JP2006070287A - Diamond locally wired electrode - Google Patents

Diamond locally wired electrode Download PDF

Info

Publication number
JP2006070287A
JP2006070287A JP2004251742A JP2004251742A JP2006070287A JP 2006070287 A JP2006070287 A JP 2006070287A JP 2004251742 A JP2004251742 A JP 2004251742A JP 2004251742 A JP2004251742 A JP 2004251742A JP 2006070287 A JP2006070287 A JP 2006070287A
Authority
JP
Japan
Prior art keywords
diamond
substrate
electrode
electrodes
local wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004251742A
Other languages
Japanese (ja)
Other versions
JP4877641B2 (en
Inventor
Yuichiro Seki
裕一郎 関
Kenji Izumi
健二 泉
Takahiro Imai
貴浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004251742A priority Critical patent/JP4877641B2/en
Publication of JP2006070287A publication Critical patent/JP2006070287A/en
Application granted granted Critical
Publication of JP4877641B2 publication Critical patent/JP4877641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diamond locally wired electrode in which electrode interval is sufficiently reduced, and an efficiency as an electrode, and the sensitivity and response speed of the sensor are improved by solving the problem that it is difficult to improve the efficiency of electric power by reducing the electrode interval sufficiently and to increase the sensitivity and response speed of the sensor sufficiently in a conventional water treatment device using the diamond electrodes. <P>SOLUTION: The diamond locally wired electrode is a composite substrate composed of a substrate and an conductive diamond film applied on the surface of the substrate. The conductive diamond film is electrically separated into at least two or more regions, and they are divided into pair for every pair. Then an electric potential is applied between each pair, thereby causing an electrochemical reaction between the electrodes. The water treatment device, an electrochemical sensor and a filter use the diamond locally wired electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水処理装置、電気化学センサー、濾過フィルター等に用いるダイヤモンド局所配線電極およびその応用に関するものである。   The present invention relates to a diamond local wiring electrode used for a water treatment device, an electrochemical sensor, a filtration filter, and the like, and its application.

ダイヤモンドは通常は絶縁体であるが、硼素、窒素、リン等の適当な不純物を添加することで導電性を付与することができる。中でも硼素を添加した場合、ダイヤモンドの抵抗は低くなり良好な導電体となる。このような導電性ダイヤモンドは半導体ダイヤモンド素子やセンサー、工具、電気化学反応を利用した電解用電極などに用いられている。このような用途の中で、高感度の電気化学センサーとしても盛んに研究が行われている。
ダイヤモンド電極を用いて水処理を行う例としては、例えば特許文献1(ペルメレック)に見られるようにメッシュや多孔性の板状基板にダイヤ膜を被覆した電極をイオン交換膜を介して背中合わせに貼り合わせる、といったものがある。
このような場合、例えば水処理装置として用いる場合には電極間距離を小さくすることによって電圧を小さくすることができ、無駄な水を電気分解が抑えられ水処理の電力効率を上げることができる。
Diamond is usually an insulator, but conductivity can be imparted by adding appropriate impurities such as boron, nitrogen, and phosphorus. In particular, when boron is added, the resistance of diamond is lowered and a good conductor is obtained. Such conductive diamond is used for semiconductor diamond elements, sensors, tools, electrodes for electrolysis utilizing an electrochemical reaction, and the like. In such applications, active research is being conducted as a highly sensitive electrochemical sensor.
As an example of performing water treatment using a diamond electrode, for example, as seen in Patent Document 1 (Permerek), a mesh or a porous plate-like substrate covered with a diamond film is attached back to back through an ion exchange membrane. There is something to match.
In such a case, for example, when used as a water treatment apparatus, the voltage can be reduced by reducing the distance between the electrodes, electrolysis of wasted water can be suppressed, and the power efficiency of the water treatment can be increased.

他に、例えば電気化学測定用センサーとして用いる場合、電極間隔は小さくした方がセンサーとしての応答の高速化、感度の向上が実現できる。電気化学測定用センサーとして用いられている例としては、例えば特許文献2(藤嶋/明電舎)などがある。
先の水処理の例では陰極と陽極の間隔は比較的小さくすることができるが、ダイヤモンド膜を被覆する基板の厚みよりも間隔を小さくすることはできない。電極のサイズが大きくなってくると基板にはある程度以上の強度が求められるためその厚さは数mm必要になってくることが多い。
In addition, when used as a sensor for electrochemical measurement, for example, the response speed and sensitivity can be improved as the distance between the electrodes is reduced. As an example used as a sensor for electrochemical measurement, there is, for example, Patent Document 2 (Fujishima / Meidensha).
In the previous water treatment example, the distance between the cathode and the anode can be made relatively small, but the distance cannot be made smaller than the thickness of the substrate covering the diamond film. When the size of the electrode is increased, the substrate is required to have a certain level of strength, so that the thickness is often required to be several mm.

また、基板を向かい合わせてスペーサーを介して両電極を設置することも可能である。しかし、2枚の電極を近づけすぎると、その間に溶液を安定して供給することが難しくなる。この場合、例えば安定して水処理ができない、という問題が生じる。また、狭い一定の間隔で安定させることも難しくなる。この場合は、センサーの検出感度が不安定になる、といった問題が生じる。また、例えば電極間に印加する電位を大きくして電極近傍で目立ったガスの発生があるような場合、電極間に泡が介在してしまい、その領域での反応が起こらなくなってしまい、水処理装置やセンサーとしての動作が不安定になってしまう。
特開平9−268395号公報 特開2001−50924号公報
It is also possible to place both electrodes through a spacer with the substrates facing each other. However, if the two electrodes are too close together, it will be difficult to stably supply the solution between them. In this case, for example, there arises a problem that water treatment cannot be performed stably. In addition, it becomes difficult to stabilize at a narrow fixed interval. In this case, there arises a problem that the detection sensitivity of the sensor becomes unstable. Also, for example, when the potential applied between the electrodes is increased and there is conspicuous gas generation in the vicinity of the electrodes, bubbles are interposed between the electrodes, and the reaction in that region does not occur, so that water treatment Operation as a device or sensor becomes unstable.
JP-A-9-268395 JP 2001-50924 A

このように、従来のダイヤモンド電極による水処理装置やセンサーでは、電極間隔を十分に小さくして電力効率を向上させることやセンサー感度、応答速度を十分大きくすることが困難であった。本発明では、電極間隔を十分に小さくしてセンサーの感度、応答速度を向上させることを目的とする。   As described above, in conventional water treatment apparatuses and sensors using diamond electrodes, it has been difficult to sufficiently reduce the electrode interval to improve power efficiency and to sufficiently increase sensor sensitivity and response speed. An object of the present invention is to improve the sensitivity and response speed of the sensor by sufficiently reducing the electrode interval.

本発明の電極は、基板と基板上に被覆した導電性ダイヤモンド層からなる複合基板であって、前記導電性ダイヤモンド膜が少なくとも2つ以上の領域に電気的に分離されており、それらをペア毎の対として分け、それぞれの対間に電位を加えることで、電極間で電気化学反応を起こすことができるものであることを特徴とする。
前記2つ以上の領域に分かれている電極が1組の櫛形形状のものであることが好ましい。
前記基板がSiであっても良い。
前記基板がセラミックであっても良い。
前記絶縁セラミック基板が炭化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化珪素のうち少なくとも1種類以上を含むものであることが好ましい。
The electrode of the present invention is a composite substrate composed of a substrate and a conductive diamond layer coated on the substrate, wherein the conductive diamond film is electrically separated into at least two or more regions, and each of them is paired. It is characterized by being capable of causing an electrochemical reaction between the electrodes by dividing the pair as a pair and applying a potential between the pair.
It is preferable that the electrodes divided into the two or more regions have a pair of comb shapes.
The substrate may be Si.
The substrate may be ceramic.
The insulating ceramic substrate preferably contains at least one of silicon carbide, silicon nitride, aluminum oxide, aluminum nitride, and silicon oxide.

前記Si、セラミック基板の抵抗率が10Ω・cm以上であることが好ましい。
前記Si、セラミック基板が開気孔の多孔体であっても良い。
前記導電性ダイヤモンドがダイヤモンド膜中にB、N、Pの中から1種類以上を含むものであることが好ましい。
前記電極の最短の間隔dが0.1〜10mmであることが好ましい。
前記に記載の電極を一部に用い水処理装置を構成することができる。
前記に記載の電極を一部に用い電気化学センサーを構成することができる。
前記に記載の電極を一部に用い濾過フィルターを構成することができる。
前記に記載の水処理装置を用い水処理を行うことができる。
前記に記載の電気化学センサーを用いて測定を行うことができる。
前記に記載のフィルターを用いて行う濾過を行うことができる。
The resistivity of the Si and ceramic substrate is preferably 10 2 Ω · cm or more.
The Si or ceramic substrate may be a porous body having open pores.
The conductive diamond preferably includes one or more of B, N, and P in the diamond film.
The shortest distance d between the electrodes is preferably 0.1 to 10 mm.
A water treatment apparatus can be configured by partially using the electrode described above.
An electrochemical sensor can be constituted by using the electrode described above in part.
A filtration filter can be constructed using a part of the electrodes described above.
Water treatment can be performed using the water treatment apparatus described above.
Measurement can be performed using the electrochemical sensor described above.
Filtration performed using the filter described above can be performed.

本発明では導電性ダイヤモンドを基板上に所定の領域に選択的に被覆し、その際に電極の陽極と陰極となるべき対の電極間隔を小さくすることによって高感度・高速のセンサーを実現することができる。
基板上にダイヤモンド膜を選択的に被覆するにはいくつかの方法がある。例えば、基板上全面にダイヤモンド膜を成膜し、その上から所定の形状のマスクをおいて、ドライエッチングを行うことによって所定の形状の電極を作製することができる。
In the present invention, a high-sensitivity and high-speed sensor is realized by selectively coating a predetermined area on a substrate with conductive diamond and reducing the distance between the pair of electrodes to be the anode and cathode of the electrode. Can do.
There are several ways to selectively coat a diamond film on a substrate. For example, a diamond film can be formed on the entire surface of the substrate, a mask having a predetermined shape can be formed thereon, and dry etching can be performed to produce an electrode having a predetermined shape.

