JP2006073292A - Negative electrode plate for alkaline storage battery and alkaline storage battery - Google Patents

Negative electrode plate for alkaline storage battery and alkaline storage battery Download PDF

Info

Publication number
JP2006073292A
JP2006073292A JP2004253870A JP2004253870A JP2006073292A JP 2006073292 A JP2006073292 A JP 2006073292A JP 2004253870 A JP2004253870 A JP 2004253870A JP 2004253870 A JP2004253870 A JP 2004253870A JP 2006073292 A JP2006073292 A JP 2006073292A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
storage battery
battery
expanded graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253870A
Other languages
Japanese (ja)
Inventor
Seiya Nakai
晴也 中井
Hideki Kasahara
英樹 笠原
Naoyoshi Shibuya
直慶 渋谷
Hiroyuki Kaminari
宏之 神成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004253870A priority Critical patent/JP2006073292A/en
Publication of JP2006073292A publication Critical patent/JP2006073292A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline storage battery in which rise of internal pressure at the abnormal charging is fundamentally suspended and there happens no deformation of battery and which is reliable. <P>SOLUTION: Expanded graphite is added to a negative electrode plate for the alkaline storage battery. Specifically, either expanded graphite is added into a mixture layer made of a hydrogen storage alloy, or a layer made of expanded graphite is formed on the mixture layer. By utilizing an internal short circuit occurring due to expansion of the expanded graphite accompanying temperature rise of the battery and increase in the thickness of the negative electrode plate, charging is stopped and rise of internal pressure is suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はアルカリ蓄電池に関するものであり、より詳しくは機器の信頼性を向上させる技術に関するものである。   The present invention relates to an alkaline storage battery, and more particularly to a technique for improving the reliability of a device.

アルカリ蓄電池は、繰り返し充放電可能な電池としてポータブル機器用電源に幅広く使用されている。中でも負極活物質として水素吸蔵合金を用いたニッケル・水素蓄電池は、エネルギー密度が高く、環境面でも比較的クリーンなため、電動工具やHEVなどの高出力分野への展開が進んでいる。近年は利便性の向上を目的に、充電時間の更なる短縮が要求されている。   Alkaline storage batteries are widely used as power sources for portable devices as rechargeable batteries. Among them, nickel-hydrogen storage batteries using hydrogen storage alloys as negative electrode active materials have high energy density and are relatively clean in terms of the environment. Therefore, they are being developed in high power fields such as power tools and HEVs. In recent years, there has been a demand for further shortening the charging time for the purpose of improving convenience.

充電時間を短縮するためには、充電電流を大きくすることが必要である。しかしながら充電電流が大きくなると、内部抵抗に応じて分極が大きくなり、正極で酸素ガスが発生しやすくなる。通常は水素吸蔵合金中の水素が正極で発生した酸素ガスと反応して水に還元されるが、充電器の故障や電池の誤作動などで、ガス発生反応が加速された場合は、上述した還元反応が成立し難くなるために、電池の温度上昇を伴って電池内圧が上昇する。   In order to shorten the charging time, it is necessary to increase the charging current. However, when the charging current increases, the polarization increases according to the internal resistance, and oxygen gas is easily generated at the positive electrode. Normally, hydrogen in the hydrogen storage alloy reacts with oxygen gas generated at the positive electrode and is reduced to water. However, if the gas generation reaction is accelerated due to malfunction of the charger or malfunction of the battery, the above-mentioned Since the reduction reaction is difficult to be established, the battery internal pressure increases with an increase in battery temperature.

内圧上昇が顕著な場合、電池やこれを内蔵した機器の変形につながる。これを避けるために、従来は一定以上の内圧になると封口板に設けられた安全弁が作動し、発生ガスを外部に放出する技術が提案されてきた(例えば特許文献1)。
特開平9−237619号公報
If the increase in internal pressure is significant, it will lead to deformation of the battery and the device containing it. In order to avoid this, conventionally, a technique has been proposed in which a safety valve provided on the sealing plate is operated when the internal pressure exceeds a certain level, and the generated gas is discharged to the outside (for example, Patent Document 1).
JP-A-9-237619

しかしながら特許文献1のような従来技術では、機器が異常を来たした場合に起こる異常充電により急激な内圧上昇が起こった場合、安全弁の作動が追従せず、電池が変形する可能性が高い。   However, in the conventional technology such as Patent Document 1, when a sudden increase in internal pressure occurs due to abnormal charging that occurs when an abnormality occurs in the device, the operation of the safety valve does not follow, and the battery is likely to be deformed.

本発明はこのような従来技術の課題を鑑みてなされたものであり、異常充電時の内圧上昇を根本的に中断させ、電池の信頼性を高めることを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to fundamentally interrupt an increase in internal pressure during abnormal charging and to improve battery reliability.

前記従来技術の課題を解決するために、本発明のアルカリ蓄電池用負極板は、水素吸蔵合金からなる合剤層中に膨張黒鉛を添加するか、あるいは水素吸蔵合金からなる合剤層上に膨張黒鉛からなる層を形成することを特徴とするものである。   In order to solve the problems of the prior art, the negative electrode plate for an alkaline storage battery according to the present invention adds expanded graphite to a mixture layer made of a hydrogen storage alloy or expands on a mixture layer made of a hydrogen storage alloy. A layer made of graphite is formed.

異常充電時に、負極板に配置された膨張黒鉛が電池の過充電による温度上昇に伴って膨張し、負極板の厚みが増す。これによって負極はセパレータを貫通して正極板と接触し、内部短絡が発生する。内部短絡によって充電電流は短絡電流に転換されるため、充電反応は停止し、正極からのガス発生による内圧上昇が抑制されるというものである。   During abnormal charging, the expanded graphite disposed on the negative electrode plate expands as the temperature rises due to overcharging of the battery, increasing the thickness of the negative electrode plate. As a result, the negative electrode penetrates the separator and comes into contact with the positive electrode plate, causing an internal short circuit. Since the charging current is converted into a short-circuit current due to an internal short circuit, the charging reaction is stopped, and an increase in internal pressure due to gas generation from the positive electrode is suppressed.

本発明によれば、ガス発生反応の根源である充電反応を停止できるので、異常充電時の内圧上昇を根本的に中断させ、電池の信頼性を高めることが可能となる。   According to the present invention, since the charging reaction that is the source of the gas generation reaction can be stopped, the increase in the internal pressure during abnormal charging can be fundamentally interrupted, and the reliability of the battery can be improved.

以下、本発明を実施するための最良の形態について、詳細に記す。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明の骨子である膨張黒鉛は、通常の黒鉛とは異なり、その層間に揮発材料を挿入することにより、所定の温度で膨張させることができるようにしたものである。層間に挿入できる揮発材料としては、硫酸などが挙げられる。これら揮発材料の種類や添加量により、膨張開始温度や膨張容積を制御することが可能となる。   Unlike normal graphite, expanded graphite, which is the gist of the present invention, can be expanded at a predetermined temperature by inserting a volatile material between the layers. Examples of the volatile material that can be inserted between the layers include sulfuric acid. The expansion start temperature and the expansion volume can be controlled by the type and the addition amount of these volatile materials.

上述した膨張黒鉛は、負極板において、水素吸蔵合金からなる合剤層中に添加されていてもよく、前記合剤層上に膨張黒鉛層として形成されていてもよい。合剤層中に膨張黒鉛を添加する方法としては、水素吸蔵合金を結着剤や増粘剤とともに練合する際に加えるのが一般的である。また合剤層上に膨張黒鉛層を形成する方法としては、膨張黒鉛粉末を直接吹き付ける方法、スラリー状にして吹き付ける方法、ペースト状にして塗布する方法が挙げられる。   The expanded graphite described above may be added to a mixture layer made of a hydrogen storage alloy in the negative electrode plate, or may be formed as an expanded graphite layer on the mixture layer. As a method of adding expanded graphite to the mixture layer, it is common to add a hydrogen storage alloy when kneading with a binder or a thickener. Examples of the method for forming the expanded graphite layer on the mixture layer include a method of directly spraying expanded graphite powder, a method of spraying in the form of a slurry, and a method of applying in the form of a paste.

膨張黒鉛を介在させる負極板は、活物質である水素吸蔵合金を必須構成要素とし、二次元集電体に合剤ペーストを塗布して形成されるものと、三次元多孔型集電体に合剤スラリーを充填して形成されるものとがある。いずれを選択してもよいが、特に合剤層中に膨張黒鉛を添加する場合、膨張黒鉛を効果的に合剤中に分散させる観点から、結着剤や増粘剤とともに練合して合剤ペーストを作製し、二次元集電体に塗布するものの方が好ましい。   The negative electrode plate with expanded graphite intervening is composed of a hydrogen storage alloy, which is an active material, as an essential component, and is formed by applying a mixture paste to a two-dimensional current collector and a three-dimensional porous current collector. Some of them are formed by filling an agent slurry. Any of these may be selected, but particularly when expanded graphite is added to the mixture layer, from the viewpoint of effectively dispersing the expanded graphite in the mixture, it is kneaded together with a binder and a thickener. It is preferable to prepare an agent paste and apply it to a two-dimensional current collector.

水素吸蔵合金は特に限定されないが、一般式MmNi5−x(Mmは軽希土類元素の混合物、M=Co、Mn、Al、Fe、Cuなど)で表される組成のものが好ましい。この水素吸蔵合金粉末は、特性上20〜30μmの範囲が好ましい。またペースト性状や電池特性の安定化、および極板としての構造強度確保の観点から、水素吸蔵合金粉末に対し適量の導電剤、結着剤および増粘剤を加えることも可能である。導電剤としてはアセチレンブラック、ケッチェンブラック(以下、KBと略記)などのハードカーボンを加えるのが望ましい。また結着剤としてはスチレン−ブタジエンゴム共重合体(以下、SBRと略記)やポリビニルアルコールなどを加えるのが望ましい。さらには増粘剤として、カルボキシメチルセルロース(以下、CMCと略記)などのセルロース誘導体を用いるのが望ましい。 The hydrogen storage alloy is not particularly limited, general formula MmNi 5-x M X (Mm is a mixture of light rare earth elements, M = Co, Mn, Al , Fe, Cu , etc.) having composition represented by are preferred. The hydrogen storage alloy powder is preferably in the range of 20 to 30 μm in view of characteristics. In addition, from the viewpoint of stabilizing paste properties and battery characteristics and ensuring structural strength as an electrode plate, it is also possible to add appropriate amounts of a conductive agent, a binder and a thickener to the hydrogen storage alloy powder. As the conductive agent, it is desirable to add hard carbon such as acetylene black and ketjen black (hereinafter abbreviated as KB). As the binder, it is desirable to add a styrene-butadiene rubber copolymer (hereinafter abbreviated as SBR), polyvinyl alcohol or the like. Furthermore, it is desirable to use a cellulose derivative such as carboxymethylcellulose (hereinafter abbreviated as CMC) as a thickener.

上述した負極を用いてアルカリ蓄電池を構成する場合、セパレータを介して金属酸化物からなる正極板と対向させ、電極群を構成する。正極板は二次元集電体に合剤を焼結して形成されるものと、三次元多孔型集電体に合剤スラリーを充填して形成されるものとがある。金属酸化物としては主に水酸化ニッケルが用いられ、必要に応じオキシ水酸化コバルトなどの導電剤を添加することができる。またセパレータとしては不織布が一般的に用いられ、その材質には電池環境下で安定なポリプロピレン(以下、PPと略記)などが選択できる。   When an alkaline storage battery is configured using the above-described negative electrode, an electrode group is configured by facing a positive electrode plate made of a metal oxide via a separator. The positive electrode plate includes a two-dimensional current collector formed by sintering a mixture, and a positive electrode plate formed by filling a three-dimensional porous collector with a mixture slurry. Nickel hydroxide is mainly used as the metal oxide, and a conductive agent such as cobalt oxyhydroxide can be added as necessary. Moreover, a nonwoven fabric is generally used as the separator, and the material can be selected from polypropylene (hereinafter abbreviated as PP) that is stable in a battery environment.

以下、本発明の負極板の実施例について説明する。
(実施例1)
負極材料として、希土類元素とニッケルとをベースとしたAB系水素吸蔵合金を用いた。具体的な組成はMmNi3.55Mn0.40Al0.30Co0.75であり、熔解法で合成した後、不活性雰囲気かつ1000℃下で1時間熱処理した。この合金塊を機械的に粉砕して平均粒径を約25μmに調整し、その後、この合金粉末を、比重1.30で80℃のKOH水溶液中に60分間浸漬攪拌した。この水素吸蔵合金粉末100重量部に対し、増粘剤としてCMCを0.2重量部、導電剤としてKBを0.5重量部、結着剤としてSBRを1.0重量部、さらには本発明の膨張黒鉛(河北茂源化工有限公司社製、揮発材料:硫酸)を添加して、水とともに練合して負極合剤ペーストを作製した。
Hereinafter, examples of the negative electrode plate of the present invention will be described.
Example 1
As a negative electrode material was used AB 5 type hydrogen-absorbing alloy based on a rare earth element and nickel. The specific composition was MmNi 3.55 Mn 0.40 Al 0.30 Co 0.75 , which was synthesized by a melting method and then heat-treated at 1000 ° C. for 1 hour in an inert atmosphere. The alloy lump was mechanically pulverized to adjust the average particle size to about 25 μm, and then the alloy powder was immersed and stirred in a KOH aqueous solution at a specific gravity of 1.30 at 80 ° C. for 60 minutes. For 100 parts by weight of this hydrogen storage alloy powder, 0.2 part by weight of CMC as a thickener, 0.5 part by weight of KB as a conductive agent, 1.0 part by weight of SBR as a binder, and the present invention Expanded graphite (manufactured by Hebei Shigeru Chemical Co., Ltd., volatile material: sulfuric acid) was added and kneaded with water to prepare a negative electrode mixture paste.

この負極合剤ペーストを、鉄製パンチング箔にニッケルをメッキした厚み0.03mmの芯材の両面に塗布し、乾燥・加圧工程を経て、合剤層を有する負極板を作製した。   This negative electrode mixture paste was applied to both surfaces of a core material having a thickness of 0.03 mm obtained by plating nickel on an iron punching foil, and a negative electrode plate having a mixture layer was produced through a drying and pressing process.

負極板の寸法は縦35mm、長さ320mmとし、その長手方向に伸びる幅2mmの片側端部は、合剤層が付与されていない芯材の無地部とし、これを二重折りにすることにより、幅1mm、厚み0.06mmとした。これを実施例1の負極板とする。
(実施例2)
実施例1に対して、負極合剤ペーストに膨張黒鉛を加えず、この膨張黒鉛100重量部に対し結着剤としてSBRを1.0重量部、増粘剤としてCMCを0.2重量部添加してペーストを作製し、膨張黒鉛を負極の合剤層上に塗布したこと以外は、実施例1と同様に負極板を作製した。これを実施例2の負極板とする。
(比較例1)
実施例1に対して、負極合剤ペーストに膨張黒鉛を加えなかったこと以外は、実施例1と同様に負極板を作製した。これを比較例1の負極板とする。
The dimensions of the negative electrode plate are 35 mm in length and 320 mm in length, and the end on one side with a width of 2 mm extending in the longitudinal direction is a plain part of the core material to which no mixture layer is applied. The width was 1 mm and the thickness was 0.06 mm. This is the negative electrode plate of Example 1.
(Example 2)
For Example 1, without adding expanded graphite to the negative electrode mixture paste, 1.0 part by weight of SBR as a binder and 0.2 part by weight of CMC as a thickener were added to 100 parts by weight of the expanded graphite. Thus, a paste was prepared, and a negative electrode plate was prepared in the same manner as in Example 1 except that expanded graphite was coated on the negative electrode mixture layer. This is the negative electrode plate of Example 2.
(Comparative Example 1)
A negative electrode plate was produced in the same manner as in Example 1, except that expanded graphite was not added to the negative electrode mixture paste. This is the negative electrode plate of Comparative Example 1.

上述した各実施例の負極板を用い、以下に示す手順でニッケル・水素蓄電池を作製した。
(正極板の作製)
正極材料として、表面をオキシ水酸化コバルトで被覆した球状の水酸化ニッケル粉末を用いた。なおオキシ水酸化コバルトは、水酸化ニッケル100重量部あたり、10重量部とした。この粉末100重量部に対し、結着剤としてPTFEを0.3重量部、増粘剤としてCMCを0.2重量部添加し、水とともに練合して正極合剤ペーストを作製した。
Using the negative electrode plate of each example described above, a nickel-hydrogen storage battery was fabricated according to the following procedure.
(Preparation of positive electrode plate)
As the positive electrode material, spherical nickel hydroxide powder whose surface was coated with cobalt oxyhydroxide was used. The cobalt oxyhydroxide was 10 parts by weight per 100 parts by weight of nickel hydroxide. To 100 parts by weight of the powder, 0.3 part by weight of PTFE as a binder and 0.2 part by weight of CMC as a thickener were added and kneaded with water to prepare a positive electrode mixture paste.

正極芯材には、三次元多孔型集電体である発泡ニッケル基板を用いた。基板に正極合剤ペーストを充填した後、乾燥・加圧工程を経て、活物質層を有する正極板を作製した。   As the positive electrode core material, a nickel foam substrate, which is a three-dimensional porous collector, was used. After filling the substrate with the positive electrode mixture paste, a positive electrode plate having an active material layer was produced through drying and pressing processes.

正極板の寸法は縦35mm、長さ260mmとし、その長手方向に伸びる幅3mmの片側端部は、活物質が付与されていない、厚み0.5mmの芯材無地部を形成した。この無地部は、集電板溶接時の強度を持たせるため2回折り返しさらに圧縮することにより、幅1mm、厚み0.3mmとした。
(電池の作製)
上述の正極板を、セパレータとして厚み150μm、目付60g/m2のPP製不織布を介して、負極板とともに渦巻き状に巻回し、電極群を構成した。この電極群の最外周には負極が露出した状態となっていて、正極芯材および負極芯材の無地部を折り返すことにより厚く形成された端部は、それぞれ電極群の両面に露出しており、渦巻状の正極リード、および負極リードを形成している。その渦巻状の正負極リードを、それぞれ公知の抵抗溶接でニッケル製の集電板と接続し、正極板、および負極板の長手方向にある端部全体から集電できる構造とした。
The positive electrode plate had a length of 35 mm and a length of 260 mm, and a one-side end portion with a width of 3 mm extending in the longitudinal direction formed a core material uncoated portion with a thickness of 0.5 mm to which no active material was applied. This plain portion was made to have a width of 1 mm and a thickness of 0.3 mm by further compressing it twice in order to give strength during current collector plate welding.
(Production of battery)
The above-mentioned positive electrode plate was spirally wound together with the negative electrode plate via a PP nonwoven fabric having a thickness of 150 μm and a basis weight of 60 g / m 2 as a separator to constitute an electrode group. The negative electrode is exposed on the outermost periphery of this electrode group, and the end portions formed thick by folding the plain portion of the positive electrode core material and the negative electrode core material are exposed on both surfaces of the electrode group, respectively. A spiral positive electrode lead and a negative electrode lead are formed. The spiral positive and negative electrode leads were connected to a nickel current collector plate by known resistance welding, respectively, so that current could be collected from the positive electrode plate and the entire end in the longitudinal direction of the negative electrode plate.

この電極群を金属ケースに挿入後、各々の集電板と正極端子および負極端子をリードで接続し、比重1.30のKOH水溶液に40g/LのLiOHを溶解した電解液を所定量注液した。この後、ケースの上部に安全弁付き封口板を配置してかしめ封口し、外径23mm、高さ43mm、公称容量3Ahの円筒密閉型ニッケル−水素蓄電池を作製した。この電池を0.1C(1C=300mA)で15時間充電し、0.2Cで6時間放電する充放電サイクルを2回繰り返した後、45℃で3日間のエージング(負極合金の活性化促進)を行った。   After this electrode group is inserted into a metal case, each current collector plate is connected to the positive electrode terminal and the negative electrode terminal with leads, and a predetermined amount of an electrolytic solution in which 40 g / L LiOH is dissolved in a KOH aqueous solution having a specific gravity of 1.30 is injected. did. Thereafter, a sealing plate with a safety valve was placed on the upper part of the case and sealed by caulking to produce a cylindrical sealed nickel-hydrogen storage battery having an outer diameter of 23 mm, a height of 43 mm, and a nominal capacity of 3 Ah. The battery was charged at 0.1 C (1 C = 300 mA) for 15 hours and then discharged and charged at 0.2 C for 6 hours twice, then aging at 45 ° C. for 3 days (promoting activation of the negative electrode alloy) Went.

上述した各実施例の電池を、以下の方法にて評価した。
(異常充電試験)
各実施例の電池20個を7Cで連続充電した。閉回路電圧の降下が見られた時点を短絡開始時間として、その平均値を表1に示す。また電池が膨らむ等の以上が見られた電池を変形電池として、その個数を表1に示す。
The batteries of the above-described examples were evaluated by the following methods.
(Abnormal charge test)
Twenty batteries in each example were continuously charged at 7C. Table 1 shows the average value of the short circuit start time when the drop of the closed circuit voltage was observed. In addition, Table 1 shows the number of batteries in which the above-described expansion of the battery is observed as a modified battery.

Figure 2006073292
従来電池である比較例1は、異常充電試験において連続的に充電された結果、電池内圧の急激な上昇のため安全弁が追従できず、電池が全数変形する結果となった。これに対し膨張黒鉛を負極に配置した実施例1および2は、電池変形の回避が可能となった。この理由として、異常充電時の発熱に伴って膨張黒鉛を含む負極板が膨張し、セパレータを貫通して正極板と接触して内部短絡が起こることにより充電反応が停止し、正極からのガス発生が抑止されたものと考えられる。
Figure 2006073292
Comparative Example 1, which is a conventional battery, was continuously charged in the abnormal charging test, and as a result, the safety valve could not follow due to a sudden rise in the internal pressure of the battery, resulting in a total deformation of the battery. On the other hand, Examples 1 and 2 in which expanded graphite was arranged on the negative electrode made it possible to avoid battery deformation. The reason for this is that the negative electrode plate containing expanded graphite expands due to heat generation during abnormal charging, contacts the positive electrode plate through the separator, and the charging reaction stops, causing gas generation from the positive electrode. Is thought to have been suppressed.

本発明の負極板を用いたアルカリ蓄電池は、機器が異常を来たした場合に起こる異常充電が起こっても電池を変形させることがないので、急速充電を必要とするポータブル機器の電源として非常に有効である。   Since the alkaline storage battery using the negative electrode plate of the present invention does not deform the battery even if abnormal charging occurs when the device has an abnormality, it is very useful as a power source for portable devices that require rapid charging. It is valid.

Claims (3)

水素吸蔵合金からなる合剤層を有するアルカリ蓄電池用負極板であって、前記合剤層中に膨張黒鉛が添加されていることを特徴とするアルカリ蓄電池用負極板。   A negative electrode plate for an alkaline storage battery having a mixture layer made of a hydrogen storage alloy, wherein expanded graphite is added to the mixture layer. 水素吸蔵合金からなる合剤層を有するアルカリ蓄電池用負極板であって、前記合剤層上に膨張黒鉛からなる層が形成されていることを特徴とするアルカリ蓄電池用負極板。   A negative electrode plate for an alkaline storage battery having a mixture layer made of a hydrogen storage alloy, wherein a layer made of expanded graphite is formed on the mixture layer. 金属酸化物からなる正極板、水素吸蔵合金からなる負極板、およびセパレータより構成される電極群を有するアルカリ蓄電池であり、負極板に前記請求項1〜2のいずれかの負極板を用いたことを特徴とするアルカリ蓄電池。   An alkaline storage battery having an electrode group composed of a positive electrode plate made of a metal oxide, a negative electrode plate made of a hydrogen storage alloy, and a separator, wherein the negative electrode plate according to claim 1 is used as the negative electrode plate. An alkaline storage battery.
JP2004253870A 2004-09-01 2004-09-01 Negative electrode plate for alkaline storage battery and alkaline storage battery Pending JP2006073292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253870A JP2006073292A (en) 2004-09-01 2004-09-01 Negative electrode plate for alkaline storage battery and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253870A JP2006073292A (en) 2004-09-01 2004-09-01 Negative electrode plate for alkaline storage battery and alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2006073292A true JP2006073292A (en) 2006-03-16

Family

ID=36153695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253870A Pending JP2006073292A (en) 2004-09-01 2004-09-01 Negative electrode plate for alkaline storage battery and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2006073292A (en)

Similar Documents

Publication Publication Date Title
WO2003047014A1 (en) Active electrode composition with graphite additive
JP5119577B2 (en) Nickel metal hydride battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP7129288B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery containing this positive electrode
JP5213312B2 (en) Alkaline storage battery
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JP2007066697A (en) Manufacturing method of alkaline storage battery
JP4979178B2 (en) Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3802703B2 (en) Nickel metal hydride battery
JP4752401B2 (en) Manufacturing method of cylindrical alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP2006073292A (en) Negative electrode plate for alkaline storage battery and alkaline storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JPH11135112A (en) Positive electrode for alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH10284071A (en) Sintered hydrogen storage alloy electrode
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2010010097A (en) Method of manufacturing nickel metal hydride storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH0613077A (en) Hydrogen storage electrode
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode