JP2006067403A - Stacked aperture antenna - Google Patents

Stacked aperture antenna Download PDF

Info

Publication number
JP2006067403A
JP2006067403A JP2004249439A JP2004249439A JP2006067403A JP 2006067403 A JP2006067403 A JP 2006067403A JP 2004249439 A JP2004249439 A JP 2004249439A JP 2004249439 A JP2004249439 A JP 2004249439A JP 2006067403 A JP2006067403 A JP 2006067403A
Authority
JP
Japan
Prior art keywords
slot
aperture antenna
dielectric layer
line
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004249439A
Other languages
Japanese (ja)
Inventor
Shinichi Koriyama
慎一 郡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004249439A priority Critical patent/JP2006067403A/en
Publication of JP2006067403A publication Critical patent/JP2006067403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin stacked aperture antenna by which a feeding line is constituted without increasing the thickness of a dielectric substrate in a high band layered aperture antenna. <P>SOLUTION: The stacked aperture antenna is equipped with a high frequency line 8 constituted of a line conductor 6 formed on the upper surface of a dielectric layer 1 and an identical surface grounding conductor layer 2 formed so as to surround one end part 7 of the line conductor 6, a slot 3 formed on the identical surface grounding conductor layer 2 so as to perpendicularly cross the line conductor 6 and a plurality of shield penetration conductors 4 formed inside the dielectric layer 1 so as to surround the slot 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロ波やミリ波を用いた通信やレーダーに使用されるアンテナに関するもので、帯域が広く薄型化が可能な積層型開口面アンテナに関するものである。   The present invention relates to an antenna used for communication and radar using microwaves and millimeter waves, and relates to a laminated aperture antenna that has a wide band and can be thinned.

マイクロ波やミリ波等の電磁波を効率良く放射するアンテナとして導波管を用いたホーンアンテナが知られている。ホーンアンテナは導波管内を伝送してきた高周波信号を空間に放射するアンテナである。導波管内部は空間と同じ誘電率(一般的には空気の誘電率)であり、そのインピーダンスは空間のインピーダンスに近くなっている。また導波管内を伝送する高周波信号の電磁場モードは空間を伝送する高周波信号の電磁場モードに類似しており、導波管を伝送してきた高周波信号の電磁場モードはホーン近傍の空間で容易に空間を伝送する高周波信号の電磁場モードに変化できる。これらの理由よりホーンアンテナはインピーダンスやモードのミスマッチによる反射が小さく、高効率で比較的広帯域であることが知られている。   A horn antenna using a waveguide is known as an antenna that efficiently radiates electromagnetic waves such as microwaves and millimeter waves. A horn antenna is an antenna that radiates a high-frequency signal transmitted through a waveguide into space. The inside of the waveguide has the same dielectric constant as that of space (generally, the dielectric constant of air), and its impedance is close to that of space. The electromagnetic field mode of the high-frequency signal transmitted through the waveguide is similar to the electromagnetic field mode of the high-frequency signal transmitted through the space. The electromagnetic field mode of the high-frequency signal transmitted through the waveguide can be easily It can change to the electromagnetic field mode of the high-frequency signal to be transmitted. For these reasons, it is known that the horn antenna has low reflection due to impedance and mode mismatch, and is highly efficient and relatively wide in bandwidth.

一方一般にマイクロ波やミリ波を用いた通信やレーダーに用いられる回路はマイクロストリップ線路やコプレーナ線路を用いた平面回路である。この場合、回路とホーンアンテナを接続するには平面回路を導波管に変換する変換器が必要になり、変換器を使用することによるコストアップや反射等の性能劣化が生じる場合がある。平面回路から空間に直接電磁波を放射するアンテナの1つとしてパッチアンテナが知られている。パッチアンテナは比較的インピーダンスが小さい平面回路と、比較的インピーダンスが大きい空間とをパッチの共振を使って整合している。共振による整合では共振器のインピーダンスが帯域に影響する。帯域を広くするためにパッチのインピーダンスを大きくしようとするとパッチ幅を小さくする必要があり放射効率が下がる。放射効率を上げるためにパッチ幅を大きくするとパッチのインピーダンスが小さくなり帯域が狭くなる傾向がある。パッチアンテナの設計では高周波信号を効率良く空間に放射することが第1条件であり、そのため帯域を犠牲にして、帯域が狭くなっている場合が多い。   On the other hand, circuits generally used for communication and radar using microwaves and millimeter waves are planar circuits using microstrip lines and coplanar lines. In this case, in order to connect the circuit and the horn antenna, a converter for converting the planar circuit into the waveguide is required, and the use of the converter may cause an increase in cost and performance degradation such as reflection. A patch antenna is known as one of antennas that directly radiate electromagnetic waves from a planar circuit into space. In the patch antenna, a planar circuit having a relatively small impedance and a space having a relatively large impedance are matched using the resonance of the patch. In matching by resonance, the impedance of the resonator affects the band. In order to increase the impedance of the patch in order to widen the band, it is necessary to reduce the patch width, and the radiation efficiency decreases. Increasing the patch width to increase the radiation efficiency tends to reduce the patch impedance and narrow the band. In the design of a patch antenna, the first condition is to efficiently radiate a high-frequency signal into the space. Therefore, the band is often narrowed at the expense of the band.

この問題を解決するために共振器としてインピーダンスが大きい空洞共振器を用いた積層型開口面アンテナが提案されている。この積層型開口面アンテナでは平面回路を形成する誘電体基板内部に誘電体が充填された空洞共振器を構成し、広帯域なアンテナを実現している。
特開2001−016027号公報
In order to solve this problem, a laminated aperture antenna using a cavity resonator having a large impedance as a resonator has been proposed. In this laminated aperture antenna, a cavity resonator in which a dielectric is filled inside a dielectric substrate forming a planar circuit is configured to realize a broadband antenna.
JP 2001-016027 A

しかしながら、積層型開口面アンテナでは空洞共振器を誘電体基板内部に構成する必要があるため、パッチアンテナと比較すると誘電体基板が厚くなる場合がある。特にこのアンテナの1次放射器であるスロットへの給電に積層型導波管やマイクロストリップ線路等の給電線を用いた場合、給電線を構成するためにスロットの上にさらに誘電体層を設ける必要があり誘電体基板の厚さが空洞共振器の厚さよりも更に厚くなって、装置が大型化するという問題があった。   However, in the multilayer aperture antenna, since the cavity resonator needs to be formed inside the dielectric substrate, the dielectric substrate may be thicker than the patch antenna. In particular, when a feed line such as a laminated waveguide or a microstrip line is used to feed the slot which is the primary radiator of this antenna, a dielectric layer is further provided on the slot to form the feed line. Therefore, there is a problem that the thickness of the dielectric substrate is further thicker than the thickness of the cavity resonator and the size of the device is increased.

従って、本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、高帯域な積層型開口面アンテナにおいて、誘電体基板の厚さを厚くせずに給電線を構成できる薄型の積層型開口面アンテナを提供することにある。   Accordingly, the present invention has been completed in view of the above-described conventional problems, and an object of the present invention is to configure a feeder line without increasing the thickness of a dielectric substrate in a high-band multilayer aperture antenna. An object of the present invention is to provide a thin laminated aperture antenna that can be used.

本発明の積層型開口面アンテナは、誘電体層の上面に形成された線路導体および該線路導体の一端部を取り囲むように形成された同一面接地導体層から成る高周波線路と、前記同一面接地導体層に前記線路導体と直交するように形成されたスロットと、前記スロットを取り囲むように前記誘電体層の内部に形成された複数のシールド貫通導体とを具備していることを特徴とする。   The laminated aperture antenna of the present invention includes a line conductor formed on an upper surface of a dielectric layer, a high-frequency line including a coplanar ground conductor layer formed so as to surround one end of the line conductor, and the coplanar grounding. The conductor layer includes a slot formed so as to be orthogonal to the line conductor, and a plurality of shield penetrating conductors formed inside the dielectric layer so as to surround the slot.

本発明の積層型開口面アンテナにおいて、好ましくは、前記誘電体層の内部に前記スロットよりも大きな開口を有するとともに該開口を前記スロットに対向させて設けられたシールド接地層と、平面視で前記開口に沿って前記開口を取り囲むように形成された、前記シールド接地層と前記同一面接地導体層とを電気的に接続する複数の接続貫通導体とを具備していることを特徴とする。   In the laminated aperture antenna of the present invention, preferably, the dielectric ground layer has an opening larger than the slot and the shield ground layer provided so as to face the slot, and in plan view, the shield ground layer. A plurality of connection through conductors that electrically connect the shield ground layer and the same-surface ground conductor layer are formed so as to surround the opening along the opening.

本発明の積層型開口面アンテナにおいて、好ましくは、前記線路導体の一端部が開放端でかつ前記スロットの中心との間の距離が、前記高周波線路を伝送する高周波信号の波長の(2n−1)/4倍(nは自然数)であることを特徴とする。   In the multilayer aperture antenna according to the present invention, preferably, the distance between the one end of the line conductor and the center of the slot is (2n-1) of the wavelength of the high-frequency signal transmitted through the high-frequency line. ) / 4 times (n is a natural number).

