JP2006070348A - High strength magnetic steel sheet, its production method and working method - Google Patents

High strength magnetic steel sheet, its production method and working method Download PDF

Info

Publication number
JP2006070348A
JP2006070348A JP2004258211A JP2004258211A JP2006070348A JP 2006070348 A JP2006070348 A JP 2006070348A JP 2004258211 A JP2004258211 A JP 2004258211A JP 2004258211 A JP2004258211 A JP 2004258211A JP 2006070348 A JP2006070348 A JP 2006070348A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
electrical steel
strength electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004258211A
Other languages
Japanese (ja)
Other versions
JP4510559B2 (en
Inventor
Hidekuni Murakami
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004258211A priority Critical patent/JP4510559B2/en
Publication of JP2006070348A publication Critical patent/JP2006070348A/en
Application granted granted Critical
Publication of JP4510559B2 publication Critical patent/JP4510559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To stably produce a high strength magnetic steel sheet having high strength satisfying the tensile strength Ts of ≥600 MPa and having wear resistance, and further having excellent magnetic properties in magnetic flux density and core loss on-line while maintaining its cold rolling properties, annealing operability or the like comparable to those of ordinary magnetic steel sheets. <P>SOLUTION: The high strength magnetic steel sheet comprises, by mass, ≤0.060% C, 0.2 to 3.5% Si, 0.05 to 3.0% Mn, ≤0.30% P, ≤0.040% S, ≤2.50% Al and ≤0.020% N, and comprises 0.1 to 8.0% Cu or 0.03 to 8.0% Nb as well, and in which a worked structure remains at the inside. In its production method, strain is applied thereto in a final working stage, and thereafter, heat treatment dissipating the worked structure is not performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高強度電磁鋼板、特に高強度無方向性電磁鋼板に係わり、高速回転機用の低鉄損、かつ高磁束密度で強度の高い磁性材料および電磁開閉器用の耐摩耗性に優れた磁性材料とその製造方法に関する。   The present invention relates to a high-strength electrical steel sheet, particularly a high-strength non-oriented electrical steel sheet, and is excellent in low iron loss for high-speed rotating machines, high magnetic material with high magnetic flux density and high wear resistance for electromagnetic switches. The present invention relates to a magnetic material and a manufacturing method thereof.

従来、ローター(回転子)用材料には積層された電磁鋼板が用いられてきたが、最近、高速回転やローター径の大型化が要求される用途では、ローターに加わる遠心力が、電磁鋼板の強度を上回る可能性が出てきた。さらにローターに磁石を組み込む構造のモーターも多くなっており、回転数はそれほど高くなくともローターの回転中にローター材料自身に加わる荷重は大きなものとなっており、疲労強度の面でも材料の強さが問題となることが多くなっている。   Conventionally, laminated electromagnetic steel sheets have been used for rotor (rotor) materials. Recently, in applications where high-speed rotation or an increase in rotor diameter is required, the centrifugal force applied to the rotor is reduced. The possibility of exceeding the strength has come out. In addition, there are many motors with a structure that incorporates magnets in the rotor, and even if the rotation speed is not so high, the load applied to the rotor material itself during rotation of the rotor is large, and the strength of the material is also in terms of fatigue strength Is becoming a problem.

また、電磁開閉器はその用途上、使用するにつれて接触面が摩耗するため、電磁特性だけでなく耐摩耗性の優れた磁性材料が望まれる。   In addition, because the contact surface of the electromagnetic switch is worn as it is used, a magnetic material having excellent wear resistance as well as electromagnetic characteristics is desired.

このようなニーズに対応して、最近では強度が高い無方向性電磁鋼板について検討され、いくつか提案されている。例えば、特許文献1や特許文献2では、Si含有量を高め、さらにMn,Ni,Mo,Crなどの固溶体強化成分の1種または2種以上を含有させたスラブを素材とすることが提案されているが、圧延時に板破断の発生が頻発する恐れがあり、生産性の低下、歩留りの低下をもたらすなど改善の余地があり、しかもNiやMo,Crを多量に含有しているために極めて高価な材料となる。   In response to such needs, recently, non-oriented electrical steel sheets with high strength have been studied and several proposals have been made. For example, in Patent Document 1 and Patent Document 2, it is proposed to use a slab having a high Si content and further containing one or more solid solution strengthening components such as Mn, Ni, Mo, and Cr. However, there is a risk that sheet breakage may occur frequently during rolling, and there is room for improvement such as a decrease in productivity and a decrease in yield, and since it contains a large amount of Ni, Mo, and Cr, it is extremely It becomes an expensive material.

さらに、特許文献3では、2.5%以上のSiを含有する溶鋼から、急冷凝固法により高強度無方向性鋼板を製造することを開示している。また、特許文献4では、2.5%以上の高Si鋼を2.0%以下の低Si鋼で包むことにより圧延性の改善を図ることを開示している。これらの提案は何れもプロセスが特殊であるために、通常の電磁鋼板の製造設備では製造できず、工業的に生産することが難しいと考えられる。   Furthermore, Patent Document 3 discloses that a high-strength non-oriented steel sheet is produced from a molten steel containing 2.5% or more of Si by a rapid solidification method. Patent Document 4 discloses improving rolling properties by wrapping 2.5% or more of high Si steel with 2.0% or less of low Si steel. Since all of these proposals have a special process, they cannot be manufactured with ordinary electromagnetic steel sheet manufacturing equipment, and are considered difficult to produce industrially.

特開平1−162748号公報JP-A-1-162748 特開昭61−84360号公報JP-A-61-84360 特開昭61−87848号公報JP-A-61-87848 特開平8−41601号公報JP-A-8-41601

以上のように、高強度の電磁鋼板について多くの提案がなされているが、必要な磁気特性を確保しつつ、通常の電磁鋼板製造設備を用いて、工業的に安定して製造するまでに到っていないというのが実情である。このような中で本発明者は鋼板中に加工組織を残存させた高強度電磁鋼板について特願2003−347084号で特許出願を行った。   As described above, many proposals have been made for high-strength electrical steel sheets, but it has been necessary to achieve stable industrial production using ordinary electrical steel sheet manufacturing equipment while ensuring necessary magnetic properties. The fact is that it is not. Under such circumstances, the present inventor has filed a patent application in Japanese Patent Application No. 2003-347084 for a high-strength electrical steel sheet in which a processed structure remains in the steel sheet.

加工組織を残存させる一つの手段として冷延後の焼鈍を再結晶が完全に起きない低温で行うことがあるが、一般的な電磁鋼板は再結晶させることが前提となっているため、このような低い温度での焼鈍を行うには炉温度の切り替えが必要であり、一般材との温度差が比較的大きいため、温度調整に時間を要するため生産の阻害要因となる場合がある。   One method of leaving the processed structure is to perform annealing after cold rolling at a low temperature at which recrystallization does not occur completely, but it is premised that general electrical steel sheets are recrystallized. In order to perform annealing at a low temperature, it is necessary to switch the furnace temperature, and since the temperature difference from a general material is relatively large, it takes time to adjust the temperature, which may be an obstacle to production.

また、焼鈍雰囲気によってはこのような中途半端な温度では未燃焼の雰囲気ガスが発生し、これが炉から漏れ出した場合これを吸引した作業者の安全を損ねたり、最悪の場合、炉内で爆発する恐れも否定できない。そのため加工組織を利用する高強度電磁鋼板において一般材と同程度の高温での焼鈍時にいかに加工組織を残存させられるかが課題として挙げられている。   Also, depending on the annealing atmosphere, unburned atmospheric gas is generated at such a halfway temperature, and if this leaks from the furnace, it may impair the safety of the worker who sucked it, or in the worst case, it will explode in the furnace. The fear of doing it cannot be denied. For this reason, a problem has been raised as to how the processed structure can remain in the high-strength electrical steel sheet using the processed structure at the time of annealing at the same high temperature as that of a general material.

本発明は、抗張力(TS)が600MPa以上の高強度で、耐摩耗性を有するとともに、特に高速で回転するモーターなど高い周波数の磁場下で使用される際に磁束密度(B50)や鉄損など優れた磁気特性を兼ね備えた高強度無方向性電磁鋼板を例えば冷間圧延性や焼鈍作業性など通常の電磁鋼板と変わることなく、安定してオンラインで製造することを目的とする。 The present invention has a high tensile strength (TS) of 600 MPa or more, wear resistance, and magnetic flux density (B 50 ) and iron loss when used in a high frequency magnetic field such as a motor rotating at high speed. The purpose of the present invention is to stably manufacture a high-strength non-oriented electrical steel sheet having excellent magnetic properties, such as cold rolling property and annealing workability, on-line stably.

本発明は上記課題を解決するためになされたものであり、その手段は以下のとおりである。
1)鋼板組織に加工組織を存在させ転位強化により高強度化を図る。
2)冷延後の焼鈍温度があまりにも低くならないように、鋼板の再結晶温度を上昇させ、通常の鋼板と同程度の温度で焼鈍を行っても加工組織が残存するような成分とする。
3)上記の再結晶温度をさらに上昇させるため再結晶が完了するまでの熱履歴により鋼中に微細な析出物を形成させる。
4)再結晶を遅延させるために利用する元素および析出物が磁気特性を阻害しないように制御する。
The present invention has been made to solve the above-mentioned problems, and the means thereof is as follows.
1) A processed structure is present in the steel sheet structure to increase the strength by strengthening dislocations.
2) In order to prevent the annealing temperature after cold rolling from becoming too low, the recrystallization temperature of the steel sheet is increased so that the processed structure remains even if annealing is performed at a temperature similar to that of a normal steel sheet.
3) In order to further raise the recrystallization temperature, fine precipitates are formed in the steel by a thermal history until the recrystallization is completed.
4) Control so that elements and precipitates used for delaying recrystallization do not impair magnetic properties.

また、本発明における上記技術的手段の具体的要旨は次のとおりである。   The specific gist of the technical means in the present invention is as follows.

(1)質量%で、C:0.060%以下、Si:0.2〜3.5%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、Cu:0.1〜8.0%、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼板内部に加工組織が残存することを特徴とする高強度電磁鋼板。   (1) By mass%, C: 0.060% or less, Si: 0.2 to 3.5%, Mn: 0.05 to 3.0%, P: 0.30% or less, S: 0.040 %: Al: 2.50% or less, Cu: 0.1-8.0%, N: 0.020% or less, the balance is Fe and inevitable impurities, and the work structure is inside the steel plate. A high-strength electrical steel sheet that remains.

(2)質量%で、C:0.060%以下、Si:0.2〜3.5%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、Nb:0.03〜8.0%、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼板内部に加工組織が残存することを特徴とする高強度電磁鋼板。   (2) By mass%, C: 0.060% or less, Si: 0.2-3.5%, Mn: 0.05-3.0%, P: 0.30% or less, S: 0.040 % Or less, Al: 2.50% or less, Nb: 0.03 to 8.0%, N: 0.020% or less, the balance being Fe and unavoidable impurities, and a processed structure inside the steel plate A high-strength electrical steel sheet that remains.

