JP2006071229A - Heat pump device - Google Patents

Heat pump device Download PDF

Info

Publication number
JP2006071229A
JP2006071229A JP2004257491A JP2004257491A JP2006071229A JP 2006071229 A JP2006071229 A JP 2006071229A JP 2004257491 A JP2004257491 A JP 2004257491A JP 2004257491 A JP2004257491 A JP 2004257491A JP 2006071229 A JP2006071229 A JP 2006071229A
Authority
JP
Japan
Prior art keywords
expander
compressor
heat pump
temperature
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004257491A
Other languages
Japanese (ja)
Inventor
Tetsuya Saito
哲哉 斎藤
Yuichi Kusumaru
雄一 藥丸
Tomoichiro Tamura
朋一郎 田村
Masaya Honma
雅也 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004257491A priority Critical patent/JP2006071229A/en
Publication of JP2006071229A publication Critical patent/JP2006071229A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders

Landscapes

  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of a heat pump device having a constitution that a compressor and an expander are integrated. <P>SOLUTION: This heat pump device is provided with a refrigeration cycle formed by successively connecting the compressor 2, a radiator 12, the expander 3 integrated with the compressor 2 and mounted on a downstream side in the flowing direction of a refrigerant with respect to the radiator 12 to take out power by depressurizing and expanding the refrigerant, an electronic expansion valve 13 mounted further on a downstream side of the expander 3, and an evaporator 14, by piping, and further comprises a compressor discharge temperature detecting means TH1 mounted on discharge piping 11 for detecting a discharge temperature of the compressor 2, and a control means C1 controlling the electronic expansion valve 13 on the basis of the discharge temperature of the compressor 2 and increasing an outlet temperature of the expander 3, thus energy recovered as power by the expander 3 can be increased in maximum to improve cycle efficiency by optimally controlling temperature difference between the compressor 2 and the expander 3, that is, the quantity of heat moved from the compressor 2 to the expander 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体の膨張によって発生するエネルギーを有効に回収することにより、高い効率を実現する圧縮機と膨張機が一体型で構成されたヒートポンプ装置に関する。   The present invention relates to a heat pump apparatus in which a compressor and an expander that achieve high efficiency by effectively recovering energy generated by expansion of a fluid are configured integrally.

近年、冷凍サイクルの更なる高効率化を図る手段として、膨張弁に代えて膨張機を備え、冷媒が膨張する過程でその圧力エネルギーを膨張機によって電力又は動力の形で回収し、その回収分だけ圧縮機の入力を少なくする動力回収サイクルが提案されている。(例えば、特許文献1参照)。
図6は特許文献1に記載された従来のヒートポンプ装置の構成図である。図6に示すように、室外機1には、モータ(図示省略)により回転駆動される圧縮機2と、圧縮機2と一軸で連結された膨張機3と、室外熱交換器4と、圧縮機2の吸込側冷媒管路に介設されたアキュームレータ5と、膨張機3の吸込側冷媒管路に介設されたレシーバ6と、第一の四路切換弁7と、第二の四路切換弁8とが備えられている。また、室内機9には室内熱交換器10が備えられている。
そして、冷房運転時には、圧縮機2から吐出された冷媒ガスは、第一の四路切換弁7を経て室外熱交換器4において冷却され凝縮して液冷媒とされる。この液冷媒は、レシーバ6を経て膨張機3に導入され、膨張機3において等エントロピ膨張により減圧された後、第二の四路切換弁8を経て室内熱交換器10に導入される。室内熱交換器10に導入された液冷媒は、ここで蒸発してその蒸発熱によって室内の冷房を行うとともに、蒸発後のガス冷媒は第一の四路切換弁7及びアキュームレータ5を経て圧縮機2に吸入される。
一方、暖房運転時には、圧縮機2から吐出されたガス冷媒は、第一の四路切換弁7を経て室内熱交換器10に導入され、ここで凝縮して液冷媒とされるが、その際の凝縮熱によって室内の暖房が行われる。室内熱交換器10において凝縮した液冷媒は、第二の四路切換弁8を経て膨張機3に導入され、膨張機3において等エントロピ膨張により減圧された後、第二の四路切換弁8を経て室外熱交換器4に導入され、ここで蒸発してガス冷媒とされた後、第一の四路切換弁7及びアキュームレータ5を経て圧縮機2に吸入される。
また、図7は従来のヒートポンプ装置のモリエル線図で、膨張機3による高効率化の原理を示している。図7に示すように、圧縮機2出口(点d)から凝縮されて過冷却となった冷媒ガス(点a)を膨張機3に導入し、これを膨張機3において等エントロピ膨張によって膨張させた場合における蒸発器(例えば冷房時の室内熱交換器10)入口(点b)と、従来のように膨張弁によって点aから等エンタルピ膨張させた場合における蒸発器(例えば冷房時の室内熱交換器10)入口(点e)との間のエンタルピ量(ha)だけ、冷媒膨張時の圧力エネルギーが動力として冷媒システム側に回収される。その結果、圧縮機2には必要入力(hb)から上記回収動力(ha)を差し引いた値(hb−ha)だけを実際に入力すればよく、圧縮機2入力の低減分だけサイクルの高効率化が実現されるものである。
特開2001−66006号公報
In recent years, as a means for further improving the efficiency of the refrigeration cycle, an expander is provided in place of the expansion valve, and in the process of expansion of the refrigerant, the pressure energy is recovered in the form of electric power or power by the expander. Power recovery cycles have been proposed that only reduce compressor input. (For example, refer to Patent Document 1).
FIG. 6 is a configuration diagram of a conventional heat pump device described in Patent Document 1. In FIG. As shown in FIG. 6, the outdoor unit 1 includes a compressor 2 that is rotationally driven by a motor (not shown), an expander 3 that is connected to the compressor 2 on one axis, an outdoor heat exchanger 4, and a compression unit. The accumulator 5 provided in the suction side refrigerant pipe of the machine 2, the receiver 6 provided in the suction side refrigerant pipe of the expander 3, the first four-way switching valve 7, and the second four-way A switching valve 8 is provided. The indoor unit 9 is provided with an indoor heat exchanger 10.
During the cooling operation, the refrigerant gas discharged from the compressor 2 is cooled and condensed in the outdoor heat exchanger 4 through the first four-way switching valve 7 to be liquid refrigerant. This liquid refrigerant is introduced into the expander 3 through the receiver 6, is decompressed by isentropic expansion in the expander 3, and is then introduced into the indoor heat exchanger 10 through the second four-way switching valve 8. The liquid refrigerant introduced into the indoor heat exchanger 10 evaporates here to cool the room with the heat of evaporation, and the evaporated gas refrigerant passes through the first four-way switching valve 7 and the accumulator 5 and is compressed by the compressor. 2 is inhaled.
On the other hand, during the heating operation, the gas refrigerant discharged from the compressor 2 is introduced into the indoor heat exchanger 10 through the first four-way switching valve 7, where it condenses into a liquid refrigerant. The room is heated by the heat of condensation. The liquid refrigerant condensed in the indoor heat exchanger 10 is introduced into the expander 3 through the second four-way switching valve 8 and is decompressed by isentropic expansion in the expander 3, and then the second four-way switching valve 8. After being introduced into the outdoor heat exchanger 4 and evaporating into a gas refrigerant, the refrigerant is sucked into the compressor 2 through the first four-way switching valve 7 and the accumulator 5.
FIG. 7 is a Mollier diagram of a conventional heat pump device and shows the principle of high efficiency by the expander 3. As shown in FIG. 7, the refrigerant gas (point a) condensed and supercooled from the outlet of the compressor 2 (point d) is introduced into the expander 3, and is expanded by isentropic expansion in the expander 3. The evaporator (for example, indoor heat exchanger 10 at the time of cooling) at the inlet (point b) and the evaporator (for example, indoor heat exchange at the time of cooling) when the enthalpy expansion is performed from the point a by the expansion valve as in the prior art. The pressure energy at the time of refrigerant expansion is recovered to the refrigerant system side as motive power by the amount of enthalpy (ha) between the container 10) inlet (point e). As a result, only the value (hb-ha) obtained by subtracting the recovered power (ha) from the required input (hb) needs to be actually input to the compressor 2, and the cycle efficiency is increased by the reduction of the compressor 2 input. Is realized.
JP 2001-66006 A

しかしながら、上記従来の構成では、圧縮機2と膨張機3が一軸で連結された構成となっているために、特に夏場の冷房運転時のようなサイクル内で高温となる圧縮機2と、サイクル内で低温となる膨張機3との温度差が大きくなる条件下では、圧縮機2から膨張機3へ、シャフト等の内部部品や外壁を通じて熱の移動が顕著になる。その結果、膨張機3内で冷媒が膨張する際に熱影響を受けるので、図7に示すような等エントロピ膨張(点a→点b)とはならず、蒸発器入口(点b)の比エンタルピは増大し、動力として回収されるエネルギー量(ha)が小さくなり、理論効率と比較して大幅に実際のサイクルの効率が低下してしまうといった課題があった。   However, since the compressor 2 and the expander 3 are connected by a single shaft in the above-described conventional configuration, the compressor 2 that has a high temperature in a cycle such as during cooling operation in summer, and the cycle Under the condition that the temperature difference with the expander 3 that is low in temperature increases, the heat transfer from the compressor 2 to the expander 3 through the internal parts such as the shaft and the outer wall becomes remarkable. As a result, the refrigerant is affected by heat when it expands in the expander 3, so that the isentropic expansion (point a → b) as shown in FIG. 7 does not occur, but the ratio of the evaporator inlet (point b). Enthalpy increased, the amount of energy (ha) recovered as power decreased, and there was a problem that the efficiency of the actual cycle was significantly reduced compared to the theoretical efficiency.

したがって本発明は、上記従来の課題を解決するもので、圧縮機から膨張機へ移動する熱量を抑制して、サイクル効率を向上することができるヒートポンプ装置を提供することを目的としている。   Therefore, this invention solves the said conventional subject, and it aims at providing the heat pump apparatus which can suppress the calorie | heat amount which moves from a compressor to an expander, and can improve cycle efficiency.

請求項1記載の本発明のヒートポンプ装置は、圧縮機と、放熱器と、冷媒を減圧膨張することにより動力を取り出す膨張機と、減圧手段と、蒸発器とを配管によって接続し、前記膨張機を前記放熱器よりも下流側に設け、前記減圧手段を前記膨張機の下流側に設けて冷凍サイクルを構成し、前記膨張機と前記圧縮機とを一体構成としたヒートポンプ装置であって、前記圧縮機の吐出温度を検知する圧縮機吐出温度検知手段と、前記圧縮機の吐出温度により前記減圧手段を制御する制御手段とを備えたことを特徴とする。
請求項2記載の本発明は、請求項1に記載のヒートポンプ装置において、前記膨張機の出口温度を検知する膨張機出口温度検知手段を備え、前記制御手段では、前記圧縮機の吐出温度と前記膨張機の出口温度との温度差により前記減圧手段を制御することを特徴とする。
請求項3記載の本発明のヒートポンプ装置は、圧縮機と、放熱器と、冷媒を減圧膨張することにより動力を取り出す膨張機と、減圧手段と、蒸発器とを配管によって接続し、前記膨張機を前記放熱器よりも下流側に設け、前記減圧手段を前記膨張機の下流側に設けて冷凍サイクルを構成し、前記膨張機と前記圧縮機とを一体構成としたヒートポンプ装置であって、前記減圧手段としてキャピラリチューブを用いたことを特徴とする。
請求項4記載の本発明は、請求項3に記載のヒートポンプ装置において、前記キャピラリチューブと、前記蒸発器出口から前記圧縮機へ繋がる吸込配管とを熱交換させる構成にしたことを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれかに記載のヒートポンプ装置において、前記冷凍サイクルの高圧側の圧力を超臨界状態として運転することを特徴とする。
The heat pump device according to the first aspect of the present invention includes a compressor, a radiator, an expander that extracts power by decompressing and expanding a refrigerant, a decompression unit, and an evaporator connected by a pipe, and the expander Is provided on the downstream side of the radiator, the pressure reducing means is provided on the downstream side of the expander to constitute a refrigeration cycle, and the expander and the compressor are integrated into a heat pump device, Compressor discharge temperature detection means for detecting the discharge temperature of the compressor, and control means for controlling the decompression means according to the discharge temperature of the compressor.
According to a second aspect of the present invention, in the heat pump apparatus according to the first aspect, the heat pump device further includes an expander outlet temperature detecting unit that detects an outlet temperature of the expander, and the control unit includes a discharge temperature of the compressor and the discharge temperature of the compressor. The pressure reducing means is controlled by a temperature difference from an outlet temperature of the expander.
According to a third aspect of the present invention, there is provided a heat pump device comprising: a compressor; a radiator; an expander that extracts power by decompressing and expanding a refrigerant; a decompression unit; Is provided on the downstream side of the radiator, the pressure reducing means is provided on the downstream side of the expander to constitute a refrigeration cycle, and the expander and the compressor are integrated into a heat pump device, A capillary tube is used as the decompression means.
According to a fourth aspect of the present invention, in the heat pump device according to the third aspect, the capillary tube and a suction pipe connected from the evaporator outlet to the compressor are configured to exchange heat.
According to a fifth aspect of the present invention, in the heat pump apparatus according to any one of the first to fourth aspects, the operation is performed with the pressure on the high-pressure side of the refrigeration cycle being in a supercritical state.

本発明のヒートポンプ装置は、圧縮機から膨張機へ移動する熱量を最適制御することにより、膨張機で動力として回収されるエネルギーを最大限に引き上げることができ、ヒートポンプ装置の効率向上が図られる。   The heat pump device of the present invention can maximize the energy recovered as power in the expander by optimally controlling the amount of heat transferred from the compressor to the expander, thereby improving the efficiency of the heat pump device.

本発明の第1の実施の形態によるヒートポンプ装置は、圧縮機の吐出温度を検知する圧縮機吐出温度検知手段と、圧縮機の吐出温度により減圧手段を制御する制御手段とを備えたものである。本実施の形態によれば、夏場の冷房運転時のような、サイクル内で高温となる圧縮機と、サイクル内で低温となる膨張機との温度差が大きくなる条件下で膨張機の出口温度を引き上げることにより、圧縮機と膨張機の温度差、すなわち圧縮機から膨張機へ移動する熱量を最適制御することで、膨張機で動力として回収されるエネルギーを最大限に引き上げサイクル効率を向上することができる。また、減圧手段を制御することにより膨張機出入口の冷媒の密度を制御できるので、外気温が極端に下がった場合等に生ずるサイクル内の余剰冷媒を膨張機内に滞留させることができるという効果もある。
本発明の第2の実施の形態は、第1の実施の形態によるヒートポンプ装置において、膨張機の出口温度を検知する膨張機出口温度検知手段を備え、制御手段では、圧縮機の吐出温度と膨張機の出口温度との温度差により減圧手段を制御するものである。本実施の形態によれば、圧縮機から膨張機へ移動する熱量は、圧縮機の吐出温度と膨張機の出口温度との温度差に比例することから、より精密に上記熱量を制御することが可能となり、膨張機で動力として回収されるエネルギーをさらに精度よく最大限に引き上げることができる。
本発明の第3の実施の形態によるヒートポンプ装置は、減圧手段としてキャピラリチューブを用いたものである。本実施の形態によれば、減圧手段としてキャピラリチューブを用いて膨張機の出口温度を引き上げることで、膨張機で動力として回収されるエネルギーを引き上げて、サイクル効率を向上することができる。また、低コスト化が図られるという効果もある。
本発明の第4の実施の形態は、第3の実施の形態によるヒートポンプ装置において、キャピラリチューブと、蒸発器出口から圧縮機へ繋がる吸込配管とを熱交換させる構成にしたものである。本実施の形態によれば、吸込配管から無駄に周囲に捨てられていたエネルギーを蒸発器の冷凍能力として回収できるので、さらにサイクルの効率を向上することができる。
本発明の第5の実施の形態は、第1から第4の実施の形態によるヒートポンプ装置において、冷凍サイクルの高圧側の圧力を超臨界状態として運転するものである。本実施の形態によれば、サイクル内での高低圧差が大きくなるので、圧力差のエネルギーを動力に変換する膨張機の機能を最大限に引き出すことができ、さらにサイクルの効率を向上することができる。
The heat pump device according to the first embodiment of the present invention includes a compressor discharge temperature detecting means for detecting the discharge temperature of the compressor, and a control means for controlling the pressure reducing means by the discharge temperature of the compressor. . According to this embodiment, the outlet temperature of the expander under the condition that the temperature difference between the compressor that becomes high in the cycle and the expander that becomes low in the cycle becomes large, such as during cooling operation in summer. By optimizing the temperature, the temperature difference between the compressor and the expander, that is, the amount of heat transferred from the compressor to the expander is optimally controlled to maximize the energy recovered as power in the expander and improve the cycle efficiency. be able to. In addition, since the density of the refrigerant at the inlet / outlet of the expander can be controlled by controlling the pressure reducing means, there is also an effect that excess refrigerant in the cycle that occurs when the outside air temperature decreases extremely can be retained in the expander. .
The second embodiment of the present invention includes an expander outlet temperature detecting means for detecting an outlet temperature of the expander in the heat pump apparatus according to the first embodiment, and the control means includes a discharge temperature and an expansion of the compressor. The pressure reducing means is controlled by the temperature difference from the outlet temperature of the machine. According to the present embodiment, the amount of heat transferred from the compressor to the expander is proportional to the temperature difference between the discharge temperature of the compressor and the outlet temperature of the expander, so that the amount of heat can be controlled more precisely. It becomes possible, and the energy recovered as power by the expander can be raised to the maximum with higher accuracy.
The heat pump apparatus according to the third embodiment of the present invention uses a capillary tube as the decompression means. According to the present embodiment, by raising the outlet temperature of the expander using a capillary tube as a decompression means, the energy recovered as power by the expander can be raised, and the cycle efficiency can be improved. In addition, there is an effect that the cost can be reduced.
In the heat pump device according to the third embodiment, the fourth embodiment of the present invention is configured to exchange heat between the capillary tube and the suction pipe connected to the compressor from the evaporator outlet. According to the present embodiment, the energy that has been wasted to the surroundings from the suction pipe can be recovered as the refrigerating capacity of the evaporator, so that the cycle efficiency can be further improved.
In the heat pump apparatus according to the first to fourth embodiments, the fifth embodiment of the present invention operates with the pressure on the high-pressure side of the refrigeration cycle set to a supercritical state. According to the present embodiment, the high-low pressure difference in the cycle becomes large, so that the function of the expander that converts the energy of the pressure difference into power can be maximized, and the cycle efficiency can be further improved. it can.

図1は、本発明の第1実施例におけるヒートポンプ装置の構成図である。尚、背景技術と同一構成については同一符号を付す。
図1において、第1実施例のヒートポンプ装置は、圧縮機2と、吐出配管11と、放熱器12と、膨張機3と、減圧手段である例えばパルスモータで駆動する電子膨張弁13と、蒸発器14と、吸込配管15とを順次配管によって接続して冷凍サイクルを構成している。膨張機3は、放熱器12よりも冷媒の流れ方向に対して下流側に設け、減圧手段13は膨張機3の更に下流側に設けている。ここで膨張機3は、冷媒を減圧膨張することにより動力を取り出す。また膨張機3は圧縮機2と一体型として構成している。ここで一体型とは、少なくとも膨張機3と圧縮機2との駆動軸が連結されており、この駆動軸を介して一方の熱が他方に伝わる状態に構成されたものである。
また、吐出配管11には圧縮機2の吐出温度を検知する例えばサーミスタである圧縮機吐出温度検知手段TH1が配設されており、この圧縮機吐出温度検知手段TH1からの信号により、電子膨張弁13の開度を制御する制御手段C1が備えられている。
FIG. 1 is a configuration diagram of a heat pump device according to a first embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as background art.
In FIG. 1, the heat pump device of the first embodiment includes a compressor 2, a discharge pipe 11, a radiator 12, an expander 3, an electronic expansion valve 13 driven by a pulse motor, for example, a decompression unit, and evaporation. The refrigeration cycle is configured by connecting the vessel 14 and the suction pipe 15 sequentially by pipes. The expander 3 is provided on the downstream side of the radiator 12 with respect to the refrigerant flow direction, and the decompression means 13 is provided on the further downstream side of the expander 3. Here, the expander 3 takes out power by decompressing and expanding the refrigerant. The expander 3 is configured as an integral unit with the compressor 2. Here, the integral type is configured such that at least the drive shafts of the expander 3 and the compressor 2 are connected, and one heat is transmitted to the other through the drive shaft.
The discharge pipe 11 is provided with compressor discharge temperature detection means TH1 which is, for example, a thermistor for detecting the discharge temperature of the compressor 2, and an electronic expansion valve is detected by a signal from the compressor discharge temperature detection means TH1. The control means C1 which controls the opening degree of 13 is provided.

以上のように構成されるヒートポンプ装置の冷媒のエネルギー状態の変化を、家庭用給湯機を例に図2に示す本実施例におけるヒートポンプ装置のモリエル線図で説明する。
圧縮機2に吸い込まれた低温低圧の冷媒は、圧縮機2の動作により圧縮されて高温高圧の冷媒となり吐出される(図のA→B)。吐出された冷媒は、吐出配管11を通って放熱器12にて水道水(図示せず)と熱交換し、水道水を約80℃の高温となるまで加熱しながら放熱するとともに、膨張機3へ流入する(B→C)。そして、膨張機3において等エントロピ膨張に近い膨張を行い、機械エネルギーを発生しながら減圧され、減圧手段である例えばパルスモータで駆動する電子膨張弁13に至る(C→D)。
その後、電子膨張弁13の作用により等エンタルピ膨張をしながら減圧されて低温低圧の冷媒となり、蒸発器14に至る(D→E)。この蒸発器14内で、屋外の空気と熱交換した冷媒はガス状となり、その後吸込配管15を通り圧縮機2へと吸い込まれる。(E→A)
A change in the energy state of the refrigerant of the heat pump apparatus configured as described above will be described with reference to a Mollier diagram of the heat pump apparatus in this embodiment shown in FIG.
The low-temperature and low-pressure refrigerant sucked into the compressor 2 is compressed by the operation of the compressor 2 to be discharged as a high-temperature and high-pressure refrigerant (A → B in the figure). The discharged refrigerant exchanges heat with tap water (not shown) in the radiator 12 through the discharge pipe 11 and dissipates heat while heating the tap water to a high temperature of about 80 ° C. (B → C). Then, the expander 3 performs expansion close to isentropic expansion, is decompressed while generating mechanical energy, and reaches an electronic expansion valve 13 driven by, for example, a pulse motor serving as decompression means (C → D).
Thereafter, the electronic expansion valve 13 is depressurized while performing equal enthalpy expansion by the action of the electronic expansion valve 13 to become a low-temperature and low-pressure refrigerant and reach the evaporator 14 (D → E). In the evaporator 14, the refrigerant that has exchanged heat with outdoor air becomes gaseous, and is then sucked into the compressor 2 through the suction pipe 15. (E → A)

ところで、図中の点線で表されるC→Gは理論上の等エントロピ膨張過程であり、また、一点鎖線で表されるC→Fは従来の膨張弁がない膨張機3のみで動力を回収した場合の膨張過程である。これらの従来の膨張過程C→Fと等エントロピ膨張過程C→Gの蒸発器14入口の比エンタルピを比較すると、従来の膨張過程C→Fでは比エンタルピiFが非常に大きくなる。これはサイクル内で高温となる圧縮機2と、サイクル内で低温となる膨張機3との温度差が大きくなる条件下(例えば圧縮機2吐出温度=80℃、膨張機3出口温度(F点)=0℃)では、圧縮機2から膨張機3へ、シャフト等の内部部品や外壁を通じて熱の移動が顕著になるために、膨張機3内で冷媒が膨張する際に受熱して比エンタルピが増大することが原因である。   By the way, C → G represented by a dotted line in the figure is a theoretical isentropic expansion process, and C → F represented by a one-dot chain line recovers power only by an expander 3 having no conventional expansion valve. This is the expansion process. Comparing the specific enthalpy at the inlet of the evaporator 14 of the conventional expansion process C → F and the isentropic expansion process C → G, the specific enthalpy iF is very large in the conventional expansion process C → F. This is under the condition that the temperature difference between the compressor 2 that becomes high temperature in the cycle and the expander 3 that becomes low temperature in the cycle becomes large (for example, compressor 2 discharge temperature = 80 ° C., expander 3 outlet temperature (F point). ) = 0 ° C.), since the heat transfer from the compressor 2 to the expander 3 through the internal parts such as the shaft and the outer wall becomes remarkable, when the refrigerant expands in the expander 3, the heat is received and the specific enthalpy This is because of the increase.