本発明の積層型開口面アンテナにおいて、好ましくは、前記線路導体は、その一端部が前記同一面接地導体層に電気的に接続された短絡端であることを特徴とする。   In the multilayer aperture antenna according to the present invention, preferably, the line conductor is a short-circuited end whose one end is electrically connected to the coplanar ground conductor layer.

本発明の積層型開口面アンテナにおいて、好ましくは、前記短絡端と前記スロットの中心との間の距離がスロット幅の1/2あるいは前記高周波信号の波長のn/2倍(nは自然数)であることを特徴とする。   In the multilayer aperture antenna according to the present invention, preferably, the distance between the short-circuited end and the center of the slot is 1/2 of the slot width or n / 2 times the wavelength of the high-frequency signal (n is a natural number). It is characterized by being.

本発明の積層型開口面アンテナにおいて、好ましくは、複数の前記シールド貫通導体間の間隔が前記誘電体層内部における前記高周波信号の波長の1/4倍以下であることを特徴とする。   In the multilayer aperture antenna according to the present invention, preferably, the interval between the plurality of shield through conductors is not more than ¼ times the wavelength of the high-frequency signal in the dielectric layer.

本発明の積層型開口面アンテナにおいて、好ましくは、前記誘電体層の上面に形成された上部誘電体層と、該上部誘電体層の上面に形成された上部接地導体層とを具備していることを特徴とする。   The laminated aperture antenna of the present invention preferably includes an upper dielectric layer formed on the upper surface of the dielectric layer and an upper ground conductor layer formed on the upper surface of the upper dielectric layer. It is characterized by that.

本発明の積層型開口面アンテナは、誘電体層の上面に形成された線路導体および線路導体の一端部を取り囲むように形成された同一面接地導体層から成る高周波線路と、同一面接地導体層に線路導体と直交するように形成されたスロットと、スロットを取り囲むように誘電体層の内部に形成された複数のシールド貫通導体とを具備していることから、高周波線路とスロットとが電磁的に結合するので、誘電体基板の厚さを厚くせずに給電線を構成でき、薄型の積層型開口面アンテナを提供できる。   The laminated aperture antenna of the present invention includes a line conductor formed on the upper surface of a dielectric layer and a high-frequency line composed of the same-surface ground conductor layer formed so as to surround one end of the line conductor, and the same-surface ground conductor layer And a plurality of shield penetrating conductors formed inside the dielectric layer so as to surround the slot, so that the high-frequency line and the slot are electromagnetically coupled to each other. Therefore, the feeder line can be configured without increasing the thickness of the dielectric substrate, and a thin laminated aperture antenna can be provided.

本発明の積層型開口面アンテナは、好ましくは、誘電体層の内部にスロットよりも大きな開口を有するとともに開口をスロットに対向させて設けられたシールド接地層と、平面視で開口に沿って開口を取り囲むように形成された、シールド接地層と同一面接地導体層とを電気的に接続する複数の接続貫通導体とを具備していることから、誘電体層およびシールド貫通導体で形成される整合器の外周部と高周波線路とが電気的に隔離され、整合器外周部において励振されやすい不要共振が高周波線路の電磁波モードで励振されることがなく、安定した性能の積層型開口面アンテナを提供できる。   The laminated aperture antenna of the present invention preferably has a shield ground layer provided inside the dielectric layer with an opening larger than the slot and facing the slot, and an opening along the opening in plan view. And a plurality of connecting through conductors that electrically connect the shield grounding layer and the same-surface grounding conductor layer so as to surround the matching layer, and are formed by the dielectric layer and the shield through conductor. Provided a laminated aperture antenna with stable performance, with the outer periphery of the filter and the high-frequency line electrically isolated, and unnecessary resonance that is easily excited at the outer periphery of the matching unit is not excited in the electromagnetic wave mode of the high-frequency line. it can.

本発明の積層型開口面アンテナにおいて、好ましくは、線路導体の一端部が開放端でかつスロットの中心との間の距離が、高周波線路を伝送する高周波信号の波長の(2n−1)/4倍(nは自然数)であることから、たとえばnが1の場合、線路導体の一端部とスロットの中心との間の距離は高周波信号の波長の1/4倍になる。今線路導体の一端部は開放なので一端部の電流は0になり、一端部から高周波信号の波長の1/4倍離れた位置すなわちスロット中心で線路導体の電流が最大になり、線路導体の電流による磁界で効率よくスロットを励振することができ、結果として放射効率が良い積層型開口面アンテナを提供できる。nが2の場合には一端部とスロットの中心との間の距離は高周波信号の波長の3/4倍になりnが1の場合と同様スロットの中心で線路導体の電流が最大になり、放射効率が良い積層型開口面アンテナを提供できる。nが3以上の自然数の場合も同様にスロットの中心で線路導体の電流が最大になり、放射効率が良い積層型開口面アンテナを提供できる。   In the multilayer aperture antenna of the present invention, preferably, the distance between the one end of the line conductor and the center of the slot is (2n−1) / 4 of the wavelength of the high-frequency signal transmitted through the high-frequency line. For example, when n is 1, the distance between one end of the line conductor and the center of the slot is 1/4 times the wavelength of the high-frequency signal. Since one end of the line conductor is now open, the current at one end becomes 0, and the current in the line conductor becomes maximum at a position that is 1/4 times the wavelength of the high-frequency signal from one end, that is, at the center of the slot. The slot can be efficiently excited by the magnetic field generated by the above, and as a result, a laminated aperture antenna with good radiation efficiency can be provided. When n is 2, the distance between the one end and the center of the slot is 3/4 times the wavelength of the high-frequency signal, and the current of the line conductor is maximized at the center of the slot as in the case where n is 1. A laminated aperture antenna with good radiation efficiency can be provided. Similarly, when n is a natural number of 3 or more, the current of the line conductor is maximized at the center of the slot, and a laminated aperture antenna with good radiation efficiency can be provided.

本発明の積層型開口面アンテナにおいて、好ましくは、線路導体は、その一端部が同一面接地導体層に電気的に接続された短絡端であることから、短絡端における電流が最大で、短絡端から高周波信号の波長の1/4倍だけ離れる毎に電流0、電流最大を繰り返す定在波が発生し、定在波による磁界でスロットを効率よく励振することができ、結果として放射効率が良い積層型開口面アンテナを提供できる。   In the multilayer aperture antenna of the present invention, preferably, the line conductor is a short-circuited end having one end electrically connected to the same-surface grounded conductor layer, so that the current at the short-circuited end is maximum and the short-circuited end. A standing wave that repeats the current 0 and the current maximum is generated every time the wavelength of the high frequency signal is 1/4 times away from the slot, and the slot can be efficiently excited by the magnetic field generated by the standing wave, resulting in good radiation efficiency. A stacked aperture antenna can be provided.

本発明の積層型開口面アンテナにおいて、好ましくは、短絡端とスロットの中心との間の距離がスロット幅の1/2あるいは高周波信号の波長のn/2倍(nは自然数)であることから、短絡端とスロットの中心との間の距離はそれぞれ高周波信号の波長の1/2倍(n=1)、1倍(n=2)・・・となるのでいずれの場合もスロット中における線路導体の電流は最大になり、電流による磁界でスロットを効率よく励振することができ、結果として放射効率が良い積層型開口面アンテナを提供できる。   In the laminated aperture antenna according to the present invention, preferably, the distance between the short-circuited end and the center of the slot is 1/2 the slot width or n / 2 times the wavelength of the high-frequency signal (n is a natural number). The distance between the short-circuit end and the center of the slot is 1/2 times the wavelength of the high-frequency signal (n = 1), 1 time (n = 2),... The current of the conductor is maximized, and the slot can be efficiently excited by the magnetic field generated by the current. As a result, it is possible to provide a laminated aperture antenna with good radiation efficiency.

本発明の積層型開口面アンテナにおいて、好ましくは、複数のシールド貫通導体間の間隔が誘電体層内部における高周波信号の波長の1/4倍以下であることから、シールド貫通導体間の隙間からの電磁波の洩れを抑制し、放射効率が良い積層型開口面アンテナを提供できる。   In the multilayer aperture antenna of the present invention, preferably, the distance between the plurality of shield through conductors is not more than ¼ times the wavelength of the high frequency signal inside the dielectric layer, so It is possible to provide a laminated aperture antenna that suppresses leakage of electromagnetic waves and has high radiation efficiency.

本発明積層型開口面アンテナにおいて、好ましくは、誘電体層の上面に形成された上部誘電体層と、上部誘電体層の上面に形成された上部接地導体層とを具備していることから、スロットから上側への電磁波の漏れを抑制し、放射効率が良い積層型開口面アンテナを提供できる。   The laminated aperture antenna of the present invention preferably includes an upper dielectric layer formed on the upper surface of the dielectric layer, and an upper ground conductor layer formed on the upper surface of the upper dielectric layer. It is possible to provide a multilayer aperture antenna having high radiation efficiency by suppressing leakage of electromagnetic waves from the slot to the upper side.

本発明の積層型開口面アンテナを図面に基づき詳述する。図1は、本発明の積層型開口面アンテナの一例を説明するための概略図であり(a)は上面図、(b)はA−AA断面図である。   The multilayer aperture antenna of the present invention will be described in detail with reference to the drawings. 1A and 1B are schematic views for explaining an example of a laminated aperture antenna according to the present invention. FIG. 1A is a top view and FIG. 1B is a cross-sectional view taken along line A-AA.

図1において、1は誘電体層、2は同一面接地導体層、3はスロット、4はシールド貫通導体、5は導体非形成領域、6は線路導体、7は一端部、8は高周波線路、Gは隙間、LOは開放端長さである。   In FIG. 1, 1 is a dielectric layer, 2 is a coplanar ground conductor layer, 3 is a slot, 4 is a shield through conductor, 5 is a conductor non-formation region, 6 is a line conductor, 7 is one end, 8 is a high-frequency line, G is a gap, and LO is an open end length.

この本発明の積層型開口面アンテナの例では、誘電体層1と誘電体層1の上面に配された同一面接地導体層2と、同一面接地導体層2に形成されたスロット3と、スロット3を取り囲むように誘電体層1の内部に所定の隙間をもって複数のシールド貫通導体4を配して積層型開口面アンテナを構成している。そして同一面接地導体層2にスロット3と直交するように導体非形成領域5を形成し、導体非形成領域5の内部に一端部7を有する線路導体6を配して同一面接地導体層2と線路導体6とから成る高周波線路8を構成し、高周波線路8とスロット3とを電磁的に結合することによって、誘電体層1の厚さを厚くせずに給電線を構成でき、薄型の積層型開口面アンテナを提供できる。この例では高周波線路8とスロット3との電磁結合は、一端部7が開放端となっているので高周波線路8の開放端とスロット3との電磁結合により実現される。   In the example of the laminated aperture antenna of the present invention, the dielectric layer 1, the same-surface ground conductor layer 2 disposed on the upper surface of the dielectric layer 1, the slot 3 formed in the same-surface ground conductor layer 2, A plurality of shield through conductors 4 are arranged in the dielectric layer 1 with a predetermined gap so as to surround the slot 3 to constitute a laminated aperture antenna. Then, a conductor non-formation region 5 is formed in the same plane ground conductor layer 2 so as to be orthogonal to the slot 3, and a line conductor 6 having one end 7 is arranged inside the conductor non-formation region 5, thereby providing the same plane ground conductor layer 2. And the line conductor 6 are configured, and the high frequency line 8 and the slot 3 are electromagnetically coupled to each other so that a feed line can be configured without increasing the thickness of the dielectric layer 1. A stacked aperture antenna can be provided. In this example, the electromagnetic coupling between the high frequency line 8 and the slot 3 is realized by the electromagnetic coupling between the open end of the high frequency line 8 and the slot 3 because the one end 7 is an open end.

高周波線路8の開放端とスロット3との電磁結合は一端部7とスロット3の中心との間の距離である開放端長さLOを高周波信号の波長の(2n−1)/4倍(nは自然数)とした場合、たとえばnが1の場合、開放端長さLOは高周波信号の波長の1/4倍になる。今線路導体6の一端部7は開放なので一端部7の電流は0になり、一端部7から高周波信号の波長の1/4倍離れた位置すなわちスロット3中心で線路導体6の電流が最大になり、線路導体6の電流による磁界で効率よくスロット3を励振することができ、結果として放射効率が良い積層型開口面アンテナを提供できる。nが2の場合には開放端長さLOは高周波信号の波長の3/4倍になりnが1の場合と同様スロット3の中心で線路導体6の電流が最大になり、放射効率が良い積層型開口面アンテナを提供できる。   In the electromagnetic coupling between the open end of the high-frequency line 8 and the slot 3, the open end length LO, which is the distance between the one end 7 and the center of the slot 3, is set to (2n-1) / 4 times the wavelength of the high-frequency signal (n Is a natural number), for example, when n is 1, the open end length LO is 1/4 times the wavelength of the high-frequency signal. Since the one end 7 of the line conductor 6 is now open, the current at the one end 7 is 0, and the current in the line conductor 6 is maximized at a position that is 1/4 times the wavelength of the high-frequency signal from the one end 7, that is, at the center of the slot 3. Thus, the slot 3 can be efficiently excited by the magnetic field generated by the current of the line conductor 6, and as a result, a laminated aperture antenna with good radiation efficiency can be provided. When n is 2, the open end length LO is 3/4 times the wavelength of the high-frequency signal, and when n is 1, the current of the line conductor 6 is maximized at the center of the slot 3 and the radiation efficiency is good. A stacked aperture antenna can be provided.

さらにシールド貫通導体4間の隙間Gを誘電体層1内部における高周波信号の波長の1/4倍以下にすると、シールド貫通導体4間の隙間からの電磁波の洩れを抑制し、放射効率が良い積層型開口面アンテナを提供できる。   Further, when the gap G between the shield through conductors 4 is set to ¼ times the wavelength of the high-frequency signal in the dielectric layer 1, the leakage of electromagnetic waves from the gap between the shield through conductors 4 is suppressed, and the radiation efficiency is improved. A mold aperture antenna can be provided.

図2は、本発明の積層型開口面アンテナの別の一例を説明するための概略図であり(a)は上面図、(b)はB−BB断面図である。   2A and 2B are schematic views for explaining another example of the laminated aperture antenna of the present invention, wherein FIG. 2A is a top view and FIG. 2B is a B-BB sectional view.

図2において、図1と同じ部位には図1と同じ記号を付けており、LSは短絡端長さである。   2, the same parts as those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and LS is the short-circuit end length.

この本発明の積層型開口面アンテナの例は図1の例と比較すると線路導体6の一端7が同一面接地導体層2に電気的に接続されている部分のみが異なり他の部分は同一である。したがって図1の例と同様、誘電体層1の厚さを厚くせずに給電線を構成でき、薄型の積層型開口面アンテナを提供できる。この例では高周波線路8とスロット3との電磁結合は、一端部7が短絡端となっているので高周波線路8の短絡端とスロット3との電磁結合により実現される。この場合、短絡端で電流が最大で、短絡端から高周波信号の波長の1/4倍だけ離れる毎に電流0、電流最大を繰り返す定在波が発生し、定在波による磁界でスロットを効率よく励振することができ、結果として放射効率が良い積層型開口面アンテナを提供できる。   The example of the laminated aperture antenna of the present invention is different from the example of FIG. 1 in that only one end 7 of the line conductor 6 is electrically connected to the same plane ground conductor layer 2 and the other parts are the same. is there. Therefore, as in the example of FIG. 1, the feed line can be configured without increasing the thickness of the dielectric layer 1, and a thin laminated aperture antenna can be provided. In this example, the electromagnetic coupling between the high-frequency line 8 and the slot 3 is realized by the electromagnetic coupling between the short-circuited end of the high-frequency line 8 and the slot 3 because the one end 7 is a short-circuited end. In this case, a standing wave is generated that repeats current 0 and current maximum every time the short-circuited end has a maximum current and is 1/4 times the wavelength of the high-frequency signal from the short-circuited end. As a result, a laminated aperture antenna with good radiation efficiency can be provided.

またこの場合、短絡端長さLSをスロット幅の1/2にすると、短絡端での電流が最大になり、スロット内にこの最大電流による最大磁界が発生してスロットを効率よく励振することができ、結果として放射効率が良い積層型開口面アンテナを提供できる。また短絡端長さLSが高周波信号の波長のn/2倍(nは自然数)の場合は、短絡端長さLSはそれぞれ高周波信号の波長の1/2倍(n=1)、1倍(n=2)となるのでいずれの場合もスロット3中心における線路導体6の電流は最大になり、電流による磁界でスロットを効率よく励振することができ、結果として放射効率が良い積層型開口面アンテナを提供できる。   In this case, if the short-circuit end length LS is halved of the slot width, the current at the short-circuit end is maximized, and the maximum magnetic field is generated by the maximum current in the slot, so that the slot can be excited efficiently. As a result, a laminated aperture antenna with good radiation efficiency can be provided. When the short-circuit end length LS is n / 2 times the wavelength of the high-frequency signal (n is a natural number), the short-circuit end length LS is 1/2 times the wavelength of the high-frequency signal (n = 1), 1 time ( In any case, the current of the line conductor 6 at the center of the slot 3 is maximized, and the slot can be efficiently excited by the magnetic field generated by the current. As a result, the laminated aperture antenna having good radiation efficiency. Can provide.

図3は、本発明の積層型開口面アンテナのさらに別の一例を説明するための概略図であり(a)は上面図、(b)はB−BB断面図である。   3A and 3B are schematic views for explaining another example of the laminated aperture antenna of the present invention, wherein FIG. 3A is a top view and FIG. 3B is a B-BB sectional view.