(3)質量%で、C:0.060%以下、Si:0.2〜3.5%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、Cu:0.1〜8.0%、Nb:0.03〜8.0%、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼板内部に加工組織が残存することを特徴とする高強度電磁鋼板。   (3) By mass%, C: 0.060% or less, Si: 0.2-3.5%, Mn: 0.05-3.0%, P: 0.30% or less, S: 0.040 %: Al: 2.50% or less, Cu: 0.1-8.0%, Nb: 0.03-8.0%, N: 0.020% or less, the balance Fe and inevitable impurities A high-strength electrical steel sheet characterized by comprising a processed structure remaining inside the steel sheet.

(4)鋼板内部に主としてCuからなる金属相を含有することを特徴とする(1)もしくは(3)に記載の高強度電磁鋼板。   (4) The high-strength electrical steel sheet according to (1) or (3), wherein the steel sheet contains a metal phase mainly composed of Cu.

(5)鋼板内部の金属元素が主としてNbの炭化物または窒化物を含有することを特徴とする(2)もしくは(3)に記載の高強度電磁鋼板。   (5) The high-strength electrical steel sheet according to (2) or (3), wherein the metal element inside the steel sheet mainly contains Nb carbide or nitride.

(6)鋼成分が質量%でさらに、Ti:1.0%以下、B:0.010%以下、Ni:5.0%以下、Cr:15.0%以下の1種または2種以上を含有することを特徴とする(1)〜(5)のいずれかの項に記載の高強度電磁鋼板。   (6) Steel component is 1% by mass or more of Ti: 1.0% or less, B: 0.010% or less, Ni: 5.0% or less, Cr: 15.0% or less. The high-strength electrical steel sheet according to any one of (1) to (5), wherein the high-strength electrical steel sheet is contained.

(7)鋼成分が質量%でさらに、Mo,W,Sn,Sb,Mg,Ca,Ce,Coの1種または2種以上を合計で0.5%以下含有することを特徴とする(1)〜(6)のいずれかの項に記載の高強度電磁鋼板。   (7) It is characterized by containing 0.5% or less in total of one or more of Mo, W, Sn, Sb, Mg, Ca, Ce, and Co in a steel component by mass% (1 ) To (6) The high strength electrical steel sheet according to any one of the items.

(8)前記鋼板内部に存在する加工組織が、断面観察における面積率で1%以上である(1)〜(7)のいずれかの項に記載の高強度電磁鋼板。   (8) The high-strength electrical steel sheet according to any one of (1) to (7), wherein a processed structure existing inside the steel sheet is 1% or more in terms of an area ratio in cross-sectional observation.

(9)前記鋼板内部の加工組織における平均転位密度が1exp13/m2以上である(1)〜(8)のいずれかの項に記載の高強度電磁鋼板。 (9) The high-strength electrical steel sheet according to any one of (1) to (8), wherein an average dislocation density in a processed structure inside the steel sheet is 1 exp13 / m 2 or more.

(10)(1)〜(9)のいずれかの項に記載の鋼板を製造するに際し、最終の冷間加工工程において、引張強度が50MPa以上上昇する加工を付与した後、熱処理前後の引張強度の低下代が600MPa以上となるような熱処理を施さないことを特徴とする高強度電磁鋼板の製造方法。   (10) When manufacturing the steel sheet according to any one of items (1) to (9), in the final cold working step, after giving the work that the tensile strength is increased by 50 MPa or more, the tensile strength before and after the heat treatment The manufacturing method of the high intensity | strength electrical steel sheet characterized by not performing the heat processing which the fall allowance becomes 600 Mpa or more.

(11)最終の冷間加工工程において5%以上の歪を付与することを特徴とする(10)記載の高強度電磁鋼板の製造方法。   (11) The method for producing a high-strength electrical steel sheet according to (10), wherein a strain of 5% or more is imparted in the final cold working step.

(12)最終の冷間加工後の熱処理として、1000℃以上で30秒以上保持するような熱処理を施さないことを特徴とする(10)もしくは(11)に記載の高強度電磁鋼板の製造方法。   (12) The method for producing a high-strength electrical steel sheet according to (10) or (11), wherein the heat treatment after the final cold working is not performed such that the heat treatment is maintained at 1000 ° C. or higher for 30 seconds or longer. .

(13)最終の冷間加工後の熱処理として、950℃を超えない温度域で30秒以上保持する熱処理を行うことを特徴とする(10)もしくは(11)に記載の高強度電磁鋼板の製造方法。   (13) The production of the high strength electrical steel sheet according to (10) or (11), wherein the heat treatment after the final cold working is performed for 30 seconds or more in a temperature range not exceeding 950 ° C. Method.

(14)(1)〜(9)のいずれかの項に記載の高強度電磁鋼板を部品として加工した後、鋼板中の加工組織が消失するような熱処理を施さないことを特徴とする高強度電磁鋼板の加工方法。   (14) After the high-strength electrical steel sheet according to any one of (1) to (9) is processed as a part, it is not subjected to heat treatment that causes the processed structure in the steel sheet to disappear. Processing method of electrical steel sheet.

本発明によれば、硬質で磁気特性の優れた高強度電磁鋼板を安定して製造することができる。すなわち本発明は固溶強化、析出強化のために用いられる添加元素が比較的低くても目的とする強度を得ることができることから、冷延性が向上し、冷間圧延工程の生産性が向上するとともに、通常操業範囲内での焼鈍が可能となるため、焼鈍工程の作業性も向上する。また、焼鈍後に再冷延を行うことにより、従来では製造が困難であった極薄材料を簡単に生産することも可能となる。   According to the present invention, a high-strength electrical steel sheet that is hard and excellent in magnetic properties can be stably manufactured. That is, the present invention can obtain the intended strength even if the additive element used for solid solution strengthening and precipitation strengthening is relatively low, so that the cold rolling property is improved and the productivity of the cold rolling process is improved. At the same time, since annealing within the normal operating range is possible, the workability of the annealing process is also improved. In addition, by performing re-cold rolling after annealing, it becomes possible to easily produce an ultrathin material that has been difficult to manufacture.

以上により、強度、疲労強度、耐磨耗性の確保が可能となるため、超高速回転モーターやローターに磁石を組み込んだモーターおよび電磁開閉器用材料の高効率化、小型化、超寿命化などが達成される。   As a result, strength, fatigue strength, and wear resistance can be ensured. Therefore, high-speed rotating motors, motors incorporating magnets in rotors, and electromagnetic switch materials can be made more efficient, smaller, and have a longer life. Achieved.

本発明者らは、前記目的を達成すべく種々実験し検討を重ねてきた。即ち本発明は、C:0.060%以下、Si:0.5〜3.5%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、N:0.020%以下を含有する鋼板であって、さらにCu:0.1〜8.0%、またはNb:0.05〜8.0%を含有し固溶Cuまたは固溶Nbさらには鋼板内に生成させた微細なCuからなる金属相またはNb炭・窒化物等により冷延後焼鈍時の再結晶を遅延させ通常程度の製造工程条件においても電磁鋼板内に加工組織を残存・生成させることにより、作業性などのトラブルを起こすことなく高生産性にて高強度でかつ磁気特性の優れた電磁鋼板を得るものである。   The present inventors have conducted various experiments and studies in order to achieve the above object. That is, the present invention is C: 0.060% or less, Si: 0.5-3.5%, Mn: 0.05-3.0%, P: 0.30% or less, S: 0.040% or less , Al: 2.50% or less, N: 0.020% or less, and further containing Cu: 0.1-8.0% or Nb: 0.05-8.0% Electrolysis even under normal manufacturing process conditions by delaying recrystallization during annealing after cold rolling with a metal phase consisting of solute Cu or solute Nb and fine Cu formed in the steel sheet or Nb charcoal / nitride By leaving and generating a processed structure in the steel sheet, an electrical steel sheet having high productivity and high strength and excellent magnetic properties is obtained without causing troubles such as workability.

先ず、本発明による高強度電磁鋼板の成分組成について説明する。   First, the component composition of the high strength electrical steel sheet according to the present invention will be described.

Cは磁気特性を劣化させるので0.060%以下とする。高強度化、特に降伏応力の上昇や温間強度、クリープ強度の向上、温間での疲労特性を向上させる観点から、またNb含有鋼の場合にはNbCにより再結晶を遅延させる効果も有することから、好ましくは0.0031〜0.0301%、さらに好ましくは0.0051〜0.0221%、さらに好ましくは0.0071〜0.0181%、さらに好ましくは0.0081〜0.0151%である。   Since C deteriorates the magnetic characteristics, it is set to 0.060% or less. From the standpoint of increasing strength, particularly increasing yield stress, improving warm strength and creep strength, and improving fatigue properties in warm conditions, and in the case of Nb-containing steels, NbC also has the effect of delaying recrystallization. Therefore, it is preferably 0.0031 to 0.0301%, more preferably 0.0051 to 0.0221%, still more preferably 0.0071 to 0.0181%, and still more preferably 0.0081 to 0.0151%. .

Cによる上述のような効果が特に重要視されない場合には、スラブの段階までは脱酸効率の観点からより高いCを含有させておき、コイルとした後の脱炭焼鈍によりCを減じることも可能である。含有量を0.010%程度以下まで低減する場合には製造コストの観点からは溶鋼段階で脱ガス設備によりC量を低減しておくことが有利である。特に0.0020%以下とすれば鉄損低減の効果が著しく、高強度化のために炭化物等の非金属析出物を必須としない本発明鋼においては0.0015%以下としても高強度化が可能であり、さらに0.0010%以下としても十分な高強度化が可能である。   When the above-mentioned effects by C are not particularly regarded as important, higher C is contained from the viewpoint of deoxidation efficiency until the slab stage, and C may be reduced by decarburization annealing after forming the coil. Is possible. When the content is reduced to about 0.010% or less, it is advantageous to reduce the amount of C by degassing equipment at the molten steel stage from the viewpoint of manufacturing cost. In particular, if it is 0.0020% or less, the effect of reducing iron loss is remarkable, and in the steel of the present invention that does not require non-metallic precipitates such as carbides for high strength, the strength can be increased even if it is 0.0015% or less. It is possible, and even if it is 0.0010% or less, sufficient strength can be increased.

Siは鋼の固有抵抗を高めて渦電流を減らし、鉄損を低下せしめるとともに、抗張力を高めるが、添加量が0.2%未満ではその効果が小さい。好ましくは1.0%以上、さらに好ましくは1.5%以上、さらに好ましくは2.0%以上、さらに好ましくは2.5%以上とする。一般に高周波磁場下で用いられる場合には渦電流による損失が大きくなるが、加工組織を含有する本発明鋼においても特にこの渦電流損失を抑制するため、Si含有量を高めることが有効である。ただし3.5%を超えると鋼を脆化させ、さらに製品の磁束密度を低下させるため3.5%以下とする。脆化の懸念をさらに小さくするには3.2%以下が好ましく、2.8%以下であれば他の元素量との兼ね合いもあるが脆化に関してはほとんど考慮する必要がなくなる。   Si increases the specific resistance of steel, reduces eddy currents, lowers iron loss, and increases tensile strength, but the effect is small when the amount added is less than 0.2%. Preferably it is 1.0% or more, More preferably, it is 1.5% or more, More preferably, it is 2.0% or more, More preferably, you may be 2.5% or more. Generally, when used under a high-frequency magnetic field, the loss due to eddy current increases. However, in the steel of the present invention containing a processed structure, it is effective to increase the Si content particularly in order to suppress this eddy current loss. However, if it exceeds 3.5%, the steel is embrittled and further the magnetic flux density of the product is lowered, so the content is made 3.5% or less. In order to further reduce the fear of embrittlement, it is preferably 3.2% or less, and if it is 2.8% or less, there is a balance with the amount of other elements, but there is almost no need to consider embrittlement.

Mnは鋼の強度を高めるため積極的に添加してもよいが、高強度化の主たる手段として微細金属相を活用する本発明鋼ではこの目的のためには特に必要としない。固有抵抗を高め渦電流損失を低減させることで鉄損を低減させる目的で添加するが、過剰な添加は磁束密度を低下させるので、0.05〜3.0%とする。0.05〜3.0%とする。好ましくは0.5%〜2.5%、さらに好ましくは0.8%〜2.0%である。   Mn may be positively added to increase the strength of the steel, but is not particularly required for this purpose in the steel of the present invention that utilizes a fine metal phase as the main means for increasing the strength. Although it adds for the purpose of reducing a core loss by raising a specific resistance and reducing an eddy current loss, since excessive addition reduces a magnetic flux density, it is made 0.05 to 3.0%. 0.05 to 3.0%. Preferably they are 0.5%-2.5%, More preferably, they are 0.8%-2.0%.

Pは抗張力を高める効果の著しい元素であるが、上記のMnと同様、本発明鋼ではあえて添加する必要はない。0.3%を超えると脆化が激しく、工業的規模での熱延、冷延等の処理が困難になるため、上限を0.30%とする。好ましくは0.20%以下、さらに好ましくは0.15%以下である。   P is an element having a remarkable effect of increasing the tensile strength, but like the above Mn, it is not necessary to add it to the steel of the present invention. If it exceeds 0.3%, the embrittlement is severe and processing such as hot rolling and cold rolling on an industrial scale becomes difficult, so the upper limit is made 0.30%. Preferably it is 0.20% or less, More preferably, it is 0.15% or less.

Sは本発明鋼で必須の元素であるCuと結合し易く、本発明で重要となるCuを主体とする金属相の形成挙動に影響を及ぼし、強化効率を低下させる場合がある。また生成された硫化物は磁気特性、特に鉄損を劣化させる場合があるので、Sの含有量はできるだけ低いことが好ましく、0.0040%以下と限定する。好ましくは0.0020%以下、さらに好ましくは0.0010%以下である。   S easily binds to Cu, which is an essential element in the steel of the present invention, affects the formation behavior of a metal phase mainly composed of Cu, which is important in the present invention, and may lower the strengthening efficiency. Moreover, since the produced sulfide may deteriorate the magnetic properties, particularly the iron loss, the S content is preferably as low as possible, and is limited to 0.0040% or less. Preferably it is 0.0020% or less, More preferably, it is 0.0010% or less.

Alは通常、脱酸剤として添加されるが、Alの添加を抑えSiにより脱酸を図ることも可能である。Al量が0.005%程度以下のSi脱酸鋼ではAlNが生成しないため、鉄損を低減する効果もある。逆に積極的に添加しAlNの粗大化を促進するとともに固有抵抗増加により鉄損を低減させることもできるが、2.50%を超えると脆化が問題になるため、2.50%以下とする。   Al is usually added as a deoxidizing agent, but it is also possible to suppress the addition of Al and deoxidize with Si. Since SiN deoxidized steel with an Al content of about 0.005% or less does not produce AlN, it also has an effect of reducing iron loss. On the contrary, it can be actively added to promote the coarsening of AlN and the iron loss can be reduced by increasing the specific resistance. However, if it exceeds 2.50%, embrittlement becomes a problem. To do.

Cuは本発明では重要な元素である。固溶Cuとしてのみならず、鋼板中にCuを主体とする金属相(以降、本明細書では「Cu金属相」と記述)を形成させ、鋼板の再結晶を遅延させるために活用される。また微細なCu金属相により磁気特性に悪影響を及ぼさない範囲で高強度化を図る効果も有する。この範囲として0.1〜8.0%に限定する。好ましくは0.8〜4.0%である。   Cu is an important element in the present invention. It is used not only as solid solution Cu but also to form a metal phase mainly composed of Cu in the steel sheet (hereinafter referred to as “Cu metal phase” in this specification) and delay recrystallization of the steel sheet. In addition, the fine Cu metal phase has the effect of increasing the strength within a range that does not adversely affect the magnetic properties. This range is limited to 0.1 to 8.0%. Preferably it is 0.8 to 4.0%.

Cuの含有量が低いと再結晶遅延効果が小さくなるとともに、再結晶遅延効果を得るための熱処理条件が狭い範囲に限定され、製造条件の管理、生産調整の自由度が小さくなる。一方、Cuの含有量が過度に高いと磁気特性への影響が大きくなり、特に鉄損の上昇が著しくなる。特に鋼への固溶限を超え固溶Cuとして存在するCuは再結晶遅延効果においてCu金属相に比較して効率が悪く、また磁気特性劣化への影響も大きくなる。また過剰なCuは、例えば熱延中に高温で比較的粗大なCu金属相を形成するなど、好ましくない段階で金属相が生成するため、その後の微細な金属相の形成に好ましくない働きをしたり、磁気特性に悪影響を及ぼす場合もある。特に好ましい範囲は1.0〜2.9%である。さらに好ましくは1.3〜2.4%、さらに好ましくは1.5〜2.0%である。   When the content of Cu is low, the recrystallization delay effect is reduced, and the heat treatment conditions for obtaining the recrystallization delay effect are limited to a narrow range, and the degree of freedom in management of production conditions and production adjustment is reduced. On the other hand, if the Cu content is excessively high, the influence on the magnetic properties is increased, and the iron loss is particularly increased. In particular, Cu existing as a solid solution Cu exceeding the solid solubility limit in steel is less efficient than the Cu metal phase in the recrystallization delay effect, and the influence on the deterioration of magnetic properties is also increased. Excessive Cu also forms a relatively coarse Cu metal phase at a high temperature during hot rolling, for example, and forms a metal phase in an unfavorable stage. Or adversely affect the magnetic properties. A particularly preferable range is 1.0 to 2.9%. More preferably, it is 1.3-2.4%, More preferably, it is 1.5-2.0%.

NbもCu同様、本発明では重要な元素である。固溶Nbとしてのみならず、鋼板中にNbの主として炭・窒化物(以降、本明細書では「Nb析出物」と記述)を形成させ、鋼板の再結晶を遅延させるために活用される。また微細なNb析出物により磁気特性に悪影響を及ぼさない範囲で高強度化を図る効果も有する。この範囲として0.05〜8.0%に限定する。好ましくは0.08〜2.0%である。   Nb, like Cu, is an important element in the present invention. It is used not only as solute Nb but also to form mainly Nb charcoal / nitrides (hereinafter referred to as “Nb precipitates” in the present specification) in the steel sheet and delay the recrystallization of the steel sheet. In addition, the fine Nb precipitate has the effect of increasing the strength within a range that does not adversely affect the magnetic properties. This range is limited to 0.05 to 8.0%. Preferably it is 0.08 to 2.0%.

Nbの含有量が低いと再結晶遅延効果が小さくなるとともに再結晶遅延効果を得るための熱処理条件が狭い範囲に限定され、製造条件の管理、生産調整の自由度が小さくなる。一方、Nbの含有量が過度に高いと磁気特性への影響が大きくなり、特に鉄損の上昇が著しくなる。特に鋼への固溶限を超え固溶Nbとして存在するNbは、Cuよりさらに磁気特性劣化への影響が大きく好ましくない。また、C、N含有量にもよるが、過剰なNbは熱履歴によっては鋼中に過剰なNb析出物を形成し、再結晶を遅延させるもののCu金属相よりも磁気特性劣化要因となりやすい。また例えば、熱延中などに高温で比較的粗大なNb析出物を形成した場合には、再結晶遅延効果が小さくなるばかりか、磁気特性への悪影響が大きくなる場合もある。特に好ましい範囲は0.1〜1.5%である。さらに好ましくは0.12〜1.0%、さらに好ましくは0.15〜0.8%である。   When the Nb content is low, the recrystallization delay effect is reduced and the heat treatment conditions for obtaining the recrystallization delay effect are limited to a narrow range, and the degree of freedom in management of production conditions and production adjustment is reduced. On the other hand, when the content of Nb is excessively high, the influence on the magnetic properties is increased, and the iron loss is particularly increased. In particular, Nb existing as a solid solution Nb exceeding the solid solubility limit in steel is not preferable because it has a larger influence on magnetic property deterioration than Cu. Although depending on the C and N contents, excessive Nb forms excessive Nb precipitates in the steel depending on the thermal history and delays recrystallization, but is more likely to be a cause of deterioration of magnetic characteristics than Cu metal phase. Further, for example, when a relatively coarse Nb precipitate is formed at a high temperature during hot rolling or the like, not only the recrystallization delay effect is reduced, but also the adverse effect on the magnetic properties may be increased. A particularly preferable range is 0.1 to 1.5%. More preferably, it is 0.12-1.0%, More preferably, it is 0.15-0.8%.

NはCと同様、磁気特性を劣化させるので0.040%以下とする。Alが0.005%程度以下のSi脱酸鋼ではCと同様に高強度化、特に降伏応力の上昇や温間強度、クリープ強度の向上、温間での疲労特性を向上させ、またNb含有鋼の場合にはNbNにより再結晶を遅延させる効果も有する他に、集合組織改善の観点から有効な元素である。この観点からは好ましくは0.0031〜0.0301%、さらに好ましくは0.0051〜0.0221%、さらに好ましくは0.0071〜0.0181%、さらに好ましくは0.0081〜0.0151%である。   N, like C, degrades the magnetic properties, so it is set to 0.040% or less. Si deoxidized steel with an Al content of about 0.005% or less increases strength like C, especially increases yield stress, improves warm strength and creep strength, improves warm fatigue properties, and contains Nb. In the case of steel, it has an effect of delaying recrystallization by NbN, and is an effective element from the viewpoint of texture improvement. From this viewpoint, preferably 0.0031 to 0.0301%, more preferably 0.0051 to 0.0221%, more preferably 0.0071 to 0.0181%, and still more preferably 0.0081 to 0.0151%. It is.

Alが0.010%程度以上の場合には多量のNを含有させることで微細なAlNを形成し再結晶遅延効果を高めることが可能であるが、本発明の主たる機構であるCu金属相に比較すると再結晶遅延の効率が悪く、また磁気特性への悪影響も比較的大きいため、あえて添加する必要はない。Al脱酸鋼においては0.0040%以下とすべきで、窒化物による強度上昇や再結晶遅延効果を期待しない本発明鋼では低いほど好ましく、0.0027%以下とすれば磁気時効やAl含有鋼でのAlNによる特性劣化の抑制効果は顕著で、さらに好ましくは0.0022%、さらに好ましくは0.0015%以下とする。   When Al is about 0.010% or more, it is possible to form a fine AlN by adding a large amount of N to enhance the recrystallization delay effect, but in the Cu metal phase which is the main mechanism of the present invention. In comparison, the recrystallization delay efficiency is poor and the adverse effect on the magnetic properties is relatively large, so there is no need to add it. In Al deoxidized steel, it should be 0.0040% or less. The lower the steel of the present invention which does not expect the strength increase and recrystallization delay effect due to nitride, the lower the content, 0.0027% or less is preferable. The effect of suppressing deterioration of characteristics due to AlN in steel is remarkable, more preferably 0.0022%, and further preferably 0.0015% or less.

その他、従来技術における高強度電磁鋼板で高強度化のために利用されている殆どの元素は、添加コストが問題視されるだけではなく磁気特性に少なからず悪影響を及ぼすため、あえて添加する必要はない。また本発明鋼で特徴的なCuやNbと同様に再結晶を遅延させる効果を有するが、効率が良くない。あえて添加する場合には再結晶遅延効果、高強度化効果、コスト上昇と磁気特性劣化との兼ね合いから、Ti,B,Ni,Crの1種または2種以上を添加するが、その添加量は、Ti:1.0%以下、B:0.010%以下、Ni:5.0%以下、Cr:15.0%以下程度とする。   In addition, most of the elements used to increase the strength of conventional high-strength electrical steel sheets are not only problematic in terms of the cost of addition, but also have a detrimental effect on magnetic properties. Absent. Moreover, it has the effect of delaying recrystallization similarly to Cu and Nb characteristic of the steel of the present invention, but the efficiency is not good. In the case of intentionally adding, one or more of Ti, B, Ni, and Cr are added in consideration of recrystallization delay effect, strengthening effect, cost increase and magnetic property deterioration. Ti: 1.0% or less, B: 0.010% or less, Ni: 5.0% or less, Cr: 15.0% or less.

Tiは鋼板中で炭化物、窒化物または硫化物等の微細な析出物を形成し、高強度化に効果を有する元素ではあるが、Nbに比較するとその効果は小さい割に、鉄損を劣化させる傾向が強い。また冷延後の焼鈍工程において部分再結晶組織とする場合には、磁束密度向上には不利な{111}方位への集積を促進する効果が強いため、本発明鋼ではむしろ有害な元素ともなる。このため上限をそれぞれ1.0%とする。好ましくは0.50%以下、さらに好ましくは0.30%以下で、全く添加することなく不可避的に混入する0.0050%以下とすることで良好な鉄損を得ることが可能となる。   Ti is an element that forms fine precipitates such as carbides, nitrides or sulfides in the steel sheet and is effective in increasing the strength. However, compared with Nb, the effect is small, but iron loss is degraded. The tendency is strong. Further, when a partially recrystallized structure is used in the annealing process after cold rolling, it has a strong effect of promoting accumulation in the {111} orientation, which is disadvantageous for improving the magnetic flux density. . Therefore, the upper limit is set to 1.0%. Preferably it is 0.50% or less, more preferably 0.30% or less, and good iron loss can be obtained by setting it to 0.0050% or less, which is inevitably mixed without any addition.

Bは結晶粒界に偏折し、Pの粒界偏折による脆化を抑制する効果があるが、本発明鋼では従来の固溶強化主体の高強度電磁鋼板のように脆化が特に問題とはならないことから、この目的での添加は重要ではない。むしろ固溶Bによる再結晶温度への影響により再結晶を遅延させる目的で添加する。0.010%を超えると著しく脆化するため、上限を0.010%とする。   B is bent at the crystal grain boundary and has the effect of suppressing embrittlement due to the P grain boundary deflection. The addition for this purpose is not important. Rather, it is added for the purpose of delaying the recrystallization due to the influence of the solid solution B on the recrystallization temperature. If it exceeds 0.010%, the material is significantly brittle, so the upper limit is made 0.010%.

Niは本発明鋼で非常に重要な元素であるCuによる熱延時の表面荒れ(Cuヘゲ)の防止に有効であることが知られており、この目的を兼ねて積極的に添加することもできる。また、磁気特性への悪影響が比較的小さく、かつ高強度化にも効果が認められるため、高強度電磁鋼板では使用されることが多い元素である。また、耐食性の向上にも有効であるが、添加コストや磁気特性への悪影響を考え上限を5.0%とすることが好ましい。   Ni is known to be effective in preventing surface roughness (Cu hege) during hot rolling with Cu, which is a very important element in the steel of the present invention, and may be actively added for this purpose. it can. In addition, it is an element that is often used in high-strength electrical steel sheets because it has a relatively small adverse effect on magnetic properties and is also effective in increasing strength. Moreover, although it is effective also in improving corrosion resistance, it is preferable to set the upper limit to 5.0% in consideration of the adverse effect on the addition cost and magnetic properties.

Crは耐食性の向上や、高周波域での磁気特性向上のため添加される元素であるが、やはり添加コストや磁気特性への悪影響を考え上限を15.0%とすることが好ましい。   Cr is an element added for improving the corrosion resistance and improving the magnetic characteristics in the high frequency range. However, the upper limit is preferably made 15.0% in consideration of the adverse effect on the addition cost and the magnetic characteristics.

また、その他の微量元素については、鉱石やスクラップなどから不可避的に含まれる程度の量に加え、公知の様々な目的で添加しても本発明の効果は何ら損なわれるものではない。また、量は少なくとも微細な炭化物、硫化物、窒化物、酸化物等を形成し、少なからざる再結晶遅延効果を示す元素もあるが、これらの微細な析出物は磁気特性への悪影響も大きく、また本発明鋼ではCuやNbにより十分な再結晶遅延効果が得られるため、これらの元素をあえて添加する必要もない。これらの微量元素についての不可避的な含有量は通常、各元素とも0.005%以下程度であるが、本明細書で記述していない様々な目的で0.01%程度以上に添加することも可能である。この場合もコストや磁気特性の兼ね合いから、Mo,W,Sn,Sb,Mg,Ca,Ce,Coの1種または2種以上を合計で0.5%以下とする。   Moreover, about the other trace element, in addition to the quantity contained inevitably from an ore or a scrap, even if it adds for a well-known various objective, the effect of this invention is not impaired at all. In addition, there are elements that form at least fine carbides, sulfides, nitrides, oxides, etc., and have a considerable recrystallization delay effect, but these fine precipitates have a great adverse effect on magnetic properties, Further, in the steel of the present invention, a sufficient recrystallization delay effect can be obtained by Cu or Nb, so that it is not necessary to add these elements. The inevitable content of these trace elements is usually about 0.005% or less for each element, but may be added to about 0.01% or more for various purposes not described in this specification. Is possible. Also in this case, in consideration of cost and magnetic characteristics, one or more of Mo, W, Sn, Sb, Mg, Ca, Ce, and Co are made 0.5% or less in total.

前記成分を含む鋼は、通常の電磁鋼板と同様に転炉で溶製され、連続鋳造でスラブとされ、ついで熱間圧延、熱延板焼鈍、冷間圧延、仕上焼鈍などの工程で製造される。これらの工程に加え絶縁皮膜の形成や脱炭工程などを経ることも本発明の効果を何ら損なうものではない。また、通常の工程ではなく急冷凝固法による薄帯の製造や熱延工程を省略する薄スラブ、連続鋳造法などの工程によって製造しても問題ない。   The steel containing the above components is melted in a converter in the same manner as a normal electromagnetic steel sheet, is made into a slab by continuous casting, and then manufactured by processes such as hot rolling, hot rolled sheet annealing, cold rolling, and finish annealing. The In addition to these steps, the formation of an insulating film and a decarburization step do not impair the effects of the present invention. Moreover, there is no problem even if it is manufactured not by a normal process but by a process such as a thin slab or a continuous casting process in which the production of a ribbon by the rapid solidification method or the hot rolling process is omitted.

本発明では本発明で「加工組織」と呼ぶ特別な組織を鋼板内に形成することが必要である。本発明における「加工組織」とは、通常の電磁鋼板で鋼板のほぼ全量を占めている「再結晶組織」と区別したものである。一般的には冷延加工等により鋼板内に蓄積された歪が十分に消失していない組織を指す。より具体的には、冷延した鋼板を焼鈍する過程において、冷延で変形され高密度の転位を含有した組織が、焼鈍工程での高温保持により発生する転位密度が低い組織(「再結晶組織」)に蚕食されることで再結晶が進行するが、この「再結晶組織」に蚕食されていない領域を「加工組織」とする。この加工組織は、一般には焼鈍中にいわゆる回復等により転位密度は低くなっているが、再結晶組織ほどには低くなっておらず、歪の分布としては「加工組織」と「再結晶組織」で不均一な状況となっている。また、「加工組織」は、再結晶組織をさらに加工することでも得ることができる。この場合は全体的に見れば組織に均一な歪が残存した状態となる。本発明ではこの加工組織を活用することで目的とする高強度化を図るものである。   In the present invention, it is necessary to form a special structure called “processed structure” in the steel sheet in the present invention. The “processed structure” in the present invention is distinguished from a “recrystallized structure” that occupies almost the entire amount of steel sheet with a normal electromagnetic steel sheet. Generally, it refers to a structure in which the strain accumulated in the steel sheet due to cold rolling or the like has not sufficiently disappeared. More specifically, in the process of annealing a cold-rolled steel sheet, a structure that is deformed by cold rolling and contains high-density dislocations is a structure having a low dislocation density generated by holding at a high temperature in the annealing process (“recrystallized structure”). The region that is not engulfed by this “recrystallized structure” is defined as “processed structure”. This processed structure generally has a low dislocation density due to so-called recovery during annealing, but it is not as low as the recrystallized structure, and the strain distribution is `` processed structure '' and `` recrystallized structure ''. The situation is uneven. The “processed structure” can also be obtained by further processing the recrystallized structure. In this case, uniform strain remains in the tissue as a whole. In the present invention, this processed structure is utilized to increase the intended strength.

本発明が対象とする鋼板は600MPa以上の引張強度を有するものとする。引張強度がこれより低い程度の鋼板であれば通常のSi、Mn等の固溶元素を主体として強化し、組織的には完全に再結晶組織で占められている鋼板でも、生産性をそれほど劣化させず製造することが可能であり、その材料の方が磁気特性的には顕著に優れたものが得られるためである。本発明は通常の固溶強化を主体として、生産性を劣化させずに製造が不可能な高強度の材料に限定する。本発明のメリットをより大きく享受するには、好ましくは650MPa以上の鋼板に適用されるべきで、さらに好ましくは700MPa以上、さらに好ましくは800MPa以上の鋼板を対象とし、現在は全く製造されたことがない900MPa以上の鋼板も製造可能であり、さらに従来では想像もされていない1000MPa以上の鋼板でも高生産性で製造することが可能になる。   The steel plate targeted by the present invention has a tensile strength of 600 MPa or more. If the steel sheet has a lower tensile strength than this, it is strengthened mainly by solid solution elements such as ordinary Si and Mn, and even in steel sheets that are completely occupied by a recrystallized structure, the productivity deteriorates so much. This is because it is possible to manufacture without using the material, and the material is significantly superior in terms of magnetic properties. The present invention is limited to high-strength materials that cannot be manufactured without deteriorating productivity, with the usual solid solution strengthening as a main component. In order to enjoy the merits of the present invention to a greater extent, it should preferably be applied to a steel plate of 650 MPa or more, more preferably 700 MPa or more, more preferably 800 MPa or more, and has been produced at all. It is possible to manufacture a steel plate of 900 MPa or higher, and even a steel plate of 1000 MPa or higher, which has not been imagined in the past, can be manufactured with high productivity.

この加工組織は鋼板の断面組織観察における面積率で1%以上存在するものとする。断面組織観察は本発明においては断面の一辺が鋼板圧延方向、もう一辺が鋼板板厚方向となる断面で行うものとする。通常の鋼板で行われるナイタール等の薬品を用い、エッチングにより組織を現出させる方法を用いるが、特に観察方法に限定されるものではなく、再結晶組織と加工組織を区別できる手法であればよい。   This processed structure is assumed to be 1% or more in terms of the area ratio in the cross-sectional structure observation of the steel sheet. In the present invention, the cross-sectional structure observation is performed in a cross section in which one side of the cross section is the steel plate rolling direction and the other side is the steel plate thickness direction. Uses chemicals such as Nital, which are performed on ordinary steel plates, and uses a method of revealing the structure by etching. However, the method is not particularly limited to the observation method, and any technique that can distinguish the recrystallized structure and the processed structure is acceptable. .

加工組織の面積率が1%以下では高強度化の効果が小さくなる。加工組織が実質的に0%の場合は通常の鋼板そのものであり、0〜1%の範囲に制御することは高強度化の効果が小さい割には焼鈍の温度制御等を非常に厳格にする必要があり現実的ではない。実際には必要とする強度レベルを得るように加工組織の面積率を制御するが、好ましくは5%以上、さらに好ましくは10%以上、さらに好ましくは20%以上、さらに好ましくは30%以上、さらに好ましくは50%以上、さらに好ましくは70%以上である。実質的に再結晶組織が観察されない加工組織100%としても何ら問題はない。この場合はまったく焼鈍しないいわゆるフルハードの状態か、または焼鈍を行うが再結晶開始以前の回復組織の状況となる。   When the area ratio of the processed structure is 1% or less, the effect of increasing the strength is reduced. When the processed structure is substantially 0%, it is a normal steel plate itself, and controlling within the range of 0 to 1% makes the temperature control of annealing very strict for the effect of increasing the strength is small. Needed and not realistic. In practice, the area ratio of the processed structure is controlled so as to obtain the required strength level, but preferably 5% or more, more preferably 10% or more, more preferably 20% or more, more preferably 30% or more, Preferably it is 50% or more, more preferably 70% or more. There is no problem even if the processed structure is 100% in which substantially no recrystallized structure is observed. In this case, the state is a so-called full-hard state in which annealing is not performed at all, or a state of a recovery structure in which annealing is performed but before recrystallization starts.

必要とする強度と磁気特性に応じて組織の調整を行うが、この調整は鋼成分、熱延履歴、冷延率、焼鈍温度、焼鈍時間や加熱速度、冷却速度等により行うことが可能で、当業者であれば数度の試行により何ら問題なく行うことが可能なものである。または、焼鈍を行って再結晶組織が全量を占めている鋼板に、再冷延等により歪を付与することで加工組織を形成することも可能である。この場合は通常、歪は巨視的に均一に付与されるため、組織の全量が加工組織となり加工組織100%に相当する。この場合は加工前の鋼成分、熱履歴、特性等を考慮し加工量により強度、磁気特性が制御されるが、これも当業者であれば数度の試行により何ら問題なく行うことが可能なものである。   The structure is adjusted according to the required strength and magnetic properties, but this adjustment can be made according to steel composition, hot rolling history, cold rolling rate, annealing temperature, annealing time, heating rate, cooling rate, etc. A person skilled in the art can carry out this without any problems after several trials. Alternatively, it is possible to form a processed structure by imparting strain to a steel sheet that has been annealed to occupy the entire amount of the recrystallized structure by recold rolling or the like. In this case, since strain is generally applied uniformly macroscopically, the entire amount of the tissue becomes a processed structure, which corresponds to 100% of the processed structure. In this case, the strength and magnetic properties are controlled by the amount of processing in consideration of the steel composition, heat history, characteristics, etc. before processing, but those skilled in the art can also perform this without any problems by several trials. Is.

再冷延等により加工組織を新たに形成した場合、加工量が低いと上述の組織観察法では明確に加工組織の存在を示すことが困難な場合があるが、発明の効果を十分に得る目安として断面組織観察における(板厚方向の結晶粒の大きさ)/(圧延方向の結晶粒の大きさ)を用いても良く、この値を0.9以下とする。0.8以下であれば高強度化の効果が明確に得られ、好ましくは0.7以下、さらに好ましくは0.6以下、さらに好ましくは0.5以下、さらに好ましくは0.3以下である。ただし、この値が過剰に低くなると、磁気特性の劣化が顕著となるので注意が必要である。   When a new processed structure is formed by re-cold rolling, etc., if the processing amount is low, it may be difficult to clearly show the presence of the processed structure by the above-described structure observation method, but it is a guideline that sufficiently obtains the effects of the invention. As (crystal grain size in the plate thickness direction) / (crystal grain size in the rolling direction) in cross-sectional structure observation may be used, and this value is set to 0.9 or less. If it is 0.8 or less, the effect of increasing the strength is clearly obtained, preferably 0.7 or less, more preferably 0.6 or less, more preferably 0.5 or less, and further preferably 0.3 or less. . However, it should be noted that if this value becomes excessively low, the magnetic characteristics will deteriorate significantly.

以上で述べた「加工組織」の効果は、「加工組織」中の転位密度によって評価することも可能である。加工組織における平均転位密度が1exp13/m2以上、さらに好ましくは3exp13/m2以上、さらに好ましくは1exp14/m2以上、さらに好ましくは3exp14/m2以上である。この転位密度は透過型電子顕微鏡等により計測される。鋼板全量が再結晶組織である通常の電磁鋼板においては、平均転位密度が1exp12/m2程度以下であることから、加工組織の分別には十分な差として10倍以上としている。 The effect of the “processed structure” described above can also be evaluated by the dislocation density in the “processed structure”. The average dislocation density in the processed structure is 1 exp13 / m 2 or more, more preferably 3 exp13 / m 2 or more, more preferably 1 exp14 / m 2 or more, and further preferably 3 exp14 / m 2 or more. This dislocation density is measured by a transmission electron microscope or the like. In an ordinary electrical steel sheet in which the total amount of the steel sheet is a recrystallized structure, the average dislocation density is about 1 exp12 / m 2 or less, and therefore, the difference is set to 10 times or more as a sufficient difference for sorting the processed structures.

以上のような加工組織は、加工組織を形成させる冷延等の加工工程と、加工組織を消失させる焼鈍工程を最適に制御することで最終製品に残存させる。   The processed structure as described above is left in the final product by optimally controlling a processing process such as cold rolling for forming the processed structure and an annealing process for eliminating the processed structure.

製造工程のある時点で相当量存在させた加工組織を、熱処理を全く行わない、もしくはそれに続く工程で完全に消失させずに最終製品に残存させる場合を想定すると、加工組織を形成する加工工程は、付与された歪量が5%以上、または加工工程による材料の引張強度の上昇量が50MPa以上であるものとする必要がある。また熱処理工程は、熱処理による材料の引張強度の低下代が600MPaを超えない、または1000℃以上で30秒以上保持しないものとする必要がある。   Assuming that the processed structure that has existed in a considerable amount at a certain point in the manufacturing process is not subjected to heat treatment at all, or is left in the final product without completely disappearing in the subsequent process, the processing process for forming the processed structure is The applied strain amount must be 5% or more, or the amount of increase in the tensile strength of the material due to the processing step must be 50 MPa or more. Further, in the heat treatment step, the reduction in tensile strength of the material due to the heat treatment does not exceed 600 MPa, or it is necessary not to hold at 1000 ° C. or higher for 30 seconds or longer.

付与する歪量は5%未満では強度の上昇が小さい割に磁気特性の劣化が大きくメリットが得られない。歪量は好ましくは10%以上、さらに好ましくは20%以上、さらに好ましくは30%以上、さらに好ましくは50%以上、通常の電磁鋼板で熱延後、焼鈍の前に行われる冷延程度の70%以上の冷間圧延を行うことも高強度化の点で本発明のメリットを最大に得ることが可能となる。   If the amount of strain applied is less than 5%, the magnetic property is greatly deteriorated for a small increase in strength, and no merit can be obtained. The amount of strain is preferably 10% or more, more preferably 20% or more, more preferably 30% or more, more preferably 50% or more. 70 degree of cold rolling performed after normal rolling and before annealing in a normal electromagnetic steel sheet. It is possible to obtain the maximum merit of the present invention from the viewpoint of increasing the strength by performing cold rolling of at least%.

同様に引張強度の上昇が50MPaより低いような加工ではメリットが得られない。好ましくは100MPa以上、さらに好ましくは200MPa以上、さらに好ましくは300MPa以上、さらに好ましくは400MPa以上である。   Similarly, no merit can be obtained in processing where the increase in tensile strength is lower than 50 MPa. Preferably it is 100 MPa or more, More preferably, it is 200 MPa or more, More preferably, it is 300 MPa or more, More preferably, it is 400 MPa or more.

以上の加工は通常、冷間圧延で行われるが、歪量または材質の変化が本発明の規定内であればこれにこだわる必要はなく、温間圧延、加工組織が消失しない程度の熱間圧延、さらには張力を付与することによる引張変形、レベラー等による曲げ変形、ショットブラストや鍛造など方法は問わない。むしろ歪の付与の方法により、転位構造が後述する本発明にとって好ましいものに変化させられるため、さらなる特性の向上も可能である。   The above processing is usually performed by cold rolling, but it is not necessary to stick to this as long as the amount of strain or material change is within the rules of the present invention, warm rolling, hot rolling to such an extent that the work structure is not lost. Furthermore, any method such as tensile deformation by applying tension, bending deformation by a leveler, shot blasting, forging, etc. may be used. Rather, since the dislocation structure is changed to a preferable one for the present invention described later by the method of imparting strain, further improvement in characteristics can be achieved.

加工に引き続く熱処理工程は、完全な再結晶組織にしてしまっては、本発明の特徴である加工組織の残存による高強度化のメリットを得ることができないため、熱処理による材料の引張強度の低下代が600MPaを超えないものとする。好ましくは500MPaを超えないことであるが、焼鈍を全く行わずいわゆるフルハードとした場合は、回復域とは言え焼鈍を行ったものより磁気特性が劣るので、低温域でも熱処理を行ってある程度は軟化させた方が、強度−磁気特性バランスの面からは好ましい。この観点から焼鈍による引張強度の低下代は好ましくは100〜400MPa、さらに好ましくは150〜300MPaで高い強度と良好な磁気特性を維持することが可能となる。   If the heat treatment process following processing is a complete recrystallized structure, it is not possible to obtain the advantage of high strength due to the remaining processed structure, which is a feature of the present invention. Shall not exceed 600 MPa. Preferably, it does not exceed 500 MPa, but if it is a so-called full hard without any annealing, the magnetic properties are inferior to those subjected to annealing although it is a recovery region, so that heat treatment is performed to a certain extent even in a low temperature region. Softening is preferable from the viewpoint of balance between strength and magnetic characteristics. From this point of view, the reduction in tensile strength due to annealing is preferably 100 to 400 MPa, more preferably 150 to 300 MPa, so that high strength and good magnetic properties can be maintained.