あるいは所定の位置のみダイヤモンドの核発生処理をして、所定の形状の電極を作製しても良い。この方法としては、ダイヤモンドのパウダーを基板上に供給し、スクラッチすることによってスクラッチした領域に核が発生するようにそる。この場合、所定の場所以外をカバーする層をあらかじめ作製しておいた状態でスクラッチ処理を行い、その後、カバー層を除去してからダイヤモンドを成膜すれば良い。
また、電極を形成しない領域に犠牲層を堆積させ、その上から全面にダイヤモンドを成膜した後、犠牲層をエッチング除去しても良い。
Alternatively, a diamond nucleation process may be performed only at a predetermined position to produce an electrode having a predetermined shape. In this method, diamond powder is supplied onto the substrate and scratched so that nuclei are generated in the scratched region. In this case, a scratch process may be performed in a state where a layer covering a portion other than a predetermined place is prepared in advance, and then the diamond may be formed after removing the cover layer.
Alternatively, a sacrificial layer may be deposited in a region where no electrode is to be formed, and a diamond film may be deposited on the entire surface, and then the sacrificial layer may be removed by etching.

ダイヤモンドを成膜する方法は一般的に知られている方法で良く、特に限定しない。主な手法にマイクロ波プラズマCVD法によるものと熱フィラメントCVD法によるものがある。例えば、マイクロ波プラズマCVDの場合、装置内の試料台の上に基板を置き、装置を真空排気した後、水素とメタンを比率が100:0.5から100:5の範囲で導入し、導入量と排気量を調節することで圧力を1.3〜26.7kPa程度に調節し、マイクロ波を導入して試料の直上にプラズマを発生させる。基板はプラズマからの熱で加熱され、試料台を水冷するなどの方法で温度を調節することで基板温度を700〜1000℃程度に調節する。こうすることによって基板上にダイヤモンドが堆積される。
この方法で得られる絶縁体のダイヤモンドに導電性を付与するため、不純物を添加してやる。不純物としては、B、N、Pなどが用いられる。Bを添加してやると比較的簡単に良好な導電性を付与することができる。Bは添加量としてB/C比が0.001〜5%程度であれば良い。
A method of forming a diamond film may be a generally known method and is not particularly limited. The main methods are the microwave plasma CVD method and the hot filament CVD method. For example, in the case of microwave plasma CVD, a substrate is placed on a sample stage in the apparatus, the apparatus is evacuated, and hydrogen and methane are introduced in a ratio of 100: 0.5 to 100: 5. The pressure is adjusted to about 1.3 to 26.7 kPa by adjusting the amount and the displacement, and a microwave is introduced to generate plasma immediately above the sample. The substrate is heated by the heat from the plasma, and the substrate temperature is adjusted to about 700 to 1000 ° C. by adjusting the temperature by a method such as cooling the sample stage with water. In this way, diamond is deposited on the substrate.
Impurities are added in order to impart conductivity to the insulating diamond obtained by this method. B, N, P, etc. are used as impurities. When B is added, good conductivity can be imparted relatively easily. B may be added as long as the B / C ratio is about 0.001 to 5%.

ダイヤモンドの膜厚は薄すぎると膜が不連続となり不具合が生じる。また、厚すぎる場合は、成膜、局所配線時のエッチング加工に不必要に時間を要してしまう。このため、ダイヤモンドの膜厚は0.1μm以上100μm以下であることが好ましい。
このようにして作製した基板上の電極は、少なくとも一方と対向するもう一方の1組以上の電極対をなしており、それぞれ陽極、陰極とし、それぞれの電極の一部から電気を供給するようにする。
If the film thickness of diamond is too thin, the film becomes discontinuous, causing problems. On the other hand, if it is too thick, it takes time unnecessarily for the film forming and the etching process at the time of local wiring. For this reason, it is preferable that the film thickness of a diamond is 0.1 micrometer or more and 100 micrometers or less.
The electrodes on the substrate thus produced constitute at least one other electrode pair facing at least one of them, and each serves as an anode and a cathode, and electricity is supplied from a part of each electrode. To do.

各電極間の距離が最も近くなる距離は、エッチングや選択成長の分解能に依存するので、これらの処理のレベルを高めることでその距離は短くすることができる。例えば、0.1mmの距離にすることも可能である。この距離は対向電極型で実現することは困難である。スペーサーを用いることで可能であったとしても、例えば基板の反りが大きい場合、電極間距離がスペーサー厚みと異なってしまうことや、小さいギャップになった場合、隙間が小さいことに加えてその小さい隙間でガスが発生する場合にはさらに安定して溶液を供給することが難しくなるため、電極間の電解反応を安定させることが極めて困難になる。   Since the distance at which the distance between the electrodes is closest depends on the resolution of etching and selective growth, the distance can be shortened by increasing the level of these treatments. For example, the distance can be 0.1 mm. This distance is difficult to achieve with the counter electrode type. Even if it is possible by using a spacer, for example, if the warpage of the substrate is large, the distance between the electrodes may be different from the spacer thickness, or if the gap is small, the gap is small and the small gap When gas is generated, it becomes difficult to supply the solution more stably, so that it is very difficult to stabilize the electrolytic reaction between the electrodes.

このような問題も、本発明の局所配線電極を用いれば小さい電極間隔を自在に調整、維持することが可能であり、このことから例えば応答速度の速い、感度の高いセンサーを実現可能となる他、このような形状が有効な電気化学電極全般として利用することが可能となる。
電極間距離の上限としては、構造上、特に制限はないが、平板形状の電極を対向させた流動型の電解槽を構成する場合、入手が容易な配管のコネクターの形状などを考慮すれば10mmの間隔であれば容易に装置を作成することが可能である。従って10mm以下でなければ本発明の局所配線電極を用いる利点はないといえる。
Such a problem can also be adjusted and maintained by using the local wiring electrode according to the present invention, so that, for example, a sensor with a high response speed and a high sensitivity can be realized. Such a shape can be used as an effective electrochemical electrode in general.
The upper limit of the distance between the electrodes is not particularly limited due to the structure. However, in the case of configuring a flow-type electrolytic cell in which flat electrodes are opposed to each other, it is 10 mm in consideration of the shape of a connector of an easily available pipe. It is possible to easily create a device with an interval of. Therefore, it can be said that there is no advantage of using the local wiring electrode of the present invention unless it is 10 mm or less.

基板材料は特に限定しないが、絶縁体であることが望ましい。電極ダイヤモンドと比較して十分に電気抵抗が大きいものであれば良い。ダイヤモンド膜の抵抗率は10−1Ω・cmより小さいことが好ましく、基板の抵抗率は10Ω・cmよりも大きいことが好ましい。
基板は多孔体であっても良い。多孔体であれば対向する電極に対して、垂直方向に水を通しながら、電極間での電気化学反応を行うことが可能となる。このように、基板の一方の方向から他方の方向に液体が貫通している多孔体であることを、ここでは開気孔の多孔体である、という表現で記述する。
The substrate material is not particularly limited, but is preferably an insulator. What is necessary is just to have a sufficiently large electric resistance as compared with the electrode diamond. The resistivity of the diamond film is preferably smaller than 10 −1 Ω · cm, and the resistivity of the substrate is preferably larger than 10 2 Ω · cm.
The substrate may be a porous body. If it is a porous body, it becomes possible to perform an electrochemical reaction between the electrodes while passing water in the vertical direction with respect to the opposing electrodes. In this way, the porous body in which the liquid penetrates from one direction of the substrate to the other direction is described here as an expression of a porous body having open pores.

多孔体としては、特に限定しないが、多孔質Siや多孔質セラミックが好ましい。多孔質セラミックとしては、窒化珪素、アルミナ、炭化珪素、ムライト、コージライト、窒化アルミニウム、酸化アルミニウムの中から少なくとも1種類以上を含むものであることが好ましい。
多孔体の気孔径としては、開気孔であって、ダイヤモンドの局所配線を施すことができれば特に制限はないが余り気孔が大きすぎると局所配線が分断されてしまう。これに対しては、ダイヤモンドの局所配線の幅を大きくすればある程度は解決するが、配線の間隔、幅、基板の大きさなどを考慮すると、気孔径としては1mm以下であること好ましい。
また多孔体基板上に局所配線電極を形成することにより、フィルターとしても利用することができる。すなわち、多孔体基板をフィルターとし、そのフィルターに電極があることによって新たな機能フィルターとして利用することができる。例えば、フィルタリングしながらセンシングもできる。また、センシングしなくてもフィルターとして利用し、そのフィルターにトラップされたものを電解によって分解することもできる。こうすることによって目詰まりしないフィルターを実現することができる。
Although it does not specifically limit as a porous body, Porous Si and porous ceramic are preferable. The porous ceramic preferably contains at least one of silicon nitride, alumina, silicon carbide, mullite, cordierite, aluminum nitride, and aluminum oxide.
The pore size of the porous body is not particularly limited as long as it is open pores and diamond local wiring can be applied, but if the pores are too large, the local wiring is divided. This can be solved to some extent by increasing the width of the diamond local wiring. However, considering the wiring spacing, width, substrate size, etc., the pore diameter is preferably 1 mm or less.
Moreover, it can utilize also as a filter by forming a local wiring electrode on a porous substrate. That is, a porous substrate can be used as a filter, and the filter can be used as a new functional filter by having an electrode. For example, sensing can be performed while filtering. Also, it can be used as a filter without sensing, and the one trapped in the filter can be decomposed by electrolysis. By doing so, a filter that is not clogged can be realized.

基板上に多数のダイヤモンド電極配線を施し、2本1組ずつそれぞれの領域に分けても良い。こうすることにより、例えば、一枚の基板上に複数の電気化学センサーが搭載され、検出物の空間分布を測定することができる。   A large number of diamond electrode wirings may be provided on the substrate, and two of them may be divided into respective regions. In this way, for example, a plurality of electrochemical sensors are mounted on a single substrate, and the spatial distribution of the detected object can be measured.

本発明によれば、電極間隔を十分小さくして、電力効率を向上させることや、センサーの感度、応答速度を向上させることができ、水処理装置や電気化学測定用センサー、濾過フィルターに適用して有用である。   According to the present invention, the electrode interval can be made sufficiently small to improve the power efficiency, and the sensitivity and response speed of the sensor can be improved, and can be applied to water treatment devices, electrochemical measurement sensors, and filtration filters. And useful.

