザー321を走査し、透明電極301を切断する。(3)半導体層302を堆積形成する。(4)レーザー321を走査し、半導体層302を切断する。(5)裏面電極303を堆積形成する。(6)レーザー321を走査し、裏面電極303を切断する。前記図3(1)から(6)でパターニングは完成する。 Other conventional techniques for patterning include laser cutting (for example, Patent Document 3 and Patent Document 4). FIG. 3 shows a manufacturing process of a solar cell using a method by laser cutting. (1) First, the transparent electrode 301 is deposited on the transparent substrate 311. (2) The laser 321 is scanned to cut the transparent electrode 301. (3) A semiconductor layer 302 is deposited. (4) The laser 321 is scanned to cut the semiconductor layer 302. (5) A back electrode 303 is deposited. (6) The laser 321 is scanned and the back electrode 303 is cut. Patterning is completed in FIGS. 3 (1) to 3 (6).

レーザー切断による方法の問題点は、レーザー切断装置が高価なことである。レーザー切断装置にはレーザー光源とレーザーを走査する機構が必要である。レーザーを走査する機構にはXYステージやレーザー光反射鏡を動かす機構等がある。レーザー切断装置は複雑、高価である。
特開平10−12904 特開2001−177136 特開平10−27918 特開2000−252360
The problem with the laser cutting method is that the laser cutting device is expensive. Laser cutting devices require a laser light source and a laser scanning mechanism. The laser scanning mechanism includes a mechanism for moving an XY stage and a laser light reflecting mirror. Laser cutting devices are complex and expensive.
JP 10-12904 JP 2001-177136 A JP-A-10-27918 JP 2000-252360 A

太陽電池製造工程を簡素化し、工程で消費する材料、光熱費を少量に抑える。そして製造装置の簡素化及び低価格化を目的とする。具体的には、パターニング専用の高価な装置及び工程を省くことを目的とする。 Simplify the solar cell manufacturing process and keep the materials and utility costs consumed in the process small. And it aims at the simplification and cost reduction of a manufacturing apparatus. Specifically, an object is to omit an expensive apparatus and process dedicated to patterning.

本特許による方法は、基板上に半導体層を形成する時、基板の端を折り込むことによって基板自体をマスクとし、パターニングする方法である。基板は、搬送途中にある補助ローラーだけで基板端を折り曲げることができる。パターニング専用の高価な装置及び工程は不要である。 The method according to this patent is a method of patterning by forming a semiconductor layer on a substrate by folding the edge of the substrate and using the substrate itself as a mask. The substrate can be bent at the substrate end only by the auxiliary roller in the middle of conveyance. An expensive apparatus and process dedicated to patterning are not necessary.

まず、基板端を基板裏面側に折り込む方法のパターニングを図4に示す。図4は基板の断面図を表している。基板401に於いて、堆積膜を飛来させる方向に曝した面を表面411、反対側の面を裏面412とする。図4(1)は基板401の基準状態とする。図4(1)に於いて、第一の工程として、基板端aをAの位置で裏面側に折り曲げる。すると図4(2)の状態になる。そして第一の堆積膜402を堆積形成し、図4(3)の状態になる。第二の工程では、まず基板端aを基準状態に戻す。すると図4(4)の状態になる。そして第二の堆積膜403を堆積形成する。結果、図4(5)の状態になる。図4に示す方法により基板401上bA間に第一の堆積膜402、ba間に第二の堆積膜403を堆積形成することができる。 First, FIG. 4 shows patterning of a method of folding the substrate end to the back side of the substrate. FIG. 4 shows a cross-sectional view of the substrate. In the substrate 401, the surface exposed in the direction in which the deposited film flies is the front surface 411, and the opposite surface is the back surface 412. FIG. 4A shows the reference state of the substrate 401. In FIG. 4A, as the first step, the substrate end a is bent to the back side at the position A. Then, the state shown in FIG. Then, the first deposited film 402 is deposited and the state shown in FIG. In the second step, the substrate end a is first returned to the reference state. Then, the state shown in FIG. Then, a second deposited film 403 is deposited. As a result, the state shown in FIG. By the method shown in FIG. 4, the first deposited film 402 can be formed between bA on the substrate 401, and the second deposited film 403 can be formed between ba.

次に基板端を基板表面側に折り込む方法のパターニングを図5に示す。図5(1)は基板501の基準状態とする。まず基板501を、図5(1)の状態から、Aの位置で基板端aを表面側に折り曲げ、図5(2)の状態にする。基板端aは基板上a’の位置に重なる。そして第一の堆積膜502を堆積形成し、図5(3)の状態にする。次に基板端aを基板の基準状態まで戻し、図5(4)の状態にする。そして第二の堆積膜503を堆積形成し、図5(5)にする。図5に示す方法によりba’間に第一の堆積膜502、ba間に第二の堆積膜503を堆積形成することができる。 Next, FIG. 5 shows patterning of a method of folding the substrate end to the substrate surface side. FIG. 5A shows the reference state of the substrate 501. First, the substrate 501 is bent from the state shown in FIG. 5A to the surface side at the position A so as to be in the state shown in FIG. The substrate end a overlaps with the position a 'on the substrate. Then, a first deposited film 502 is deposited and brought into the state of FIG. Next, the substrate end a is returned to the reference state of the substrate to obtain the state shown in FIG. Then, a second deposited film 503 is deposited and formed as shown in FIG. By the method shown in FIG. 5, the first deposited film 502 can be deposited between ba ′, and the second deposited film 503 can be deposited between ba.

図4や図5に示した、基板端を折り込む方法のパターニングを用いることによって、マスクを用いる方法や、レーザーを用いる方法に見られるようなマスクの製作、高価な装置等は不要になる。 By using the patterning of the method of folding the substrate edge shown in FIGS. 4 and 5, the production of the mask, the expensive apparatus, etc. as seen in the method using the mask and the method using the laser become unnecessary.

本特許による方法のパターニングは、太陽電池と導線の接続部分に於いて、太陽電池出力電流の漏れが発生しないことを図6に示す。前記導線は各電極と接続し、太陽電池出力を外部に取り出すためのものである。太陽電池と導線の、一般的な接続状態を図6(1)に示す。裏面電極用導線611は裏面電極602に、透明電極用導線612は透明電極604に、それぞれ直接接続している。次に、前記各導線を基板601側に圧着した状態を図6(2)に示す。裏面電極用導線611は、裏面電極602に圧着しても、電極より下部は基板601が存在するだけである。基板601に絶縁物を使用した場合、電気的接続に影響を与えない。また、透明電極604と裏面電極用導線611は離れており接触しない。よって透明電極604と裏面電極602は短絡せず、漏れ電流は発生しない。透明電極用導線612は、圧着すると透明電極604を突き破り半導体層603、更に基板601にまで到達する可能性がある。しかし到達した場合でも、裏面電極602との間は高抵抗の半導体層603でと隔てられている。半導体層の厚さ621に比べて、裏面電極602と透明電極用導線612の距離622は十分長く取ることができ、漏れ電流は発生しない。 The patterning of the method according to this patent shows that no leakage of the solar cell output current occurs at the connection between the solar cell and the conductor. The said conducting wire is for connecting with each electrode and taking out a solar cell output outside. A general connection state between the solar cell and the conductive wire is shown in FIG. The back electrode conducting wire 611 and the transparent electrode conducting wire 612 are directly connected to the back electrode 602 and the transparent electrode 604, respectively. Next, FIG. 6B shows a state in which the conductive wires are pressure-bonded to the substrate 601 side. Even if the back surface electrode conducting wire 611 is crimped to the back surface electrode 602, the substrate 601 only exists below the electrode. When an insulator is used for the substrate 601, the electrical connection is not affected. Further, the transparent electrode 604 and the back electrode lead wire 611 are separated and do not contact each other. Therefore, the transparent electrode 604 and the back electrode 602 are not short-circuited and no leakage current is generated. The transparent electrode conducting wire 612 may break through the transparent electrode 604 and reach the semiconductor layer 603 and further the substrate 601 when pressed. However, even when it reaches, it is separated from the back electrode 602 by the high-resistance semiconductor layer 603. Compared to the thickness 621 of the semiconductor layer, the distance 622 between the back electrode 602 and the transparent electrode conductor 612 can be sufficiently long, and no leakage current is generated.

本特許による方法は、基板上に半導体層を形成する時、基板の端を折り込むことによって基板自体をマスクとし、パターニングする方法である。本特許である製造方法及び製造装置により、メタルマスクやレーザー等、パターニング専用の高価な装置及び工程は不要となる。本特許である製造方法及び製造装置により、パターニングは、太陽電池基板搬送装置中に設置する補助ローラーだけで基板端を折り曲げ、実施することができる。また、装置群の簡素化により設備償却費は削減できる。そして太陽電池製造原価も大幅に下げることができる。結果、本特許である製造方法及び製造装置により、安価な太陽電池の製造が容易になる。 The method according to this patent is a method of patterning by forming a semiconductor layer on a substrate by folding the edge of the substrate and using the substrate itself as a mask. The manufacturing method and manufacturing apparatus according to this patent eliminates the need for expensive apparatuses and processes dedicated to patterning, such as metal masks and lasers. Patterning can be performed by bending the substrate edge only with an auxiliary roller installed in the solar cell substrate transfer device by the manufacturing method and the manufacturing apparatus of this patent. In addition, equipment depreciation can be reduced by simplifying the device group. And the manufacturing cost of solar cells can be greatly reduced. As a result, the manufacturing method and the manufacturing apparatus according to the present patent facilitate manufacture of an inexpensive solar cell.

図4に示した、基板端を裏面側へ折り込む方法のパターニングを用いることによって作製する薄膜太陽電池の形態が、実用的である。 The form of the thin-film solar cell manufactured by using the patterning method of folding the substrate end toward the back surface shown in FIG. 4 is practical.

本特許による方法で、帯状基板を用いて薄膜太陽電池を作製する方法を図7に示す。前記帯状基板は可撓性基板を使用する。図7は帯状基板の短尺側断面図を表している。 FIG. 7 shows a method for manufacturing a thin-film solar cell using a belt-like substrate by the method according to this patent. The strip substrate is a flexible substrate. FIG. 7 shows a short side sectional view of the belt-like substrate.

図7(1)に示す基板701の状態を基板の基準状態とする。基板701の紙面上方を基板表面711、下方を裏面712とする。まず、Aの位置で基板右端aを裏面712側へ折り込み、図7(2)の状態とする。そして裏面金属電極702を堆積形成し、図7(3)の状態とする。 次に基板左端bを、Bの位置で裏面712側へ折り込み、図7(4)の状態とする。そしてn型半導体層703を堆積形成し、図7(5)の状態とする。今度は基板右端aのみを基準状態の位置まで戻し、図7(6)の状態とする。その後i、p型半導体層704及び透明電極705を堆積形成し、図7(7)の状態とする。最後に基板左端bを基準状態の位置まで戻し、図7(8)の状態とする。図7に示したように、基板端を折り込み、太陽電池基板自体をマスクとする方法によるパターニングを用いることによって太陽電池が完成する。 The state of the substrate 701 shown in FIG. 7A is a substrate reference state. The upper surface of the substrate 701 is a substrate surface 711 and the lower surface is a back surface 712. First, the substrate right end a is folded to the back surface 712 side at the position A, and the state shown in FIG. Then, a back metal electrode 702 is formed by deposition, and the state shown in FIG. Next, the left end b of the substrate is folded toward the back surface 712 at the position B to obtain the state shown in FIG. Then, an n-type semiconductor layer 703 is deposited and formed as shown in FIG. This time, only the right edge a of the substrate is returned to the position of the reference state, and the state shown in FIG. Thereafter, i, a p-type semiconductor layer 704 and a transparent electrode 705 are deposited to form the state shown in FIG. Finally, the left end b of the substrate is returned to the position in the reference state, and the state shown in FIG. As shown in FIG. 7, the solar cell is completed by using patterning by a method in which the substrate edge is folded and the solar cell substrate itself is used as a mask.

尚、本実施例では基板と反対面から光を入射する薄膜太陽電池構造を示したが、基板701に透明基板を使用した場合、基板側から光を入射する薄膜太陽電池構造にしても良い。この場合、裏面金属電極702の代わりに透明電極を形成する。 In addition, although the thin film solar cell structure which injects light from the surface opposite to a board | substrate was shown in the present Example, when a transparent substrate is used for the board | substrate 701, you may make it the thin film solar cell structure which injects light from the board | substrate side. In this case, a transparent electrode is formed instead of the back metal electrode 702.

また、本実施例ではn型半導体層703とi、p型半導体層704の堆積順で太陽電池の作製方法を示したが、n型とp型の導電型を入れ換え、p型半導体層を703の位置に、i、n型半導体層を704の位置に堆積形成しても太陽電池は作製できる。 In this embodiment, a method for manufacturing a solar cell is shown in the order of deposition of the n-type semiconductor layer 703, i, and p-type semiconductor layer 704. However, the n-type and p-type conductivity types are interchanged, and the p-type semiconductor layer is changed to 703. The solar cell can also be produced by depositing the i and n-type semiconductor layers at the position 704.

本特許による方法のパターニングで作成した太陽電池は、直列接続が容易にできる。前記太陽電池を直列接続して作製した太陽電池群を図8に示す。 Solar cells made by patterning the method according to this patent can be easily connected in series. A solar cell group produced by connecting the solar cells in series is shown in FIG.

非単結晶シリコン薄膜太陽電池は半導体層のpin接合一段当たり、太陽光下で開放電圧が0.5V〜0.9V程度である。最適な電流を出力する場合、電圧は更に低くなる。この為バッテリーとの接続等実用上は太陽電池を直列接続し、太陽電池群として高い出力電圧で使用する場合が多い。 Non-single-crystal silicon thin-film solar cells have an open circuit voltage of about 0.5 V to 0.9 V under sunlight, per pin junction of a semiconductor layer. In the case of outputting an optimum current, the voltage is further lowered. For this reason, there are many cases where solar cells are connected in series and used at a high output voltage as a solar cell group in practical use such as connection with a battery.

図8は、可撓性基板上に作成した太陽電池を直列接続した太陽電池群を示す。直列接続の終端に当たる太陽電池841の裏面電極側に裏面電極側取り出し用導線831を、他方の終端に当たる太陽電池843の透明電極側に透明電極側取り出し用導線832を、それぞれ接続する。太陽電池841と太陽電池842の接続部分は、留め具821によって接続する。また、太陽電池842と太陽電池843の接続部分は、ボルト822によって接続する。
留め具821やボルト822は例として挙げたものであるから全接続箇所に留め具を用いても、また全接続箇所にボルトを用いても良い。電極については、前記留め具821によって接続した部分で、太陽電池841の透明電極804aと太陽電池842の裏面電極802bを接続する。同様に、前記ボルト822によって接続した部分で、太陽電池842の透明電極804bと太陽電池843の裏面電極802cを接続する。
FIG. 8 shows a solar cell group in which solar cells created on a flexible substrate are connected in series. The back electrode-side extraction lead wire 831 is connected to the back electrode side of the solar cell 841 corresponding to the end of the series connection, and the transparent electrode side extraction lead wire 832 is connected to the transparent electrode side of the solar cell 843 corresponding to the other end. A connecting portion between the solar cell 841 and the solar cell 842 is connected by a fastener 821. In addition, a connection portion between the solar cell 842 and the solar cell 843 is connected by a bolt 822.
Since the fasteners 821 and the bolts 822 are given as examples, the fasteners may be used at all connection locations, or bolts may be used at all connection locations. Regarding the electrodes, the transparent electrode 804a of the solar cell 841 and the back electrode 802b of the solar cell 842 are connected at the portion connected by the fastener 821. Similarly, the transparent electrode 804b of the solar cell 842 and the back electrode 802c of the solar cell 843 are connected at the portion connected by the bolt 822.

図8に示す太陽電池群の漏れ電流を説明する。留め具821を強力に留めても、太陽電池841における透明電極804aと裏面電極802a、太陽電池842における透明電極804bと裏面電極802bはそれぞれ接触することはない。つまり各太陽電池で発生した電位差は失われず、漏れ電流は発生しない。また、太陽電池842と太陽電池843の接続部分は、ボルト822によって接続している。前記接続部分では各太陽電池の電極層、半導体層と基板に穴を開けて接続しているが、太陽電池842における透明電極804bと裏面電極802b、太陽電池843における透明電極804cと裏面電極802cはそれぞれ接触することはない。つまり各太陽電池で発生した電位差は失われず、漏れ電流は発生しない。更に、各取り出し用導線部分には外部から応力がかかる場合が多い。しかし本特許による方法のパターニングで作成した太陽電池構造では、各太陽電池における透明電極と裏面電極の接触が起こることはなく、出力特性は良好である。 The leakage current of the solar cell group shown in FIG. 8 will be described. Even if the fastener 821 is firmly clamped, the transparent electrode 804a and the back electrode 802a in the solar cell 841 and the transparent electrode 804b and the back electrode 802b in the solar cell 842 are not in contact with each other. That is, the potential difference generated in each solar cell is not lost, and no leakage current is generated. In addition, a connection portion between the solar cell 842 and the solar cell 843 is connected by a bolt 822. In the connection portion, the electrode layer of each solar cell, the semiconductor layer, and the substrate are connected by making holes, but the transparent electrode 804b and the back electrode 802b in the solar cell 842, and the transparent electrode 804c and the back electrode 802c in the solar cell 843 are There is no contact with each other. That is, the potential difference generated in each solar cell is not lost, and no leakage current is generated. Furthermore, stress is often applied from the outside to each lead wire portion. However, in the solar cell structure created by patterning the method according to this patent, the contact between the transparent electrode and the back electrode in each solar cell does not occur, and the output characteristics are good.

図8には示していないが、太陽電池群の耐候性を高めるために、透明電極側にガラス板を、基板側に防湿板を設置し、前記二枚の板で太陽電池を封止すると良い。 Although not shown in FIG. 8, in order to improve the weather resistance of the solar cell group, a glass plate is provided on the transparent electrode side, a moisture-proof plate is provided on the substrate side, and the solar cell is sealed with the two plates. .

本特許による方法のパターニングを用いた太陽電池製造装置を図9に示す。前記装置は、長尺の可撓性基板上に非単結晶シリコン薄膜太陽電池を形成する装置である。前記装置の基板搬送機構は、ロール状に巻かれた帯状基板を、そのロールから引き出し、引き出した前記帯状基板をロール状に巻き取るロールツーロール方式である。図9は帯状基板表面側から見たものである。図9では帯状基板巻き出し装置及び帯状基板巻き取り装置は省略している。帯状基板は帯状基板搬入側端921から帯状基板搬出側端922に向かって搬送する。 A solar cell manufacturing apparatus using patterning of the method according to this patent is shown in FIG. The apparatus is an apparatus for forming a non-single crystal silicon thin film solar cell on a long flexible substrate. The substrate transport mechanism of the apparatus is a roll-to-roll system in which a strip-shaped substrate wound in a roll shape is pulled out from the roll, and the pulled-out strip-shaped substrate is wound in a roll shape. FIG. 9 is a view from the surface side of the belt-like substrate. In FIG. 9, the strip-shaped substrate unwinding device and the strip-shaped substrate winding device are omitted. The belt-like substrate is transported from the belt-like substrate carry-in side end 921 toward the belt-like substrate carry-out side end 922.

帯状基板搬入側端921から帯状基板を搬送する。931aの位置での基板断面形状は931bの様になる。まず、断面形状変更用ローラー912及び補助ローラー911、913を使用し、基板右端を基板裏面側へ折り込む。932aの位置での基板断面形状は932bの様になる。そして裏面電極形成用スパッタ装置901により、裏面電極アルミニウム薄膜を形成する。ここで、断面形状変更用ローラー914を使用し、基板左端を基板裏面側へ折り込む。933aの位置での基板断面形状は933bの様になる。次に、前記裏面電極アルミニウム薄膜上に、非単結晶シリコン薄膜形成用CVD装置902により、n型非単結晶シリコン薄膜を形成する。ここで、断面形状変更用ローラー915を使用し、基板右端の折り込みを元の位置へ戻す。934aの位置での基板断面形状は934bの様になる。そして非単結晶シリコン薄膜形成用CVD装置903により、i型非単結晶シリコン薄膜を形成する。同様に、非単結晶シリコン薄膜形成用CVD装置904により、p型非単結晶シリコン薄膜を形成する。更に透明電極形成用スパッタ装置905により、透明電極酸化スズ薄膜を形成する。最後に、断面形状変更用ローラー916を使用し、基板左端の折り込みを元の位置へ戻す。935aの位置での基板断面形状は935bの様になり、帯状基板搬出側端922から帯状基板を搬出、太陽電池は完成する。 The belt-shaped substrate is transported from the belt-shaped substrate carry-in side end 921. The cross-sectional shape of the substrate at the position 931a is as shown in 931b. First, the cross-sectional shape changing roller 912 and the auxiliary rollers 911 and 913 are used to fold the right end of the substrate toward the back side of the substrate. The cross-sectional shape of the substrate at the position 932a is like 932b. Then, a back electrode aluminum thin film is formed by a back electrode forming sputtering apparatus 901. Here, the cross-sectional shape changing roller 914 is used to fold the left end of the substrate toward the back side of the substrate. The cross-sectional shape of the substrate at the position 933a is as shown in 933b. Next, an n-type non-single-crystal silicon thin film is formed on the back electrode aluminum thin film by a CVD apparatus 902 for forming a non-single-crystal silicon thin film. Here, the sectional shape changing roller 915 is used to return the folding of the right end of the substrate to the original position. The cross-sectional shape of the substrate at the position of 934a is as shown in 934b. Then, an i-type non-single-crystal silicon thin film is formed by a CVD apparatus 903 for forming a non-single-crystal silicon thin film. Similarly, a p-type non-single-crystal silicon thin film is formed by the non-single-crystal silicon thin film forming CVD apparatus 904. Further, a transparent electrode tin oxide thin film is formed by a transparent electrode forming sputtering apparatus 905. Finally, the sectional shape changing roller 916 is used to return the folding of the left end of the substrate to the original position. The substrate cross-sectional shape at the position 935a is as shown in 935b, and the strip substrate is unloaded from the strip substrate unloading side end 922, whereby the solar cell is completed.

本実施例に於ける太陽電池製造装置で分かるように、ロールツーロール方式の装置を使用し、基板搬送機構の一部である補助ローラー形状を工夫するだけで薄膜のパターニングを行うことができる。更に、長尺の可撓性基板上に太陽電池を作製することができる。つまり、本特許による方法のパターニングを用いた太陽電池製造装置に於いては、パターニング専用の高価な装置及び工程は不要である。 As can be seen from the solar cell manufacturing apparatus in the present embodiment, patterning of the thin film can be performed only by devising the shape of the auxiliary roller that is a part of the substrate transport mechanism using a roll-to-roll apparatus. Furthermore, a solar cell can be manufactured over a long flexible substrate. That is, in the solar cell manufacturing apparatus using the patterning of the method according to this patent, an expensive apparatus and process dedicated to patterning are not necessary.

安価な太陽電池製造装置を提供できることにより太陽電池の設備投資において経済効果が大きい。 Since an inexpensive solar cell manufacturing apparatus can be provided, the economic effect is great in the capital investment of solar cells.

一般的な薄膜太陽電池の断面図Cross section of a general thin film solar cell パターニングの従来技術、マスクによる方法Conventional patterning and masking methods パターニングの従来技術、レーザー切断による方法Conventional patterning technology, laser cutting method 基板端を基板裏面側に折り込む方法のパターニングPatterning the method of folding the substrate edge to the back side of the substrate 基板端を基板表面側に折り込む方法のパターニングPatterning the method of folding the substrate edge to the substrate surface side 太陽電池と導線の接続部分に於ける太陽電池出力電流の漏れLeakage of solar cell output current at the connection between solar cell and conductor 本特許による方法を用いて基板上に薄膜太陽電池を形成する方法Method for forming a thin film solar cell on a substrate using the method according to this patent 太陽電池を直列接続して作製した太陽電池群Solar cell group made by connecting solar cells in series 本特許による太陽電池製造装置Solar cell manufacturing equipment according to this patent

符号の説明Explanation of symbols

101:基板 102:裏面電極 103:半導体層 104:透明電極 105:光入射方向 106:裏面電極と透明電極の間の電位差
111:裏面電極側取り出し電極 112:絶縁物 113:透明電極側取り出し電極
201:透明電極 202:樹脂 203:半導体層 204:裏面電極
211:透明基板
221:メタルマスク 222:メタルマスク
301:透明電極 302:半導体層 303:裏面電極 311:透明基板
321:レーザー
401:基板 402:第一の堆積膜 403:第二の堆積膜
411:基板表面 412:基板裏面
501:基板 502:第一の堆積膜 503:第二の堆積膜
601:基板 602:裏面電極 603:半導体層 604:透明電極
611:裏面電極側取り出し電極 612:透明電極側取り出し電極
621:半導体層の厚さ 622:裏面電極と透明電極用導線の距離
701:基板 702:裏面電極 703:n型半導体層 704:i、p型半導体層 705:透明電極
711:基板表面 712:基板裏面
801a:基板 802a-c:裏面電極 803a:半導体層 804a-c:透明電極
821:留め具 822:ボルト
831:裏面電極側取り出し用導線 832:透明電極側取り出し用導線
841:太陽電池一単位(1) 842:太陽電池一単位(2) 843:太陽電池一単位(3)
901:裏面電極形成用スパッタ装置 902:非単結晶シリコン薄膜形成用CVD装置、n層用 903:非単結晶シリコン薄膜形成用CVD装置、i層用 904:非単結晶シリコン薄膜形成用CVD装置、p層用 905:透明電極形成用スパッタ装置
911:補助ローラー 912:断面形状変更用ローラー 913:補助ローラー 914:断面形状変更用ローラー 915:断面形状変更用ローラー 916:断面形状変更用ローラー 917:補助ローラー
921:帯状基板搬入側端 922:帯状基板搬出側端
931a,932a,933a,934a,935a:基板上の位置
931b,932b,933b,934b,935b:基板断面形状
101: Substrate 102: Back electrode 103: Semiconductor layer 104: Transparent electrode 105: Light incident direction 106: Potential difference between the back electrode and the transparent electrode
111: Back electrode side extraction electrode 112: Insulator 113: Transparent electrode side extraction electrode
201: Transparent electrode 202: Resin 203: Semiconductor layer 204: Back electrode
211: Transparent substrate
221: Metal mask 222: Metal mask
301: Transparent electrode 302: Semiconductor layer 303: Back electrode 311: Transparent substrate
321: Laser
401: Substrate 402: First deposited film 403: Second deposited film
411: Board surface 412: Board back
501: Substrate 502: First deposited film 503: Second deposited film
601: Substrate 602: Back electrode 603: Semiconductor layer 604: Transparent electrode
611: Back electrode side extraction electrode 612: Transparent electrode side extraction electrode
621: Semiconductor layer thickness 622: Distance between back electrode and transparent electrode conductor
701: Substrate 702: Back electrode 703: N-type semiconductor layer 704: i, p-type semiconductor layer 705: Transparent electrode
711: Substrate surface 712: Substrate back surface
801a: Substrate 802a-c: Back electrode 803a: Semiconductor layer 804a-c: Transparent electrode
821: Fastener 822: Bolt
831: Conductor for lead-out electrode side 832: Lead-out lead for transparent electrode
841: One unit of solar cell (1) 842: One unit of solar cell (2) 843: One unit of solar cell (3)
901: Sputtering apparatus for forming back electrode 902: CVD apparatus for forming non-single crystal silicon thin film, n layer 903: CVD apparatus for forming non-single crystal silicon thin film, i layer 904: CVD apparatus for forming non-single crystal silicon thin film, For p layer 905: Sputtering device for transparent electrode formation
911: Auxiliary roller 912: Roller for changing cross-sectional shape 913: Auxiliary roller 914: Roller for changing cross-sectional shape 915: Roller for changing cross-sectional shape 916: Roller for changing cross-sectional shape 917: Auxiliary roller
921: Strip substrate carrying side end 922: Strip substrate carrying side end
931a, 932a, 933a, 934a, 935a: Position on substrate
931b, 932b, 933b, 934b, 935b: substrate cross section

Claims (6)

基板上に堆積膜原料を飛来させ堆積膜を形成してゆく半導体素子の製造方法であって、基板の、一方の面の端を、前記一方の面側又は前記一方の面の裏面側に折り込み、堆積膜原料を飛来させる方向から前記一方の面の端を隠し、前記一方の面の端を除く一方の面部分に第一の堆積膜を形成する第一の行程と、一方の面の端を、折り込みから元に戻し、堆積膜原料を飛来させる方向に曝し、一方の面上で、第一の堆積膜及び前記一方の面の端にわたって第二の堆積膜を形成する第二の工程を有する半導体素子の製造方法。 A method of manufacturing a semiconductor device in which a deposited film material is formed by flying a deposited film material onto a substrate, wherein an end of one surface of the substrate is folded into the one surface side or the back surface side of the one surface. The first step of concealing the end of the one surface from the direction in which the deposited film material is made to fly, and forming the first deposited film on one surface portion excluding the end of the one surface, and the end of the one surface The second step of forming the second deposited film over the end of the first surface and the one surface on one surface is exposed to the direction in which the deposited film material is made to fly back from the folding. A method for manufacturing a semiconductor element. 請求項1記載の基板は、帯状の可撓性基板であることを特徴とする、半導体素子の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the substrate is a strip-like flexible substrate. 請求項2記載の、半導体素子の製造方法に於いて、ロール状に巻かれた帯状基板を、そのロールから引き出し、引き出した前記帯状基板をロール状に巻き取るロールツーロール方式の基板搬送機構を用いることを特徴とする、半導体素子の製造方法。 3. The method of manufacturing a semiconductor device according to claim 2, wherein a roll-to-roll type substrate transport mechanism for pulling out the belt-like substrate wound in a roll shape from the roll and winding the drawn belt-like substrate in a roll shape. A method for manufacturing a semiconductor element, characterized by being used. 基板上に堆積膜原料を飛来させ堆積膜を形成してゆく半導体素子の製造装置であって、基板の、一方の面の端を、前記一方の面側又は前記一方の面の裏面側に折り込み、堆積膜原料を飛来させる方向から前記一方の面の端を隠し、前記一方の面の端を除く一方の面部分に第一の堆積膜を形成する第一の行程と、一方の面の端を、折り込みから元に戻し、堆積膜原料を飛来させる方向に曝し、一方の面上で、第一の堆積膜及び前記一方の面の端にわたって第二の堆積膜を形成する第二の工程を実施する機構を有する半導体素子の製造装置。 An apparatus for manufacturing a semiconductor element, wherein a deposited film material is formed by flying a deposited film material on a substrate, and the edge of one surface of the substrate is folded into the one surface side or the back surface side of the one surface. The first step of concealing the end of the one surface from the direction in which the deposited film material is made to fly, and forming the first deposited film on one surface portion excluding the end of the one surface, and the end of the one surface The second step of forming the second deposited film over the end of the first surface and the one surface on one surface is exposed to the direction in which the deposited film material is made to fly back from the folding. A semiconductor device manufacturing apparatus having a mechanism for carrying out. 請求項4記載の基板は、帯状の可撓性基板であることを特徴とする、半導体素子の製造装置。 5. The semiconductor element manufacturing apparatus according to claim 4, wherein the substrate is a belt-like flexible substrate. 請求項5記載の、半導体素子の製造装置に於いて、ロール状に巻かれた帯状基板を、そのロールから引き出し、引き出した前記帯状基板をロール状に巻き取るロールツーロール方式の基板搬送機構を備えていることを特徴とする、半導体素子の製造装置。
6. The apparatus for manufacturing a semiconductor device according to claim 5, wherein a roll-to-roll substrate transporting mechanism for pulling out the strip-shaped substrate wound in a roll shape from the roll and winding the pulled-out strip-shaped substrate in a roll shape. An apparatus for manufacturing a semiconductor element, comprising:
JP2004256659A 2004-09-03 2004-09-03 Manufacturing method and manufacturing device of semiconductor element Pending JP2006073849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256659A JP2006073849A (en) 2004-09-03 2004-09-03 Manufacturing method and manufacturing device of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256659A JP2006073849A (en) 2004-09-03 2004-09-03 Manufacturing method and manufacturing device of semiconductor element

Publications (1)

Publication Number Publication Date
JP2006073849A true JP2006073849A (en) 2006-03-16

Family

ID=36154122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256659A Pending JP2006073849A (en) 2004-09-03 2004-09-03 Manufacturing method and manufacturing device of semiconductor element

Country Status (1)

Country Link
JP (1) JP2006073849A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002188B1 (en) 2008-12-22 2010-12-20 주식회사 야스 Roll to Roll apparatus for the fabrication of thin film semiconductor device on a flexible substrate
JP2011518942A (en) * 2007-10-17 2011-06-30 ルション、ヤン Improved solution deposition assembly
KR101448045B1 (en) 2012-12-28 2014-10-15 엘아이지에이디피 주식회사 Apparatus for depositing organic material of organic light emitting diodes
JP2019029573A (en) * 2017-08-02 2019-02-21 積水化学工業株式会社 Solar cell and manufacturing method of solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518942A (en) * 2007-10-17 2011-06-30 ルション、ヤン Improved solution deposition assembly
KR101002188B1 (en) 2008-12-22 2010-12-20 주식회사 야스 Roll to Roll apparatus for the fabrication of thin film semiconductor device on a flexible substrate
KR101448045B1 (en) 2012-12-28 2014-10-15 엘아이지에이디피 주식회사 Apparatus for depositing organic material of organic light emitting diodes
JP2019029573A (en) * 2017-08-02 2019-02-21 積水化学工業株式会社 Solar cell and manufacturing method of solar cell

Similar Documents

Publication Publication Date Title
US9929306B2 (en) Array of monolithically integrated thin film photovoltaic cells and associated methods
US9142706B2 (en) Method of manufacturing solar cell
NL2004065C2 (en) Solar panel module and method for manufacturing such a solar panel module.
JP6360471B2 (en) Photoelectric conversion element, photoelectric conversion module, and photovoltaic power generation system
US20110265857A1 (en) Monolithic integration of bypass diodes with a thin film solar module
DE102005025125A1 (en) Process for producing a solar cell contacted on one side and solar cell contacted on one side
JP6223424B2 (en) Photoelectric conversion element
JP6284522B2 (en) Photoelectric conversion element, photoelectric conversion module, and photovoltaic power generation system
JP2014053459A (en) Process of manufacturing photoelectric conversion element
US20130269774A1 (en) Electrode of solar cell
JP2013120863A (en) Method for manufacturing solar cell
US20180114873A1 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
US11646387B2 (en) Laser assisted metallization process for solar cell circuit formation
JP2006073849A (en) Manufacturing method and manufacturing device of semiconductor element
US11588124B2 (en) Photovoltaic module
US20200105951A1 (en) Solar cell with wraparound finger
JP2000133828A (en) Thin-film solar cell and manufacture thereof
JPWO2010150749A1 (en) Solar cell, solar cell with wiring sheet and solar cell module
JP2013168605A (en) Manufacturing method of solar cell
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
US20210408313A1 (en) Strings of solar cells having laser assisted metallization conductive contact structures and their methods of manufacture
WO2014163043A1 (en) Photoelectric conversion element
KR101120100B1 (en) Thin film silicon solar cell module and Method for manufacturing thereof, Method for connecting the module
TWI532205B (en) A Method for Fabricating Crystalline Silicon Solar Cell Having Local Rear Contacts and Passivation Layer and the Device
WO2017038733A1 (en) Photoelectric conversion element