またこの時の熱履歴としては、1000℃以上で30秒以上保持しないことが好ましく、これを超えるとCuまたはNbにより再結晶を抑制している本発明鋼と言えども、本発明の特徴である高強度化のメリットが失われる。好ましくは950℃を超えない温度、さらに好ましくは900℃を超えない温度とするが、一方で通常の電磁鋼板とは大きく異なる温度で焼鈍を行うことは炉温の大幅な変更が必要で、作業性の低下を招くばかりでなく、未燃焼ガスの発生により前述のように安全性にも問題を生ずる場合がある。本発明では極低温焼鈍に起因するこれらの課題を解決することが目的の一つであるため、焼鈍温度の下限を設定する。この観点から好ましくは550℃以上、さらに好ましくは600℃以上、さらに好ましくは650℃以上、さらに好ましくは700℃以上で、例えば高Si系材料でCuを適量添加することで、通常の低Si系材料が焼鈍される750〜800℃程度の温度でも全く再結晶しない完全回復組織である発明鋼を得ることができる。   Moreover, as a heat history at this time, it is preferable not to hold | maintain at 1000 degreeC or more for 30 seconds or more, and even if it is this invention steel which suppresses recrystallization by Cu or Nb if it exceeds this, it is the characteristics of this invention. The merit of high strength is lost. Preferably, the temperature does not exceed 950 ° C., and more preferably does not exceed 900 ° C. However, annealing at a temperature significantly different from that of a normal electromagnetic steel sheet requires a significant change in the furnace temperature. As described above, there is a case where not only the performance is deteriorated but also the safety is caused by the generation of unburned gas. In the present invention, since it is one of the objects to solve these problems caused by cryogenic annealing, the lower limit of the annealing temperature is set. From this viewpoint, it is preferably 550 ° C. or higher, more preferably 600 ° C. or higher, more preferably 650 ° C. or higher, more preferably 700 ° C. or higher. An invention steel having a completely recovered structure that does not recrystallize at all even at a temperature of about 750 to 800 ° C. at which the material is annealed can be obtained.

焼鈍時間は焼鈍の効果を及ぼすためには少なくとも30秒は必要である。低温となるほど完全再結晶までの時間が長くなるため、焼鈍時間により加工組織の消失量の調節が容易となる。好ましい焼鈍時間は成分や熱処理までの製造履歴等に依存するため一義的に明示はできないが、目安は950℃であれば5分以内、850℃であれば1時間以内、800℃であれば5時間以内、700℃であれば10時間程度である。当業者であれば数度の試行により何ら問題なく発明の効果を享受できる条件を見出すことが可能なものである。   An annealing time of at least 30 seconds is necessary to exert the effect of annealing. Since the time until complete recrystallization becomes longer as the temperature becomes lower, it becomes easier to adjust the disappearance amount of the processed structure by the annealing time. The preferred annealing time depends on the components and the manufacturing history up to the heat treatment and cannot be clearly specified, but the standard is within 5 minutes at 950 ° C, within 1 hour at 850 ° C, and 5 at 800 ° C. Within 700 hours, it is about 10 hours at 700 ° C. A person skilled in the art can find out the conditions under which the effects of the invention can be enjoyed without any problems after several trials.

また、通常の再結晶焼鈍またはそれより低温で焼鈍を行い、通常の鋼板のような完全再結晶組織または部分再結晶や回復組織とした後、再冷延を行い、最終製品に加工組織を残存させることも可能である。この場合の加工条件も上述と同様に付与する歪量が5%以上または加工工程による材料の引張強度の上昇量が50MPa以上であるものとする。好ましい範囲も同様である。このように焼鈍工程である程度軟質化した材料をさらに再冷延で硬質化する場合には簡単に材料の薄手化が可能となり、従来難製造材であった極薄電磁鋼板の生産性も向上する。本発明によるこのような超極薄電磁鋼板は、特に高周波磁場下で使用される場合の渦電流損失を抑制できるため、鉄損低減に有効となるというメリットもある。   In addition, normal recrystallization annealing or annealing at a lower temperature is performed to make a complete recrystallization structure or partial recrystallization or recovery structure like a normal steel sheet, and then re-cold rolling to leave the processed structure in the final product. It is also possible to make it. As for the processing conditions in this case, the amount of strain to be applied is 5% or more, or the amount of increase in the tensile strength of the material due to the processing step is 50 MPa or more as described above. The preferable range is also the same. In this way, when the material softened to some extent in the annealing process is further hardened by re-cooling, the material can be easily thinned, and the productivity of the ultra-thin electrical steel sheet, which was conventionally difficult to manufacture, is also improved. . Such an ultra-thin electromagnetic steel sheet according to the present invention can suppress eddy current loss particularly when used under a high-frequency magnetic field, and thus has an advantage of being effective in reducing iron loss.

なお現状でも本発明の一方法のように再結晶焼鈍を行った鋼板に1〜20%程度のスキンパス圧延を行い製品として出荷されている電磁鋼板、いわゆるセミプロセス電磁鋼板がある。これはスキンパスを施した板が製品として出荷され、モーターメーカーでモーターの部品として加工された後、再結晶が十分に起きるような条件で焼鈍を行い、歪誘起粒成長を起こさせることで粗大な再結晶組織を得、磁気特性の改善を図る手段で、スキンパス法とよばれることもあるが、この方法においては部材としての使用時には加工組織を残存させることはない。   At present, there are electrical steel sheets, so-called semi-process electrical steel sheets, which have been subjected to skin pass rolling of about 1 to 20% on steel sheets subjected to recrystallization annealing as in the method of the present invention and are shipped as products. This is because a skin-passed plate is shipped as a product, processed as a motor part by a motor manufacturer, and then annealed under conditions that cause sufficient recrystallization to cause strain-induced grain growth. A means for obtaining a recrystallized structure and improving magnetic properties is sometimes referred to as a skin pass method, but in this method, the processed structure is not left at the time of use as a member.

本発明は本質的にこの鋼板および方法とは異なっており、電気機器の部品として加工した後には基本的には熱処理は行わない。鋼板の接着や表面制御等で何らかの熱処理を行う場合にも本発明で規定する加工組織が消失せず、本発明の規定内にとどまるものに限定する。これは加工組織が消失または本発明の規定範囲から外れると、実モーターとして使用している状況で必要となる鋼板の特に強度が不足することになるからである。この熱処理の温度の目安は、上述の鋼板焼鈍工程における温度条件と同一である。最適な条件は鋼板を製造する当業者の協力の下で、または協力がなくとも通常の電気機器の製造者であれば数度の試行により何ら問題なく発明の効果を享受できる条件を見出すことが可能なものである。   The present invention is essentially different from the steel plate and method, and basically no heat treatment is performed after being processed as a part of an electrical device. Even when any heat treatment is performed for adhesion or surface control of a steel plate, the processed structure defined in the present invention is not lost, and the present invention is limited to those that remain within the definition of the present invention. This is because when the processed structure disappears or deviates from the specified range of the present invention, the strength of the steel sheet required in the situation where it is used as an actual motor will be insufficient. The standard of the temperature of this heat processing is the same as the temperature conditions in the above-mentioned steel plate annealing process. Optimal conditions are those with the cooperation of those skilled in the art of manufacturing steel sheets, or those who are ordinary electrical equipment manufacturers without cooperation can find the conditions that can enjoy the effects of the invention without any problems after several trials. It is possible.

なお、厳密には通常の電磁鋼板においても様々な部材として使用するにはメーカー等において剪断やかしめ等の加工が行われ、これにより鋼板中に導入された歪が少なからず残存し、部材特性に影響を及ぼすことが知られている。このような歪は鋼板の加工部位のみに入るもので、本発明で鋼板全面に意識的に残存させる歪とは異なり、部材全体としての高強度化にはほとんど寄与しないものである。   Strictly speaking, in order to use various members in ordinary electromagnetic steel sheets, processing such as shearing and caulking is performed by a manufacturer or the like, so that a considerable amount of distortion introduced into the steel sheets remains, and the characteristics of the members are reduced. It is known to affect. Such strains enter only the processed portion of the steel sheet, and unlike the strain that consciously remains on the entire surface of the steel sheet in the present invention, it hardly contributes to increasing the strength of the entire member.

本発明のように材料中に加工組織を残存させても良好な磁気特性を維持できる原因には明確ではないが、以下のように考えられる。従来、加工組織は磁気特性を大きく劣化させるものとして材料の高強度化の手段としては顧みられず、高強度化は結晶粒微細化、固溶強化、析出強化等により行われてきた。しかし、材料の高強度化への要求は高まる一方であり、従来の高強度化手段は顕著に磁気特性を劣化させるような条件の領域にまで踏み込まざるを得なくなっており、このような状況で改めて加工組織を活用した高強度化手段を見た場合、それほど不利な方法とは言えなくなっていることが一面ではあると思われる。   The reason why good magnetic properties can be maintained even if the processed structure remains in the material as in the present invention is not clear, but is considered as follows. Conventionally, the processed structure is not considered as a means for increasing the strength of the material because it greatly deteriorates the magnetic properties, and the increase in the strength has been performed by crystal grain refinement, solid solution strengthening, precipitation strengthening and the like. However, the demand for higher strength of materials is increasing, and conventional strength enhancement means have to step into the area of conditions that significantly deteriorates magnetic properties. If we look at the means for strengthening using the processed structure again, it seems to be one aspect that it is no longer a disadvantageous method.

また従来、加工組織の影響は材料に冷間加工を施し、歪量が比較的小さい範囲でのみ検討されていた。このような条件では材料中の転位構造は比較的均一で、いわゆるセル構造や回復組織のような比較的安定な転位配置を形成したものとはなっていなかったと予想される。この程度の加工量では高強度化手段としては全く魅力がないものであったうえに、このような転位構造では転位は磁壁移動の障害としかならず磁気特性の劣化は著しく、実用化されなかったものと思われる。   Conventionally, the influence of the processed structure has been studied only in the range where the material is cold worked and the amount of strain is relatively small. Under such conditions, the dislocation structure in the material is relatively uniform, and it is expected that a relatively stable dislocation arrangement such as a so-called cell structure or a recovery structure has not been formed. In this amount of processing, it was not attractive at all as a means of increasing the strength, and in such a dislocation structure, the dislocation only became an obstacle to the domain wall movement and the deterioration of the magnetic properties was remarkable and was not put into practical use. I think that the.

一方、本発明のように比較的高歪量の冷間加工を行った場合や、焼鈍により回復した加工組織においては、転位は比較的安定なセル構造を形成している。セルの大きさは通常直径1μm以下で0.1μm程度にもなっており、セルの境界は転位で形成されており、隣接するセルとの結晶方位差が小さいことを除けば一般の結晶粒と同様の構造を有しており、一種の超微細結晶粒と見ることが可能で磁壁移動の障害とはなりにくくなったものと考えられる。またこのような超微細結晶粒は強度も高く、加工が必要な場合の延性もそれなりに有しており、強度と磁性のバランスを考えると十分に実用化が可能なレベルにあると考える。   On the other hand, dislocations form a relatively stable cell structure when a relatively high strain amount of cold working is performed as in the present invention, or in a processed structure recovered by annealing. The size of the cell is usually less than 1 μm in diameter and is about 0.1 μm, and the cell boundary is formed by dislocations, except that the crystal orientation difference between adjacent cells is small. It has a similar structure, and can be regarded as a kind of ultrafine crystal grains, and is considered to be less likely to be an obstacle to domain wall movement. Further, such ultrafine crystal grains have high strength and have a certain degree of ductility when processing is necessary. Considering the balance between strength and magnetism, the ultrafine crystal grains are considered to be sufficiently practical.

また、加工組織が存在する本発明鋼においても鉄損において特に渦電流損失の寄与が大きくなる高周波磁場下で使用されるような用途においては、Si,Mn,Al,Cr,Ni等の添加は重要なものであり、加工硬化挙動や再結晶挙動などの転位挙動に大きな影響を及ぼすため、電磁鋼板をベースとした転位強化鋼の開発は、自動車や容器等に用いられるいわゆる加工用普通鋼におけるものとは全く異なった意味を有する。   In addition, in the steel of the present invention in which a processed structure exists, addition of Si, Mn, Al, Cr, Ni, etc. is not necessary in applications where the iron loss is used in a high-frequency magnetic field where the contribution of eddy current loss is particularly large. The development of dislocation strengthened steels based on electrical steel sheets has become important in so-called ordinary steels for processing used in automobiles and containers, because they are important and have a great influence on dislocation behavior such as work hardening behavior and recrystallization behavior. It has a completely different meaning.

次に本発明で特徴的に存在する可能性があるCu金属相またはNb析出物について説明する。本発明ではCu金属相またはNb析出物は冷延後の焼鈍時の再結晶を抑制する効果があるので、本発明でこれを積極的に利用することも可能であるが、同時に固溶Cuまたは固溶Nbに比べると磁気特性を劣化させる場合もある。Cu金属相またはNb析出物を利用する場合は、遅くともこの再結晶が完了するまでに鋼中に存在している必要がある。冷延前の熱履歴を制御して形成することも可能であるし、冷延後の焼鈍時に再結晶が完了する前の加熱工程で形成することも可能である。   Next, the Cu metal phase or Nb precipitate that may be characteristically present in the present invention will be described. In the present invention, the Cu metal phase or the Nb precipitate has an effect of suppressing recrystallization during annealing after cold rolling, so that it can be actively used in the present invention. In some cases, the magnetic properties may be deteriorated as compared with solute Nb. When using a Cu metal phase or Nb precipitate, it must be present in the steel by the end of this recrystallization at the latest. It can be formed by controlling the heat history before cold rolling, or can be formed by a heating process before recrystallization is completed during annealing after cold rolling.

本発明ではこの析出物形態を精緻に制御するための熱履歴は特に限定するものではなく、本発明で規定している再結晶を制御するための熱履歴において、鋼成分によっては何がしかのCu金属相またはNb析出物が生成し、有効な寄与をするものである。これらのCu金属相またはNb析出物の析出挙動については一般的に知られている知見と大きく変わるものではなく、通常の技術レベルを有する当業者であれば数度の試行の後、適当な範囲に制御可能なものである。   In the present invention, the thermal history for precisely controlling the form of the precipitate is not particularly limited. In the thermal history for controlling recrystallization defined in the present invention, depending on the steel components, A Cu metal phase or Nb precipitate is generated and contributes effectively. The precipitation behavior of these Cu metal phases or Nb precipitates is not significantly different from the generally known knowledge, and those skilled in the art having ordinary skill level will have an appropriate range after several trials. Can be controlled.

本発明者はすでに電磁鋼板中にCu金属相を形成し高強度化を図る技術を出願しているが、Cu金属相に関してはこの出願との組合わせを行うことは本発明の効果を何ら損なうものではない。特に限定するものではないが、本発明鋼中に存在させるCu金属相またはNb析出物の直径は0.20μm以下程度である。これを超えると再結晶遅延の効率が低下し、多量の金属相が必要となるだけでなく磁気特性への悪影響が大きくなる。また同様に特に限定するものではないが、Cu金属相またはNb析出物の数密度はCu、NbやC含有量と析出相のサイズとの関係で取りうる範囲に制限はあるが、20個/μm3以上程度である。 The present inventor has already filed a technology for forming a Cu metal phase in a magnetic steel sheet to increase the strength. However, combining the Cu metal phase with this application impairs the effects of the present invention. It is not a thing. Although it does not specifically limit, the diameter of the Cu metal phase or Nb precipitate which exists in this invention steel is about 0.20 micrometer or less. Beyond this, the efficiency of recrystallization delay is reduced, and not only a large amount of metal phase is required, but also the adverse effect on the magnetic properties is increased. Similarly, although not particularly limited, the number density of the Cu metal phase or Nb precipitate is limited in the range that can be taken in relation to the content of Cu, Nb or C and the size of the precipitated phase, but 20 / μm 3 That's about it.

なお、本発明の効果は通常電磁鋼板の表面に形成される表面皮膜の有無および種類によらず、さらに製造工程にはよらないため無方向性または方向性の電磁鋼板に適用できる。特に本発明鋼は特性の面内異方性において従来の再結晶組織による鋼板とは大きく異なった特徴を付与することができる。磁束密度について見ると、冷延ままのフルハードの状態ではコイルの圧延方向から45°方向(D方向)の特性が圧延方向(L方向)またはコイル幅方向(C方向)の特性より高いものとなっている。通常の再結晶組織を有する電磁鋼板ではほとんどの場合、D方向の特性はLまたはC方向の特性より低くなっていることを考えると、再結晶・回復の程度を適当に調整し中間的な再結晶段階に制御することにより、面内異方性がほとんどない鋼板を得ることが容易に可能となる。面内異方性がほとんどないことは回転機等、用途によっては非常に好ましい特性を発揮できる特徴を有する鋼板である。   The effect of the present invention can be applied to a non-oriented or directional electrical steel sheet because it does not depend on the manufacturing process, regardless of the presence and type of a surface film usually formed on the surface of the electrical steel sheet. In particular, the steel according to the present invention can impart characteristics that are greatly different from those of steel sheets having a conventional recrystallization structure in the in-plane anisotropy of characteristics. Looking at the magnetic flux density, the characteristics in the 45 ° direction (D direction) from the coil rolling direction are higher than the characteristics in the rolling direction (L direction) or the coil width direction (C direction) in the fully hard state as cold rolled. It has become. In most cases of electrical steel sheets having a normal recrystallized structure, the characteristics in the D direction are lower than those in the L or C direction. By controlling to the crystallization stage, it is possible to easily obtain a steel sheet having almost no in-plane anisotropy. The fact that there is almost no in-plane anisotropy is a steel sheet having a feature that can exhibit very favorable characteristics depending on applications such as a rotating machine.

用途も特に限定されるものではなく、家電または自動車等で用いられるモーターのローター用途の他、強度と磁気特性が求められる全ての用途に適用される。   The use is not particularly limited, and it is applicable to all uses where strength and magnetic properties are required in addition to the use of a rotor of a motor used in home appliances or automobiles.

表1に成分を有する200mm厚の鋼片から、表2、表3(表2のつづき)に示す製造条件で製品板を製造した。一部の材料についてはモーター製造メーカーでの熱処理を想定した熱処理(ユーザー焼鈍)を行った。これらについて、JIS5号試験片による機械的特性、および55mm角のSST試験による鉄損W10/400と磁束密度B25で特性を評価した。機械的特性および磁気特性ともコイルの圧延方向、45°方向およびその直角方向について、以下の式で平均値を求めた。
X=(X0+2×X45+X90)/4
ここで、X0、X45、X90はコイルの圧延方向、45°方向およびその直角方向の特性である。
Product plates were produced from steel pieces having a thickness of 200 mm having the components shown in Table 1 under the production conditions shown in Tables 2 and 3 (continued in Table 2). Some materials were heat-treated (user annealed) assuming heat treatment at the motor manufacturer. These characteristics were evaluated in mechanical properties, and 55mm angle iron loss W 10/400 and the magnetic flux density B 25 by SST test by JIS5 No. specimen. For both the mechanical characteristics and the magnetic characteristics, the average value was determined by the following formula for the rolling direction of the coil, the 45 ° direction, and the direction perpendicular thereto.
X = (X 0 + 2 × X 45 + X 90 ) / 4
Here, X 0 , X 45 , and X 90 are characteristics of the coil rolling direction, 45 ° direction, and its perpendicular direction.

結果を表2、表3に示す。結果から明らかなように、本発明の条件にて製造した材料は硬質で、さらに磁気特性も優れている。   The results are shown in Tables 2 and 3. As is apparent from the results, the material produced under the conditions of the present invention is hard and has excellent magnetic properties.

なお10番の例は、鋼板としては開発鋼の例であるが、部材としての使用を想定したモーター製造メーカー相当の熱処理により、完全に再結晶が起きてしまった場合である。このような使用法が想定される用途においては本発明で重要な高強度化という目的を達成するための特性は消失してしまうので注意が必要である。   The example of No. 10 is an example of developed steel as a steel plate, but is a case where recrystallization has completely occurred by heat treatment equivalent to a motor manufacturer assuming use as a member. In applications where such usage is assumed, care must be taken because the characteristics for achieving the purpose of increasing strength, which is important in the present invention, are lost.

Figure 2006070348
Figure 2006070348

Figure 2006070348
Figure 2006070348

Figure 2006070348
Figure 2006070348

Claims (14)

