JP2006070001A - Chiral phase transfer catalyst with spiro skeleton, its preparation method and catalytic asymmetric reaction using the same - Google Patents

Chiral phase transfer catalyst with spiro skeleton, its preparation method and catalytic asymmetric reaction using the same Download PDF

Info

Publication number
JP2006070001A
JP2006070001A JP2004258567A JP2004258567A JP2006070001A JP 2006070001 A JP2006070001 A JP 2006070001A JP 2004258567 A JP2004258567 A JP 2004258567A JP 2004258567 A JP2004258567 A JP 2004258567A JP 2006070001 A JP2006070001 A JP 2006070001A
Authority
JP
Japan
Prior art keywords
formula
optically active
crown ether
phase transfer
transfer catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004258567A
Other languages
Japanese (ja)
Other versions
JP4419761B2 (en
Inventor
Koji Yonezawa
浩司 米澤
Ai Shimomoto
愛 下元
Shinobu Takizawa
忍 滝澤
Hiroaki Sasai
宏明 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2004258567A priority Critical patent/JP4419761B2/en
Publication of JP2006070001A publication Critical patent/JP2006070001A/en
Application granted granted Critical
Publication of JP4419761B2 publication Critical patent/JP4419761B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chiral phase transfer catalyst with a spiro skeleton, its preparation method and catalytic asymmetric reaction using the same. <P>SOLUTION: The catalytic asymmetric reaction is performed by using an optically active crown ether derivative with the spiro ring skeleton of formula (1) (wherein n is an integer of 0-2) as the phase transfer catalyst. The derivative can be synthesized from a specific spiro compound and a polyol through Williamson ether synthesis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、医薬、農薬等の合成中間体として有用な光学活性化合物を与える不斉触媒反応およびその触媒である光学活性クラウンエーテル誘導体、さらにはその触媒の製造法に関する。   The present invention relates to an asymmetric catalytic reaction that provides an optically active compound useful as a synthetic intermediate for pharmaceuticals, agricultural chemicals, and the like, an optically active crown ether derivative that is a catalyst thereof, and a method for producing the catalyst.

環境低負荷型不斉反応の開発として、近年、不斉相間移動触媒が盛んに研究されているが、その多くは有機塩である光学活性第四級アンモニウム塩である。光学活性第四級アンモニウム塩以外の例としては、光学活性クラウンエーテルを用いたものが報告されており(例えば、非特許文献1−6参照)、不斉マイケル付加反応や、不斉アルドール反応への展開例が知られている。   In recent years, asymmetric phase transfer catalysts have been actively researched for the development of environmentally friendly asymmetric reactions, many of which are optically active quaternary ammonium salts, which are organic salts. As examples other than the optically active quaternary ammonium salt, those using optically active crown ethers have been reported (see, for example, Non-Patent Documents 1-6), and to asymmetric Michael addition reactions and asymmetric aldol reactions. Examples of development are known.

Cram,D.J.ら:J.Chem.Soc.,Chem.Commun.,625(1981).Cram, D.C. J. et al. Et al. Chem. Soc. , Chem. Commun. 625 (1981). Koga,K.ら:Tetrahedron Lett.,30,7229(1989).Koga, K .; Et al .: Tetrahedron Lett. , 30, 7229 (1989). Brunet,F.ら:Tetrahedron Asymmetry,5,935(1994).Brunet, F.M. Et al: Tetrahedron Asymmetry, 5, 935 (1994). Toke,L.ら:Tetrahedron Lett.,36,5951(1995).Toke, L.M. Et al .: Tetrahedron Lett. 36, 5951 (1995). Kobayashi,S.ら:Org. Lett.,3,165(2001).Kobayashi, S .; Et al: Org. Lett. , 3, 165 (2001). Akiyama,T.ら:Chem.Commun.,1734(2003).Akiyama, T .; Et al .: Chem. Commun. , 1734 (2003).

ところで、これら不斉相間移動触媒には反応目的に応じた、種々多様性が要求されるところ、スピロ骨格を有する光学活性クラウンエーテル誘導体に関しては、その合成例も、またその触媒作用についても報告例がなかった。   By the way, these asymmetric phase transfer catalysts are required to have various diversification according to the purpose of the reaction. Regarding optically active crown ether derivatives having a spiro skeleton, examples of their synthesis and their catalytic action are also reported. There was no.

本発明者らは、リジッドなスピロ骨格を有する光学活性クラウンエーテル誘導体が不斉合成反応の触媒として有効に働くことを見出し、本発明を完成させたものである。
すなわち、本発明は、下記式(1)で表されるスピロ環骨格を有する光学活性クラウンエーテル誘導体である。

Figure 2006070001
(式中、nは0〜2の整数を表す。) The present inventors have found that an optically active crown ether derivative having a rigid spiro skeleton works effectively as a catalyst for an asymmetric synthesis reaction, and has completed the present invention.
That is, the present invention is an optically active crown ether derivative having a spiro ring skeleton represented by the following formula (1).
Figure 2006070001
(In the formula, n represents an integer of 0 to 2.)

また本発明は、下記式(2)

Figure 2006070001
で表される光学活性なスピロ化合物と、下記式(3)
Figure 2006070001
(式中、nは上記に同じ。Xは脱離基を表す。)
で表されるポリエーテルを、塩基存在下で作用させることを特徴とする、式(1)
Figure 2006070001
(式中、nは上記に同じ。)
で表されるスピロ環骨格を有する光学活性クラウンエーテル誘導体の製造法に関する。 The present invention also provides the following formula (2):
Figure 2006070001
An optically active spiro compound represented by formula (3):
Figure 2006070001
(In the formula, n is the same as above. X 1 represents a leaving group.)
Wherein the polyether represented by formula (1) is allowed to act in the presence of a base.
Figure 2006070001
(Wherein n is the same as above)
And a method for producing an optically active crown ether derivative having a spiro ring skeleton.

更に、本発明は、不斉触媒反応において、式(1)で表されるスピロ環骨格を有する光学活性クラウンエーテル誘導体の相間移動触媒としての使用に関する。   Furthermore, the present invention relates to the use of an optically active crown ether derivative having a spiro ring skeleton represented by the formula (1) as a phase transfer catalyst in an asymmetric catalytic reaction.

本発明により得られたスピロ環骨格を有する光学活性クラウンエーテル誘導体は相間移動触媒としての機能を有し、不斉触媒反応に利用することで収率よく光学活性化合物を高光学純度で得ることができる。   The optically active crown ether derivative having a spiro ring skeleton obtained by the present invention has a function as a phase transfer catalyst, and can be used for asymmetric catalytic reaction to obtain an optically active compound with high optical purity in a high yield. it can.

本発明を更に詳細に説明する。
式(1)で表されるスピロ環骨格を有するクラウンエーテルは、全く不斉炭素を持たないにもかかわらず、置換基の配置により生じるC対称な中心性キラリティーを有している。このスピロ骨格はリジッドであり、比較的自由度の高い軸性キラリティーを有する化合物のアナログ体となる。クラウンエーテル構造を併せ持つため、それぞれのエナンチオマーを使用することで、不斉相間移動触媒として機能する。上記式(1)で表されるスピロ環骨格を有する光学活性クラウンエーテル誘導体のnは0〜2の整数を表し、特に好ましくはn=1である。
なお、本発明における式(1)で表されるスピロ環骨格を有するクラウンエーテル上の水素原子は本発明の趣旨を逸脱しない範囲において、他の官能基で置換されていてもよい。
The present invention will be described in further detail.
Although the crown ether having a spiro ring skeleton represented by the formula (1) has no asymmetric carbon, it has C 2 symmetric central chirality generated by the arrangement of substituents. This spiro skeleton is rigid and becomes an analog of a compound having axial chirality with a relatively high degree of freedom. Since it has a crown ether structure, it functions as an asymmetric phase transfer catalyst by using each enantiomer. In the optically active crown ether derivative having a spiro ring skeleton represented by the above formula (1), n represents an integer of 0 to 2, particularly preferably n = 1.
In addition, the hydrogen atom on the crown ether having a spiro ring skeleton represented by the formula (1) in the present invention may be substituted with another functional group without departing from the gist of the present invention.

次に、式(1)で表されるスピロ環骨格をもつ光学活性クラウンエーテル誘導体の製造方法について詳細に述べる。
式(1)で表されるスピロ環骨格をもつ光学活性クラウンエーテル誘導体は、通常知られているWilliamsonエーテル合成法で製造することができる。
Next, a method for producing an optically active crown ether derivative having a spiro ring skeleton represented by the formula (1) will be described in detail.
The optically active crown ether derivative having a spiro ring skeleton represented by the formula (1) can be produced by a generally known Williamson ether synthesis method.

式(2)で表されるスピロ化合物である、1,1’−スピロビインダン−7,7’−ジオールは、文献に従って入手することができる(Vladimir,B.B.ら:Tetrahedron Asymmetry,10,125(1999).)。   1,1′-spirobiindane-7,7′-diol, which is a spiro compound represented by the formula (2), can be obtained according to literature (Vladimir, BB et al .: Tetrahedron Asymmetry, 10, 125). (1999).).

式(3)で表されるポリエーテルのnは0〜2の整数を表し、とくに好ましくはn=1である。Xは脱離基を意味し、クロロ、ブロモ、ヨードなどのハロゲンや、トシル、メシル、トリフルオロメタンスルフォニルなどのスルフォニルが好ましく挙げられる。特に好ましくはトシルである。 In the polyether represented by the formula (3), n represents an integer of 0 to 2, and particularly preferably n = 1. X 1 means a leaving group, and preferred examples include halogen such as chloro, bromo and iodo, and sulfonyl such as tosyl, mesyl and trifluoromethanesulfonyl. Particularly preferred is tosyl.

塩基として用いることができるのは、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウムなどの炭酸塩、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水素化ナトリウム、水素化カリウム、水素化カルシウム等のアルカリ金属またはアルカリ土類金属の水素化物、ナトリウムメチラート、ナトリウムエチラート、カリウムtert-ブトキシド等のアルカリ金属アルコラート類が挙げられ、特に好ましくはカリウムtert-ブトキシドである。   Usable as a base are carbonates such as potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, sodium hydride, potassium hydride, Examples include alkali metal or alkaline earth metal hydrides such as calcium hydride, alkali metal alcoholates such as sodium methylate, sodium ethylate and potassium tert-butoxide, with potassium tert-butoxide being particularly preferred.

使用可能な溶媒としては、非プロトン性であれば特に限定されないが、THFなどのエーテル類や、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどが好ましく用いられる。反応温度にとくに制限はないが、好ましくは0〜100℃の範囲である。   The solvent that can be used is not particularly limited as long as it is aprotic, but ethers such as THF, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide and the like are preferably used. Although there is no restriction | limiting in particular in reaction temperature, Preferably it is the range of 0-100 degreeC.

反応濃度にとくに制限はなく、できるだけ薄い方が収率は向上する傾向にあり、好ましくは0.001〜1Mであり、より好ましくは0.01〜0.1Mの範囲である。   There is no restriction | limiting in particular in reaction concentration, The one where it is as thin as possible exists in the tendency for a yield to improve, Preferably it is 0.001-1M, More preferably, it is the range of 0.01-0.1M.

次に、式(1)で表されるスピロ環骨格をもつ光学活性クラウンエーテル誘導体を用いた不斉触媒反応について詳細に述べる。
式(1)で表されるスピロ環骨格をもつ光学活性クラウンエーテルを相間移動触媒として用いる反応であれば、不斉触媒反応の種類はとくに限定されないが、好ましくは不斉アルキル化反応であり、さらに好ましくは、下記式(4)で表されるグリシン誘導体の不斉アルキル化反応である。本反応は、光学活性相間移動触媒と塩基存在下、親電子剤(R−X)を用いて、グリシン誘導体のカルボニル基のα位の水素をアルキル基に置換して下記式(5)のグリシン誘導体付加生成物に誘導して不斉を導入する反応である。
Next, the asymmetric catalytic reaction using the optically active crown ether derivative having a spiro ring skeleton represented by the formula (1) will be described in detail.
The type of asymmetric catalytic reaction is not particularly limited as long as it is a reaction using an optically active crown ether having a spiro ring skeleton represented by the formula (1) as a phase transfer catalyst, preferably an asymmetric alkylation reaction, More preferably, it is an asymmetric alkylation reaction of a glycine derivative represented by the following formula (4). In this reaction, hydrogen in the α-position of the carbonyl group of the glycine derivative is substituted with an alkyl group using an electrophile (R 2 -X 2 ) in the presence of an optically active phase transfer catalyst and a base, and the following formula (5) This is a reaction for introducing an asymmetry by inducing a glycine derivative addition product.

Figure 2006070001
(式中、Rは置換もしくは非置換の、飽和もしくは不飽和の脂肪族炭化水素基を意味し、Xは脱離基を意味する。)
Figure 2006070001
(Wherein R 2 represents a substituted or unsubstituted, saturated or unsaturated aliphatic hydrocarbon group, and X 2 represents a leaving group.)

式(4)において用いられる親電子剤のRは、置換もしくは非置換の、飽和もしくは不飽和の脂肪族炭化水素基を意味する。飽和もしくは不飽和の脂肪族炭化水素基とは、飽和脂肪族炭化水素基、すなわち、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t−ブチル、ペンチル、シクロプロピル等のアルキル基、炭素−炭素間二重結合または炭素−炭素間三重結合のような炭素−炭素間不飽和基を有する脂肪族炭化水素基、すなわちビニル、アリル、プレニル、メタリル等のアルケニル基、またはエチニル、プロピニル等のアルキニル基であって、これらは直鎖状、分岐状または環状のものであってよい。脂肪族炭化水素基は置換基として芳香族基を有するもの、すなわちアラルキル基であってもよい。アラルキルの例としては、ベンジル、フェネチルなどが挙げられる。また、芳香族基にはピリジル、フリル、チエニル、オサゾリルなどの複素環基を含んでいてもよい。その他、脂肪族炭化水素基の置換基としては、ハロ、ハロホルミル、ヒドロキシ、アルコキシ、オキソ、オキシカルボニル、カルバモイル、ホスフィノ、アミノ、イミノ、チオ、メルカプト、スルホ、スルフェニル、スルフォニル、シアノ、ニトロ、ニトロソ、アゾ、ジアゾ、アジド、ヒドラジノ、イソシアネト、シリルまたは有機金属など、有機化学で一般に知られている基または原子が例示される。特にベンジルが好ましい。 R 2 of the electrophile used in the formula (4) means a substituted or unsubstituted saturated or unsaturated aliphatic hydrocarbon group. A saturated or unsaturated aliphatic hydrocarbon group is a saturated aliphatic hydrocarbon group, that is, an alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopropyl, carbon-carbon, etc. An aliphatic hydrocarbon group having a carbon-carbon unsaturated group such as a carbon-carbon double bond or a carbon-carbon triple bond, that is, an alkenyl group such as vinyl, allyl, prenyl, methallyl, or an alkynyl group such as ethynyl, propynyl, etc. These may be linear, branched or cyclic. The aliphatic hydrocarbon group may have an aromatic group as a substituent, that is, an aralkyl group. Examples of aralkyl include benzyl, phenethyl and the like. The aromatic group may contain a heterocyclic group such as pyridyl, furyl, thienyl, osazolyl. Other substituents for aliphatic hydrocarbon groups include halo, haloformyl, hydroxy, alkoxy, oxo, oxycarbonyl, carbamoyl, phosphino, amino, imino, thio, mercapto, sulfo, sulfenyl, sulfonyl, cyano, nitro, nitroso And groups or atoms commonly known in organic chemistry, such as azo, diazo, azide, hydrazino, isocyanato, silyl or organometallic. Particularly preferred is benzyl.

当該脂肪族炭化水素基の炭素数は特に制限はないが、好ましくは1〜30であり、より好ましくは1〜20である。また、環状脂肪族炭化水素基の員数は好ましくは3〜10、より好ましくは5〜7である。   Although the carbon number of the said aliphatic hydrocarbon group does not have a restriction | limiting in particular, Preferably it is 1-30, More preferably, it is 1-20. The number of cycloaliphatic hydrocarbon groups is preferably 3 to 10, more preferably 5 to 7.

式(4)において用いられる親電子剤のXは前掲のXと同様、脱離基を意味し、従って、クロロ、ブロモ、ヨードなどのハロゲンや、トシル、メシル、トリフルオロメタンスルフォニルなどのスルフォニルを好ましく使用することができる。特にブロモが最も好ましい。 X 2 of the electrophile used in the formula (4) means a leaving group like X 1 described above. Therefore, halogen such as chloro, bromo and iodo, and sulfonyl such as tosyl, mesyl and trifluoromethanesulfonyl. Can be preferably used. Particularly preferred is bromo.

ここで用いられる塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水素化ナトリウム、水素化カリウム、水素化カルシウム等のアルカリ金属またはアルカリ土類金属の水素化物、ナトリウムメチラート、ナトリウウエチラート、カリウムtert-ブトキシド等のアルカリ金属アルコラート類が挙げられ、特に好ましくは水酸化カリウムである。   Examples of the base used herein include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal or alkaline earth metal hydrides such as sodium hydride, potassium hydride and calcium hydride, and sodium methylate. , Alkali metal alcoholates such as sodium laurate and potassium tert-butoxide, and potassium hydroxide is particularly preferred.

溶媒としては、トルエン、エーテル、塩化メチレン、アセトン、アルコール、水など通常溶媒として使用されるものを用いることができる。また、トルエン−水のような二相系であってもよい。   As a solvent, what is normally used as a solvent, such as toluene, ether, a methylene chloride, acetone, alcohol, water, can be used. Alternatively, a two-phase system such as toluene-water may be used.

反応温度にとくに制限はないが、好ましくは−50〜50℃の範囲である。   Although there is no restriction | limiting in particular in reaction temperature, Preferably it is the range of -50-50 degreeC.

この反応で用いられる本発明の化合物であるスピロ環骨格をもつ光学活性クラウンエーテル誘導体(1)の量は、基質であるグリシン誘導体(4)に対して0.5 mol%〜50 mol%が好ましく、特に好ましくは1 mol%〜15 mol%である。   The amount of the optically active crown ether derivative (1) having a spiro ring skeleton, which is the compound of the present invention, used in this reaction is preferably 0.5 mol% to 50 mol% with respect to the glycine derivative (4) as a substrate. Preferably they are 1 mol%-15 mol%.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
(R)−7,7’−(1,1’−スピロビインダニル)−21−クラウン−6(R−1)の合成

Figure 2006070001
(R)−1,1’−スピロビインダンー7,7’−ジオール(2)(223mg;0.88mmol)およびペンタエチレングリコールジトシレート(3)(535mg,0.98mmol)をTHF12mLに溶解させ、カリウムtert-ブトキシド(210mg,1.87mmol)を加えた後、12時間還流した。その後、水を加え、塩化メチレンで抽出した。硫酸ナトリウムにて溶媒乾燥を行い、減圧濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)にて精製を行い、(R−1)を収量264mg、収率66%で得た。
1H-NMR(CDCl3):
δ2.05-2.11 (m,2H), 2.18-2.25 (m,2H), 2.88-2.94 (m,4H), 3.13-3.26 (m,4H),
3.39-3.58 (m,8H), 3.78-3.83 (m,2H), 3.93-3.99 (m,2H), 6.59 (d,J=7.8Hz,2H), 6.75
(d,J=7.3Hz,2H), 6.98-7.03 (m,2H); 13C-NMR(CDCl3):δ31.5,
38.3, 59.1, 67.7, 69.2, 70.4, 70.7, 70.8, 109.6, 116.7, 127.3, 137.1, 145.0,
155.3; MS:m/z 454. EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.
[Example 1]
Synthesis of (R) -7,7 ′-(1,1′-spirobiindanyl) -21-crown-6 (R-1)
Figure 2006070001
(R) -1,1′-spirobiindane-7,7′-diol (2) (223 mg; 0.88 mmol) and pentaethylene glycol ditosylate (3) (535 mg, 0.98 mmol) are dissolved in 12 mL of THF. After adding potassium tert-butoxide (210 mg, 1.87 mmol), the mixture was refluxed for 12 hours. Then, water was added and extracted with methylene chloride. The solvent was dried over sodium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (hexane / ethyl acetate = 1/1) to obtain (R-1) in a yield of 264 mg and a yield of 66%.
1 H-NMR (CDCl 3 ):
δ2.05-2.11 (m, 2H), 2.18-2.25 (m, 2H), 2.88-2.94 (m, 4H), 3.13-3.26 (m, 4H),
3.39-3.58 (m, 8H), 3.78-3.83 (m, 2H), 3.93-3.99 (m, 2H), 6.59 (d, J = 7.8Hz, 2H), 6.75
(d, J = 7.3Hz, 2H), 6.98-7.03 (m, 2H); 13 C-NMR (CDCl 3 ): δ31.5,
38.3, 59.1, 67.7, 69.2, 70.4, 70.7, 70.8, 109.6, 116.7, 127.3, 137.1, 145.0,
155.3; MS: m / z 454.

[実施例2]
光学活性スピロクラウンエーテルを相間移動触媒とするグリシン誘導体の不斉アルキル化反応
グリシン誘導体(4a)18mg(0.06mmol)と(R−1)2.05mg(0.003mmol)とKOH60.5mg(1.08mmol)トルエン0.16mLの混合物に、ベンジルブロミド21μL(0.18mmol)を0℃で滴下し、同温で16時間攪拌した。水を加えた後、エーテルで抽出した。有機相を食塩水で洗浄後、硫酸マグネシウムで乾燥し、ろ過後、ろ液を減圧留去した。残さをカラムクロマトグラフィーにて精製(エーテル/ヘキサン=1/10)し、目的付加体である付加生成物(R−5a)を収率79%、50%eeで得た。光学純度はHPLC分析にて決定した((株)ダイセル製 キラルセルOD:IPA/ヘキサン=1/99)。

Figure 2006070001
[Example 2]
Asymmetric alkylation reaction of glycine derivative using optically active spiro crown ether as phase transfer catalyst 18 mg (0.06 mmol) of glycine derivative (4a), 2.05 mg (0.003 mmol) of (R-1) and 60.5 mg of KOH (1 .08 mmol) To a mixture of 0.16 mL of toluene, 21 μL (0.18 mmol) of benzyl bromide was added dropwise at 0 ° C. and stirred at the same temperature for 16 hours. Water was added and extracted with ether. The organic phase was washed with brine, dried over magnesium sulfate, filtered, and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (ether / hexane = 1/10) to obtain an addition product (R-5a) as a target adduct in a yield of 79% and 50% ee. The optical purity was determined by HPLC analysis (Chiral Cell OD: IPA / hexane = 1/99 manufactured by Daicel Corporation).
Figure 2006070001

本発明は、相間移動触媒を用いた不斉触媒反応に利用することができる。   The present invention can be used for asymmetric catalysis using a phase transfer catalyst.

Claims (6)

下記式(1)で表されるスピロ環骨格を有する光学活性クラウンエーテル誘導体。
Figure 2006070001
(式中、nは0〜2の整数を表す。)
An optically active crown ether derivative having a spiro ring skeleton represented by the following formula (1).
Figure 2006070001
(In the formula, n represents an integer of 0 to 2.)
式(1)においてn=1であるスピロ環骨格を有する光学活性クラウンエーテル誘導体。   An optically active crown ether derivative having a spiro ring skeleton in which n = 1 in formula (1). 下記式(2)
Figure 2006070001
で表される光学活性なスピロ化合物と、下記式(3)
Figure 2006070001
(式中、nは上記に同じ。Xは脱離基を表す。)
で表されるポリエーテルを、塩基存在下で作用させることを特徴とする、式(1)
Figure 2006070001
(式中、nは上記に同じ。)
で表されるスピロ環骨格を有する光学活性クラウンエーテル誘導体の製造法。
Following formula (2)
Figure 2006070001
An optically active spiro compound represented by formula (3):
Figure 2006070001
(In the formula, n is the same as above. X 1 represents a leaving group.)
Wherein the polyether represented by formula (1) is allowed to act in the presence of a base.
Figure 2006070001
(Wherein n is the same as above)
A process for producing an optically active crown ether derivative having a spiro ring skeleton represented by the formula:
不斉触媒反応において、請求項1または2記載の式(1)で表されるスピロ環骨格を有する光学活性クラウンエーテル誘導体の相間移動触媒としての使用。   Use of an optically active crown ether derivative having a spiro ring skeleton represented by formula (1) according to claim 1 or 2 as a phase transfer catalyst in an asymmetric catalytic reaction. 不斉触媒反応が、不斉アルキル化反応であることを特徴とする請求項4記載の使用。   Use according to claim 4, characterized in that the asymmetric catalytic reaction is an asymmetric alkylation reaction. 請求項1または2記載の式(1)で表されるスピロ環骨格を有する光学活性クラウンエーテル誘導体を相間移動触媒として用い、下記式(4)で表されるグリシン誘導体に対し、塩基の存在下、親電子剤(R-X)を用いて不斉アルキル化反応させ、下記式(5)で表される光学活性アルキル置換グリシン誘導体を製造する方法。
Figure 2006070001
(式中、Rは置換もしくは非置換の、飽和もしくは不飽和の脂肪族炭化水素基を意味し、Xは脱離基を意味する。)
The optically active crown ether derivative having a spiro ring skeleton represented by the formula (1) according to claim 1 or 2 is used as a phase transfer catalyst, and the glycine derivative represented by the following formula (4) is used in the presence of a base. A method of producing an optically active alkyl-substituted glycine derivative represented by the following formula (5) by carrying out an asymmetric alkylation reaction using an electrophile (R 2 -X 2 ).
Figure 2006070001
(Wherein R 2 represents a substituted or unsubstituted, saturated or unsaturated aliphatic hydrocarbon group, and X 2 represents a leaving group.)
JP2004258567A 2004-09-06 2004-09-06 A chiral phase transfer catalyst having a spiro skeleton, a process for producing the same, and an asymmetric catalytic reaction using the same. Expired - Fee Related JP4419761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258567A JP4419761B2 (en) 2004-09-06 2004-09-06 A chiral phase transfer catalyst having a spiro skeleton, a process for producing the same, and an asymmetric catalytic reaction using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258567A JP4419761B2 (en) 2004-09-06 2004-09-06 A chiral phase transfer catalyst having a spiro skeleton, a process for producing the same, and an asymmetric catalytic reaction using the same.

Publications (2)

Publication Number Publication Date
JP2006070001A true JP2006070001A (en) 2006-03-16
JP4419761B2 JP4419761B2 (en) 2010-02-24

Family

ID=36150985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258567A Expired - Fee Related JP4419761B2 (en) 2004-09-06 2004-09-06 A chiral phase transfer catalyst having a spiro skeleton, a process for producing the same, and an asymmetric catalytic reaction using the same.

Country Status (1)

Country Link
JP (1) JP4419761B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088115A (en) * 2006-10-03 2008-04-17 Nippon Soda Co Ltd Process for preparing substituted amino acid schiff base compound
JP2017501123A (en) * 2013-12-19 2017-01-12 アーチャー−ダニエルズ−ミッドランド カンパニー Mono- and dialkyl ethers of furan-2,5-dimethanol and (tetrahydrofuran-2,5-diyl) dimethanol and their amphiphilic derivatives
US10565015B2 (en) 2017-09-18 2020-02-18 The Regents Of The University Of Michigan Spiroketal-based C2-symmetric scaffold for asymmetric catalysis
CN114644641A (en) * 2020-12-17 2022-06-21 中国科学院广州生物医药与健康研究院 Chiral diphenol based on spiral skeleton and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088115A (en) * 2006-10-03 2008-04-17 Nippon Soda Co Ltd Process for preparing substituted amino acid schiff base compound
JP2017501123A (en) * 2013-12-19 2017-01-12 アーチャー−ダニエルズ−ミッドランド カンパニー Mono- and dialkyl ethers of furan-2,5-dimethanol and (tetrahydrofuran-2,5-diyl) dimethanol and their amphiphilic derivatives
US10565015B2 (en) 2017-09-18 2020-02-18 The Regents Of The University Of Michigan Spiroketal-based C2-symmetric scaffold for asymmetric catalysis
CN114644641A (en) * 2020-12-17 2022-06-21 中国科学院广州生物医药与健康研究院 Chiral diphenol based on spiral skeleton and preparation method and application thereof

Also Published As

Publication number Publication date
JP4419761B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
Zhong et al. New β-amino alcohols with a bicyclo [3.3. 0] octane scaffold in an asymmetric Henry reaction
KiatáGoh et al. Direct synthesis of ester-containing indium homoenolate and its application in palladium-catalyzed cross-coupling with aryl halide
US7732599B2 (en) Process for preparing tetrahydrobiopterin and analogs of tetrahydrobiopterin
CN104649945B (en) Preparation method of sulfonylurea and sulfonamide formate compounds
JP4419761B2 (en) A chiral phase transfer catalyst having a spiro skeleton, a process for producing the same, and an asymmetric catalytic reaction using the same.
JP2016520043A (en) 5- (Hydroxymethyl) furan-2-carbaldehyde (HMF) sulfonate and process for its synthesis
KR101653025B1 (en) Method for producing 2-amino-4-(trifluoromethyl)pyridine
Meshram et al. Bismuthtriflate-catalyzed Reaction of N-Alkylisatins with Allyltrimethylsilane
JP4649645B2 (en) Process for producing optically active alcohol compounds
JP2007230963A (en) Method for producing 2,4-disubstituted pyridine
KR20130090360A (en) Method for preparing compounds through a novel michael-addition reaction using water or various acids as additives
EP1718591B1 (en) A process for the preparation of optically active cyclohexenones
JP5004138B2 (en) Process for producing β-hydroxycarbonyl compound
CN107915699B (en) Synthetic method of Corallidictyalal D
JP2004238362A (en) OPTICALLY ACTIVE QUATERNARY AMMONIUM SALT, ITS PRODUCTION METHOD AND METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-AMINO ACID DERIVATIVE USING THE SALT AS PHASE-TRANSFER CATALYST
JP4639368B2 (en) Process for producing optically active β-hydroxycarbonyl compound
ES2625547T3 (en) Preparation procedure for optionally substituted phenyl and pyridyl pyrrolidines
JP5280858B2 (en) 1,1&#39;-Biphenyls Axial Chirality Ligand Linked at 5,5 &#39;Position and Method for Producing the Same
CN109956960B (en) Synthetic method of isothiourea catalyst
KR101029091B1 (en) Preparation method of dihydrofuran derivatives
JP2008013506A (en) Method for producing furan derivative
JP3785849B2 (en) Process for producing optically active norbornene aldehydes
KR101356454B1 (en) Method of preparing unsaturated aldehyde compound
JP2004269376A (en) Method for producing 1-formyl-3-(3,4-methylenedioxyphenyl)propene derivative
JP2003335780A (en) Quaternary ammonium salt having spirochirality and its utilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees