JP2006071557A - Friction testing method and device - Google Patents

Friction testing method and device Download PDF

Info

Publication number
JP2006071557A
JP2006071557A JP2004257552A JP2004257552A JP2006071557A JP 2006071557 A JP2006071557 A JP 2006071557A JP 2004257552 A JP2004257552 A JP 2004257552A JP 2004257552 A JP2004257552 A JP 2004257552A JP 2006071557 A JP2006071557 A JP 2006071557A
Authority
JP
Japan
Prior art keywords
sphere
leaf springs
measured
frictional force
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004257552A
Other languages
Japanese (ja)
Inventor
Ryuji Nakada
竜二 中田
Takaaki Onizuka
高晃 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2004257552A priority Critical patent/JP2006071557A/en
Publication of JP2006071557A publication Critical patent/JP2006071557A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction testing method and its device for finding an accurate friction coefficient even on a surface under measurement not flat in a direction orthogonal to a relative slip giving direction of a raceway surface, etc. of a ball bearing by decreasing the displacement amount of a spherical body in the longitudinal direction of leaf springs owing to the bending of the leaf springs caused by frictional force without decreasing the distortion amount of the leaf springs caused by the frictional force, in measuring frictional force from the distortion amount of the leaf springs when relative slip motion is given to the spherical body such as a steel ball with the spherical body pressed against a surface under test via the leaf springs. <P>SOLUTION: The spherical body 7b is supported by means of leaf springs 7d and 7e disposed parallel to each other with a prescribed distance left between them in their slipping directions while causing their bend-allowing directions to lie parallel to slipping directions with respect to a surface Wa under test. The use of a pick-up 7 mounted in a rigid body (a part under support) 7a, reduces the longitudinal displacement amount of the leaf springs 7d and 7e due to the bending thereof caused by the frictional force, to enhance positional accuracy of pressing the surface Wa by the spherical body 7b, thereby finding an accurate frictional coefficient, without decreasing the distortion amount of the leaf springs 7d and 7e, and accordingly, without lowering sensitivity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は被測定面に球体を押し付けた状態でこれら両者間に相対滑り運動を与え、その滑りにより球体に作用する力を測定してその被測定面の摩擦係数を測定する方法および装置に関し、更に詳しくは、被測定面が、例えば玉軸受の軌道輪の軌道面の周方向への滑り摩擦係数を測定する場合のように、球体に対する滑り方向に直交する方向に平坦でない場合に有効な摩擦試験方法および装置に関する。   The present invention relates to a method and an apparatus for giving a relative sliding motion between the two in a state in which the sphere is pressed against the surface to be measured, measuring a force acting on the sphere by the slip, and measuring a friction coefficient of the surface to be measured. More specifically, friction effective when the surface to be measured is not flat in a direction perpendicular to the sliding direction with respect to the sphere, such as when measuring the sliding friction coefficient in the circumferential direction of the raceway surface of the ball bearing raceway. The present invention relates to a test method and apparatus.

物体の表面の摺動摩擦係数を測定する試験機として、従来、バウデン式の試験機やピンオンディスクなどが知られている(例えば特許文献1参照)。   Conventionally, a Bowden type tester, a pin-on-disk, or the like is known as a tester for measuring the sliding friction coefficient of the surface of an object (see, for example, Patent Document 1).

ピンオンディスクは、ディスク上に被試験体を載せて回転を与えつつ、その表面にピン状の金属を所定の押圧力のもとに押し付け、そのピンに作用する接線方向への力を検出して摩擦力の測定値とし、ピンの押圧力とから被試験体表面の滑り動摩擦係数を求める。
一方、バウデン式の摩擦試験機は、被試験体の表面に鋼球を所定の押圧力のもとに押し付けつつ、その鋼球と被試験体とに相対的な往復滑り運動を与えて、鋼球に作用する滑り運動方向への力を検出して摩擦力の測定値とし、鋼球の押圧力とから被試験体表面の滑り動摩擦係数を求める。
The pin-on disk detects the tangential force acting on the pin by pressing a pin-shaped metal against the surface of the disk under test with a predetermined pressure while applying a test object on the disk and applying rotation. Then, using the measured value of the friction force, the sliding friction coefficient of the surface of the test object is obtained from the pressing force of the pin.
On the other hand, the Bowden friction tester gives a relative reciprocating sliding motion between the steel ball and the test object while pressing the steel ball against the surface of the test object under a predetermined pressing force. The force in the sliding motion direction acting on the sphere is detected as a measured value of the frictional force, and the sliding friction coefficient on the surface of the test object is obtained from the pressing force of the steel ball.

ところで、玉軸受をはじめとする転がり軸受においては、内輪や外輪の軌道面に対して転動体は基本的には転がり接触するのであるが、使用条件や状況によってはこれらが滑り接触する場合があり、従って軌道面の動滑り摩擦係数を知ることは、転がり軸受の挙動を知るうえで重要な意味を持つ。   By the way, in rolling bearings such as ball bearings, the rolling elements are basically in rolling contact with the raceways of the inner ring and outer ring, but these may be in sliding contact depending on the use conditions and conditions. Therefore, it is important to know the dynamic sliding friction coefficient of the raceway surface to know the behavior of the rolling bearing.

転がり軸受の軌道面の滑り摩擦係数を測定するに当たって、特に、玉軸受や球面ころ軸受のように、被測定面が平坦でない場合には、当然のことながら前記した従来の摩擦試験機をそのまま用いることはできず、専用の装置を製作する必要が生じる。   In measuring the sliding friction coefficient of the raceway surface of the rolling bearing, the conventional friction tester is naturally used as it is, especially when the surface to be measured is not flat, such as a ball bearing or a spherical roller bearing. This is not possible, and a dedicated device needs to be manufactured.

玉軸受の内・外輪の軌道面の滑り摩擦係数を測定する装置としては、例えば、内輪もしくは外輪を把持して回転を与え、その軌道面に鋼球等の球体を押し付け、その球体に対して内輪もしくは外輪の接線方向に作用する力を検出して摩擦力とする装置が多用される。このような装置においては、軌道面に押し付けるべき球体を保持して当該球体に作用する力を検出するピックアップとして、バウデン式摩擦試験機で用いられるものに準じた図5に正面図(A)および平面図(B)を示すようなものが用いられる。   As a device for measuring the sliding friction coefficient of the raceway surface of the inner and outer rings of the ball bearing, for example, the inner ring or the outer ring is gripped and rotated, and a sphere such as a steel ball is pressed against the raceway surface, and the sphere is A device that detects a force acting in a tangential direction of an inner ring or an outer ring and generates a frictional force is often used. In such an apparatus, a front view (A) and a front view (A) shown in FIG. 5 according to those used in a Bowden friction tester as a pickup for holding a sphere to be pressed against the raceway surface and detecting a force acting on the sphere are shown. A plan view (B) is used.

すなわち、負荷機構に片持ち支持される被支持部51に、板バネ52を介して球体53が固定される球体固定部54を装着した構造を持ち、板バネ52に歪みゲージ55が貼着されている。被支持部51および球体固定部54は実質的に剛体として機能し、球体53に作用する摩擦力によってもっぱら板バネ52のみが撓むようになっている。そして、このピックアップは、図5(B)に矢印で示す方向に被測定面が移動するように、従ってこの矢印で示す方向に球体53に対して摩擦力が作用するように負荷機構に支持され、これにより、球体53に作用する摩擦力は板バネ52の撓み量に比例することになり、その撓みに基づく板バネ52の歪み量を歪みゲージ55で検出することにより、摩擦力を計測することができる。
特開2003−136151号公報
That is, it has a structure in which a sphere fixing portion 54 to which a sphere 53 is fixed via a leaf spring 52 is attached to a supported portion 51 that is cantilevered by a load mechanism, and a strain gauge 55 is attached to the leaf spring 52. ing. The supported portion 51 and the sphere fixing portion 54 substantially function as rigid bodies, and only the leaf spring 52 is bent solely by the frictional force acting on the sphere 53. This pickup is supported by the load mechanism so that the surface to be measured moves in the direction indicated by the arrow in FIG. 5B, and accordingly, the frictional force acts on the sphere 53 in the direction indicated by the arrow. As a result, the frictional force acting on the sphere 53 is proportional to the amount of bending of the leaf spring 52, and the amount of distortion of the leaf spring 52 based on the bending is detected by the strain gauge 55 to measure the frictional force. be able to.
JP 2003-136151 A

上記した図5に例示したピックアップを用いて、例えば玉軸受の内輪もしくは外輪の軌道面の動滑り摩擦係数を測定する場合、図6に模式的に示すように、摩擦力Fにより板バネ52が撓み、その撓みによる板バネ2の歪み量を検出して摩擦力の計測を行うのであるが、板バネ52の撓み量が大きくなると、図中Δで示す板バネ52の長手方向への球体53の変位量が大きくなり、当初に軌道面の底部に球体53を押し付けていたにも係わらず、その球体53の押し付け位置が変化して、意図する位置における摩擦力の計測ができなくなってしまうという問題がある。その結果、被測定面が玉軸受や球面ころ軸受の軌道面のように、球体53に対する相対滑り方向に直交する方向に平坦でない場合には、球体53による押し付け力が被測定面に対して垂直とはならず、従って摩擦係数を求めるべく計測した摩擦力を球体53による押し付け力で除したとき、厳密にはその値は、摩擦力を垂直力で除した値と定義づけられている摩擦係数を表さないことになる。   For example, when measuring the dynamic sliding friction coefficient of the raceway surface of the inner ring or outer ring of the ball bearing using the pickup illustrated in FIG. 5, the leaf spring 52 is caused by the frictional force F as schematically shown in FIG. The bending force is measured by detecting the amount of bending of the leaf spring 2 due to the bending, and when the amount of bending of the leaf spring 52 increases, the sphere 53 in the longitudinal direction of the leaf spring 52 indicated by Δ in the figure. The displacement amount of the sphere 53 is increased, and the sphere 53 is initially pressed against the bottom of the raceway surface, but the sphere 53 is pressed and the frictional force at the intended position cannot be measured. There's a problem. As a result, when the surface to be measured is not flat in a direction orthogonal to the relative sliding direction with respect to the sphere 53 as in the raceway surface of a ball bearing or a spherical roller bearing, the pressing force by the sphere 53 is perpendicular to the surface to be measured. Therefore, when the friction force measured to obtain the friction coefficient is divided by the pressing force by the sphere 53, strictly speaking, the value is a friction coefficient defined as a value obtained by dividing the friction force by the normal force. Will not be represented.

このような問題を解決するために、板バネ53の剛性を高くすると、摩擦力による撓み量が小さくなり、ひいては板バネ53の歪み量が小さくなって感度が低下してしまうという別の問題が生じる。   If the rigidity of the leaf spring 53 is increased in order to solve such a problem, there is another problem that the amount of bending due to the frictional force is reduced, and consequently the amount of distortion of the leaf spring 53 is reduced and the sensitivity is lowered. Arise.

本発明はこのような実情に鑑みてなされたもので、摩擦力による板バネの歪み量を小さくすることなく、摩擦力による板バネの撓みに起因して球体の被測定面に対する押圧位置の変化をより小さくすることができ、もって玉軸受や球面ころ軸受の軌道面など、球体との相対すべり方向に直交する方向に平坦でない被測定面でも正確な摩擦係数を求めることのできる摩擦試験方法および装置の提供をその課題としている。   The present invention has been made in view of such a situation, and without changing the amount of distortion of the leaf spring due to the frictional force, the change of the pressing position with respect to the measured surface of the sphere due to the deflection of the leaf spring due to the frictional force. And a friction test method capable of obtaining an accurate friction coefficient even on a surface to be measured that is not flat in a direction perpendicular to the relative sliding direction with a sphere, such as a raceway surface of a ball bearing or a spherical roller bearing, and Providing a device is an issue.

上記の課題を解決するため、本発明の摩擦試験方法は、被測定面に球体を押し付けた状態で、これら両者間に相対滑り運動を付与し、その滑りにより上記球体に作用する力を測定して上記被測定面の摩擦試験を行うに当たり、被測定面が上記滑り方向に直交する方向に平坦でない場合の摩擦試験方法であって,上記球体を、上記滑り方向に可撓方向を沿わせ、かつ、当該滑り方向に所定の距離を隔てて配置された互いに平行な2枚の板バネを介して剛体に支持して被測定面に押し付け、その被測定面と球体との間に相対滑り運動を与えたときの各板バネの歪み量を当該各板バネに取り付けた歪み検出手段により検出し、その検出結果から上記球体に作用する摩擦力を測定することによって特徴づけられる(請求項1)。   In order to solve the above-mentioned problems, the friction test method of the present invention is to apply a relative sliding motion between the two in a state where the sphere is pressed against the surface to be measured, and measure the force acting on the sphere by the slip. In performing the friction test of the surface to be measured, a friction test method in a case where the surface to be measured is not flat in a direction orthogonal to the sliding direction, the sphere is aligned with the flexible direction in the sliding direction, In addition, a relative sliding motion between the surface to be measured and the sphere is supported by a rigid body via two parallel leaf springs arranged at a predetermined distance in the sliding direction and pressed against the surface to be measured. The amount of strain of each leaf spring when applied is detected by strain detection means attached to each leaf spring, and the frictional force acting on the sphere is measured from the detection result. .

また、本発明の摩擦試験装置は、環状体の内周もしくは外周、または円筒体の外周に、軸平行断面が直線でない被測定面を備えた物体の摩擦試験装置であって、試験に供される物体を支持して回転を与える回転軸と、先端側に球体が固定されたピックアップの基端側を支持して、球体を被測定面に一定の力で押し付ける負荷機構を備えるとともに、上記ピックアップは、上記負荷機構に支持される剛体からなる被支持部と、その被支持部にそれぞれ基端部が固定された互いに平行な2枚の板バネからな平行バネと、その平行バネの先端部に固定された剛体からなる球体固定部と、その球体固定部に固定された球体と、上記各板バネに装着された歪み検出センサとからなり、このピックアップは、球体が上記被測定面に押し付けられた状態で、上記各板バネを結ぶ方向が上記回転軸による物体の回転の接線方向に沿うように上記負荷機構に支持されることによって特徴づけられる(請求項2)。   The friction test apparatus of the present invention is a friction test apparatus for an object having a measurement surface whose axial parallel cross section is not a straight line on the inner periphery or outer periphery of an annular body or the outer periphery of a cylindrical body. A rotary shaft that supports the object to be rotated and a load mechanism that supports the base end side of the pickup with the sphere fixed to the tip side and presses the sphere against the surface to be measured with a constant force. Is a supported part made of a rigid body supported by the load mechanism, a parallel spring made up of two parallel leaf springs each having a base end fixed to the supported part, and a distal end of the parallel spring A sphere fixing portion made of a rigid body fixed to the sphere, a sphere fixed to the sphere fixing portion, and a strain detection sensor attached to each of the leaf springs. The pickup is pressed against the surface to be measured. In the state Serial characterized by the direction connecting the leaf spring is supported by the loading mechanism along a tangential direction of the rotation of the object by the rotating shaft (Claim 2).

本発明は、負荷機構に支持される被支持部と、被測定面に押し付けられる球体との間に介在する板バネを平行バネとすることによって、課題を解決しようとするものである。
すなわち、従来の1枚の板バネを用いる場合と、これを平行バネに変えた場合を比較すると、平行バネを構成する各板バネの厚さを、1枚の板バネを単体で用いる場合の厚さの1/2とすることにより、球体に同じ力を加えたときの歪み量を少なくすることなく、撓みによる板バネの長手方向への変位量が約1/2となることが、本発明者らのシミュレーションにより明らかになった。よって、板バネの歪み量を小さくすることなく、従って感度を低下させることなく、板バネの撓みによるその長手方向への押圧位置の変位を少なくすることができ、従来に比してより正確な摩擦係数の計測が可能となる。
The present invention intends to solve the problem by using a parallel spring as a leaf spring interposed between a supported portion supported by a load mechanism and a sphere pressed against a surface to be measured.
That is, comparing the case of using a single conventional leaf spring and the case of changing this to a parallel spring, the thickness of each leaf spring constituting the parallel spring is the same as the case of using a single leaf spring alone. By setting the thickness to ½, the amount of displacement of the leaf spring in the longitudinal direction due to bending can be reduced to about ½ without reducing the amount of distortion when the same force is applied to the sphere. It became clear by the simulation of the inventors. Therefore, the displacement of the pressing position in the longitudinal direction due to the bending of the leaf spring can be reduced without reducing the amount of distortion of the leaf spring, and thus without lowering the sensitivity. The coefficient of friction can be measured.

本発明によれば、球体に作用する摩擦力による板バネの歪み量を小さくすることなく、板バネの撓みによる当該板場バネの長手方向への球体の変位を少なくすることができ、 摩擦力の計測感度を低下させることなく、球体による被測定面の押圧位置精度が向上し、玉軸受や球面ころ軸受の軌道面など、相対滑り方向に直交する方向に平坦でない被測定面の摩擦係数を、従来に比してより正確に求めることが可能となった。   According to the present invention, it is possible to reduce the displacement of the sphere in the longitudinal direction of the plate spring due to the bending of the leaf spring without reducing the amount of distortion of the leaf spring due to the frictional force acting on the sphere, and the friction force The accuracy of the pressed position of the surface to be measured by the sphere is improved without reducing the measurement sensitivity, and the friction coefficient of the surface to be measured which is not flat in the direction perpendicular to the relative sliding direction, such as the raceway surface of a ball bearing or spherical roller bearing, is improved. This makes it possible to obtain more accurately than in the past.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の摩擦試験装置の構成を示す模式図であり、玉軸受の外輪を被試験体Wとし、その軌道面Waの摩擦試験を行う場合の例を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of a friction test apparatus according to an embodiment of the present invention, and shows an example in which a friction test of a raceway surface Wa is performed using an outer ring of a ball bearing as a test object W.

テーブル1上に回転軸2が設けられており、この回転軸2のハウジング2a並びに駆動源であるモータ3は、移動機構4によって互いに直交するx,y,z軸方向に移動可能となっている。そして、この回転軸2の先端部に、アタッチメント5を介して被試験体Wが装着される。   A rotating shaft 2 is provided on the table 1, and a housing 2 a of the rotating shaft 2 and a motor 3 as a driving source can be moved in the x, y, and z axis directions orthogonal to each other by a moving mechanism 4. . Then, the device under test W is attached to the tip of the rotating shaft 2 via the attachment 5.

テーブル1上には、また、負荷機構6が設けられている。この負荷機構6は、支持台6aに回動自在に支持された軸6bにレバー6cの中間部を固定し、そのレバー6cの一端側にピックアップ7を装着するとともに、他端側にはバランスウェイト6dを取り付けている。そして、軸6bにはL字形のアーム6eが固着されており、このアーム6eの先端には、以下に示すピックアップ7の鋼球7bの中心を通る鉛直線上に位置するように重錘6fが吊り下げられている。この構成により、ピックアップ7の鋼球7bには重錘6fの重量に応じた大きさの鉛直下方への力が作用することになる。   A load mechanism 6 is also provided on the table 1. The load mechanism 6 has an intermediate portion of a lever 6c fixed to a shaft 6b rotatably supported by a support base 6a, a pickup 7 is mounted on one end side of the lever 6c, and a balance weight on the other end side. 6d is attached. An L-shaped arm 6e is fixed to the shaft 6b, and a weight 6f is suspended from the tip of the arm 6e so as to be positioned on a vertical line passing through the center of a steel ball 7b of the pickup 7 shown below. Has been lowered. With this configuration, a vertically downward force having a magnitude corresponding to the weight of the weight 6f acts on the steel ball 7b of the pickup 7.

さて、ピックアップ7は、図2(A)に正面図、同図(B)に平面図を示すように、負荷機構6のレバー6cに片持ち支持される被支持部7aと、鋼球7bが固定される鋼球固定部7cとを、2枚の互いに平行な板バネ7d,7eからなる平行バネにより連結した構造を持ち、各板バネ7d,7eには歪みゲージ7f,7gが貼着されている。負荷機構6のレバー6cには、鋼球7bが鉛直下方を向くように、従って平行バネを構成する2枚の板バネ7d,7e相互の離隔方向が水平方向に沿うように取り付けられる。   As shown in FIG. 2 (A), the pickup 7 includes a supported portion 7a that is cantilevered by the lever 6c of the load mechanism 6 and a steel ball 7b. It has a structure in which a steel ball fixing portion 7c to be fixed is connected by a parallel spring composed of two parallel leaf springs 7d and 7e, and strain gauges 7f and 7g are attached to the leaf springs 7d and 7e. ing. The lever 6c of the load mechanism 6 is attached so that the steel ball 7b faces vertically downward, and thus the separation direction between the two leaf springs 7d and 7e constituting the parallel spring is along the horizontal direction.

そして、試験に際しては、図3に示すように、鋼球7bが被試験体Wである玉軸受の外輪の軌道面Waの底部に当接して押圧するように移動機構4の操作により位置決めした状態で、回転軸2を駆動して被試験体Wに回転を与える。これにより、鋼球7bが軌道面Waに対して重錘6fに応じた大きさの力で押し付けられつつ、これら両者間に滑り運動が与えられる。   In the test, as shown in FIG. 3, the steel ball 7 b is positioned by the operation of the moving mechanism 4 so as to abut against and press against the bottom of the raceway surface Wa of the outer ring of the ball bearing which is the test object W. Thus, the rotating shaft 2 is driven to rotate the device under test W. As a result, the steel ball 7b is pressed against the raceway surface Wa with a force having a magnitude corresponding to the weight 6f, and a sliding motion is given between them.

このような試験により、鋼球7bと軌道面Waとの間に摩擦力が発生し、その摩擦力は鋼球7bに作用して板バネ7d,7eとからなる平行バネを撓ませ、その撓みによる各板バネ7d,7eの歪み量がこれらに貼着されている歪みゲージ7f,7gによって検出され、その検出値から摩擦力の大きさが求められる。   By such a test, a frictional force is generated between the steel ball 7b and the raceway surface Wa, and the frictional force acts on the steel ball 7b to bend the parallel spring composed of the leaf springs 7d and 7e. The strain amount of each leaf spring 7d, 7e is detected by the strain gauges 7f, 7g attached thereto, and the magnitude of the frictional force is obtained from the detected value.

ここで、鋼球に作用する摩擦力によって板バネを撓ませ、その撓みによる板バネの歪み量から摩擦力を計測する点については、前記した図5に示した従来のピックアップと同じであるが、以下に示すように、板バネの変形モードの相違により、同じ摩擦力の作用による板バネの歪み量を等しくしながらも、撓みによる板バネの長手方向への変位量を大幅に少なくすることができる。   Here, the plate spring is bent by the frictional force acting on the steel ball, and the point of measuring the frictional force from the amount of distortion of the plate spring due to the bending is the same as the conventional pickup shown in FIG. As shown below, due to the difference in the deformation mode of the leaf spring, the amount of displacement of the leaf spring in the longitudinal direction due to bending should be greatly reduced while equalizing the amount of strain of the leaf spring caused by the same frictional force. Can do.

すなわち、平行バネを用いた本発明の実施の形態のピックアップ7では、図4に示すように、摩擦力Fの作用により図示のように変形し、1枚の板バネ52を用いた場合の図6に示した変形とはそのモードが相違する。   That is, in the pickup 7 according to the embodiment of the present invention using a parallel spring, as shown in FIG. 4, it is deformed as shown in FIG. The mode is different from the modification shown in FIG.

有限要素法を用いて解析した結果、図5に示した1枚の板バネ52を用いた構造との比較において、本発明の実施の形態における板バネ7d,7eを、図5に示した板バネ52に対してその厚さを0.4倍にするほかは幅並びに長さを同じとし、鋼球に同じ力Fを加えたとき、歪み量が等しく、かつ、撓みによる板バネの長手方向への変位量δが図5の同方向への変位量Δの0.54倍に減少することが判明した。具体的に述べると、本発明の実施の形態における平行バネを用いたピックアップ7および図5に示した従来のピックアップにおいて、各板バネは、厚さを前者で1mm、後者で0.4mm、両者とも長さを35mmとし、各板バネの発生歪み量が両者とも406μStとなるように鋼球に対して試験時における摩擦力の作用方向と同じ方向に荷重を加えたとき、従来のピックアップでは鋼球の板バネ長手方向への変位量δが0.0118mmであったのに対し、本発明の実施の形態におけるピックアップ7では、鋼球7cの板バネ長手方向への変位量δは0.00636mmであった。   As a result of analysis using the finite element method, the plate springs 7d and 7e in the embodiment of the present invention are compared with the structure using the single plate spring 52 shown in FIG. The length and the length of the spring 52 are the same except that the thickness is 0.4 times that of the spring 52. When the same force F is applied to the steel ball, the amount of strain is equal and the longitudinal direction of the leaf spring due to bending It has been found that the displacement amount δ decreases to 0.54 times the displacement amount Δ in the same direction in FIG. Specifically, in the pickup 7 using the parallel spring in the embodiment of the present invention and the conventional pickup shown in FIG. 5, each leaf spring has a thickness of 1 mm for the former and 0.4 mm for the latter. When the load is applied to the steel ball in the same direction as the direction of the frictional force during the test so that the length is 35 mm and the generated strain amount of each leaf spring is both 406 μSt, the conventional pickup uses steel. Whereas the displacement amount δ of the sphere in the longitudinal direction of the leaf spring was 0.0118 mm, in the pickup 7 according to the embodiment of the present invention, the displacement amount δ of the steel ball 7c in the longitudinal direction of the leaf spring was 0.00636 mm. Met.

従って、本発明の実施の形態によると、板バネの歪み量が同じでも、板バネ7d,7eの撓みによる被測定面Waに対する押圧位置の変位量を図5に示した従来のピックアップを用いる場合に比して約半分に減少させることが可能となる。その結果、鋼球7bによる被測定面Waの押圧力で摩擦力を除した値は、従来に比してより正確な摩擦係数を表すことになる。   Therefore, according to the embodiment of the present invention, even when the amount of distortion of the leaf springs is the same, the displacement amount of the pressing position with respect to the measured surface Wa due to the bending of the leaf springs 7d and 7e is used in the conventional pickup shown in FIG. It is possible to reduce to about half compared to As a result, the value obtained by dividing the frictional force by the pressing force of the surface to be measured Wa by the steel ball 7b represents a more accurate friction coefficient than the conventional one.

なお、以上の例においては、玉軸受の外輪を被試験体としてその軌道面の動滑り摩擦係数を求める場合の例について述べたが、玉軸受の内輪の軌道面や、球面ころ軸受の内・外輪の軌道面、更には、摩擦力を計測する際の滑りの付与方向に直交する方向に平坦でない被測定面の測定に際しても、上記と同等の作用効果を奏することができる。   In the above example, an example in which the dynamic sliding friction coefficient of the raceway surface is obtained with the outer ring of the ball bearing as a test object has been described. The same effects as described above can be obtained when measuring the raceway surface of the outer ring and also the surface to be measured which is not flat in the direction orthogonal to the slip application direction when measuring the frictional force.

本発明の実施の形態の摩擦試験装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the friction test apparatus of embodiment of this invention. 本発明の実施の形態で用いるピックアップ7の構成図で、(A)は正面図、(B)はその平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the pick-up 7 used by embodiment of this invention, (A) is a front view, (B) is the top view. 試験時におけるピックアップ7の鋼球7bの被測定面Waに対する押圧状態を示す拡大図である。It is an enlarged view which shows the press state with respect to the to-be-measured surface Wa of the steel ball 7b of the pick-up 7 at the time of a test. 本発明の実施の形態におけるピックアップ7の摩擦力による変形状態を表す模式図である。It is a schematic diagram showing the deformation | transformation state by the frictional force of the pick-up 7 in embodiment of this invention. 従来の摩擦試験装置で用いられるピックアップの構成例を示す図であり、(A)は正面図で、(B)はその平面図である。It is a figure which shows the structural example of the pickup used with the conventional friction test apparatus, (A) is a front view, (B) is the top view. 図5のピックアップの摩擦力による変形状態を表す模式図である。It is a schematic diagram showing the deformation | transformation state by the frictional force of the pickup of FIG.

符号の説明Explanation of symbols

1 テーブル
2 回転軸
3 モータ
4 移動機構
5 アタッチメント
6 負荷機構
6a 支持台
6b 軸
6c レバー
6d バランスウェイト
6e アーム
6f 重錘
7 ピックアップ
7a 被支持部
7b 鋼球
7c 鋼球固定部
7d,7e 板バネ
7f,7g 歪みゲージ
W 被試験体(玉軸受外輪)
Wa 軌道面
DESCRIPTION OF SYMBOLS 1 Table 2 Rotating shaft 3 Motor 4 Moving mechanism 5 Attachment 6 Load mechanism 6a Support stand 6b Shaft 6c Lever 6d Balance weight 6e Arm 6f Weight 7 Pickup 7a Supported part 7b Steel ball 7c Steel ball fixed part 7d, 7e Plate spring 7f , 7g Strain gauge W DUT (ball bearing outer ring)
Wa track surface

Claims (2)

被測定面に球体を押し付けた状態で、これら両者間に相対滑り運動を付与し、その滑りにより上記球体に作用する力を測定して上記被測定面の摩擦試験を行うに当たり、被測定面が上記滑り方向に直交する方向に平坦でない場合の摩擦試験方法であって,
上記球体を、上記滑り方向に可撓方向を沿わせ、かつ、当該滑り方向に所定の距離を隔てて配置された互いに平行な2枚の板バネを介して剛体に支持して被測定面に押し付け、その被測定面と球体との間に相対滑り運動を与えたときの各板バネの歪み量を当該各板バネに取り付けた歪み検出手段により検出し、その検出結果から上記球体に作用する摩擦力を測定することを特徴とする摩擦試験方法。
When a sphere is pressed against the surface to be measured, a relative sliding motion is imparted between the two, and the force acting on the sphere is measured by the slip to perform a friction test on the surface to be measured. A friction test method in the case where the surface is not flat in a direction orthogonal to the sliding direction,
The spherical body is supported by a rigid body through two leaf springs parallel to each other along a flexible direction in the sliding direction and spaced apart by a predetermined distance in the sliding direction. The amount of strain of each leaf spring when it is pressed and a relative sliding motion is given between the surface to be measured and the sphere is detected by the strain detection means attached to each leaf spring, and acts on the sphere from the detection result. A friction test method characterized by measuring a friction force.
環状体の内周もしくは外周、または円筒体の外周に、軸平行断面が直線でない被測定面を備えた物体の摩擦試験装置であって、
試験に供される物体を支持して回転を与える回転軸と、先端側に球体が固定されたピックアップの基端側を支持して、球体を被測定面に一定の力で押し付ける負荷機構を備えるとともに、上記ピックアップは、上記負荷機構に支持される剛体からなる被支持部と、その支持部にそれぞれ基端部が固定された互いに平行な2枚の板バネからなる平行バネと、その平行バネの先端部に固定された剛体からなる球体固定部と、その球体固定部に固定された球体と、上記各板バネに装着された歪み検出センサとからなり、このピックアップは、球体が上記被測定面に押し付けられた状態で、上記各板バネを結ぶ方向が上記回転軸による物体の回転の接線方向に沿うように上記負荷機構に支持されることを特徴とする摩擦試験装置。
A friction test apparatus for an object having a measurement surface whose axial parallel cross section is not a straight line on the inner periphery or outer periphery of an annular body, or the outer periphery of a cylindrical body,
A rotating shaft that supports and rotates the object to be used for the test, and a load mechanism that supports the base end side of the pickup with the sphere fixed to the tip side and presses the sphere against the surface to be measured with a certain force. The pickup includes a supported portion made of a rigid body supported by the load mechanism, a parallel spring made up of two parallel leaf springs each having a base end fixed to the support portion, and the parallel spring A sphere fixing portion made of a rigid body fixed to the tip of the sphere, a sphere fixed to the sphere fixing portion, and a strain detection sensor mounted on each of the leaf springs. A friction test apparatus, wherein the load mechanism supports the leaf springs so that a direction connecting the leaf springs is along a tangential direction of rotation of the object by the rotation shaft in a state of being pressed against a surface.
JP2004257552A 2004-09-03 2004-09-03 Friction testing method and device Pending JP2006071557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257552A JP2006071557A (en) 2004-09-03 2004-09-03 Friction testing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257552A JP2006071557A (en) 2004-09-03 2004-09-03 Friction testing method and device

Publications (1)

Publication Number Publication Date
JP2006071557A true JP2006071557A (en) 2006-03-16

Family

ID=36152336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257552A Pending JP2006071557A (en) 2004-09-03 2004-09-03 Friction testing method and device

Country Status (1)

Country Link
JP (1) JP2006071557A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266963A (en) * 2014-10-11 2015-01-07 泰山体育产业集团有限公司 High-precision pommel horse friction coefficient tester
CN109297624A (en) * 2018-11-27 2019-02-01 河南科技大学 A kind of auxiliary device for calculating deep groove ball bearing moment of friction
CN110333157A (en) * 2019-07-15 2019-10-15 北京工业大学 A kind of test device for ball screw assembly, ball roll sliding friction abrasion
CN112730220A (en) * 2020-12-21 2021-04-30 奇瑞汽车股份有限公司 Seat surface friction force testing device and testing method
US20210278337A1 (en) * 2018-10-31 2021-09-09 Tianjin University Equivalent friction coefficient measurement apparatus for rolling bearings and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266963A (en) * 2014-10-11 2015-01-07 泰山体育产业集团有限公司 High-precision pommel horse friction coefficient tester
US20210278337A1 (en) * 2018-10-31 2021-09-09 Tianjin University Equivalent friction coefficient measurement apparatus for rolling bearings and method thereof
CN109297624A (en) * 2018-11-27 2019-02-01 河南科技大学 A kind of auxiliary device for calculating deep groove ball bearing moment of friction
CN110333157A (en) * 2019-07-15 2019-10-15 北京工业大学 A kind of test device for ball screw assembly, ball roll sliding friction abrasion
CN112730220A (en) * 2020-12-21 2021-04-30 奇瑞汽车股份有限公司 Seat surface friction force testing device and testing method

Similar Documents

Publication Publication Date Title
JP2010256195A (en) Friction abrasion testing device
TWI378232B (en)
JP5546952B2 (en) Force monitoring method and apparatus
EP2543980B1 (en) Wheel balancer with means for determining tyre uniformity
EP2133681A3 (en) Tire testing machine and tire testing method
JP5038290B2 (en) Crankshaft roller burnishing method
JP2006071557A (en) Friction testing method and device
JP2016020879A (en) Material testing machine
JP2008101991A (en) Apparatus for measuring shape
US20110314925A1 (en) Deflection testing apparatus and method for using
JP3369430B2 (en) Friction and wear testing machine
JP2762636B2 (en) Method and apparatus for measuring rotational accuracy of rolling bearing
JP2003021572A (en) Shock testing apparatus for roller bearing
JP4899307B2 (en) Bearing preload measurement method
JP6326710B2 (en) Surface roughness measuring machine
JP2009293965A (en) Testing apparatus for traction measurement
CN213579189U (en) Rotary kiln riding wheel and wheel belt measuring device
JP2004108406A (en) Method and device for measuring rotational accuracy of rolling bearing
JPH048738B2 (en)
JP4367097B2 (en) Inspection apparatus and inspection method for rotary operation type electronic components
JP2006509188A (en) Sample table for measuring lateral force and lateral displacement
JP3358366B2 (en) Load measuring device for rolling bearings
JP2010112929A (en) Outer diameter measuring device of roller for bearing
JP2021076417A (en) Correlation generation method, measurement force adjustment method, and surface property measuring device
JPS63241302A (en) Apparatus for inspecting deflection of wheel