以下実施例に基いて本発明を具体的に説明する。
実施例1
基板として30mm角の多結晶Siウェハを用いた。基板の抵抗率は10Ω・cmである。前処理としてダイヤモンドパウダーをイソプロピルアルコール内に入れ、基板を入れて超音波を印加することで種付け処理を行った。成膜方法としてはプラズマCVD法を用いた。ガスとしてH、CH、Bを用い、それぞれの流量を500sccm、10sccm、0.1sccm導入し、ガス圧力を2.7kPaとした。2.45Ghzのマイクロ波電源を用い、1kW導入した。基板温度は試料台の温度を水冷により調節し、900℃とした。基板温度は放射温度計を用いて基板表面の温度を測定した。この方法により3時間の成膜を行い、基板上に10ミクロンのダイヤモンド膜を成膜した。このような方法で得られたダイヤモンド膜の抵抗率は4端子法による測定で5×10−3Ω・cmであった。
The present invention will be specifically described below based on examples.
Example 1
A 30 mm square polycrystalline Si wafer was used as the substrate. The resistivity of the substrate is 10 3 Ω · cm. As a pretreatment, diamond powder was placed in isopropyl alcohol, a substrate was placed, and ultrasonic waves were applied to perform seeding treatment. A plasma CVD method was used as a film forming method. H 2 , CH 4 , and B 2 H 6 were used as gases, and the respective flow rates were introduced at 500 sccm, 10 sccm, and 0.1 sccm, and the gas pressure was set to 2.7 kPa. Using a 2.45 Ghz microwave power source, 1 kW was introduced. The substrate temperature was set to 900 ° C. by adjusting the temperature of the sample stage by water cooling. The substrate temperature was measured by using a radiation thermometer. By this method, a film was formed for 3 hours, and a 10 micron diamond film was formed on the substrate. The resistivity of the diamond film obtained by such a method was 5 × 10 −3 Ω · cm as measured by the 4-terminal method.

得られたBドープダイヤモンドコート基板に対して、櫛形形状のメタルマスクを用いてRIEによってエッチングを行い、Si基板上に図1に示すような導電性ダイヤモンドの櫛形電極を形成した。櫛形電極の電極間距離dは0.2mmであった。
得られた櫛形ダイヤモンド電極を溶液に浸し、対向した2本の電極それぞれにリード線を接合し、片方を陽極、他方を陰極として電位を加えることにより、電気分解試験を行った。溶液として1Mの硫酸ナトリウム溶液を用いた。電解試験の結果、40mm角の対向電極を5mmの距離で設置した場合に比べて、電圧が1/3以下となり、電気分解の効率が向上していることが確認された。
The obtained B-doped diamond-coated substrate was etched by RIE using a comb-shaped metal mask to form a conductive diamond comb-shaped electrode as shown in FIG. 1 on a Si substrate. The inter-electrode distance d between the comb electrodes was 0.2 mm.
The obtained comb-shaped diamond electrode was immersed in a solution, a lead wire was joined to each of the two opposed electrodes, and an electrolysis test was performed by applying a potential with one side serving as an anode and the other serving as a cathode. A 1M sodium sulfate solution was used as the solution. As a result of the electrolysis test, it was confirmed that the voltage was 1/3 or less and the electrolysis efficiency was improved as compared with the case where a 40 mm square counter electrode was installed at a distance of 5 mm.

実施例2
実施例1と同様の方法により、櫛形形状の導電性ダイヤモンド電極を作製した。メタルマスクの形状を数種類用意し、電極間距離を0.05、0.1、0.5、1.0の4段階に分けて作製した。作製した電極を顕微鏡で観察した結果、電極間隔が0.05のものは、電極の一部が短絡し破損していることが判明した。電極間隔が0.1、0.5、1.0のものは問題なく、良好に電解が可能であることが確認された。
Example 2
A comb-shaped conductive diamond electrode was produced in the same manner as in Example 1. Several types of metal mask shapes were prepared, and the distance between the electrodes was divided into four stages of 0.05, 0.1, 0.5, and 1.0. As a result of observing the prepared electrode with a microscope, it was found that a part of the electrode having a distance of 0.05 was short-circuited and damaged. It was confirmed that the electrode spacing of 0.1, 0.5, and 1.0 was satisfactory and electrolysis was possible.

実施例3
実施例1と同様の方法により、櫛形形状の導電性ダイヤモンド電極を作製した。電極間距離を0.1mmとし、基板の種類を変えて作製した。作製した電極の基板種類としては
Si(低抵抗:10−2Ω・cm)、Si(高抵抗:10Ω・cm)、Si、SiC、AlN、SiO、Al、ムライト、コージライトを用いた。低抵抗Si以外の基板を用いたものではすべて良好に電解が可能であった。低抵抗Siを用いたものでは、電極間が電気的に短絡し、良好に電解を行うことができなかった。
Example 3
A comb-shaped conductive diamond electrode was produced in the same manner as in Example 1. The distance between the electrodes was 0.1 mm, and the substrate type was changed. As substrate types of the produced electrodes, Si (low resistance: 10 −2 Ω · cm), Si (high resistance: 10 3 Ω · cm), Si 3 N 4 , SiC, AlN, SiO 2 , Al 2 O 3 , Mullite and cordierite were used. Electrolysis was possible satisfactorily with all substrates using substrates other than low resistance Si. When using low resistance Si, the electrodes were electrically short-circuited and electrolysis could not be performed satisfactorily.

実施例4
基板としてSi、SiC、AlN、SiO、Al、ムライト、コージライトの絶縁性多孔質基板および多孔質Siを準備した。基板のサイズは全て30mmφで厚みは2mm、気孔径は50μmとした。これらの基板上に実施例1と同様の方法により、図2に示す櫛形形状の導電性ダイヤモンド電極を作製した。電極間距離を0.5mmとした。作製した電極を配管のフランジに設置し、片側方向から溶液を送り、多孔質基板を通過して反対型へ溶液が流れるように配置した。
溶液としては、0.1Mの硫酸中500mlに10mlのフェノールを添加した溶液を用いた。概略図を図3に示す。液が基板を透過する間、電位を加えることによって、基板を透過する間に電気化学反応が起こるようにした。電流密度としては0.05A/cmとした。その結果、いずれの基板を用いた電極においても、循環させる前の溶液に比べ、電極を通過した後の溶液が循環されるにしたがい溶液に含まれる全炭素量が減少していることが確認でき、この手法によって有機性廃液の浄化に適用できることが確認された。
Example 4
An insulating porous substrate of Si 3 N 4 , SiC, AlN, SiO 2 , Al 2 O 3 , mullite, cordierite and porous Si were prepared as substrates. All the substrate sizes were 30 mmφ, the thickness was 2 mm, and the pore diameter was 50 μm. A comb-shaped conductive diamond electrode shown in FIG. 2 was produced on these substrates by the same method as in Example 1. The distance between the electrodes was 0.5 mm. The prepared electrode was placed on the flange of the pipe, and the solution was sent from one side direction so as to pass through the porous substrate and flow into the opposite mold.
As the solution, a solution obtained by adding 10 ml of phenol to 500 ml in 0.1 M sulfuric acid was used. A schematic diagram is shown in FIG. An electric potential was applied while the liquid passed through the substrate, so that an electrochemical reaction occurred while passing through the substrate. The current density was 0.05 A / cm 2 . As a result, in any electrode using any substrate, it can be confirmed that the total amount of carbon contained in the solution decreases as the solution after passing through the electrode is circulated compared to the solution before circulation. It was confirmed that this method can be applied to the purification of organic waste liquid.

実施例5
セラミックのフィルターとして30mmφ、厚さ5mm、気孔径が200μmの開気孔の窒化珪素多孔質セラミック板を2枚準備し、その内1枚に対して、実施例1と同様の方法にてダイヤモンド櫛形電極を形成し、双方を実施例4と同様の方法により、流動電解槽に電極を設置した。
溶液としてはクラスター粒子を含む工場廃液を用いた。電気伝導を付与するため、この溶液に適量の硫酸ナトリウムを添加した。
局所配線電極付きの多孔質セラミック基板をフィルターとして前記廃液液の濾過を試みた。廃液が基板を透過する間、電位を加えることによって、基板を透過する間に電気化学反応が起こるようにした。
20分試験後の双方のフィルターを比較した結果、電位を加えているフィルターはフィルターの目が詰まっていなかったのに対し、電位を加えていない方はフィルターが目詰まりを起こしており、同時間内にフィルターを通過する液量が1/3に減少していることが確認された。
Example 5
As a ceramic filter, two silicon nitride porous ceramic plates having an open pore size of 30 mmφ, a thickness of 5 mm, and a pore diameter of 200 μm were prepared, and a diamond comb-shaped electrode was prepared on one of them in the same manner as in Example 1. The electrodes were placed in the fluidized electrolytic cell by the same method as in Example 4.
The solution used was a factory effluent containing cluster particles. An appropriate amount of sodium sulfate was added to this solution to provide electrical conduction.
The waste liquid was filtered using a porous ceramic substrate with a local wiring electrode as a filter. By applying an electric potential while the waste liquid permeates the substrate, an electrochemical reaction takes place while permeating the substrate.
As a result of comparing both filters after the 20-minute test, the filter to which the potential was applied was not clogged, whereas the filter to which the potential was not applied was clogged. It was confirmed that the amount of liquid passing through the filter was reduced to 1/3.

実施例6
実施例1と同様の方法により、櫛形形状の導電性ダイヤモンド電極を作製した。基板としては50mmφ、抵抗率10Ω・cmの多結晶Siウェハを用いた。基板上に12本の櫛形形状のダイヤモンド電極配線を施し、6組の領域に分け、それぞれを電気化学センサーとする複数のセンサー搭載の基板を作成した。概略図を図4に示す。各電極の間隔は0.5mmとし、電極の幅は2mmとした。この電極のそれぞれの電極対に配線を施し、多チャンネルのポテンショスタット/ガルバノスタットに接続し、参照極をダイヤモンド電極近傍に配置した。
これを0.1M HNO溶液に浸し、この溶液中に5mM Ce(NOを添加したところ、Ce3+イオンからCe4+イオンへの酸化と、逆反応の還元反応の空間分布、時間変化を測定することができた。その他にも種々の添加物を入れたところ、それぞれの反応の様子が検出され、それらの空間分布、時間変化を測定することができた。
Example 6
A comb-shaped conductive diamond electrode was produced in the same manner as in Example 1. As the substrate, a polycrystalline Si wafer having a diameter of 50 mmφ and a resistivity of 10 3 Ω · cm was used. Twelve comb-shaped diamond electrode wirings were formed on the substrate, divided into six sets of regions, and a plurality of sensor-mounted substrates each having an electrochemical sensor were produced. A schematic diagram is shown in FIG. The distance between the electrodes was 0.5 mm, and the width of the electrodes was 2 mm. Each electrode pair of this electrode was wired and connected to a multi-channel potentiostat / galvanostat, and a reference electrode was placed near the diamond electrode.
When this was immersed in a 0.1M HNO 3 solution and 5 mM Ce (NO 3 ) 3 was added to this solution, the oxidation from Ce 3+ ions to Ce 4+ ions and the spatial distribution and time variation of the reverse reaction of the reduction reaction Could be measured. In addition, when various additives were added, the state of each reaction was detected, and their spatial distribution and temporal change could be measured.

実施例1で得られた導電性ダイヤモンドの櫛型電極の説明図である。FIG. 3 is an explanatory diagram of conductive diamond comb-shaped electrodes obtained in Example 1. 実施例4で得られた導電性ダイヤモンドの櫛型電極の説明図である。It is explanatory drawing of the comb-shaped electrode of the conductive diamond obtained in Example 4. FIG. 実施例4における水処理装置としての使用例の説明図である。It is explanatory drawing of the usage example as a water treatment apparatus in Example 4. FIG. 実施例6で得られた電気化学センサー搭載の基板の説明図である。It is explanatory drawing of the board | substrate carrying an electrochemical sensor obtained in Example 6. FIG.

Claims (15)

基板と、基板上に被覆した導電性ダイヤモンド膜からなる複合基板であって、前記導電性ダイヤモンド膜が少なくとも2つ以上の領域に電気的に分離されており、それらをペア毎の対として分け、それぞれの対間に電位を加えることで、電極間で電気化学反応を起こすことができるダイヤモンド局所配線電極。   A composite substrate composed of a substrate and a conductive diamond film coated on the substrate, wherein the conductive diamond film is electrically separated into at least two regions, and they are divided into pairs for each pair; A diamond local wiring electrode that can cause an electrochemical reaction between electrodes by applying a potential between each pair. 前記各々の領域に分かれている電極が1組の櫛形形状をしていることを特徴とする請求項1に記載のダイヤモンド局所配線電極。   The diamond local wiring electrode according to claim 1, wherein the electrode divided into each region has a pair of comb shapes. 前記基板がSiであることを特徴とする請求項1に記載のダイヤモンド局所配線電極。   The diamond local wiring electrode according to claim 1, wherein the substrate is Si. 前記基板がセラミックであることを特徴とする請求項1に記載のダイヤモンド局所配線電極。   The diamond local wiring electrode according to claim 1, wherein the substrate is made of ceramic. 前記セラミック基板が炭化珪素、窒化珪素、酸化アルミニウム、窒化アルミニウム、酸化珪素であることを特徴とする請求項3に記載のダイヤモンド局所配線電極。   4. The diamond local wiring electrode according to claim 3, wherein the ceramic substrate is silicon carbide, silicon nitride, aluminum oxide, aluminum nitride, or silicon oxide. 前記Si、セラミック基板の抵抗率が10Ω・cm以上であることを特徴とする請求項3〜5のいずれか1項に記載のダイヤモンド局所配線電極。 The diamond local wiring electrode according to claim 3, wherein the resistivity of the Si and ceramic substrate is 10 2 Ω · cm or more. 前記Si、セラミック基板が開気孔の多孔体であることを特徴とする請求項3〜5のいずれか1項に記載のダイヤモンド局所配線電極。   The diamond local wiring electrode according to claim 3, wherein the Si and ceramic substrate are porous bodies having open pores. 前記導電性ダイヤモンドがダイヤモンド膜中にB、N、Pを含むものであることを特徴とする請求項1〜7のいずれか1項に記載のダイヤモンド局所配線電極。   The diamond local wiring electrode according to claim 1, wherein the conductive diamond contains B, N, and P in a diamond film. 前記電極の最短の間隔dが0.1〜10mmであることを特徴とする請求項1〜8のいずれか1項に記載のダイヤモンド局所配線電極。   The diamond local wiring electrode according to claim 1, wherein a shortest distance d between the electrodes is 0.1 to 10 mm. 請求項1〜9のいずれか1項に記載の電極を一部に用いて構成される水処理装置。   The water treatment apparatus comprised using the electrode of any one of Claims 1-9 in part. 請求項1〜9のいずれか1項に記載の電極を一部に用いて構成される電気化学センサー。   The electrochemical sensor comprised using the electrode of any one of Claims 1-9 in part. 請求項7〜9のいずれか1項に記載の電極を一部に用いて構成される濾過フィルター。   The filtration filter comprised using the electrode of any one of Claims 7-9 for a part. 請求項10に記載の水処理装置を用いて水処理を行う方法。   A method for performing water treatment using the water treatment apparatus according to claim 10. 請求項11に記載の電気化学センサーを用いて行う測定方法。   The measuring method performed using the electrochemical sensor of Claim 11. 請求項12に記載のフィルターを用いて行う濾過方法。   The filtration method performed using the filter of Claim 12.
JP2004251742A 2004-08-31 2004-08-31 Diamond local wiring electrode Expired - Fee Related JP4877641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251742A JP4877641B2 (en) 2004-08-31 2004-08-31 Diamond local wiring electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251742A JP4877641B2 (en) 2004-08-31 2004-08-31 Diamond local wiring electrode

Publications (2)

Publication Number Publication Date
JP2006070287A true JP2006070287A (en) 2006-03-16
JP4877641B2 JP4877641B2 (en) 2012-02-15

Family

ID=36151221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251742A Expired - Fee Related JP4877641B2 (en) 2004-08-31 2004-08-31 Diamond local wiring electrode

Country Status (1)

Country Link
JP (1) JP4877641B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063607A (en) * 2006-09-06 2008-03-21 Sumitomo Electric Ind Ltd Diamond-covered substrate, electrode and method for electrochemical treatment, and manufacturing method of diamond-covered substrate
EP2206685A1 (en) * 2007-10-25 2010-07-14 Sumitomo Electric Hardmetal Corp. Diamond electrode, treatment device, and method for producing diamond electrode
KR20150084928A (en) * 2012-11-09 2015-07-22 인두스트리에 데 노라 에스.피.에이. Electrolytic cell equipped with microelectrodes
WO2016013544A1 (en) * 2014-07-23 2016-01-28 国立研究開発法人物質・材料研究機構 Dryness/wetness response sensor having high-speed response and high sensitivity
CN114072664A (en) * 2019-07-19 2022-02-18 住友化学株式会社 Electrochemical sensor cell, electrode for electrochemical sensor, and method for manufacturing electrode for electrochemical sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141550A (en) * 1980-04-04 1981-11-05 Yokogawa Hokushin Electric Corp Enzyme electrode
JPH02266253A (en) * 1989-04-07 1990-10-31 Idemitsu Petrochem Co Ltd Electrode for analysis, test, measurement and the like and enzyme sensor formed by using this electrode
JPH0417688A (en) * 1990-05-08 1992-01-22 Mitsui Eng & Shipbuild Co Ltd Electrode plate sheet
JP2000313982A (en) * 1999-03-16 2000-11-14 Basf Ag Electrode coated with diamond layer and its production
JP2004128331A (en) * 2002-10-04 2004-04-22 Sumitomo Electric Ind Ltd Porous semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141550A (en) * 1980-04-04 1981-11-05 Yokogawa Hokushin Electric Corp Enzyme electrode
JPH02266253A (en) * 1989-04-07 1990-10-31 Idemitsu Petrochem Co Ltd Electrode for analysis, test, measurement and the like and enzyme sensor formed by using this electrode
JPH0417688A (en) * 1990-05-08 1992-01-22 Mitsui Eng & Shipbuild Co Ltd Electrode plate sheet
JP2000313982A (en) * 1999-03-16 2000-11-14 Basf Ag Electrode coated with diamond layer and its production
JP2004128331A (en) * 2002-10-04 2004-04-22 Sumitomo Electric Ind Ltd Porous semiconductor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063607A (en) * 2006-09-06 2008-03-21 Sumitomo Electric Ind Ltd Diamond-covered substrate, electrode and method for electrochemical treatment, and manufacturing method of diamond-covered substrate
EP2206685A1 (en) * 2007-10-25 2010-07-14 Sumitomo Electric Hardmetal Corp. Diamond electrode, treatment device, and method for producing diamond electrode
EP2206685A4 (en) * 2007-10-25 2012-01-25 Sumitomo Elec Hardmetal Corp Diamond electrode, treatment device, and method for producing diamond electrode
KR20150084928A (en) * 2012-11-09 2015-07-22 인두스트리에 데 노라 에스.피.에이. Electrolytic cell equipped with microelectrodes
JP2016502600A (en) * 2012-11-09 2016-01-28 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrolytic cell with microelectrodes
KR102161431B1 (en) 2012-11-09 2020-10-07 인두스트리에 데 노라 에스.피.에이. Electrolytic cell equipped with microelectrodes
WO2016013544A1 (en) * 2014-07-23 2016-01-28 国立研究開発法人物質・材料研究機構 Dryness/wetness response sensor having high-speed response and high sensitivity
JPWO2016013544A1 (en) * 2014-07-23 2017-04-27 国立研究開発法人物質・材料研究機構 High-speed response / high sensitivity wet / dry sensor
US10267756B2 (en) 2014-07-23 2019-04-23 National Institute For Materials Science Dryness/wetness responsive sensor having first and second wires spaced 5 nm to less than 20 μm apart
CN114072664A (en) * 2019-07-19 2022-02-18 住友化学株式会社 Electrochemical sensor cell, electrode for electrochemical sensor, and method for manufacturing electrode for electrochemical sensor

Also Published As

Publication number Publication date
JP4877641B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
CN101617428B (en) Fuel cell separator, fuel cell separator manufacturing method and fuel cell
CN101928954B (en) Conductive diamond electrode and ozone generator using the same
JP2020527649A5 (en)
KR20060055364A (en) Diamond coated porous substrate and liquid treatment apparatus and liquid treatment method using same
CN106011969B (en) Ni-based upper gold nano grain array and preparation method thereof
JP2014508943A (en) Diamond-based electrochemical sensor
CN105000552A (en) Preparation method for graphene oxide
JP4877641B2 (en) Diamond local wiring electrode
CN106556677B (en) A kind of three-dimensional porous graphene extra-thin film gas sensor and preparation method thereof
KR20100105023A (en) Gas sensor using metal oxide nano rod and manufacturing method thereof
JP6960785B2 (en) Metal parts, their manufacturing methods, and process chambers with metal parts
KR20100016276A (en) Diamond electrode, treatment device, and method for producing diamond electrode
JPH11263684A (en) Corrosion-resistant member, its production and heating device for corrosive substance
JP5814173B2 (en) Carbon electrode for electrochemical measurement and manufacturing method thereof
JP2017020944A (en) Method for producing carbon microelectrode
TW201601374A (en) Method of making current collector
JP2012089460A (en) Separator for fuel cell and plasma processing apparatus therefor
JP4743473B2 (en) Conductive diamond coated substrate
JP2008063607A (en) Diamond-covered substrate, electrode and method for electrochemical treatment, and manufacturing method of diamond-covered substrate
Vernasqui et al. Achievement and electrochemical responsiveness of advanced boron-doped ultrananocrystalline diamond on highly ordered titanium dioxide nanotubes
Jing-zhong et al. Preparation of separated and open end TiO2 nanotubes
JP2012144779A (en) Method for production of electrolysis electrode
KR20000006202A (en) A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member
KR100821740B1 (en) Pd nanowire hydrogen sensors and its manufacturing method
JP2006169094A (en) Diamond-coated porous composite substrate and liquid treatment apparatus and liquid treatment method using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees