【0001】
【発明の属する技術分野】
本発明は、香料、医薬品、農薬、有機合成薬品の中間体として有用である1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の製造に関する。特に前記式(1)においてRがメチル基であるピペロニリデンプロパナールは、香料として有用である。(特許文献1)
【0002】
【従来の技術】
1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の製法としては、例えば、特許文献1に、ピペロナールの亜硫酸塩とプロピオンアルデヒドを塩基水溶液およびアルコールの混合溶媒中にて反応させるピペロニリデンプロパナールの製法が開示されている。しかし、収率は49.5%と不充分であり、ピペロナールを亜硫酸塩に誘導しなければならない点、煩雑である。
【0003】
非特許文献1には、ピペロナールを塩基水溶液及びアルコールに溶解した後、65〜72℃に過熱し、プロピオンアルデヒドを滴下するピペロニリデンプロパナールの製法が開示されている。しかし、収率は29.6%と不充分である。
また、上記のいずれの製法も、目的の1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の取得は、反応混合物から抽出又は蒸留などの操作が必要であった。
【0004】
【特許文献1】
米国特許2102965号明細書
【非特許文献1】
American Perfumer & Essential Oil Review. 1930, p.617〜620
【0005】
【発明が解決しようとする課題】
本発明は、1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の簡便且つ収率の良い工業的製法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の課題は、極性溶媒中、塩基とピペロナール及び下式(1)で示されるアルデヒド類を、
【0007】
【化3】
【0008】
(式中、Rは前記と同義である。)
【0009】
温度−10〜30℃で反応させる、下式(2)で示される1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の製法によって解決される。
【0010】
【化4】
【0011】
(式中、Rは前記と同義である。なお、本化合物は、立体異性体を含む。)
【0012】
【発明の実施の形態】
本発明において、前記式(2)で表される1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体は、極性溶媒中、塩基とピペロナール及び下式(1)で示されるアルデヒド類を、温度−10〜30℃で反応させることにより合成することが出来る。
【0013】
本反応で用いられるピペロナールは、市販のものが使用できる。
【0014】
本発明で用いられる前記式(1)で表されるアルデヒド類において、Rは、メチル基、エチル基、プロピル基、ブチル基などの炭素原子数1〜4のアルキル基(なお、これら置換基は異性体を含む。)、又はフェニル基を表す。
なお、これらアルデヒド類は、市販のものが使用できる。
【0015】
前記式(1)で表されるアルデヒド類の使用量は、ピペロナール1モルに対して、1.0〜5.0モル、好ましくは1.5〜3.0モルである。
【0016】
本反応で用いられる塩基としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、水酸化カルシウムなどのアルカリ土類金属の水酸化物、ナトリウムメトキシド、ナトリウムエトキシドなどのアルコールのアルカリ金属塩、水素化ナトリウム、水素化カリウムなどのアルカリ金属の水素化物が挙げられる。好ましくは、アルカリ金属の水酸化物であり、更に好ましくは、水酸化ナトリウムである。
【0017】
塩基の使用量は、ピペロナール1モルに対して、1〜4モルが好ましく、1〜2モルが更に好ましい。
【0018】
極性溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール類、テトラヒドロフラン、ジオキサン等の環状エーテル類、水及びこれらの混合溶媒が挙げられるが、アルコール類、或は水とアルコール類の混合溶媒が好ましく、更に水とメタノールの混合溶媒が好ましい。
【0019】
水とアルコール類の混合溶媒において、水とアルコール類の混合比は、水/アルコール類=1/1から1/3が好ましい。
【0020】
溶媒の量は、ピペロナール1gに対して2〜10mlが好ましい。
【0021】
反応温度は、好ましくは−10〜30℃であり、更に好ましくは−10〜26℃である。
同温度範囲で反応させることにより、生成する前記式(2)で表される1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体は析出する。
この範囲より低温の場合、反応が充分に進行せず、高温であると1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の晶析が充分に行えない。
【0022】
反応時間は、前記の溶媒の使用量、温度によって変化するが、通常1〜24時間である。
【0023】
本反応は、通常、常圧にて行うが、加圧又は減圧条件下で行うことも出来る。
また、アルゴンガス、窒素ガスなどの不活性ガス雰囲気下で行っても良い。
【0024】
本反応において、極性溶媒、塩基、ピペロナール及び上記式(1)で示されるアルデヒド類の添加方法は、特に限定されないが、塩基存在下、極性溶媒中へ、ピペロナールと該アルデヒド類を滴下するのが好ましく、更には同時滴下が好ましい。
同時滴下の方法としては、ピペロナールと上記アルデヒド類を別々に前記極性溶媒に溶解するか、液体であれば、そのままの液体を、同時滴下することができるが、前記極性溶媒に溶解した溶液を滴下することで、行うこともできる。
【0025】
以上のようにして生成した前記式(2)で表される1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体は、析出するため、反応終了後、濾過、遠心分離、デカンテーション等で容易に取り出すことができる。得られた1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の結晶は、必要に応じて前記極性溶媒での洗浄や再結晶などの公知の手段で適宣精製することもできる。
【0026】
【実施例】
以下に本発明の代表的な実施例を示す。
実施例1
アルゴンガス雰囲気下、200mlのジャケット付フラスコに5規定の水酸化ナトリウム水溶液30ml(150mmol)を加え、溶媒としてメタノール45mlを加えた。内温4℃でピペロナール15.0g(100mmol)およびプロピオンアルデヒド14.5g(250mmol)をメタノール15mlに溶解させた溶液を1時間かけて滴下した。同温にて3時間攪拌し、析出した目的物である板状結晶のピペロニリデンプロパナールを濾取した。取得量10.6g(収率56.0%)
濾取した結晶を高速液体クロマトグラフィーにて分析したところ純度は100.0%であった。
以下に、その物性値を示す。
【0027】
1H−NMR(300MHz, CDCl3) δ=2.06(3H, s), 6.03(2H, s), 6.89(1H, d, J=7.5Hz), 7.06(1H, dd, JA=7.5Hz, JB=1.2Hz), 7.07(1H, s), 7.14(1H, d, J=1.2Hz), 9.52(1H, s).
【0028】
13C−NMR(75.5MHz, CDCl3) δ=10.96, 101.64, 108.66, 109.63, 125.81, 129.47, 136.61, 148.11, 148.90, 149.73, 195.38.
【0029】
m.p. = 64 〜 65oC
【0030】
実施例2
アルゴンガス雰囲気下、25mlの3ッ口フラスコに水酸化ナトリウム0.60g(15mmol)を加え、溶媒として水2.5ml及びメタノール5mlを加えた。この溶液に、内温4℃でピペロナール1.50g(10mmol)及びプロピオニルアルデヒド0.73g(12.5mmol)をメタノール1.5mlに溶解させた溶液を1時間かけて滴下した。20時間攪拌し、析出した板状結晶であるピペロニリデンプロパナールを濾取した。収量1.23g(収率64.8%)
濾取した結晶を高速液体クロマトグラフィーにて分析したところ純度は100.0%であった。
【0031】
実施例3〜7は、反応温度及び反応時間を変えた以外は、実施例1と同様に行った。表1にその結果を示す。
【0032】
【表1】
【0033】
【発明の効果】
本発明によって、香料、医薬品、農薬、有機合成薬品の中間体として有用である1−ホルミル−3−(3,4−メチレンジオキシフェニル)プロペン誘導体を、抽出や蒸留などの煩雑な生成を行うことなく、収率良く、しかも高純度で得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the production of 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivatives which are useful as intermediates for fragrances, pharmaceuticals, agricultural chemicals, and organic synthetic chemicals. In particular, piperonylidenepropanal in which R is a methyl group in the above formula (1) is useful as a fragrance. (Patent Document 1)
[0002]
[Prior art]
As a method for producing a 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative, for example, Patent Literature 1 discloses that a sulfonate of piperonal and propionaldehyde are reacted in a mixed solvent of an aqueous base solution and alcohol. A method for producing piperonylidenepropanal is disclosed. However, the yield is insufficient at 49.5%, which is troublesome in that piperonal must be converted to sulfite.
[0003]
Non-Patent Document 1 discloses a method for producing piperonylidenepropanal in which piperonal is dissolved in an aqueous base solution and alcohol, heated to 65 to 72 ° C., and propionaldehyde is added dropwise. However, the yield is insufficient at 29.6%.
In addition, in any of the above production methods, an operation such as extraction or distillation from the reaction mixture was required to obtain the desired 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative.
[0004]
[Patent Document 1]
US Patent No. 2102965 [Non-Patent Document 1]
American Perfumer & Essential Oil Review. 1930, p. 617-620
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a simple and high-yield industrial production method of a 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative.
[0006]
[Means for Solving the Problems]
An object of the present invention is to convert a base and piperonal and an aldehyde represented by the following formula (1) in a polar solvent,
[0007]
Embedded image
[0008]
(In the formula, R is as defined above.)
[0009]
The problem is solved by a method for producing a 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative represented by the following formula (2), which is reacted at a temperature of -10 to 30 ° C.
[0010]
Embedded image
[0011]
(In the formula, R has the same meaning as described above. The present compound includes stereoisomers.)
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative represented by the above formula (2) is used in a polar solvent in the presence of a base and piperonal and an aldehyde represented by the following formula (1). Can be synthesized by reacting the compounds at a temperature of -10 to 30C.
[0013]
Commercially available piperonal can be used for this reaction.
[0014]
In the aldehydes represented by the formula (1) used in the present invention, R represents an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group (the substituents being Or a phenyl group.
In addition, these aldehydes can use a commercial thing.
[0015]
The amount of the aldehyde represented by the formula (1) to be used is 1.0 to 5.0 mol, preferably 1.5 to 3.0 mol, per 1 mol of piperonal.
[0016]
Examples of the base used in this reaction include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide, hydroxides of alkaline earth metals such as calcium hydroxide, and alcohols such as sodium methoxide and sodium ethoxide. Examples include alkali metal hydrides such as alkali metal salts, sodium hydride and potassium hydride. Preferably, it is a hydroxide of an alkali metal, and more preferably, sodium hydroxide.
[0017]
The amount of the base to be used is preferably 1 to 4 mol, more preferably 1 to 2 mol, per 1 mol of piperonal.
[0018]
Examples of the polar solvent include alcohols such as methanol, ethanol and isopropyl alcohol, cyclic ethers such as tetrahydrofuran and dioxane, water and a mixed solvent thereof.Alcohols or a mixed solvent of water and alcohol are preferable. Further, a mixed solvent of water and methanol is preferred.
[0019]
In the mixed solvent of water and alcohol, the mixing ratio of water and alcohol is preferably water / alcohol = 1/1 to 1/3.
[0020]
The amount of the solvent is preferably 2 to 10 ml per 1 g of piperonal.
[0021]
The reaction temperature is preferably from -10 to 30C, more preferably from -10 to 26C.
By reacting in the same temperature range, the resulting 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative represented by the formula (2) precipitates.
When the temperature is lower than this range, the reaction does not proceed sufficiently, and when the temperature is high, crystallization of the 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative cannot be sufficiently performed.
[0022]
The reaction time varies depending on the amount of the solvent used and the temperature, but is usually 1 to 24 hours.
[0023]
This reaction is generally performed under normal pressure, but can also be performed under increased or reduced pressure.
Alternatively, the etching may be performed in an inert gas atmosphere such as an argon gas or a nitrogen gas.
[0024]
In this reaction, the method of adding the polar solvent, the base, the piperonal and the aldehyde represented by the above formula (1) is not particularly limited, but it is preferable to drop the piperonal and the aldehyde into the polar solvent in the presence of the base. Preferably, simultaneous dropping is more preferable.
As a method of simultaneous dropping, piperonal and the above-mentioned aldehydes are separately dissolved in the polar solvent, or if it is a liquid, the same liquid can be dropped simultaneously, but a solution dissolved in the polar solvent can be dropped. By doing so, it can be done.
[0025]
The 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative represented by the above formula (2) produced as described above precipitates. Therefore, after completion of the reaction, filtration, centrifugation, decane It can be easily taken out at a station or the like. The obtained crystals of the 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative can be optionally purified by a known means such as washing with a polar solvent or recrystallization if necessary. it can.
[0026]
【Example】
Hereinafter, typical examples of the present invention will be described.
Example 1
Under an argon gas atmosphere, 30 ml (150 mmol) of a 5N aqueous sodium hydroxide solution was added to a 200 ml jacketed flask, and 45 ml of methanol was added as a solvent. At an internal temperature of 4 ° C., a solution in which 15.0 g (100 mmol) of piperonal and 14.5 g (250 mmol) of propionaldehyde were dissolved in 15 ml of methanol was added dropwise over 1 hour. The mixture was stirred at the same temperature for 3 hours, and the precipitated plateronized piperonylidenepropanal, which was the target substance, was collected by filtration. Acquisition amount 10.6 g (yield 56.0%)
The filtered crystals were analyzed by high performance liquid chromatography to find that the purity was 100.0%.
The physical properties are shown below.
[0027]
1 H-NMR (300 MHz, CDCl 3 ) δ = 2.06 (3H, s), 6.03 (2H, s), 6.89 (1H, d, J = 7.5 Hz), 7.06 (1H) , dd, J A = 7.5Hz, J B = 1.2Hz), 7.07 (1H, s), 7.14 (1H, d, J = 1.2Hz), 9.52 (1H, s) .
[0028]
13 C-NMR (75.5 MHz, CDCl 3 ) δ = 10.96, 101.64, 108.66, 109.63, 125.81, 129.47, 136.61, 148.11, 148.90, 149.73, 195.38.
[0029]
m. p. = 64 to 65 oC
[0030]
Example 2
Under an argon gas atmosphere, 0.60 g (15 mmol) of sodium hydroxide was added to a 25 ml three-necked flask, and 2.5 ml of water and 5 ml of methanol were added as a solvent. To this solution, a solution in which 1.50 g (10 mmol) of piperonal and 0.73 g (12.5 mmol) of propionyl aldehyde were dissolved in 1.5 ml of methanol was added dropwise at an internal temperature of 4 ° C. over 1 hour. The mixture was stirred for 20 hours, and the precipitated plateron crystals, piperonylidenepropanal, were collected by filtration. Yield 1.23 g (64.8% yield)
The filtered crystals were analyzed by high performance liquid chromatography to find that the purity was 100.0%.
[0031]
Examples 3 to 7 were carried out in the same manner as in Example 1 except that the reaction temperature and the reaction time were changed. Table 1 shows the results.
[0032]
[Table 1]
[0033]
【The invention's effect】
According to the present invention, a 1-formyl-3- (3,4-methylenedioxyphenyl) propene derivative, which is useful as an intermediate of a fragrance, a pharmaceutical, an agricultural chemical, or an organic synthetic chemical, undergoes complicated production such as extraction and distillation. It can be obtained with good yield and high purity.