質量%で、C:0.060%以下、Si:0.2〜3.5%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、Cu:0.1〜8.0%、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼板内部に加工組織が残存することを特徴とする高強度電磁鋼板。   In mass%, C: 0.060% or less, Si: 0.2 to 3.5%, Mn: 0.05 to 3.0%, P: 0.30% or less, S: 0.040% or less, Al: 2.50% or less, Cu: 0.1-8.0%, N: 0.020% or less, the balance is Fe and inevitable impurities, and the processed structure remains inside the steel plate. High strength electrical steel sheet characterized by 質量%で、C:0.060%以下、Si:0.2〜3.5%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、Nb:0.03〜8.0%、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼板内部に加工組織が残存することを特徴とする高強度電磁鋼板。   In mass%, C: 0.060% or less, Si: 0.2 to 3.5%, Mn: 0.05 to 3.0%, P: 0.30% or less, S: 0.040% or less, Al: 2.50% or less, Nb: 0.03 to 8.0%, N: 0.020% or less, the balance is Fe and unavoidable impurities, and the processed structure remains inside the steel plate. High strength electrical steel sheet characterized by 質量%で、C:0.060%以下、Si:0.2〜3.5%、Mn:0.05〜3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、Cu:0.1〜8.0%、Nb:0.03〜8.0%、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼板内部に加工組織が残存することを特徴とする高強度電磁鋼板。   In mass%, C: 0.060% or less, Si: 0.2 to 3.5%, Mn: 0.05 to 3.0%, P: 0.30% or less, S: 0.040% or less, Al: 2.50% or less, Cu: 0.1-8.0%, Nb: 0.03-8.0%, N: 0.020% or less, the balance Fe and unavoidable impurities, A high-strength electrical steel sheet characterized in that a processed structure remains in the steel sheet. 鋼板内部に主としてCuからなる金属相を含有することを特徴とする請求項1もしくは3に記載の高強度電磁鋼板。   The high-strength electrical steel sheet according to claim 1 or 3, wherein the steel sheet contains a metal phase mainly composed of Cu. 鋼板内部の金属元素が主としてNbの炭化物または窒化物を含有することを特徴とする請求項2もしくは3に記載の高強度電磁鋼板。   4. The high-strength electrical steel sheet according to claim 2, wherein the metal element inside the steel sheet mainly contains Nb carbide or nitride. 鋼成分が質量%でさらに、Ti:1.0%以下、B:0.010%以下、Ni:5.0%以下、Cr:15.0%以下の1種または2種以上を含有することを特徴とする請求項1〜5のいずれかの項に記載の高強度電磁鋼板。   The steel component further contains one or more of Ti: 1.0% or less, B: 0.010% or less, Ni: 5.0% or less, Cr: 15.0% or less in terms of mass%. A high-strength electrical steel sheet according to any one of claims 1 to 5. 鋼成分が質量%でさらに、Mo,W,Sn,Sb,Mg,Ca,Ce,Coの1種または2種以上を合計で0.5%以下含有することを特徴とする請求項1〜6のいずれかの項に記載の高強度電磁鋼板。   The steel component further contains at least 0.5% in total of one or more of Mo, W, Sn, Sb, Mg, Ca, Ce, and Co in mass%. The high-strength electrical steel sheet according to any one of the above. 前記鋼板内部に存在する加工組織が、断面観察における面積率で1%以上である請求項1〜7のいずれかの項に記載の高強度電磁鋼板。   The high-strength electrical steel sheet according to any one of claims 1 to 7, wherein a processed structure existing inside the steel sheet is 1% or more in terms of an area ratio in cross-sectional observation. 前記鋼板内部の加工組織における平均転位密度が1exp13/m2以上である請求項1〜8のいずれかの項に記載の高強度電磁鋼板。 The high-strength electrical steel sheet according to any one of claims 1 to 8, wherein an average dislocation density in a processed structure inside the steel sheet is 1 exp13 / m 2 or more. 請求項1〜9のいずれかの項に記載の鋼板を製造するに際し、最終の冷間加工工程において、引張強度が50MPa以上上昇する加工を付与した後、熱処理前後の引張強度の低下代が600MPa以上となるような熱処理を施さないことを特徴とする高強度電磁鋼板の製造方法。   In producing the steel sheet according to any one of claims 1 to 9, after the processing of increasing the tensile strength by 50 MPa or more in the final cold working step, the allowance for reducing the tensile strength before and after the heat treatment is 600 MPa. The manufacturing method of the high intensity | strength electrical steel sheet characterized by not performing the heat processing which becomes the above. 最終の冷間加工工程において5%以上の歪を付与することを特徴とする請求項10記載の高強度電磁鋼板の製造方法。   The method for producing a high-strength electrical steel sheet according to claim 10, wherein a strain of 5% or more is applied in the final cold working step. 最終の冷間加工後の熱処理として、1000℃以上で30秒以上保持するような熱処理を施さないことを特徴とする請求項10もしくは11に記載の高強度電磁鋼板の製造方法。   The method for producing a high-strength electrical steel sheet according to claim 10 or 11, wherein the heat treatment after the final cold working is not performed such that the heat treatment is maintained at 1000 ° C or higher for 30 seconds or longer. 最終の冷間加工後の熱処理として、950℃を超えない温度域で30秒以上保持する熱処理を行うことを特徴とする請求項10もしくは11に記載の高強度電磁鋼板の製造方法。   The method for producing a high-strength electrical steel sheet according to claim 10 or 11, wherein the heat treatment after the final cold working is performed for 30 seconds or more in a temperature range not exceeding 950 ° C. 請求項1〜9のいずれかの項に記載の高強度電磁鋼板を部品として加工した後、鋼板中の加工組織が消失するような熱処理を施さないことを特徴とする高強度電磁鋼板の加工方法。   A method for processing a high-strength electrical steel sheet, characterized in that after the high-strength electrical steel sheet according to any one of claims 1 to 9 is processed as a part, no heat treatment is performed so that the processed structure in the steel sheet disappears. .
JP2004258211A 2004-09-06 2004-09-06 High-strength electrical steel sheet and manufacturing method and processing method thereof Active JP4510559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258211A JP4510559B2 (en) 2004-09-06 2004-09-06 High-strength electrical steel sheet and manufacturing method and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258211A JP4510559B2 (en) 2004-09-06 2004-09-06 High-strength electrical steel sheet and manufacturing method and processing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010026598A Division JP5445194B2 (en) 2010-02-09 2010-02-09 Manufacturing method and processing method of high strength electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006070348A true JP2006070348A (en) 2006-03-16
JP4510559B2 JP4510559B2 (en) 2010-07-28

Family

ID=36151278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258211A Active JP4510559B2 (en) 2004-09-06 2004-09-06 High-strength electrical steel sheet and manufacturing method and processing method thereof

Country Status (1)

Country Link
JP (1) JP4510559B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016278A (en) * 2005-07-07 2007-01-25 Sumitomo Metal Ind Ltd Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JP2007023351A (en) * 2005-07-19 2007-02-01 Sumitomo Metal Ind Ltd Method for producing non-oriented magnetic steel sheet for rotor
JP2007031755A (en) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet for rotor
JP2007039721A (en) * 2005-08-01 2007-02-15 Sumitomo Metal Ind Ltd Method for producing non-oriented electrical steel sheet for rotor
WO2007144964A1 (en) 2006-06-16 2007-12-21 Nippon Steel Corporation High-strength electromagnetic steel sheet and process for producing the same
WO2008013015A1 (en) * 2006-07-26 2008-01-31 Nippon Steel Corporation Non-oriented magnetic steel sheet with high strength
JP2010090474A (en) * 2008-09-11 2010-04-22 Jfe Steel Corp Non-oriented electrical steel sheet and method for production thereof
US7922834B2 (en) 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
JP2011089204A (en) * 2010-11-08 2011-05-06 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet for rotor and production method therefor
CN102134678A (en) * 2011-02-25 2011-07-27 华北电力大学 Copper-iron alloy material for novel energy-saving motor and preparation method thereof
JP2012149337A (en) * 2010-12-28 2012-08-09 Jfe Steel Corp High strength electromagnetic steel sheet, and manufacturing method therefor
JP2017036491A (en) * 2015-08-14 2017-02-16 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet excellent in iron loss and manufacturing method therefor
JP2017088968A (en) * 2015-11-12 2017-05-25 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet for rotor and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686625B2 (en) * 1987-03-11 1994-11-02 新日本製鐵株式会社 High tensile strength non-oriented electrical steel sheet manufacturing method
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JP2006009048A (en) * 2004-06-22 2006-01-12 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet for rotor and production method therefor
JP2006070296A (en) * 2004-08-31 2006-03-16 Sumitomo Metal Ind Ltd Non-oriented electrical steel sheet for rotor, and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686625B2 (en) * 1987-03-11 1994-11-02 新日本製鐵株式会社 High tensile strength non-oriented electrical steel sheet manufacturing method
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JP2006009048A (en) * 2004-06-22 2006-01-12 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet for rotor and production method therefor
JP2006070296A (en) * 2004-08-31 2006-03-16 Sumitomo Metal Ind Ltd Non-oriented electrical steel sheet for rotor, and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016278A (en) * 2005-07-07 2007-01-25 Sumitomo Metal Ind Ltd Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
US8157928B2 (en) 2005-07-07 2012-04-17 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
US7922834B2 (en) 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
JP2007023351A (en) * 2005-07-19 2007-02-01 Sumitomo Metal Ind Ltd Method for producing non-oriented magnetic steel sheet for rotor
JP4710458B2 (en) * 2005-07-19 2011-06-29 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for rotor
JP4710465B2 (en) * 2005-07-25 2011-06-29 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for rotor
JP2007031755A (en) * 2005-07-25 2007-02-08 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet for rotor
JP2007039721A (en) * 2005-08-01 2007-02-15 Sumitomo Metal Ind Ltd Method for producing non-oriented electrical steel sheet for rotor
JP4586669B2 (en) * 2005-08-01 2010-11-24 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for rotor
WO2007144964A1 (en) 2006-06-16 2007-12-21 Nippon Steel Corporation High-strength electromagnetic steel sheet and process for producing the same
JPWO2007144964A1 (en) * 2006-06-16 2009-10-29 新日本製鐵株式会社 High strength electrical steel sheet and manufacturing method thereof
WO2008013015A1 (en) * 2006-07-26 2008-01-31 Nippon Steel Corporation Non-oriented magnetic steel sheet with high strength
KR101070090B1 (en) 2006-07-26 2011-10-04 신닛뽄세이테쯔 카부시키카이샤 Non-oriented magnetic steel sheet with high strength
US8557058B2 (en) 2006-07-26 2013-10-15 Nippon Steel & Sumitomo Metal Corporation High-strength non-oriented electrical steel sheet
JP2010090474A (en) * 2008-09-11 2010-04-22 Jfe Steel Corp Non-oriented electrical steel sheet and method for production thereof
JP2011089204A (en) * 2010-11-08 2011-05-06 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet for rotor and production method therefor
JP2012149337A (en) * 2010-12-28 2012-08-09 Jfe Steel Corp High strength electromagnetic steel sheet, and manufacturing method therefor
CN102134678A (en) * 2011-02-25 2011-07-27 华北电力大学 Copper-iron alloy material for novel energy-saving motor and preparation method thereof
JP2017036491A (en) * 2015-08-14 2017-02-16 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet excellent in iron loss and manufacturing method therefor
JP2017088968A (en) * 2015-11-12 2017-05-25 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet for rotor and manufacturing method therefor

Also Published As

Publication number Publication date
JP4510559B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4546713B2 (en) Final product of high-strength electrical steel sheet with excellent magnetic properties, its use and manufacturing method
EP2031079B1 (en) High-strength electromagnetic steel sheet and process for producing the same
JP5000136B2 (en) High-strength electrical steel sheet, shape processed parts thereof, and manufacturing method thereof
RU2398894C1 (en) Sheet of high strength electro-technical steel and procedure for its production
KR101011965B1 (en) Highly strong, non-oriented electrical steel sheet and method for manufacture thereof
JP5223190B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4469268B2 (en) Manufacturing method of high strength electrical steel sheet
JP2004084053A (en) Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JP5267747B2 (en) High strength non-oriented electrical steel sheet
JP2007039721A (en) Method for producing non-oriented electrical steel sheet for rotor
JP4833523B2 (en) Electrical steel sheet and manufacturing method thereof
WO2004050934A1 (en) Non-oriented magnetic steel sheet and method for production thereof
JP4510559B2 (en) High-strength electrical steel sheet and manufacturing method and processing method thereof
JP4414727B2 (en) Magnetic steel sheet with excellent magnetic properties and deformation resistance and manufacturing method thereof
JP2007186791A (en) High strength non-oriented electrical steel sheet and method for manufacture the same
JP5445194B2 (en) Manufacturing method and processing method of high strength electrical steel sheet
JP5397252B2 (en) Electrical steel sheet and manufacturing method thereof
JP4157454B2 (en) High strength electrical steel sheet and its manufacturing method
JP6801464B2 (en) Non-oriented electrical steel sheet
JP5130637B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP4932782B2 (en) Electrical steel sheet, electrical parts using the same, and manufacturing method thereof
JP2006169615A (en) Electrical steel sheet with excellent high-frequency magnetic property, and its manufacturing method
JP6852965B2 (en) Electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4510559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350