図3において、図1と同じ部位には図1と同じ記号を付けており、9はシールド接地層、10は接続貫通導体、11は上部誘電体層、12は上部接地導体層である。この本発明の例では、誘電体層1の内部にスロット3よりも大きな開口を有するシールド接地層9を開口がスロット3に対応するように配し、開口に沿ってシールド接地層9と同一面接地導体層2とを複数の接続貫通導体10で接続するので、整合器の外周部と高周波線路8とが電気的に隔離され、整合器外周部において励振されやすい不要共振が高周波線路8を伝送する高周波信号の電磁波モードで励振されることがなく、安定した性能の積層型開口面アンテナを提供できる。   In FIG. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals as in FIG. 1, wherein 9 is a shield ground layer, 10 is a connection through conductor, 11 is an upper dielectric layer, and 12 is an upper ground conductor layer. In this example of the present invention, a shield ground layer 9 having an opening larger than the slot 3 is arranged inside the dielectric layer 1 so that the opening corresponds to the slot 3, and the shield ground layer 9 is flush with the shield ground layer 9 along the opening. Since the ground conductor layer 2 is connected by a plurality of connecting through conductors 10, the outer periphery of the matching unit and the high frequency line 8 are electrically isolated, and unnecessary resonance that is easily excited in the outer periphery of the matching unit is transmitted through the high frequency line 8. Therefore, it is possible to provide a laminated aperture antenna having a stable performance without being excited in an electromagnetic wave mode of a high-frequency signal.

またこの例においては、誘電体層1の上面に上部誘電体層11を配し、上部誘電体層11の上面に上部接地導体層12を配するので、スロット3から上側への電磁波の漏れを抑制し、放射効率が良い積層型開口面アンテナを提供できる。   In this example, since the upper dielectric layer 11 is disposed on the upper surface of the dielectric layer 1 and the upper ground conductor layer 12 is disposed on the upper surface of the upper dielectric layer 11, the electromagnetic wave leaks upward from the slot 3. It is possible to provide a laminated aperture antenna that is suppressed and has high radiation efficiency.

なお、本発明は、以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更は可能である。   It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明の積層型開口面アンテナの一例を説明するための概略図であり(a)は上面図、(b)はA−AA断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic for demonstrating an example of the laminated | stacked aperture antenna of this invention, (a) is a top view, (b) is AAAA sectional drawing. 本発明の積層型開口面アンテナの別の一例を説明するための概略図であり(a)は上面図、(b)はB−BB断面図である。It is the schematic for demonstrating another example of the lamination | stacking type | mold aperture surface antenna of this invention, (a) is a top view, (b) is B-BB sectional drawing. 本発明の積層型開口面アンテナのさらに別の一例を説明するための概略図であり(a)は上面図、(b)はB−BB断面図である。It is the schematic for demonstrating another example of the laminated | stacked aperture antenna of this invention, (a) is a top view, (b) is B-BB sectional drawing.

符号の説明Explanation of symbols

1:誘電体層
2:同一面接地導体層
3:スロット
4:シールド貫通導体
6:線路導体
7:一端部
8:高周波線路
9:シールド接地層
10:接続貫通導体
11:上部誘電体層
12:上部接地導体層
G:隙間
LO:開放端長さ
LS:短絡端長さ
1: Dielectric layer 2: Coplanar ground conductor layer 3: Slot 4: Shield through conductor 6: Line conductor 7: One end 8: High-frequency line 9: Shield ground layer
10: Connection through conductor
11: Upper dielectric layer
12: Upper grounding conductor layer G: Gap LO: Open end length LS: Short-circuit end length

Claims (7)

誘電体層の上面に形成された線路導体および該線路導体の一端部を取り囲むように形成された同一面接地導体層から成る高周波線路と、前記同一面接地導体層に前記線路導体と直交するように形成されたスロットと、前記スロットを取り囲むように前記誘電体層の内部に形成された複数のシールド貫通導体とを具備していることを特徴とする積層型開口面アンテナ。 A high-frequency line composed of a line conductor formed on the upper surface of the dielectric layer and a coplanar ground conductor layer formed so as to surround one end of the line conductor, and the coplanar ground conductor layer orthogonal to the line conductor And a plurality of shield penetrating conductors formed inside the dielectric layer so as to surround the slot. 前記誘電体層の内部に前記スロットよりも大きな開口を有するとともに該開口を前記スロットに対向させて設けられたシールド接地層と、平面視で前記開口に沿って前記開口を取り囲むように形成された、前記シールド接地層と前記同一面接地導体層とを電気的に接続する複数の接続貫通導体とを具備していることを特徴とする請求項1記載の積層型開口面アンテナ。 A shield ground layer provided inside the dielectric layer having an opening larger than the slot and facing the slot, and formed so as to surround the opening along the opening in a plan view. 2. The multilayer aperture antenna according to claim 1, further comprising a plurality of connecting through conductors that electrically connect the shield ground layer and the same-surface ground conductor layer. 前記線路導体の一端部が開放端でかつ前記スロットの中心との間の距離が、前記高周波線路を伝送する高周波信号の波長の(2n−1)/4倍(nは自然数)であることを特徴とする請求項1または請求項2記載の積層型開口面アンテナ。 The distance between one end of the line conductor is an open end and the center of the slot is (2n-1) / 4 times the wavelength of the high-frequency signal transmitted through the high-frequency line (n is a natural number). 3. A laminated aperture antenna according to claim 1 or 2, characterized in that: 前記線路導体は、その一端部が前記同一面接地導体層に電気的に接続された短絡端であることを特徴とする請求項1または請求項2記載の積層型開口面アンテナ。 3. The laminated aperture antenna according to claim 1, wherein one end of the line conductor is a short-circuited end electrically connected to the same surface ground conductor layer. 前記短絡端と前記スロットの中心との間の距離がスロット幅の1/2あるいは前記高周波信号の波長のn/2倍(nは自然数)であることを特徴とする請求項4記載の積層型開口面アンテナ。 5. The stacked type according to claim 4, wherein a distance between the short-circuit end and the center of the slot is ½ of a slot width or n / 2 times the wavelength of the high-frequency signal (n is a natural number). Aperture antenna. 複数の前記シールド貫通導体間の間隔が前記誘電体層内部における前記高周波信号の波長の1/4倍以下であることを特徴とする請求項1乃至請求項5のいずれかに記載の積層型開口面アンテナ。 6. The multilayer opening according to claim 1, wherein an interval between the plurality of shield penetrating conductors is equal to or less than ¼ times the wavelength of the high-frequency signal in the dielectric layer. Planar antenna. 前記誘電体層の上面に形成された上部誘電体層と、該上部誘電体層の上面に形成された上部接地導体層とを具備していることを特徴とする請求項1乃至請求項6のいずれかに記載の積層型開口面アンテナ。 7. The upper dielectric layer formed on the upper surface of the dielectric layer, and the upper ground conductor layer formed on the upper surface of the upper dielectric layer. The laminated aperture antenna according to any one of the above.
JP2004249439A 2004-08-30 2004-08-30 Stacked aperture antenna Pending JP2006067403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249439A JP2006067403A (en) 2004-08-30 2004-08-30 Stacked aperture antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249439A JP2006067403A (en) 2004-08-30 2004-08-30 Stacked aperture antenna

Publications (1)

Publication Number Publication Date
JP2006067403A true JP2006067403A (en) 2006-03-09

Family

ID=36113450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249439A Pending JP2006067403A (en) 2004-08-30 2004-08-30 Stacked aperture antenna

Country Status (1)

Country Link
JP (1) JP2006067403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114788420A (en) * 2020-05-13 2022-07-22 住友电工印刷电路株式会社 High frequency circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114788420A (en) * 2020-05-13 2022-07-22 住友电工印刷电路株式会社 High frequency circuit

Similar Documents

Publication Publication Date Title
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US9865928B2 (en) Dual-polarized antenna
US7688265B2 (en) Dual polarized low profile antenna
US20180123245A1 (en) Broadband antenna array for wireless communications
JPH11284430A (en) Short-circuit antenna manufactured by microstrip technology and device containing the same
JPH0575329A (en) Multi-layer array antenna system
JP2010220047A (en) Antenna device and array antenna device
JP3139975B2 (en) Antenna device
JP4519086B2 (en) Patch antennas and high frequency devices
JPH07240621A (en) Antenna device and power feeding device
JP5213039B2 (en) Single-sided radiation antenna
JP4995174B2 (en) Wireless communication device
JP3002277B2 (en) Planar antenna
JP2004096259A (en) Multi-frequency microstrip antenna
JP4416673B2 (en) Dielectric resonator antenna, wiring board, and electronic device
JP4480570B2 (en) Dielectric resonator antenna, wiring board, and electronic device
JP4713367B2 (en) Aperture antenna
JP2006067403A (en) Stacked aperture antenna
JPH11239017A (en) Laminated opening plane antenna and multilayer circuit board equipped with it
JP5317842B2 (en) ANTENNA DEVICE AND ARRAY ANTENNA DEVICE
JP4439423B2 (en) antenna
JP2007266835A (en) Aperture antenna
JPH04170804A (en) Microstrip antenna
JP6313812B2 (en) Power supply device
JP2006270761A (en) Antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070718

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090518

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117