そこで本実施例では、膨張機3の下流側に配設された電子膨張弁13の流路を絞ることにより、膨張機3の出口圧力(D点)を上昇させる。これによって、膨張機3の出口圧力の上昇に伴い膨張機3の出口温度(D点)も上昇し、圧縮機2吐出温度と膨張機3出口温度との温度差が小さくなるので、圧縮機2から膨張機3への熱の移動量を抑制することが可能となる。
その結果、膨張機3内での冷媒の膨張(C→D)は、より等エントロピ膨張(C→G)に近づき、電子膨張弁13での膨張(D→E)においては等エンタルピ膨張をするので、エネルギー回収は行えないものの、蒸発器14入口の比エンタルピiEを従来の比エンタルピiFより小さくすることができる。
Therefore, in this embodiment, the outlet pressure (point D) of the expander 3 is increased by restricting the flow path of the electronic expansion valve 13 disposed on the downstream side of the expander 3. As a result, the outlet temperature (point D) of the expander 3 increases as the outlet pressure of the expander 3 increases, and the temperature difference between the discharge temperature of the compressor 2 and the expander 3 outlet temperature becomes small. It is possible to suppress the amount of heat transferred from the to the expander 3.
As a result, the expansion (C → D) of the refrigerant in the expander 3 becomes closer to the isentropic expansion (C → G), and the expansion (D → E) in the electronic expansion valve 13 performs the isenthalpy expansion. Therefore, although energy recovery cannot be performed, the specific enthalpy iE at the inlet of the evaporator 14 can be made smaller than the conventional specific enthalpy iF.

これにより、このサイクルの放熱器12を利用するヒートポンプ装置を給湯機、暖房機、自動販売機等で使用する場合は、成績係数COP=(iB−iC)/((iB−iA)−(iC−iE))となり、従来と比較して、圧縮機の所要動力を低減することができるのでサイクルの効率が向上する。
一方、このサイクルの蒸発器14を利用する冷凍サイクル装置を家庭用冷蔵庫、業務用冷蔵庫、冷房機、製氷機、自動販売機等で使用する場合は、成績係数COP=((iA−iF)+(iF−iE))/((iB−iA)−(iC−iE))となり、従来と比較して、圧縮機の所要動力を低減し、且つ冷凍効果が増加するので、さらにサイクルの効率が向上する。
Thereby, when using the heat pump apparatus using the heat radiator 12 of this cycle in a water heater, a heater, a vending machine, etc., the coefficient of performance COP = (iB−iC) / ((iB−iA) − (iC -IE)), and the required power of the compressor can be reduced compared to the conventional case, so that the efficiency of the cycle is improved.
On the other hand, when the refrigeration cycle apparatus using the evaporator 14 of this cycle is used in a domestic refrigerator, commercial refrigerator, air conditioner, ice making machine, vending machine, etc., the coefficient of performance COP = ((iA−iF) + (IF-iE)) / ((iB-iA)-(iC-iE)). Compared with the prior art, the required power of the compressor is reduced and the refrigeration effect is increased. improves.

次に、電子膨張弁13の制御方法について説明する。
図3は本実施例におけるヒートポンプ装置のエネルギーロス線図で、圧縮機3吐出温度とエネルギーロスの関係を表したグラフである。図示の実線が膨張機3の下流側の電子膨張弁13の開度を制御した場合、点線が従来の膨張機3のみで冷媒を膨張させた場合である。
圧縮機3吐出温度がある所定の温度T1より高温である場合は上述したように、サイクルの効率は電子膨張弁13を制御して膨張機3出口温度を上昇させた方が向上するので、エネルギーロスは小さい。しかしながら、ある所定の温度T1以下である場合は、逆にサイクルの効率は電子膨張弁13を制御して膨張機3出口温度を上昇させた方が低下し、エネルギーロスが大きくなってしまう。
例えば、冬場の放熱器12によって暖められた空気を室内に導入する暖房運転等で、圧縮機2吐出温度が比較的低温となる場合は、圧縮機2側と膨張機3側の温度差は小さいので、シャフト等の内部部品や外壁を通じての熱の移動は小さくなり、その結果膨張機3内で冷媒が膨張する際に受熱する熱量が減るので比エンタルピの増大は抑制される。
このような条件下で、電子膨張弁13の開度を制御して膨張機3の出口温度を上昇させると、前述したように電子膨張弁13での膨張(D→E)においては、等エンタルピ膨張をするためにエネルギー回収は行えないので、電子膨張弁13がない従来の膨張時の蒸発器14入口の比エンタルピiFよりも、電子膨張弁13の開度を制御した場合の蒸発器14入口の比エンタルピiEの方が大きくなり、サイクルの効率が低下してしまう。
Next, a method for controlling the electronic expansion valve 13 will be described.
FIG. 3 is an energy loss diagram of the heat pump apparatus in the present embodiment, and is a graph showing the relationship between the discharge temperature of the compressor 3 and the energy loss. The solid line in the figure indicates the case where the opening degree of the electronic expansion valve 13 on the downstream side of the expander 3 is controlled, and the dotted line indicates the case where the refrigerant is expanded only by the conventional expander 3.
When the discharge temperature of the compressor 3 is higher than a predetermined temperature T1, as described above, the cycle efficiency is improved by controlling the electronic expansion valve 13 to increase the outlet temperature of the expander 3. Loss is small. However, when the temperature is lower than a predetermined temperature T1, the cycle efficiency is reduced when the electronic expansion valve 13 is controlled to increase the outlet temperature of the expander 3, and the energy loss is increased.
For example, when the discharge temperature of the compressor 2 is relatively low in a heating operation in which air heated by the radiator 12 in winter is introduced into the room, the temperature difference between the compressor 2 side and the expander 3 side is small. Therefore, the movement of heat through the internal parts such as the shaft and the outer wall is reduced, and as a result, the amount of heat received when the refrigerant expands in the expander 3 is reduced, so that the increase in specific enthalpy is suppressed.
Under such conditions, when the opening temperature of the expander 3 is increased by controlling the opening degree of the electronic expansion valve 13, the expansion (D → E) in the electronic expansion valve 13 is equal enthalpy as described above. Since the energy cannot be recovered for expansion, the inlet of the evaporator 14 when the opening degree of the electronic expansion valve 13 is controlled rather than the specific enthalpy iF of the inlet of the evaporator 14 in the conventional expansion without the electronic expansion valve 13. The specific enthalpy iE becomes larger and the cycle efficiency is lowered.

そこで本実施例では、吐出配管11に配設して吐出温度を検知する圧縮機吐出温度検知手段TH1からの検知温度が予め設定された所定の温度T1以上である場合は、電子膨張弁13の開度を制御して膨張機3出口温度を上昇させ、T1以下である場合は、電子膨張弁13の開度を全開にして膨張機3の下流側の抵抗を最小限に抑えて、膨張機3のみで冷媒を膨張させる。このように吐出温度により、電子膨張弁13を最適制御する。
その結果、本実施例のヒートポンプ装置では、そのエネルギーロスが図3において、圧縮機3吐出温度がT1以上の場合は実線となり、T1以下の場合は点線となるので、圧縮機3吐出温度が変化した場合も、常に最大限にサイクルの効率を向上させることができる。
Therefore, in this embodiment, when the detected temperature from the compressor discharge temperature detecting means TH1 that is disposed in the discharge pipe 11 and detects the discharge temperature is equal to or higher than a predetermined temperature T1, the electronic expansion valve 13 is If the opening temperature is controlled to increase the outlet temperature of the expander 3 and is equal to or less than T1, the opening of the electronic expansion valve 13 is fully opened to minimize the resistance on the downstream side of the expander 3, and the expander The refrigerant is expanded only by 3. Thus, the electronic expansion valve 13 is optimally controlled by the discharge temperature.
As a result, in the heat pump apparatus of this embodiment, the energy loss in FIG. 3 is a solid line when the discharge temperature of the compressor 3 is T1 or higher, and a dotted line when the discharge temperature is T1 or lower. In this case, the cycle efficiency can always be maximized.

また、圧縮機2から膨張機3へ移動する熱量は圧縮機2吐出温度と膨張機3出口温度との温度差に比例することから、図1に示すように膨張機3の出口温度を検出する膨張機出口温度検知手段TH2を設け、電子膨張弁13の開度を全開にした時の圧縮機2吐出温度TBと膨張機3の出口温度TDとの温度差が所定の温度ΔT1以上であれば、電子膨張弁13の開度を制御して膨張機3出口温度(TD)を上昇させ、所定の温度ΔT1以下であれば、電子膨張弁13の開度は制御せず全開にして膨張機3の下流側の配管の抵抗を最小限に抑えて、膨張機3のみで冷媒を膨張させる構成であっても良い。
このように圧縮機2の吐出温度と膨張機3の出口温度との温度差で減圧手段の電子膨張弁13を最適制御する構成によって、より精密に圧縮機2から膨張機3に移動する熱量を制御することが可能となり、ヒートポンプ装置のサイクルの効率をさらに精度よく最大限に向上させることができる。
Further, since the amount of heat transferred from the compressor 2 to the expander 3 is proportional to the temperature difference between the discharge temperature of the compressor 2 and the outlet temperature of the expander 3, the outlet temperature of the expander 3 is detected as shown in FIG. When the expander outlet temperature detection means TH2 is provided and the temperature difference between the compressor 2 discharge temperature TB and the outlet temperature TD of the expander 3 when the opening degree of the electronic expansion valve 13 is fully opened is greater than or equal to a predetermined temperature ΔT1. Then, the opening degree of the expander 3 is increased by controlling the opening degree of the electronic expansion valve 13, and if the temperature is equal to or lower than the predetermined temperature ΔT1, the opening degree of the electronic expansion valve 13 is not fully controlled and is fully opened. The configuration may be such that the refrigerant is expanded only by the expander 3 while minimizing the resistance of the downstream piping.
In this way, the amount of heat transferred from the compressor 2 to the expander 3 can be more precisely controlled by optimally controlling the electronic expansion valve 13 of the decompression means by the temperature difference between the discharge temperature of the compressor 2 and the outlet temperature of the expander 3. It becomes possible to control, and the efficiency of the cycle of the heat pump apparatus can be further improved with maximum accuracy.

図4は、本発明の第2実施例におけるヒートポンプ装置の構成図である。なお、第1実施例と同一構成については同一符号を付す。
図4において、第2実施例のヒートポンプ装置は、圧縮機2と、吐出配管11と、放熱器12と、放熱器12よりも冷媒の流れ方向に対して下流側に配設されて冷媒を減圧膨張することにより動力を取り出す圧縮機2と一体型である膨張機3と、膨張機3の更に下流側に設けた減圧手段であるキャピラリチューブ16と、蒸発器14と、吸込配管15と、を順次配管接続して冷凍サイクルを形成した構成となっている。
また、キャピラリチューブ16と蒸発器14出口から圧縮機2へ繋がる吸込配管15とを熱交換させる構成、例えばキャピラリチューブ16と吸込配管15とは半田等により接触した構成となっている。
FIG. 4 is a configuration diagram of the heat pump apparatus in the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same structure as 1st Example.
In FIG. 4, the heat pump device of the second embodiment is disposed downstream of the compressor 2, the discharge pipe 11, the radiator 12, and the refrigerant flow direction with respect to the refrigerant flow direction to decompress the refrigerant. An expander 3 that is integrated with the compressor 2 that extracts power by expansion, a capillary tube 16 that is a decompression means provided further downstream of the expander 3, an evaporator 14, and a suction pipe 15. The refrigeration cycle is formed by sequentially connecting the pipes.
Further, the capillary tube 16 and the suction pipe 15 connected from the outlet of the evaporator 14 to the compressor 2 are configured to exchange heat, for example, the capillary tube 16 and the suction pipe 15 are in contact with each other by solder or the like.

以上のように構成されるヒートポンプ装置の冷媒のエネルギー状態の変化を、家庭用給湯機を例に、図5に示す本実施例におけるヒートポンプ装置のモリエル線図で説明する。
圧縮機2に吸い込まれた低温低圧の冷媒は、圧縮機2の動作により圧縮されて高温高圧の冷媒となり吐出される(図のA→B)。吐出された冷媒は、吐出配管11を通って放熱器12にて水道水(図示せず)と熱交換し、水道水を約80℃の高温となるまで加熱しながら放熱するとともに、膨張機3へ流入する(B→C)。そして、膨張機3において等エントロピ膨張に近い膨張を行い、機械エネルギーを発生しながら減圧され、減圧手段であるキャピラリチューブ16に至る(C→D)。
キャピラリチューブ16にて吸込配管15を通る冷媒と熱交換するので、比エンタルピを減少しながら減圧されて低温低圧の冷媒となり、蒸発器14に至る(D→H)。この蒸発器14内で、屋外の空気と熱交換した冷媒はガス状となり、蒸発器14出口より吐出される(H→I)。その後、吸込配管15に流入した冷媒はキャピラリチューブ16と熱交換しながら比エンタルピを増大して圧縮機2へと吸い込まれる(I→A)。
また、キャピラリチューブ16で、吸込配管15と熱交換することにより、無駄に吸込配管15から周囲に捨てられていた熱量を回収ことができる。その結果、電子膨張弁13を用いた場合に相当する蒸発器14入口の比エンタルピiEより、蒸発器14入口の比エンタルピiHは小さくなる。
A change in the energy state of the refrigerant of the heat pump apparatus configured as described above will be described with reference to a Mollier diagram of the heat pump apparatus in the present embodiment shown in FIG.
The low-temperature and low-pressure refrigerant sucked into the compressor 2 is compressed by the operation of the compressor 2 to be discharged as a high-temperature and high-pressure refrigerant (A → B in the figure). The discharged refrigerant exchanges heat with tap water (not shown) in the radiator 12 through the discharge pipe 11 and dissipates heat while heating the tap water to a high temperature of about 80 ° C. (B → C). Then, the expander 3 performs expansion close to isentropic expansion, is decompressed while generating mechanical energy, and reaches the capillary tube 16 serving as decompression means (C → D).
Since heat is exchanged with the refrigerant passing through the suction pipe 15 in the capillary tube 16, the pressure is reduced while reducing the specific enthalpy, and the refrigerant becomes a low-temperature and low-pressure refrigerant and reaches the evaporator 14 (D → H). In the evaporator 14, the refrigerant that has exchanged heat with outdoor air becomes gaseous and is discharged from the outlet of the evaporator 14 (H → I). Thereafter, the refrigerant flowing into the suction pipe 15 increases the specific enthalpy while exchanging heat with the capillary tube 16 and is sucked into the compressor 2 (I → A).
Further, by exchanging heat with the suction pipe 15 using the capillary tube 16, it is possible to recover the amount of heat that has been wasted from the suction pipe 15 to the surroundings. As a result, the specific enthalpy iH at the inlet of the evaporator 14 becomes smaller than the specific enthalpy iE at the inlet of the evaporator 14 corresponding to the case where the electronic expansion valve 13 is used.

これにより、このサイクルの放熱器12を利用するヒートポンプ装置を給湯機、暖房機、自動販売機等で使用する場合は、成績係数COP=(iB−iC)/((iB−iA)−(iC−iH))となり、電子膨張弁13を使用する場合と比較して、圧縮機の所要動力を低減することができるのでサイクルの効率が向上する。
一方、このサイクルの蒸発器14を利用する冷凍サイクル装置を家庭用冷蔵庫、業務用冷蔵庫、冷房機、製氷機、自動販売機等で使用する場合は、成績係数COP=((iI−iE)+(iE−iH))/((iB−iA)−(iC−iH))となり、従来と比較して、圧縮機の所要動力を低減し、且つ冷凍効果が増加するので、さらにサイクルの効率が向上する。
Thereby, when using the heat pump apparatus using the heat radiator 12 of this cycle in a water heater, a heater, a vending machine, etc., the coefficient of performance COP = (iB−iC) / ((iB−iA) − (iC -IH)), compared with the case where the electronic expansion valve 13 is used, since the required power of the compressor can be reduced, the efficiency of the cycle is improved.
On the other hand, when the refrigeration cycle apparatus using the evaporator 14 of this cycle is used in a home refrigerator, commercial refrigerator, air conditioner, ice making machine, vending machine, etc., the coefficient of performance COP = ((iI−iE) + (IE-iH)) / ((iB-iA)-(iC-iH)), and the required power of the compressor is reduced and the refrigeration effect is increased as compared with the conventional case. improves.

以上のように本実施例のヒートポンプ装置では、減圧手段としてキャピラリチューブを用いて膨張機の出口温度を引き上げるので、圧縮機から膨張機へ移動する熱の影響を抑えることができ、サイクルの効率を向上させることができる。
また、電子膨張弁13の代わりにキャピラリチューブを用いる構成であるので、最も低コストでサイクルの効率を向上できる。
また、キャピラリチューブで吸込配管から無駄に周囲に捨てられていたエネルギーを蒸発器の冷凍能力として回収できるので、さらにサイクルの効率を向上することができる。
As described above, in the heat pump apparatus of the present embodiment, the outlet temperature of the expander is raised using a capillary tube as a pressure reducing means, so that the influence of heat moving from the compressor to the expander can be suppressed, and the cycle efficiency can be reduced. Can be improved.
Further, since the capillary tube is used instead of the electronic expansion valve 13, the cycle efficiency can be improved at the lowest cost.
Further, since the energy that was wasted to the surroundings from the suction pipe by the capillary tube can be recovered as the refrigerating capacity of the evaporator, the efficiency of the cycle can be further improved.

なお、上記第1及び第2実施例のヒートポンプ装置において、冷凍サイクルの高圧側が超臨界状態となって運転するような例えば二酸化炭素を冷媒として使用することにより、サイクル内での高低圧差が大きくなるので、圧力差のエネルギーを動力に変換する膨張機3の機能を最大限に引き出すことができ、さらにサイクルの効率を向上することができる。   In the heat pump devices of the first and second embodiments, the difference between high and low pressures in the cycle is increased by using, for example, carbon dioxide as a refrigerant that operates in a supercritical state on the high pressure side of the refrigeration cycle. Therefore, the function of the expander 3 that converts the energy of the pressure difference into motive power can be maximized, and the cycle efficiency can be further improved.

以上のように、本発明にかかるヒートポンプ装置は、圧縮機から膨張機へ移動する熱量を最適制御することにより、膨張機で動力として回収されるエネルギーを最大限に引き上げることができるので、給湯機、冷暖房空調機器、自動販売機、家庭用冷蔵庫、業務用冷蔵庫、製氷機等、幅広い機器への用途にも適用できる。   As described above, the heat pump device according to the present invention can maximize the energy recovered as power in the expander by optimally controlling the amount of heat transferred from the compressor to the expander. It can also be applied to a wide range of equipment such as air conditioning and air conditioning equipment, vending machines, household refrigerators, commercial refrigerators, and ice makers.

本発明の第1実施例におけるヒートポンプ装置の構成図The block diagram of the heat pump apparatus in 1st Example of this invention 本実施例におけるヒートポンプ装置のモリエル線図Mollier diagram of the heat pump apparatus in this embodiment 本実施例におけるヒートポンプ装置のエネルギーロス線図Energy loss diagram of heat pump device in this embodiment 本発明の第2実施例におけるヒートポンプ装置の構成図The block diagram of the heat pump apparatus in 2nd Example of this invention 本実施例におけるヒートポンプ装置のモリエル線図Mollier diagram of the heat pump apparatus in this embodiment 従来のヒートポンプ装置の構成図Configuration diagram of a conventional heat pump device 従来のヒートポンプ装置のモリエル線図Mollier diagram of a conventional heat pump device

符号の説明Explanation of symbols

2 圧縮機
3 膨張機
11 吐出配管
12 放熱器
13 電子膨張弁
14 蒸発器
15 吸込配管
16 キャピラリチューブ
C1 制御手段
TH1 圧縮機吐出温度検出手段
TH2 膨張機出口温度検出手段
DESCRIPTION OF SYMBOLS 2 Compressor 3 Expander 11 Discharge piping 12 Radiator 13 Electronic expansion valve 14 Evaporator 15 Suction piping 16 Capillary tube C1 Control means TH1 Compressor discharge temperature detection means TH2 Expander outlet temperature detection means

Claims (5)

圧縮機と、放熱器と、冷媒を減圧膨張することにより動力を取り出す膨張機と、減圧手段と、蒸発器とを配管によって接続し、前記膨張機を前記放熱器よりも下流側に設け、前記減圧手段を前記膨張機の下流側に設けて冷凍サイクルを構成し、前記膨張機と前記圧縮機とを一体構成としたヒートポンプ装置であって、前記圧縮機の吐出温度を検知する圧縮機吐出温度検知手段と、前記圧縮機の吐出温度により前記減圧手段を制御する制御手段とを備えたことを特徴とするヒートポンプ装置。   A compressor, a radiator, an expander that takes out power by expanding the refrigerant under reduced pressure, a decompression unit, and an evaporator are connected by piping, and the expander is provided downstream of the radiator, A heat pump device in which a decompression means is provided downstream of the expander to constitute a refrigeration cycle, and the expander and the compressor are integrated, and the compressor discharge temperature detects the discharge temperature of the compressor A heat pump apparatus comprising: a detection unit; and a control unit that controls the decompression unit according to a discharge temperature of the compressor. 前記膨張機の出口温度を検知する膨張機出口温度検知手段を備え、前記制御手段では、前記圧縮機の吐出温度と前記膨張機の出口温度との温度差により前記減圧手段を制御することを特徴とする請求項1に記載のヒートポンプ装置。   An expander outlet temperature detecting means for detecting an outlet temperature of the expander is provided, and the control means controls the pressure reducing means by a temperature difference between a discharge temperature of the compressor and an outlet temperature of the expander. The heat pump device according to claim 1. 圧縮機と、放熱器と、冷媒を減圧膨張することにより動力を取り出す膨張機と、減圧手段と、蒸発器とを配管によって接続し、前記膨張機を前記放熱器よりも下流側に設け、前記減圧手段を前記膨張機の下流側に設けて冷凍サイクルを構成し、前記膨張機と前記圧縮機とを一体構成としたヒートポンプ装置であって、前記減圧手段としてキャピラリチューブを用いたことを特徴とするヒートポンプ装置。   A compressor, a radiator, an expander that takes out power by expanding the refrigerant under reduced pressure, a decompression unit, and an evaporator are connected by piping, and the expander is provided downstream of the radiator, A heat pump device in which a decompression means is provided downstream of the expander to constitute a refrigeration cycle, and the expander and the compressor are integrally configured, wherein a capillary tube is used as the decompression means, Heat pump device. 前記キャピラリチューブと、前記蒸発器出口から前記圧縮機へ繋がる吸込配管とを熱交換させる構成にしたことを特徴とする請求項3に記載のヒートポンプ装置。   The heat pump device according to claim 3, wherein heat exchange is performed between the capillary tube and a suction pipe connected to the compressor from an outlet of the evaporator. 前記冷凍サイクルの高圧側の圧力を超臨界状態として運転することを特徴とする請求項1から請求項4のいずれかに記載のヒートポンプ装置。
The heat pump device according to any one of claims 1 to 4, wherein the operation is performed with a pressure on a high-pressure side of the refrigeration cycle being in a supercritical state.
JP2004257491A 2004-09-03 2004-09-03 Heat pump device Withdrawn JP2006071229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004257491A JP2006071229A (en) 2004-09-03 2004-09-03 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004257491A JP2006071229A (en) 2004-09-03 2004-09-03 Heat pump device

Publications (1)

Publication Number Publication Date
JP2006071229A true JP2006071229A (en) 2006-03-16

Family

ID=36152046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004257491A Withdrawn JP2006071229A (en) 2004-09-03 2004-09-03 Heat pump device

Country Status (1)

Country Link
JP (1) JP2006071229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710184B2 (en) 2011-01-24 2020-07-14 Atlas Copco Airpower, N.V. Method for manufacturing of a rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710184B2 (en) 2011-01-24 2020-07-14 Atlas Copco Airpower, N.V. Method for manufacturing of a rotor
US10717139B2 (en) 2011-01-24 2020-07-21 Atlas Copco Airpower, N.V. Method for manufacturing a rotor
US11000907B2 (en) 2011-01-24 2021-05-11 Atlas Copco Airpower, N.V. Method for manufacturing of a rotor

Similar Documents

Publication Publication Date Title
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
US7730729B2 (en) Refrigerating machine
JP5241872B2 (en) Refrigeration cycle equipment
US6854283B2 (en) Determining method of high pressure of refrigeration cycle apparatus
JP5575191B2 (en) Dual refrigeration equipment
JP3708536B1 (en) Refrigeration cycle apparatus and control method thereof
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
US20100050674A1 (en) Refrigeration device
US20100037641A1 (en) Refrigeration device
JP5963971B2 (en) Air conditioner
JP4317793B2 (en) Cooling system
JP4442237B2 (en) Air conditioner
JP2007218460A (en) Refrigerating cycle device and cool box
JP2012042177A (en) Heat pump type hot water generator
CN100390475C (en) Air-conditioner with a dual-refrigerant circuit
JP4622193B2 (en) Refrigeration equipment
JP4245044B2 (en) Refrigeration equipment
WO2020071293A1 (en) Refrigeration cycle device
WO2006112157A1 (en) Refrigeration cycle device and method of operating the same
KR20110019818A (en) Defrost system
JP3650088B2 (en) Heat pump equipment
KR101500068B1 (en) Heat pump system including inverter compressor
JP4326004B2 (en) Air conditioner
JP2009281631A (en) Heat pump unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106