JP2006071175A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2006071175A
JP2006071175A JP2004254869A JP2004254869A JP2006071175A JP 2006071175 A JP2006071175 A JP 2006071175A JP 2004254869 A JP2004254869 A JP 2004254869A JP 2004254869 A JP2004254869 A JP 2004254869A JP 2006071175 A JP2006071175 A JP 2006071175A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004254869A
Other languages
Japanese (ja)
Other versions
JP4285374B2 (en
Inventor
Jun Iwase
潤 岩瀬
Susumu Kawamura
進 川村
Hisasuke Sakakibara
久介 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004254869A priority Critical patent/JP4285374B2/en
Publication of JP2006071175A publication Critical patent/JP2006071175A/en
Application granted granted Critical
Publication of JP4285374B2 publication Critical patent/JP4285374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure the capability of heating water for hot water supply while stably operating a refrigerating cycle by controlling the operation to avoid pressure at a gas-liquid separator 50 from being refrigerant critical pressure or higher. <P>SOLUTION: A control device 70 determines whether pressure at the gas-liquid separator 50 is refrigerant critical pressure or higher or not and varies a maximum target boiling temperature TpMAX to be lower when determining that it is the critical pressure or higher. Thus, the required capability of heating the water for hot water supply is secured while varying (restricting) the maximum target boiling temperature TpMAX to be lower to prevent the breakdown of the cycle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低温側の熱を高温側に移動させる蒸気圧縮式冷凍サイクルのうち、冷媒を減圧膨張させながら膨張エネルギーを圧力エネルギーに変換して圧縮機の吸入圧を上昇させるエジェクタを有するエジェクタ式ヒートポンプサイクルを用いて大気から吸熱を行う給湯器に関するものであり、特に高圧側が冷媒の臨界圧力以上で運転される冷凍サイクルに適用される。   The present invention relates to an ejector type having an ejector that raises the suction pressure of a compressor by converting expansion energy into pressure energy while decompressing and expanding a refrigerant in a vapor compression refrigeration cycle that moves heat on a low temperature side to a high temperature side. The present invention relates to a water heater that absorbs heat from the atmosphere using a heat pump cycle, and is particularly applied to a refrigeration cycle in which the high-pressure side is operated at or above the critical pressure of the refrigerant.

従来技術として、本出願人が先に出願した特許文献1に示す技術がある。これはエジェクタサイクルにおいて、気液分離器によって二酸化炭素(以下、COと略す)冷媒を気相冷媒と液相冷媒とに分離する構成となっている。
特開2003−222419号公報
As a conventional technique, there is a technique shown in Patent Document 1 previously filed by the present applicant. In the ejector cycle, a carbon dioxide (hereinafter abbreviated as CO 2 ) refrigerant is separated into a gas phase refrigerant and a liquid phase refrigerant by a gas-liquid separator.
JP 2003-222419 A

しかしながら、上記のような構成のエジェクタ式ヒートポンプサイクルを用いた給湯器において、高外気温度で沸き上げ温度が高い時のヒートポンプサイクルの運転は、外気温度(吸熱温度)によって蒸発圧力が上がり、吐出温度が下がるため、沸き上げ温度を確保するために高圧を上げる必要がある。給湯器での高圧側は機器の設計耐圧で制限があるため、高圧が限界となるとウォータポンプの流量を下げて沸き上げ温度を確保するため、加熱能力が減少してしまう。   However, in a water heater using an ejector heat pump cycle configured as described above, the operation of the heat pump cycle when the boiling temperature is high at a high outside air temperature increases the evaporation pressure due to the outside air temperature (endothermic temperature), and the discharge temperature Therefore, it is necessary to increase the high pressure to ensure the boiling temperature. Since the high pressure side of the water heater is limited by the design pressure resistance of the device, if the high pressure reaches the limit, the flow rate of the water pump is lowered to ensure the boiling temperature, and the heating capacity is reduced.

一方、冷媒側は冷媒水熱交換器出口の温度が上がり、膨張損失エネルギーが大きくなるため、エジェクタによる昇圧が大きくなり、低圧系が超臨界圧力以上となる。このような状態では、図1中の太破線で示すようなサイクル状態となり、サイクルが設計意図に反して破綻する。つまり、吸熱が激減するため圧縮機の入力に対する出力(加熱能力)が極端に低下するという問題点がある。   On the other hand, on the refrigerant side, the temperature at the outlet of the refrigerant water heat exchanger rises and the expansion loss energy increases, so the pressure increase by the ejector increases and the low pressure system becomes higher than the supercritical pressure. In such a state, a cycle state as indicated by a thick broken line in FIG. 1 is obtained, and the cycle fails against the design intention. That is, there is a problem in that the output (heating ability) with respect to the input of the compressor is extremely reduced because the endotherm is drastically reduced.

例えば、外気温度がCO冷媒の臨界温度である31℃以上となり、冷媒空気熱交換器の入口冷媒温度もその31℃以上となると、気液分離器位置での圧力は臨界圧力以上となって運転することとなり、充分な加熱能力が得られない。 For example, when the outside air temperature is 31 ° C. or higher, which is the critical temperature of the CO 2 refrigerant, and the inlet refrigerant temperature of the refrigerant air heat exchanger is also 31 ° C. or higher, the pressure at the gas-liquid separator position becomes higher than the critical pressure. It will run, and sufficient heating capacity cannot be obtained.

本発明は、上記従来技術の問題点に鑑みて成されたものであり、その目的は、気液分離器部分が冷媒の臨界圧力以上とならないように運転制御することで、冷凍サイクルを安定的に運転して給湯用水の加熱能力を確保することのできるヒートポンプ式給湯器を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to stabilize the refrigeration cycle by controlling the operation so that the gas-liquid separator portion does not exceed the critical pressure of the refrigerant. An object of the present invention is to provide a heat pump type hot water heater that can be operated to ensure the heating capacity of hot water.

本発明は上記目的を達成するために、請求項1ないし請求項2に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、低温側の熱を高温側に移動させる蒸気圧縮式のヒートポンプサイクルを用いた給湯器であって、圧縮機(10)にて冷媒の臨界圧力以上まで圧縮された高温高圧の冷媒と給湯用水とを熱交換させて給湯用水を加熱する冷媒水熱交換器(20)と、低温低圧の冷媒を蒸発させる冷媒空気熱交換器(30)と、高圧冷媒を減圧膨張させるノズル(41)を有し、ノズル(41)から噴射する高い速度の冷媒流により冷媒空気熱交換器(30)にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、エジェクタ(40)から流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機(10)の吸入側に供給し、液相冷媒を冷媒空気熱交換器(30)側に供給する気液分離器(50)と、ヒートポンプサイクルの状態を制御する制御手段(70)とを備えたヒートポンプ式給湯器において、
制御手段(70)は、気液分離器(50)位置での圧力が冷媒の臨界圧力以上であるか否かを判定し、臨界圧力以上であると判定される場合は最大目標沸き上げ温度(TpMAX)を低く可変することを特徴としている。
In order to achieve the above object, the present invention employs technical means described in claims 1 to 2. That is, according to the first aspect of the present invention, the water heater uses a vapor compression heat pump cycle that moves the heat on the low temperature side to the high temperature side, and the compressor (10) compresses the refrigerant to a critical pressure or higher. A refrigerant water heat exchanger (20) that heat-exchanges the hot-water supply water by exchanging heat between the generated high-temperature and high-pressure refrigerant and hot-water supply water, a refrigerant-air heat exchanger (30) that evaporates the low-temperature and low-pressure refrigerant, It has a nozzle (41) that expands under reduced pressure, sucks the vapor-phase refrigerant evaporated in the refrigerant air heat exchanger (30) by the high-speed refrigerant flow injected from the nozzle (41), and converts the expansion energy into pressure energy. An ejector (40) that converts and raises the suction pressure of the compressor (10), and a refrigerant that flows out of the ejector (40) is separated into a gas-phase refrigerant and a liquid-phase refrigerant, and the gas-phase refrigerant is compressed into the compressor (10). Supplied to the suction side , The liquid phase refrigerant of the refrigerant-air heat exchanger (30) liquid air supplied to the side separator (50), the heat pump type water heater and a control means for controlling the state of the heat pump cycle (70),
The control means (70) determines whether or not the pressure at the gas-liquid separator (50) position is equal to or higher than the critical pressure of the refrigerant, and if it is determined to be equal to or higher than the critical pressure, the maximum target boiling temperature ( TpMAX) is variable to a low level.

この請求項1に記載の発明によれば、最大目標沸き上げ温度(TpMAX)を低く可変(制限)することによりサイクル破綻することが防がれて必要な給湯用水の加熱能力を確保することができる。   According to the first aspect of the present invention, by making the maximum target boiling temperature (TpMAX) variable (restricted) to be low, it is possible to prevent cycle failure and to secure the necessary heating capacity for hot water supply. it can.

また、請求項2に記載の発明では、冷媒の臨界圧力以上であるか否かの判定は、圧縮機(10)の吸入圧力、圧縮機(10)の吸入温度、冷媒空気熱交換器(30)の入口・出口圧力、冷媒空気熱交換器(30)の入口冷媒温度、外気温度、エジェクタ(40)の出口圧力、エジェクタ(40)の出口冷媒温度のいずれか、もしくは2つ以上の組み合わせによって行うことを特徴としている。   In the second aspect of the invention, whether or not the refrigerant is equal to or higher than the critical pressure is determined by determining the suction pressure of the compressor (10), the suction temperature of the compressor (10), the refrigerant air heat exchanger (30). ) Inlet / outlet pressure, refrigerant / air heat exchanger (30) inlet refrigerant temperature, outside air temperature, ejector (40) outlet pressure, ejector (40) outlet refrigerant temperature, or a combination of two or more It is characterized by doing.

この請求項2に記載の発明によれば、これら低圧系の温度や圧力を単独、もしくは組み合わせてみることにより、気液分離器(50)位置での圧力が冷媒の臨界圧力以上であるか否かを判定することができる。ちなみに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   According to the second aspect of the present invention, whether or not the pressure at the position of the gas-liquid separator (50) is equal to or higher than the critical pressure of the refrigerant by examining the temperature and pressure of these low pressure systems alone or in combination. Can be determined. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with the specific means described in the embodiments described later.

(第1実施形態)
以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は、本発明の実施形態に係るヒートポンプ式給湯器の全体構成模式図である。本実施形態のヒートポンプ式給湯器は、超臨界ヒートポンプサイクルを用いて給湯用水を高温(本実施形態での最大目標沸き上げ温度は90℃)に加熱して貯湯しながら給湯を行うものである。
(First embodiment)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of the overall configuration of a heat pump water heater according to an embodiment of the present invention. The heat pump type hot water heater of this embodiment heats hot water supply water to a high temperature (the maximum target boiling temperature in this embodiment is 90 ° C.) using a supercritical heat pump cycle, and performs hot water supply while storing hot water.

尚、超臨界ヒートポンプサイクルとは、高圧側の冷媒圧力が冷媒の臨界圧力以上となるヒートポンプサイクルを言い、例えば二酸化炭素・エチレン・エタン・酸化窒素などを冷媒とするヒートポンプサイクルである。ヒートポンプ式給湯器は大きく分けて、主に後述する冷凍サイクル機器が収納されたヒートポンプユニットと、主に貯湯タンク1が収納されたタンクユニットとよりなる。   The supercritical heat pump cycle refers to a heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. For example, the heat pump cycle uses carbon dioxide, ethylene, ethane, nitrogen oxide or the like as the refrigerant. The heat pump type hot water heater is roughly divided into a heat pump unit that mainly stores a refrigeration cycle apparatus, which will be described later, and a tank unit that mainly stores a hot water storage tank 1.

また、ヒートポンプユニット内は、大きく分けてヒートポンプサイクルの冷媒回路と、給湯関係の給湯水加熱回路とで構成されている。まず冷媒回路は、冷媒を圧縮する圧縮機10と、給湯用水の加熱手段である冷媒水熱交換器20と、冷媒減圧手段であるエジェクタ40と、大気から吸熱するための冷媒空気熱交換器30とを図1に示すような冷媒配管経路で接続して構成され、冷媒として臨界温度の低いCOが封入されている。 The heat pump unit is roughly divided into a refrigerant circuit for a heat pump cycle and a hot water supply heating circuit for hot water supply. First, the refrigerant circuit includes a compressor 10 that compresses refrigerant, a refrigerant water heat exchanger 20 that is a heating means for hot water supply, an ejector 40 that is a refrigerant decompression means, and a refrigerant air heat exchanger 30 that absorbs heat from the atmosphere. Are connected by a refrigerant piping path as shown in FIG. 1, and CO 2 having a low critical temperature is enclosed as a refrigerant.

尚、冷媒回路に接続されている60は、冷媒水熱交換器20から流出した高圧冷媒(エジェクタ40にて減圧される前の冷媒)と気液分離器50から流出して圧縮機10に吸入される低圧冷媒とを熱交換する内部熱交換器である。   In addition, 60 connected to the refrigerant circuit flows out of the high-pressure refrigerant (refrigerant before being depressurized by the ejector 40) flowing out from the refrigerant water heat exchanger 20, and flows out from the gas-liquid separator 50 and sucked into the compressor 10. It is an internal heat exchanger which heat-exchanges with the low-pressure refrigerant | coolant made.

圧縮機10は、内蔵する駆動モータと、吸引したガス冷媒を臨界圧力以上の高圧にまで昇圧して吐出する高圧圧縮部とで構成しており、これらが密閉容器内に収納されている。そして、装置全体の制御手段である制御装置70により通電制御される。尚、圧縮機10は冷媒水熱交換器20の加熱能力を大きくするときには圧縮機10の回転数を増大させて、圧縮機10から吐出する冷媒の流量を増大させ、一方、加熱能力を小さくするときには圧縮機10の回転数を低下させ、圧縮機10から吐出する冷媒の流量を減少させる。   The compressor 10 includes a built-in drive motor and a high-pressure compressor that discharges the sucked gas refrigerant to a high pressure equal to or higher than the critical pressure, and these are housed in a sealed container. Then, energization control is performed by a control device 70 which is a control means of the entire device. When the heating capacity of the refrigerant water heat exchanger 20 is increased, the compressor 10 increases the rotational speed of the compressor 10 to increase the flow rate of the refrigerant discharged from the compressor 10, while reducing the heating capacity. Sometimes, the rotational speed of the compressor 10 is decreased, and the flow rate of the refrigerant discharged from the compressor 10 is decreased.

冷媒水熱交換器20は、高圧圧縮部で昇圧された高温高圧のガス冷媒と給湯用水とを熱交換して給湯用水を加熱するもので、高圧冷媒通路に隣接して給湯水通路が設けられ、その高圧冷媒通路を流れる冷媒の流れ方向と給湯水通路を流れる給湯用水の流れ方向とが対向するように構成されている。   The refrigerant water heat exchanger 20 heats hot water by exchanging heat between the high-temperature and high-pressure gas refrigerant boosted by the high-pressure compressor and the hot-water supply water, and a hot-water supply water passage is provided adjacent to the high-pressure refrigerant passage. The flow direction of the refrigerant flowing through the high-pressure refrigerant passage and the flow direction of the hot water supply water flowing through the hot water supply passage are opposed to each other.

ちなみに、本実施形態では、冷媒としてCOを用いているので、冷媒水熱交換器20内の冷媒圧力は冷媒の臨界圧力以上となり、且つ、冷媒水熱交換器20内で冷媒が凝縮することなく、冷媒入口側から冷媒出口側に向かうほど冷媒温度が低下するような温度分布を有する。 Incidentally, in this embodiment, since CO 2 is used as the refrigerant, the refrigerant pressure in the refrigerant water heat exchanger 20 is equal to or higher than the critical pressure of the refrigerant, and the refrigerant is condensed in the refrigerant water heat exchanger 20. The temperature distribution is such that the refrigerant temperature decreases from the refrigerant inlet side toward the refrigerant outlet side.

冷媒空気熱交換器30は、屋外空気と液相冷媒とを熱交換させ、液相冷媒を蒸発させることにより屋外空気から吸熱する熱交換器である。また、外気ファン30aは、冷媒空気熱交換器30へ外気を供給する送風手段であり、制御装置70により通電制御される。エジェクタ40は冷媒を減圧膨張させて冷媒空気熱交換器30にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して圧縮機10の吸入圧を上昇させるものである。尚、エジェクタ40の詳細は、後述する。   The refrigerant air heat exchanger 30 is a heat exchanger that absorbs heat from outdoor air by exchanging heat between outdoor air and liquid phase refrigerant and evaporating the liquid phase refrigerant. The outside air fan 30 a is a blowing unit that supplies outside air to the refrigerant air heat exchanger 30, and is energized and controlled by the control device 70. The ejector 40 expands the refrigerant under reduced pressure and sucks the gas-phase refrigerant evaporated in the refrigerant air heat exchanger 30 and converts the expansion energy into pressure energy to increase the suction pressure of the compressor 10. Details of the ejector 40 will be described later.

気液分離器50は、エジェクタ40から流出した冷媒が流入すると共に、その流入した冷媒を気相冷媒と液相冷媒とに分離して液冷媒を蓄える気液分離器であり、気液分離器50の気相冷媒流出口は圧縮機10の吸引側に接続され、液相冷媒流出口は冷媒空気熱交換器30の流入側に接続される。   The gas-liquid separator 50 is a gas-liquid separator in which the refrigerant flowing out from the ejector 40 flows in, separates the flowing-in refrigerant into a gas phase refrigerant and a liquid phase refrigerant, and stores the liquid refrigerant. The gas-phase refrigerant outlet 50 is connected to the suction side of the compressor 10, and the liquid-phase refrigerant outlet is connected to the inlet side of the refrigerant air heat exchanger 30.

ここで、エジェクタ40の構造について図2を用いて説明する。エジェクタ40は、流入する高圧冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル41、ノズル41から噴射する高い速度の冷媒流により冷媒空気熱交換器30にて蒸発した気相冷媒を吸引しながらノズル41から噴射する冷媒流と混合する混合部42、およびノズル41から噴射する冷媒と冷媒空気熱交換器30から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させるディフューザ43などからなるものである。   Here, the structure of the ejector 40 will be described with reference to FIG. The ejector 40 converts the pressure energy of the inflowing high-pressure refrigerant into velocity energy, a nozzle 41 that decompresses and expands the refrigerant, and a gas-phase refrigerant evaporated in the refrigerant air heat exchanger 30 by a high-speed refrigerant flow injected from the nozzle 41 The mixing unit 42 that mixes with the refrigerant flow injected from the nozzle 41 while sucking the refrigerant, and the velocity energy is converted into pressure energy while mixing the refrigerant injected from the nozzle 41 and the refrigerant sucked from the refrigerant air heat exchanger 30. It consists of a diffuser 43 and the like for increasing the pressure of the refrigerant.

尚、混合部42においては、ノズル41から噴射する冷媒流の運動量と、冷媒空気熱交換器30からエジェクタ40に吸引される冷媒流の運動量との和が保存されるように混合するので、混合部42においても冷媒の静圧が上昇する。一方、ディフューザ43においては、通路断面積を徐々に拡大することにより、冷媒の動圧を静圧に変換するので、エジェクタ40においては、混合部42およびディフューザ43の両者にて冷媒圧力を昇圧する。そこで、混合部42とディフューザ43とを総称して昇圧部と呼ぶ。   In the mixing unit 42, mixing is performed so that the sum of the momentum of the refrigerant flow injected from the nozzle 41 and the momentum of the refrigerant flow sucked into the ejector 40 from the refrigerant air heat exchanger 30 is preserved. The static pressure of the refrigerant also increases at the portion 42. On the other hand, in the diffuser 43, the dynamic pressure of the refrigerant is converted into a static pressure by gradually increasing the passage cross-sectional area. Therefore, in the ejector 40, the refrigerant pressure is increased by both the mixing unit 42 and the diffuser 43. . Therefore, the mixing unit 42 and the diffuser 43 are collectively referred to as a boosting unit.

つまり、理想的なエジェクタ40においては、混合部42で2種類の冷媒流の、運動量の和が保存されるように冷媒圧力が増大し、ディフューザ43でエネルギーが保存されるように冷媒圧力が増大することが望ましい。ちなみに、ノズル41の周りには、ボディ44により形成された吸引室45が形成されており、冷媒空気熱交換器30から吸引された気相冷媒は、吸引室45を経由して混合部42に流れる。また、本実施形態のエジェクタ40には、絞り径(ノズル出口部径)を変更する可変絞り機構40aが一体的に設けられており、制御装置70により通電制御される。   That is, in the ideal ejector 40, the refrigerant pressure increases so that the sum of the momentum of the two types of refrigerant flows is stored in the mixing unit 42, and the refrigerant pressure increases so that energy is stored in the diffuser 43. It is desirable to do. Incidentally, a suction chamber 45 formed by the body 44 is formed around the nozzle 41, and the gas-phase refrigerant sucked from the refrigerant air heat exchanger 30 passes through the suction chamber 45 to the mixing unit 42. Flowing. In addition, the ejector 40 of the present embodiment is integrally provided with a variable throttle mechanism 40 a that changes the throttle diameter (nozzle outlet portion diameter), and is energized and controlled by the control device 70.

給湯関係の給湯水加熱回路は、給湯用水の加熱手段である上記冷媒水熱交換器20の給湯水通路と、給湯用水を循環させるウォーターポンプ2と、給湯用水を貯留する貯湯タンク1とを環状に接続して構成される。ウォーターポンプ2は、図1に示すように、貯湯タンク1内の下部に設けられた低温水流出部から冷水を冷媒水熱交換器20の給湯水通路を通して貯湯タンク1の上部に設けられた高温水流入部から還流する様に水流を発生させる。また、このウォーターポンプ2は内蔵するモータの回転数に応じて流水量を調節することができ、制御装置70により通電制御される。   A hot water supply heating circuit related to hot water supply has an annular structure including a hot water supply passage of the refrigerant water heat exchanger 20 that is a heating means for hot water supply, a water pump 2 that circulates hot water supply water, and a hot water storage tank 1 that stores hot water supply water. Connected to and configured. As shown in FIG. 1, the water pump 2 has a high temperature provided in the upper part of the hot water storage tank 1 through the hot water passage of the refrigerant water heat exchanger 20 from the low temperature water outflow part provided in the lower part of the hot water storage tank 1. A water flow is generated so as to return from the water inflow portion. Further, the water pump 2 can adjust the amount of flowing water in accordance with the number of rotations of a built-in motor, and is energized and controlled by the control device 70.

貯湯タンク1は、耐蝕性に優れた金属製(例えばステンレス製)で断熱構造を有し、高温の給湯用水を長時間にわたって保温することができる。貯湯タンク1に貯留された給湯用水は、出湯時に低温水混合手段である図示しない給湯混合弁で、貯湯タンク1上部の高温水流出部からの高温水と水道からの冷水とを混合して温度調節した後、主に台所や風呂などに給湯される。尚、給湯混合弁も制御装置70により通電制御される。   The hot water storage tank 1 is made of metal (for example, made of stainless steel) excellent in corrosion resistance and has a heat insulating structure, and can keep hot hot water supply water for a long time. Hot water stored in the hot water storage tank 1 is mixed with hot water from a hot water outlet at the upper part of the hot water tank 1 and cold water from the water supply by a hot water mixing valve (not shown) which is a low temperature water mixing means at the time of hot water. After adjustment, hot water is supplied mainly to kitchens and baths. The hot water mixing valve is also energized and controlled by the control device 70.

そして、制御装置70は、上述したヒートポンプサイクルの各冷凍機器を制御する制御手段であり、CPU・ROM・RAM・I/Oポートなどの機能を含んで構成され、それ自体は周知の構造を持つマイクロコンピュータを内蔵している。   And the control apparatus 70 is a control means which controls each refrigeration apparatus of the heat pump cycle mentioned above, and is comprised including functions, such as CPU, ROM, RAM, and I / O port, and has a well-known structure in itself. Built-in microcomputer.

尚、本ヒートポンプサイクルのセンサ群として、圧縮機10の吸入圧力・吸入温度を検出する吸入圧力センサ11・吸入温度センサ12、冷媒空気熱交換器30の入口圧力・出口圧力・入口冷媒温度を検出する冷媒空気熱交換器入口圧力センサ31・冷媒空気熱交換器出口圧力センサ32・冷媒空気熱交換器入口温度センサ33、外気温度を検出する外気温度センサ34、エジェクタ40の出口圧力・出口温度を検出するエジェクタ出口圧力センサ46・エジェクタ出口温度センサ47などがある。   As the sensor group of this heat pump cycle, the suction pressure sensor 11 and the suction temperature sensor 12 for detecting the suction pressure and the suction temperature of the compressor 10 and the inlet pressure, the outlet pressure and the inlet refrigerant temperature of the refrigerant air heat exchanger 30 are detected. The refrigerant air heat exchanger inlet pressure sensor 31, the refrigerant air heat exchanger outlet pressure sensor 32, the refrigerant air heat exchanger inlet temperature sensor 33, the outside air temperature sensor 34 for detecting the outside air temperature, and the outlet pressure / outlet temperature of the ejector 40. There are an ejector outlet pressure sensor 46 and an ejector outlet temperature sensor 47 to be detected.

これらセンサ群からのセンサ信号は、図示しない入力回路(A/D変換回路)によってA/D変換された後に、制御装置70に入力されるように構成されていると共に、制御装置70からはウォーターポンプ2・圧縮機10・外気ファン30a・可変絞り機構40aなどに制御出力を出すように構成されている。   The sensor signals from these sensor groups are configured to be input to the control device 70 after being A / D converted by an input circuit (A / D conversion circuit) (not shown). The control output is output to the pump 2, the compressor 10, the outside air fan 30a, the variable throttle mechanism 40a, and the like.

次に、本発明の要部である制御装置70での制御概要を説明する。図3は本発明の一実施形態におけるヒートポンプ式給湯器制御のフローチャートであり、図4は本発明の一実施形態における最大沸き上げ温度変更のマップである。   Next, an outline of control in the control device 70 which is a main part of the present invention will be described. FIG. 3 is a flowchart of the heat pump type water heater control in one embodiment of the present invention, and FIG. 4 is a map of the maximum boiling temperature change in one embodiment of the present invention.

本制御がスタートするとまず、ステップS1にて、気液分離器50位置での圧力(つまり低圧側)が冷媒の臨界圧力以上であるか否かを判定する。尚、本実施形態では外気温度にて判定する例で説明する。よって、より具体的には外気温度センサ34で検出される外気温度が所定値α(例えば、CO冷媒の臨界温度31℃に対して30℃)よりも大きいか否かを判定する。 When this control starts, first, in step S1, it is determined whether or not the pressure at the position of the gas-liquid separator 50 (that is, the low pressure side) is equal to or higher than the critical pressure of the refrigerant. In the present embodiment, an example of determination based on the outside air temperature will be described. Therefore, more specifically, it is determined whether or not the outside temperature detected by the outside temperature sensor 34 is larger than a predetermined value α (for example, 30 ° C. with respect to the critical temperature 31 ° C. of the CO 2 refrigerant).

そして、ステップS1での判定結果がNOで、気液分離器50位置での圧力が臨界圧力に満たないと判定されるときにはステップS2へと進み、通常制御として最大目標沸き上げ温度TpMAXを90℃に設定して給湯器の運転を行うものである。   When the determination result in step S1 is NO and it is determined that the pressure at the gas-liquid separator 50 position is less than the critical pressure, the process proceeds to step S2, and the maximum target boiling temperature TpMAX is set to 90 ° C. as normal control. The water heater is operated by setting to.

しかし、ステップS1での判定結果がYESとなって、気液分離器50位置での圧力が臨界圧力以上であると判定されるときにはステップS3へと進み、図3のマップに従って最大目標沸き上げ温度TpMAXを低く可変して設定するものである。ちなみに図3の例では、外気温度が所定値β(例えば、外気温度の上限として50℃)まで上がったときの最大目標沸き上げ温度TpβMAXは70℃にまで下げて設定して給湯器の運転を行うようにしている。   However, when the determination result in step S1 is YES and it is determined that the pressure at the position of the gas-liquid separator 50 is equal to or higher than the critical pressure, the process proceeds to step S3, and the maximum target boiling temperature is determined according to the map of FIG. TpMAX is set low and variable. Incidentally, in the example of FIG. 3, the maximum target boiling temperature TpβMAX when the outside air temperature rises to a predetermined value β (for example, 50 ° C. as the upper limit of the outside air temperature) is set to 70 ° C. Like to do.

次に、本実施形態での特徴と、その効果について述べる。制御装置70は、気液分離器50位置での圧力が冷媒の臨界圧力以上であるか否かを判定し、臨界圧力以上であると判定される場合は最大目標沸き上げ温度TpMAXを低く可変するようにしている。これによれば、最大目標沸き上げ温度(TpMAX)を低く可変(制限)することによりサイクル破綻することが防がれて、必要な給湯用水の加熱能力を確保することができる。   Next, features and effects of this embodiment will be described. The control device 70 determines whether or not the pressure at the position of the gas-liquid separator 50 is equal to or higher than the critical pressure of the refrigerant, and when it is determined to be equal to or higher than the critical pressure, the maximum target boiling temperature TpMAX is varied to be low. I am doing so. According to this, by making the maximum target boiling temperature (TpMAX) variable (restricted) to be low, it is possible to prevent a cycle failure and to secure a necessary heating capacity for hot water supply.

(第2実施形態)
冷媒の臨界圧力以上であるか否かの判定は外気温度に限らず、吸入圧力センサ11で検出される圧縮機10の吸入圧力、吸入温度センサ12で検出される圧縮機10の吸入温度、冷媒空気熱交換器入口圧力センサ31・冷媒空気熱交換器出口圧力センサ32で検出される冷媒空気熱交換器30の入口・出口圧力、冷媒空気熱交換器入口温度センサ33で検出される冷媒空気熱交換器30の入口冷媒温度、エジェクタ出口圧力センサ46で検出されるエジェクタ40の出口圧力、エジェクタ出口温度センサ47で検出されるエジェクタ40の出口冷媒温度のいずれかが所定値よりも大きいか否か、もしくは2つ以上の判定の組み合わせによって行っている。
(Second Embodiment)
The determination as to whether or not the refrigerant is equal to or higher than the critical pressure is not limited to the outside air temperature, the suction pressure of the compressor 10 detected by the suction pressure sensor 11, the suction temperature of the compressor 10 detected by the suction temperature sensor 12, and the refrigerant Refrigerant air heat detected by a refrigerant air heat exchanger inlet temperature sensor 33 and an inlet / outlet pressure of the refrigerant air heat exchanger 30 detected by an air heat exchanger inlet pressure sensor 31 and a refrigerant air heat exchanger outlet pressure sensor 32 Whether one of the inlet refrigerant temperature of the exchanger 30, the outlet pressure of the ejector 40 detected by the ejector outlet pressure sensor 46, and the outlet refrigerant temperature of the ejector 40 detected by the ejector outlet temperature sensor 47 is greater than a predetermined value. Or a combination of two or more judgments.

これによれば、これら低圧系の温度や圧力を単独、もしくは組み合わせてみることにより、気液分離器50位置での圧力が冷媒の臨界圧力以上であるか否かを判定することができる。   According to this, it is possible to determine whether the pressure at the position of the gas-liquid separator 50 is equal to or higher than the critical pressure of the refrigerant by trying these temperature and pressure of the low-pressure system alone or in combination.

本発明の実施形態に係るヒートポンプ式給湯器の全体構成模式図である。It is a whole schematic diagram of a heat pump type hot water heater concerning an embodiment of the present invention. 本発明の実施形態に係るエジェクタ40の断面模式図である。It is a cross-sectional schematic diagram of the ejector 40 which concerns on embodiment of this invention. 本発明の一実施形態におけるヒートポンプ式給湯器制御のフローチャートである。It is a flowchart of the heat pump type water heater control in one Embodiment of this invention. 本発明の一実施形態における最大沸き上げ温度変更のマップである。It is a map of the maximum boiling temperature change in one Embodiment of this invention.

符号の説明Explanation of symbols

10…圧縮機
20…冷媒水熱交換器
30…冷媒空気熱交換器
40…エジェクタ
41…ノズル
50…気液分離器
70…制御装置(制御手段)
TpMAX…最大目標沸き上げ温度
DESCRIPTION OF SYMBOLS 10 ... Compressor 20 ... Refrigerant water heat exchanger 30 ... Refrigerant air heat exchanger 40 ... Ejector 41 ... Nozzle 50 ... Gas-liquid separator 70 ... Control apparatus (control means)
TpMAX: Maximum target boiling temperature

Claims (2)

低温側の熱を高温側に移動させる蒸気圧縮式のヒートポンプサイクルを用いた給湯器であって、
圧縮機(10)にて冷媒の臨界圧力以上まで圧縮された高温高圧の冷媒と給湯用水とを熱交換させて給湯用水を加熱する冷媒水熱交換器(20)と、
低温低圧の冷媒を蒸発させる冷媒空気熱交換器(30)と、
高圧冷媒を減圧膨張させるノズル(41)を有し、前記ノズル(41)から噴射する高い速度の冷媒流により前記冷媒空気熱交換器(30)にて蒸発した気相冷媒を吸引すると共に、膨張エネルギーを圧力エネルギーに変換して前記圧縮機(10)の吸入圧を上昇させるエジェクタ(40)と、
前記エジェクタ(40)から流出した冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を前記圧縮機(10)の吸入側に供給し、液相冷媒を前記冷媒空気熱交換器(30)側に供給する気液分離器(50)と、
ヒートポンプサイクルの状態を制御する制御手段(70)とを備えたヒートポンプ式給湯器において、
前記制御手段(70)は、前記気液分離器(50)位置での圧力が冷媒の臨界圧力以上であるか否かを判定し、臨界圧力以上であると判定される場合は最大目標沸き上げ温度(TpMAX)を低く可変することを特徴とするヒートポンプ式給湯器。
A water heater using a vapor compression heat pump cycle that moves the heat on the low temperature side to the high temperature side,
A refrigerant water heat exchanger (20) for heating the hot water supply water by exchanging heat between the high temperature and high pressure refrigerant compressed to the critical pressure or higher of the refrigerant in the compressor (10) and the hot water supply water;
A refrigerant air heat exchanger (30) for evaporating the low-temperature and low-pressure refrigerant;
It has a nozzle (41) that decompresses and expands the high-pressure refrigerant, and sucks the vapor-phase refrigerant evaporated in the refrigerant air heat exchanger (30) by the high-speed refrigerant flow injected from the nozzle (41) and expands it. An ejector (40) for converting energy into pressure energy to increase the suction pressure of the compressor (10);
The refrigerant flowing out from the ejector (40) is separated into a gas phase refrigerant and a liquid phase refrigerant, and the gas phase refrigerant is supplied to the suction side of the compressor (10), and the liquid phase refrigerant is supplied to the refrigerant air heat exchanger ( 30) a gas-liquid separator (50) to be supplied to the side,
In a heat pump water heater provided with a control means (70) for controlling the state of the heat pump cycle,
The control means (70) determines whether or not the pressure at the position of the gas-liquid separator (50) is equal to or higher than the critical pressure of the refrigerant. A heat pump type water heater characterized in that the temperature (TpMAX) can be varied low.
冷媒の臨界圧力以上であるか否かの判定は、前記圧縮機(10)の吸入圧力、前記圧縮機(10)の吸入温度、前記冷媒空気熱交換器(30)の入口・出口圧力、前記冷媒空気熱交換器(30)の入口冷媒温度、外気温度、前記エジェクタ(40)の出口圧力、前記エジェクタ(40)の出口冷媒温度のいずれか、もしくは2つ以上の組み合わせによって行うことを特徴とする請求項1に記載のヒートポンプ式給湯器。   Whether or not the refrigerant is equal to or higher than the critical pressure is determined by the suction pressure of the compressor (10), the suction temperature of the compressor (10), the inlet / outlet pressure of the refrigerant air heat exchanger (30), The refrigerant air heat exchanger (30) has an inlet refrigerant temperature, an outside air temperature, an outlet pressure of the ejector (40), an outlet refrigerant temperature of the ejector (40), or a combination of two or more. The heat pump type water heater according to claim 1.
JP2004254869A 2004-09-01 2004-09-01 Heat pump water heater Expired - Fee Related JP4285374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254869A JP4285374B2 (en) 2004-09-01 2004-09-01 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254869A JP4285374B2 (en) 2004-09-01 2004-09-01 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2006071175A true JP2006071175A (en) 2006-03-16
JP4285374B2 JP4285374B2 (en) 2009-06-24

Family

ID=36151996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254869A Expired - Fee Related JP4285374B2 (en) 2004-09-01 2004-09-01 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4285374B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008379A (en) * 2007-05-25 2009-01-15 Denso Corp Refrigerating cycle device
JP2009008378A (en) * 2007-05-25 2009-01-15 Denso Corp Refrigerating cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008379A (en) * 2007-05-25 2009-01-15 Denso Corp Refrigerating cycle device
JP2009008378A (en) * 2007-05-25 2009-01-15 Denso Corp Refrigerating cycle device
JP4725592B2 (en) * 2007-05-25 2011-07-13 株式会社デンソー Refrigeration cycle equipment
JP4725591B2 (en) * 2007-05-25 2011-07-13 株式会社デンソー Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP4285374B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
US6729158B2 (en) Ejector decompression device with throttle controllable nozzle
JP5011713B2 (en) Heat pump type water heater
JP5071155B2 (en) Heat pump type hot water supply apparatus and control method thereof
WO2006006578A1 (en) Heat pump-type hot-water supply device
JP2006234375A (en) Heat pump type water heater
JP2005009775A (en) Vapor compression refrigerator
JP4858399B2 (en) Refrigeration cycle
JP4123220B2 (en) Heat pump type heating device
JP4552836B2 (en) Heat pump type water heater
JP5659560B2 (en) Refrigeration cycle equipment
JP2010025517A (en) Heat pump type water heater
JP4285374B2 (en) Heat pump water heater
JP4124195B2 (en) Heat pump type heating device
JP2008224067A (en) Heat pump hot water supply device
JP2007113897A (en) Heat pump type water heater
JP4715852B2 (en) Heat pump water heater
JP2004309027A (en) Control method for heat pump device
JP3835434B2 (en) Heat pump type water heater
JP2007113896A (en) Heat pump type water heater
JP2009250537A (en) Heat pump type water heater
JP2006292302A (en) Control method of heat pump device
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP4407756B2 (en) Heat pump type heating device
JP4465986B2 (en) Heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees