JP2006066662A - Method of forming thin film - Google Patents

Method of forming thin film Download PDF

Info

Publication number
JP2006066662A
JP2006066662A JP2004247726A JP2004247726A JP2006066662A JP 2006066662 A JP2006066662 A JP 2006066662A JP 2004247726 A JP2004247726 A JP 2004247726A JP 2004247726 A JP2004247726 A JP 2004247726A JP 2006066662 A JP2006066662 A JP 2006066662A
Authority
JP
Japan
Prior art keywords
substrate
organic material
thin film
material solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004247726A
Other languages
Japanese (ja)
Inventor
Haruo Kawakami
春雄 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004247726A priority Critical patent/JP2006066662A/en
Publication of JP2006066662A publication Critical patent/JP2006066662A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a large area, uniform crystal organic material thin film on a substrate. <P>SOLUTION: The method of forming the crystal organic material thin film on the substrate includes a process of immersing the board in an organic material solution held in a vessel, a process of moving the board out of the organic material solution to the gaseous phase side, and a process of crystallizing the crystal organic material thin film on the board out of the organic material solution sticking to the board on the gaseous side. The organic material solution, sticking to the board, is continuous with the organic material solution held in the vessel in the gaseous phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ウェアラブルPCやフレキシブルディスプレーなど、基板の変形が可能な電子デバイスを製造する際に必要とされる、基板に結晶性有機材料薄膜を形成する方法に関するものである。   The present invention relates to a method for forming a crystalline organic material thin film on a substrate, which is required when manufacturing an electronic device capable of deforming the substrate, such as a wearable PC or a flexible display.

近年、有機電子材料の特性は進展が目覚しい。例えば、有機ELディスプレイ(あるいは有機LEDディスプレイ)では各画素が個々に発光する(すなわち、自発光する)ため、視野角が広く、また、カラーフィルターが不要になるという利点があるばかりでなく、バックライトが不要であることから薄型化が可能になる。そして、プラスチック等のフレキシブルな基板上に形成が可能である等、従来の液晶に比して多くの利点を持っている。また、これを駆動する回路系にも有機材料を用いることが検討されており、これらを用いることにより、ウェアラブルPCやフレキシブルディスプレーなど、基板の変形が可能な電子デバイスが実現すると期待される。   In recent years, the characteristics of organic electronic materials have made remarkable progress. For example, in an organic EL display (or an organic LED display), each pixel emits light individually (that is, self-emission), so that not only has a wide viewing angle and a color filter is unnecessary, but also the backside. Thinning is possible because no light is required. It has many advantages over conventional liquid crystals, such as being able to be formed on a flexible substrate such as plastic. In addition, the use of organic materials for the circuit system that drives them is also being considered. By using these materials, it is expected that electronic devices capable of deforming the substrate, such as wearable PCs and flexible displays, will be realized.

これらの有機電子材料は、通常、基板上に薄膜として形成される。その膜厚はおおよそ数10〜数100nmの範囲であり、形成方法は真空蒸着や、溶液塗布(スピンコート法、インクジェット法)等が用いられる。また、基板としてはガラス、シリコン、プラスチックが多く用いられ、その上に必要に応じて金属電極、酸化物(ITO等)電極、絶縁膜などが形成される。金属電極、酸化物(ITO等)電極、絶縁膜の形成方法は、一般に真空蒸着、溶液塗布(スピンコート法、インクジェット法)の他、スパッタ、CVD、PVD等が用いられる。
上記において、特に電子材料として有機材料を用いるメリットは、溶液塗布(スピンコート法、インクジェット法)など低コストの製造方法が使用可能であること、プロセス温度が低温であるためプラスチック基板が使用可能であること等にあり、それを用いてフレキシブルな電気機器が製造可能となることである。
These organic electronic materials are usually formed as a thin film on a substrate. The film thickness is approximately in the range of several tens to several hundreds of nanometers, and vacuum deposition, solution coating (spin coating method, ink jet method) or the like is used as a forming method. Further, glass, silicon, and plastic are often used as the substrate, and a metal electrode, an oxide (ITO, etc.) electrode, an insulating film, and the like are formed thereon as necessary. As a method for forming a metal electrode, an oxide (ITO, etc.) electrode, and an insulating film, sputtering, CVD, PVD, etc. are generally used in addition to vacuum deposition and solution coating (spin coating method, ink jet method).
In the above, the merit of using an organic material as an electronic material is that a low-cost manufacturing method such as solution coating (spin coating method, ink jet method) can be used, and a plastic substrate can be used because the process temperature is low. In other words, it is possible to manufacture a flexible electrical device using the same.

これらの有機材料には大別して、薄膜状態で結晶質の材料とアモルファスの材料がある。例えば有機電子材料のうち、電荷移動度の大きいことで知られるペンタセン、テトラセンなどのアセン系材料や、代表的双安定材料であるAIDCN(2-アミノ-4, 5-イミダゾール-ジカーボニトリル)は結晶質であり、その結晶性が良好なほど移動度は高くなる。
具体的には、例えばペンタセン薄膜を真空蒸着などの方法でガラス基板上に形成すると、薄膜は所謂多結晶状態となる。つまり、薄膜に多くの結晶粒界が存在する。電荷の移動はこれらの結晶粒界で妨げられるため、薄膜としての電荷移動度は小さく抑制されることとなる。よって電荷移動度を高くするには、薄膜の結晶粒の大きいことが望まれる。真空蒸着の場合は、基板温度を高く、成膜速度を低くすることにより結晶成長核密度が低くなり結晶粒が大きくなることが知られている。しかし、例えば電界効果トランジスタの典型的なチャネル幅(10μm以上)の結晶粒を得るのは困難であった。
These organic materials are roughly classified into a crystalline material and an amorphous material in a thin film state. For example, among organic electronic materials, acene-based materials such as pentacene and tetracene, which are known to have high charge mobility, and AIDCN (2-amino-4,5-imidazole-dicarbonitrile), which is a representative bistable material, are The better the crystallinity is, the higher the mobility is.
Specifically, for example, when a pentacene thin film is formed on a glass substrate by a method such as vacuum deposition, the thin film is in a so-called polycrystalline state. That is, many crystal grain boundaries exist in the thin film. Since the movement of electric charges is hindered by these crystal grain boundaries, the electric charge mobility as a thin film is suppressed to be small. Therefore, in order to increase the charge mobility, it is desired that the crystal grains of the thin film be large. In the case of vacuum deposition, it is known that the crystal growth nucleus density is lowered and the crystal grains are enlarged by raising the substrate temperature and lowering the deposition rate. However, for example, it has been difficult to obtain crystal grains having a typical channel width (10 μm or more) of a field effect transistor.

これに対して、キャスト法、スピンコート法、インクジェット法等の塗布法により有機材料の薄膜を基板上に形成する場合、真空蒸着に比して結晶粒を大きくすることが可能である。これは気相に比して、液相中では塗布される有機材料と基板の相互作用が小さくなるため結晶成長核密度が低くなり、結晶粒が大きく成長するためである。このことから、溶剤の物性値を規定する事で膜の結晶性を制御する技術が開示されている(PL-00970)。また、特にペンタセンは有機電子材料のなかでも取り分け移動度が大きいが、有機溶剤への溶解度が低く、塗布を行うには溶剤を加熱して溶液を作りそれを塗布するなどの方法が報告されている(非特許文献1,2)。
しかしながら、このような基板に結晶性有機材料薄膜を形成するには以下の課題があった。
In contrast, when a thin film of an organic material is formed on a substrate by a coating method such as a cast method, a spin coating method, or an ink jet method, the crystal grains can be made larger than that in vacuum deposition. This is because, compared with the gas phase, in the liquid phase, the interaction between the organic material to be applied and the substrate is small, so that the crystal growth nucleus density is low and the crystal grains grow large. Therefore, a technique for controlling the crystallinity of the film by defining the physical property value of the solvent is disclosed (PL-00970). In particular, pentacene has a particularly high mobility among organic electronic materials, but its solubility in organic solvents is low. For coating, methods such as heating the solvent to form a solution and applying it have been reported. (Non-Patent Documents 1 and 2).
However, forming a crystalline organic material thin film on such a substrate has the following problems.

2004年春季応用物理学関係連合講演会講演予稿集No3, 第1466頁、南方尚著2004 Spring Applied Physics-related Joint Lecture Proceedings No3, page 1466, Minamikata Takashi 有機半導体講習会予稿集, 第55〜59頁、応用物理学会有機分子・バイオエレクトロニクス分科会、2004年6月14日、南方尚著Organic Semiconductor Workshop Proceedings, pp. 55-59, Organic Physics Society Organic Molecular and Bioelectronics Subcommittee, June 14, 2004 応用物理ハンドブック、応用物理学会編、丸善、1990年Applied Physics Handbook, Applied Physics Society, Maruzen, 1990

一般に、有機材料の薄膜を基板上に形成するプロセスは以下のようなものである。すなわち、基板上に塗布された有機材料溶液からは溶媒が蒸発し、これにより溶液中の有機材料が濃縮され、その濃度が溶解限度達して基板上に析出する。特に結晶性の薄膜の場合、基板上の一部で析出が起こると、その表面では結晶が成長しやすくなるため、塗布された溶液中の有機材料は溶液中を拡散して析出した結晶に付着し成長する。この結果、その他の部分では溶液中の有機材料濃度が低下するため結晶析出は起こりにくくなる。つまり、結晶成長は早い段階で結晶が析出した部分で選択的に継続する。   In general, a process for forming a thin film of an organic material on a substrate is as follows. That is, the solvent evaporates from the organic material solution applied on the substrate, whereby the organic material in the solution is concentrated, the concentration reaches the solubility limit, and precipitates on the substrate. In particular, in the case of a crystalline thin film, if precipitation occurs on a part of the substrate, the crystal tends to grow on the surface, so the organic material in the applied solution adheres to the deposited crystal by diffusing in the solution. And grow. As a result, in other portions, the concentration of organic material in the solution decreases, so that crystal precipitation hardly occurs. That is, crystal growth is selectively continued at a portion where crystals are precipitated at an early stage.

その結果、薄膜は不連続となり、甚だしい場合は基板の1部分にのみ結晶が析出するのみで薄膜が形成出来ない場合もある。この現象は、特に結晶成長核密度の小さい基板を用いる場合や、有機材料の溶解度が小さく濃度が低い場合に顕著となる。また、結晶性の薄膜の場合はその固体密度は結晶構造により一義的に決定されるため、薄膜の不均一が膜の粗密として現れることも少ない。このように、従来の塗布法では結晶性有機材料薄膜を大面積で均一に形成するのは困難であった。この現象は前述のように、溶剤の物性値を規定することで、ある程度の改善が可能であるが、更なる改善が望まれていた。   As a result, the thin film becomes discontinuous. In severe cases, the thin film may not be formed because crystals are deposited only on one part of the substrate. This phenomenon becomes prominent particularly when a substrate having a low crystal growth nucleus density is used, or when the organic material has a low solubility and a low concentration. Further, in the case of a crystalline thin film, the solid density is uniquely determined by the crystal structure, so that non-uniformity of the thin film rarely appears as the density of the film. Thus, it has been difficult to uniformly form a crystalline organic material thin film with a large area by the conventional coating method. As described above, this phenomenon can be improved to some extent by specifying the physical property value of the solvent, but further improvement has been desired.

また、基板上への結晶成長方法として、有機材料溶液に基板を浸漬し結晶を成長させる、所謂液相エピタキシャルが従来から知られている(非特許文献3)。これによれば、基板上の一部で結晶成長しても、周囲の溶液から充分に有機材料が供給されるため、一般に結晶は不連続となりにくく、大きな結晶体が得られやすい。しかしながら、この方法による場合、結晶は基板に平行な方向ばかりでなく垂直方向(膜厚方向)にも成長するため、厚さを制御する必要のある薄膜形成方法としては不適当である。   As a crystal growth method on a substrate, so-called liquid phase epitaxy in which a substrate is immersed in an organic material solution to grow a crystal is conventionally known (Non-patent Document 3). According to this, even if the crystal grows on a part of the substrate, the organic material is sufficiently supplied from the surrounding solution, so that the crystal is generally not discontinuous and a large crystal is easily obtained. However, according to this method, the crystal grows not only in the direction parallel to the substrate but also in the vertical direction (film thickness direction), and thus is not suitable as a thin film forming method for which the thickness needs to be controlled.

本発明者らは、上記問題点に鑑み、基板に結晶性有機材料薄膜を形成する方法において、当該結晶性有機材料薄膜を大面積で均一に形成する方法を開発すべく、鋭意検討した。
その結果、本発明者らは、有機材料溶液に基板を浸漬してから気相へ移動し、基板に付着した溶液から結晶性有機材料薄膜を析出させ、かつ、付着した溶液が容器内の有機材料溶液と液相で連続していること等により、上記問題点が解決されることを見出した。本発明は、かかる見地より完成されたものである。
In view of the above problems, the present inventors have intensively studied to develop a method for uniformly forming a crystalline organic material thin film in a large area in a method for forming a crystalline organic material thin film on a substrate.
As a result, the present inventors have immersed the substrate in an organic material solution and then moved to the gas phase to deposit a crystalline organic material thin film from the solution attached to the substrate, and the attached solution is organic in the container. It has been found that the above problems are solved by the fact that the material solution and the liquid phase are continuous. The present invention has been completed from such a viewpoint.

すなわち、本発明は、基板上に結晶性有機材料薄膜を形成する薄膜形成方法において、容器に入れた有機材料溶液に基板を浸漬する工程と、当該基板を有機材料溶液の液中から気相側へ移動する工程と、気相側にある基板上において基板に付着した有機材料溶液から当該結晶性有機材料薄膜が析出する工程と、を含み、当該基板に付着した有機材料溶液は、容器に入れた当該有機材料溶液と液相で連続していることを特徴とする薄膜形成方法を提供するものである。薄膜形成方法を上記のような構成にすることにより、結晶性有機材料薄膜は気相において基板上で成長し、有機材料溶液は容器に入れた当該有機材料溶液と液相で連続しているため連続的に供給されるので、一定膜厚の薄膜を連続的に形成することができる。   That is, the present invention relates to a thin film forming method for forming a crystalline organic material thin film on a substrate, a step of immersing the substrate in an organic material solution placed in a container, and the substrate from the liquid of the organic material solution to the gas phase side. And the step of depositing the crystalline organic material thin film from the organic material solution adhering to the substrate on the gas phase side substrate, and the organic material solution adhering to the substrate is put in a container Further, the present invention provides a thin film forming method characterized by being continuous with the organic material solution in a liquid phase. By forming the thin film formation method as described above, the crystalline organic material thin film grows on the substrate in the gas phase, and the organic material solution is continuous in liquid phase with the organic material solution in the container. Since it is continuously supplied, a thin film having a constant film thickness can be continuously formed.

また、前記基板を有機材料溶液中から気相側へ移動する工程においては、当該基板と補助板との間に当該有機材料溶液が表面張力によって保持され、基板は補助板と相対的な平行運動によって移動するものであり、当該基板の温度が容器内の液面から離れるに従い低下するものであることが好ましい。これにより、有機材料溶液の基板への供給は表面張力により行われるため、より確実なものとなると同時に、基板と有機材料溶液の接触時間が長くなるため、結晶の成長時間を大きく設定することが可能である。また、基板が液面から離れるに従い温度が低下する事で、溶液の溶解度が低下し、析出が促進される。   Further, in the step of moving the substrate from the organic material solution to the gas phase side, the organic material solution is held by surface tension between the substrate and the auxiliary plate, and the substrate moves in parallel relative to the auxiliary plate. It is preferable that the temperature of the substrate decreases as it moves away from the liquid level in the container. As a result, since the supply of the organic material solution to the substrate is performed by surface tension, it becomes more reliable, and at the same time, the contact time between the substrate and the organic material solution becomes long, so that the crystal growth time can be set large. Is possible. Further, the temperature decreases as the substrate moves away from the liquid surface, so that the solubility of the solution decreases and the precipitation is promoted.

さらに、前記基板を有機材料溶液液中から気相側へ移動する工程において、当該基板上を当該有機材料溶液が流動することが好適である。これにより、有機材料溶液の基板への供給は更に確実なものとなると同時に、溶液の有機材料濃度が均一に保たれるため、薄膜の均一性が更に改善される。   Further, it is preferable that the organic material solution flows on the substrate in the step of moving the substrate from the organic material solution to the gas phase side. Thereby, the supply of the organic material solution to the substrate is further ensured, and at the same time, the organic material concentration of the solution is kept uniform, so that the uniformity of the thin film is further improved.

加えて、前記基板の温度は、対向する補助板よりも低いことが好ましい。これにより、有機材料は主として基板側で析出し、補助板にはほとんど析出しない。   In addition, the temperature of the substrate is preferably lower than the opposing auxiliary plate. Thereby, the organic material is deposited mainly on the substrate side and hardly deposited on the auxiliary plate.

本発明によれば、基板に結晶性有機材料薄膜を形成する方法において、当該結晶性有機材料薄膜を大面積で均一に形成することが可能となる。   According to the present invention, in the method for forming a crystalline organic material thin film on a substrate, the crystalline organic material thin film can be uniformly formed in a large area.

本発明の薄膜形成方法は、容器に入れた有機材料溶液に基板を浸漬する工程と、当該基板を有機材料溶液の液中から気相側へ移動する工程と、気相側にある基板上において基板に付着した有機材料溶液から当該結晶性有機材料薄膜が析出する工程と、を含む。そして、基板に付着した有機材料溶液は、容器に入れた当該有機材料溶液と液相で連続していることを特徴とする。以下、本発明を実施する最良の形態によって詳細に説明するが、本発明はこれらの実施の形態によって何ら限定されるものではない。   The thin film forming method of the present invention includes a step of immersing a substrate in an organic material solution placed in a container, a step of moving the substrate from the liquid of the organic material solution to the gas phase side, and a substrate on the gas phase side. And a step of depositing the crystalline organic material thin film from the organic material solution attached to the substrate. The organic material solution attached to the substrate is continuous with the organic material solution in a container in a liquid phase. Hereinafter, although the present invention will be described in detail according to the best mode for carrying out the present invention, the present invention is not limited to these embodiments.

図1に、本発明による結晶性有機材料薄膜の形成方法を実際に行う塗布工程の一例を示す。本装置は通常ディップ法と呼ばれる塗布法と類似のものである。
結晶性薄膜を得るには、基板上へ結晶が析出するのにある程度の時間が必要であり、その間は溶液の補給が必要である。しかし、通常のスピンコート法、インクジェット法等の塗布法では溶液が基板上に止まらず、容易に逸散してしまう。特に、ペンタセン等のように溶剤への溶解度が低い材料では溶液の粘度が低いため、この問題は深刻である。同時に膜厚の制御という観点からは、溶液との接触時間は制限されなくてはならない。本発明では、この点に着目し、基板上へ結晶が析出する間は基板上へ溶液が補給され、かつ、その時間を容易に制御することを可能とした。
FIG. 1 shows an example of a coating process in which the method for forming a crystalline organic material thin film according to the present invention is actually performed. This apparatus is similar to a coating method usually called a dip method.
In order to obtain a crystalline thin film, a certain amount of time is required for the crystals to be deposited on the substrate, and during that time, the solution needs to be replenished. However, with a coating method such as a normal spin coating method or an ink jet method, the solution does not stop on the substrate and easily dissipates. In particular, a material having a low solubility in a solvent such as pentacene has a serious problem because the solution has a low viscosity. At the same time, from the viewpoint of controlling the film thickness, the contact time with the solution must be limited. In the present invention, focusing on this point, the solution is replenished on the substrate while the crystal is deposited on the substrate, and the time can be easily controlled.

図1においては、基板1は当初容器6内の有機材料溶液3中に浸漬される。例えば有機材料がペンタセンの場合、溶解度を上げるため当該有機材料溶液3は180℃程度に加温されており、基板1も浸漬によりその程度の温度まで加温される。
次に、基板1は有機材料溶液3中から気相へ引き上げられる。この時、基板1の移動は補助板2に沿って行うことが好ましい。また、補助板2と基板1の間隔は適切なスペーサ等によって一定に維持されることが望ましい。間隔寸法は用いる溶液濃度、温度条件などにより最適値は異なるが、好ましくは10μm〜1mmの間、より好ましくは15〜100μmの間で行われる。有機材料溶液3は、基板と補助板の間隙4に表面張力により吸い上げられるので、容器内と当該間隙の有機材料溶液は液相により連続している。表面張力による吸い上げ高さは間隙寸法に依存するが50mm以上は充分可能である。基板1の温度は溶液からの引き上げによって、容器内の液面から離れるに従い低下し、それに伴って基板と補助板の間隙4内の溶液の温度も低下する。これに伴って有機材料の溶解度も低下するので、有機材料の基板への析出が開始される。
基板の引き上げ速度は、条件によって異なるが、おおよそ0.1mm/s〜10mm/sの範囲が望ましい。基板と補助板の間隙4内は常に溶液が供給され、有機材料が溶液内の拡散により供給されるので、均一な薄膜を得ることが可能である。また、図1のように、基板1が熱放散しやすい上向きであるのに対し、補助板が高温の容器に面していることにより、基板1の温度は補助板2よりも高温になる。この事により析出は基板1で優先的に進行する。この効果が不足の場合は、補助板2に保温用ヒーター8を付加して補助板の温度を制御することも可能である。
In FIG. 1, the substrate 1 is initially immersed in the organic material solution 3 in the container 6. For example, when the organic material is pentacene, the organic material solution 3 is heated to about 180 ° C. in order to increase the solubility, and the substrate 1 is also heated to that temperature by immersion.
Next, the substrate 1 is pulled up from the organic material solution 3 to the gas phase. At this time, the substrate 1 is preferably moved along the auxiliary plate 2. Further, it is desirable that the distance between the auxiliary plate 2 and the substrate 1 be kept constant by an appropriate spacer or the like. Although the optimum value of the interval dimension varies depending on the concentration of solution used, temperature conditions, etc., it is preferably between 10 μm and 1 mm, more preferably between 15 and 100 μm. Since the organic material solution 3 is sucked up by the surface tension in the gap 4 between the substrate and the auxiliary plate, the organic material solution in the container and the gap is continuous by the liquid phase. The suction height due to surface tension depends on the gap size, but 50mm or more is sufficient. The temperature of the substrate 1 is lowered as it is separated from the liquid level in the container by being pulled up from the solution, and accordingly, the temperature of the solution in the gap 4 between the substrate and the auxiliary plate is also lowered. Along with this, the solubility of the organic material also decreases, so that the organic material starts to be deposited on the substrate.
The substrate pulling speed varies depending on the conditions, but is preferably in the range of about 0.1 mm / s to 10 mm / s. Since the solution is always supplied in the gap 4 between the substrate and the auxiliary plate and the organic material is supplied by diffusion in the solution, a uniform thin film can be obtained. As shown in FIG. 1, the substrate 1 is easy to dissipate heat, whereas the auxiliary plate faces a high-temperature container, so that the temperature of the substrate 1 becomes higher than that of the auxiliary plate 2. As a result, precipitation proceeds preferentially on the substrate 1. When this effect is insufficient, the temperature of the auxiliary plate can be controlled by adding a heat retaining heater 8 to the auxiliary plate 2.

図2に、本発明における薄膜形成方法の他の一例を示す。
図2の形態においては、有機材料溶液は溶液供給容器11から容器6へ連続的に供給され、補助板2の上を通って溢れ、溶液回収容器12で回収される。基板1は図1の場合と同様に当初有機材料溶液中に浸漬されるが、引き上げに際しては補助板2とガイド7の間を引き上げられる。この場合も、補助板2と基板1の間隔、もしくはガイド7と基板1の間隔は適切なスペーサ等によって一定に維持されることが望ましい。間隔寸法は用いる溶液濃度、温度条件などにより最適値は異なるが、好ましくは0.1〜10mmの間、より好ましくは1〜3mmで行われる。有機材料溶液3は基板と補助板の間隙4を流れるので、容器内と当該間隙の有機材料溶液は液相により連続している。基板1の温度は溶液からの引き上げによって、容器内の液面から離れるに従い低下するが、有機材料溶液の供給は図1の場合よりも大量となるので温度低下はより小さくなる。このため、クーラー9を設置して基板を積極的に冷却することが必要な場合もある。これに伴って有機材料の溶解度も低下するので、有機材料の基板への析出が開始される。基板と補助板の間隙4内は常に溶液が供給され、しかも供給される溶液の有機材料濃度は図1に比して高くなるので、より均一な薄膜を得ることが可能である。
FIG. 2 shows another example of the thin film forming method in the present invention.
In the form of FIG. 2, the organic material solution is continuously supplied from the solution supply container 11 to the container 6, overflows over the auxiliary plate 2, and is recovered in the solution recovery container 12. The substrate 1 is initially immersed in the organic material solution in the same manner as in FIG. 1, but the substrate 1 is pulled up between the auxiliary plate 2 and the guide 7. Also in this case, it is desirable that the distance between the auxiliary plate 2 and the substrate 1 or the distance between the guide 7 and the substrate 1 is kept constant by an appropriate spacer or the like. Although the optimum value of the interval dimension varies depending on the concentration of solution used, temperature conditions, and the like, it is preferably 0.1 to 10 mm, more preferably 1 to 3 mm. Since the organic material solution 3 flows through the gap 4 between the substrate and the auxiliary plate, the organic material solution in the container and the gap is continuous in the liquid phase. The temperature of the substrate 1 is lowered as the temperature of the substrate 1 is pulled away from the liquid surface in the container by pulling up from the solution. However, since the supply of the organic material solution becomes larger than that in the case of FIG. For this reason, it may be necessary to install the cooler 9 to actively cool the substrate. Along with this, the solubility of the organic material also decreases, so that the organic material starts to be deposited on the substrate. Since the solution is always supplied into the gap 4 between the substrate and the auxiliary plate, and the concentration of the organic material of the supplied solution is higher than that in FIG. 1, a more uniform thin film can be obtained.

本発明に係る薄膜形成方法においては、基板としてはガラス板やシリコンウエファ等の非可撓性基板が容易に適用できるが、適切な支持を行う事により可撓性基板にも適用可能である。可撓性基板としては、ポリイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリフェキレンサルファド、バラ系アラミド、ポリエーテルケント、ポリエステル、ポリカーボネート、ポリイミド、ポリエーテルスルフォン、アモルファスポリオレフィン、エポキシ樹脂あるいはフッ素樹脂などの高分子プラスチックフィルムを用いることができる。中でも強度の点ではポリエステル又はポリカーボネートが好ましく、特にポリエチレンテレフタレート等のポリエステルが好ましい。基板の厚みは0.05mm〜2mmが好ましく、0.1mm〜1mmが更に好ましい。   In the thin film forming method according to the present invention, a non-flexible substrate such as a glass plate or a silicon wafer can be easily applied as the substrate, but it can also be applied to a flexible substrate by appropriately supporting it. Flexible substrates include polyimide, polyetherimide, polysulfone, polyethersulfone, polyphenylene sulfide, rose-based aramid, polyetherkent, polyester, polycarbonate, polyimide, polyethersulfone, amorphous polyolefin, epoxy resin or fluorine. A polymer plastic film such as a resin can be used. Among them, polyester or polycarbonate is preferable in terms of strength, and polyester such as polyethylene terephthalate is particularly preferable. The thickness of the substrate is preferably 0.05 mm to 2 mm, more preferably 0.1 mm to 1 mm.

有機材料としては、キャリア移動度が大きいペンタセン、アントラセン、テトラセンなどの縮合環類、代表的双安定材料であるAIDCN(2-アミノ-4, 5-イミダゾール-ジカーボニトリル)が好適であるが、それに限定されず、広い範囲の結晶性有機材料が適用可能である。
溶剤は有機材料の種類によって適宜選択することが可能であるが、例えばTHF(テトラヒドロフラン)やDCM(ジクロロメタン)は多くの有機材料を溶解可能であり好適である。この他、アセトニトリル、ベンゼン、ブタノール、シクロヘキサン、ジクロロエタン、エタノール、酢酸エチル、ジクロロトルエン、トリクロロベンゼン、ジメチルスルホキシドなどが使用可能であり、また、これに限定されるものではない。
以下、実施例に基づいて本発明を詳細に説明する。
As the organic material, condensed rings such as pentacene, anthracene and tetracene having a high carrier mobility, and AIDCN (2-amino-4,5-imidazole-dicarbonitrile) which is a representative bistable material are suitable. Without being limited thereto, a wide range of crystalline organic materials can be applied.
The solvent can be appropriately selected depending on the type of the organic material. For example, THF (tetrahydrofuran) and DCM (dichloromethane) are preferable because they can dissolve many organic materials. In addition, acetonitrile, benzene, butanol, cyclohexane, dichloroethane, ethanol, ethyl acetate, dichlorotoluene, trichlorobenzene, dimethyl sulfoxide, and the like can be used, but are not limited thereto.
Hereinafter, the present invention will be described in detail based on examples.

図1に示す構成態様にて、薄膜形成を行った。
有機材料として、下記化学式(1)のペンタセンペンタセン(Aldrich社製)0.3gを溶媒(3,4-ジクロロトルエン)1リットルに添加し、これを190℃まで加熱して溶解した。この溶液を容器内に入れ、その容器をオイルバスに入れ、それをホットプレートにて加温し全体の温度を保った。基板としては厚さ0.5mm、幅5cm、長さ20cmのガラス板を用い、これに予め膜厚100nmのアルミ薄膜を真空蒸着により形成したものを用いた。溶媒およびペンタセンの酸化を抑制するため、作業は窒素を満たしたグローブボックスの中で行った。グローブボックス内の雰囲気は酸素と水分を1ppm以下に保った。
A thin film was formed in the configuration shown in FIG.
As an organic material, 0.3 g of pentacenepentacene (made by Aldrich) of the following chemical formula (1) was added to 1 liter of a solvent (3,4-dichlorotoluene), and this was heated to 190 ° C. and dissolved. This solution was put in a container, the container was put in an oil bath, and it was heated with a hot plate to keep the whole temperature. As the substrate, a glass plate having a thickness of 0.5 mm, a width of 5 cm, and a length of 20 cm was used, and an aluminum thin film having a thickness of 100 nm previously formed thereon by vacuum deposition was used. In order to suppress the oxidation of the solvent and pentacene, the work was carried out in a glove box filled with nitrogen. The atmosphere inside the glove box kept oxygen and moisture below 1 ppm.

補助板2としては厚さ0.5mm、幅7cm、長さ15cmのSUS304板を用い、補助板2と基板1の間隔はアルミ製のスペーサによって0.1mmに維持した。これにより有機材料溶液3は基板と補助板の間隙4に表面張力により吸い上げられた。補助板は容器内の液面に対し30°の角度とし、液面から10cm(高さでは5cm)気相に出るように構成した。この補助板に沿って基板を0.5mm/秒の速度で引き上げると、補助板の上端での基板と補助板の温度はそれぞれ約80℃、97℃となった。また、この結果、図3に示すような結晶薄膜が得られた。薄膜の表面状態は基板全体でほぼ同様であったが、膜厚は、基板の塗布開始側で約230nmであり、塗布終端側で約55nmであった。   As the auxiliary plate 2, a SUS304 plate having a thickness of 0.5 mm, a width of 7 cm, and a length of 15 cm was used, and the distance between the auxiliary plate 2 and the substrate 1 was maintained at 0.1 mm by an aluminum spacer. As a result, the organic material solution 3 was sucked up by the surface tension into the gap 4 between the substrate and the auxiliary plate. The auxiliary plate was arranged at an angle of 30 ° with respect to the liquid level in the container so as to exit the gas phase 10 cm (5 cm in height) from the liquid level. When the substrate was pulled up along the auxiliary plate at a speed of 0.5 mm / sec, the temperature of the substrate and the auxiliary plate at the upper end of the auxiliary plate became about 80 ° C. and 97 ° C., respectively. As a result, a crystal thin film as shown in FIG. 3 was obtained. The surface state of the thin film was almost the same for the entire substrate, but the film thickness was about 230 nm on the coating start side of the substrate and about 55 nm on the coating end side.

有機材料として下記化学式(2)を有するジシアノ化合物を用い、これを溶媒メタノールに重量比3%の濃度で、70℃で溶解した以外は、実施例1と同様にして薄膜形成を行った。   A thin film was formed in the same manner as in Example 1 except that a dicyano compound having the following chemical formula (2) was used as the organic material and this was dissolved in a solvent methanol at a concentration of 3% by weight at 70 ° C.

この結果、補助板の上端での基板と補助板の温度はそれぞれ約35℃、47℃となった。また、図4に示すような結晶薄膜が得られた。薄膜の表面状態は基板全体でほぼ同様であったが、膜厚は、基板の塗布開始側で約450nmであり、塗布終端側で約170nmであった。   As a result, the temperatures of the substrate and the auxiliary plate at the upper end of the auxiliary plate were about 35 ° C. and 47 ° C., respectively. A crystal thin film as shown in FIG. 4 was obtained. The surface state of the thin film was almost the same for the entire substrate, but the film thickness was about 450 nm on the coating start side of the substrate and about 170 nm on the coating end side.

図2に示す構成態様にて、薄膜形成を行った。
実施例1と同様の有機材料溶液を10リットル作製し、溶液供給容器11と容器6に入れる。溶液供給容器11からは有機材料溶液が10cc/分の速度で連続的に供給され、これによって、容器6からは有機材料溶液が補助板2の上を通って溢れ、溶液回収容器12で回収される。基板1はガイド7と接触状態とし、補助板2と基板1の間隔は1mmとした。基板寸法は実施例1と同様である。この結果、有機材料溶液3は基板と補助板の間隙4を線速4mm/分で流れる。クーラー9として水冷した銅板を用いる事により、ガイドと補助板の上端での基板温度は約60℃となった。また、ヒーター8として加温したオイルを流したシリコン樹脂製のパイプを補助板2に接触させることにより、補助板の温度は上端で約72℃となった。この結果、図は省略するが、表面状態が実施例1と同様な結晶薄膜が得られた。薄膜の表面状態は基板全体でほぼ同様であり、膜厚は、基板の塗布開始側で約300nmであり、塗布終端側で約250nmであった。
A thin film was formed in the configuration shown in FIG.
10 liters of an organic material solution similar to that in Example 1 is prepared and placed in the solution supply container 11 and the container 6. The organic material solution is continuously supplied from the solution supply container 11 at a rate of 10 cc / min. As a result, the organic material solution overflows from the container 6 over the auxiliary plate 2 and is recovered in the solution recovery container 12. The The substrate 1 was in contact with the guide 7 and the distance between the auxiliary plate 2 and the substrate 1 was 1 mm. The substrate dimensions are the same as in Example 1. As a result, the organic material solution 3 flows through the gap 4 between the substrate and the auxiliary plate at a linear velocity of 4 mm / min. By using a water-cooled copper plate as the cooler 9, the substrate temperature at the upper ends of the guide and auxiliary plate was about 60 ° C. Moreover, the temperature of the auxiliary plate became about 72 ° C. at the upper end by bringing the pipe made of silicon resin into which the heated oil flowed as the heater 8 into contact with the auxiliary plate 2. As a result, although not shown, a crystal thin film having a surface state similar to that of Example 1 was obtained. The surface state of the thin film was almost the same for the entire substrate, and the film thickness was about 300 nm on the coating start side of the substrate and about 250 nm on the coating end side.

このように、実施例1〜3において有機材料薄膜は、図3あるいは図4に示すような結晶状態をほぼ全面で示しており、本発明の効果が明らかである。また、特に、実施例3では膜厚分布も格段に改善された。
以上、本発明の実施の形態および実施例について説明したが、本発明は、その技術的思想に基づいて種々の変形及び変更が可能である。
As described above, in Examples 1 to 3, the organic material thin film shows a crystal state almost as shown in FIG. 3 or FIG. 4, and the effect of the present invention is clear. In particular, in Example 3, the film thickness distribution was also significantly improved.
While the embodiments and examples of the present invention have been described above, the present invention can be variously modified and changed based on the technical idea.

本発明によれば、基板上に結晶性有機材料薄膜を大面積で均一に形成し、薄膜の厚さを制御することができるので、ウェアラブルPCやフレキシブルディスプレーなど、基板の変形が可能な電子デバイスを製造するのに特に好適であり、産業上の意義は極めて大きい。   According to the present invention, a crystalline organic material thin film can be uniformly formed in a large area on a substrate, and the thickness of the thin film can be controlled. Thus, an electronic device capable of deforming the substrate, such as a wearable PC or a flexible display. It is particularly suitable for the production of and has great industrial significance.

本発明に係る薄膜形成装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the thin film forming apparatus which concerns on this invention. 本発明に係る他の薄膜形成装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the other thin film forming apparatus which concerns on this invention. 実施例1により得られた結晶性薄膜の表面状態を表す写真である。2 is a photograph showing the surface state of the crystalline thin film obtained in Example 1. FIG. 実施例2により得られた結晶性薄膜の表面状態を表す写真である。3 is a photograph showing the surface state of a crystalline thin film obtained in Example 2. FIG.

符号の説明Explanation of symbols

1 基板
2 補助板
3 有機材料溶液
4 基板と補助板の間隙
5 有機材料薄膜
6 容器
7 ガイド
8 ヒーター
9 クーラー
11 溶液供給容器
12 溶液回収容器
1 Substrate 2 Auxiliary plate 3 Organic material solution 4 Gap between substrate and auxiliary plate 5 Organic material thin film 6 Container 7 Guide 8 Heater 9 Cooler 11 Solution supply container 12 Solution recovery container

Claims (4)

基板上に結晶性有機材料薄膜を形成する薄膜形成方法において、
容器に入れた有機材料溶液に基板を浸漬する工程と、当該基板を有機材料溶液の液中から気相側へ移動する工程と、気相側にある基板上において基板に付着した有機材料溶液から当該結晶性有機材料薄膜が析出する工程と、を含み、
当該基板に付着した有機材料溶液は、容器に入れた当該有機材料溶液と液相で連続していることを特徴とする薄膜形成方法。
In a thin film forming method of forming a crystalline organic material thin film on a substrate,
A step of immersing the substrate in an organic material solution placed in a container, a step of moving the substrate from the liquid of the organic material solution to the gas phase side, and an organic material solution attached to the substrate on the substrate on the gas phase side. A step of depositing the crystalline organic material thin film,
The organic material solution adhering to the said board | substrate is following the said organic material solution put into the container in liquid phase, The thin film formation method characterized by the above-mentioned.
前記基板を有機材料溶液中から気相側へ移動する工程において、
当該基板と補助板との間に当該有機材料溶液が表面張力によって保持され、基板は補助板と相対的な平行運動によって移動するものであり、当該基板の温度が容器内の液面から離れるに従って低下するものであることを特徴とする、請求項1記載の薄膜形成方法。
In the step of moving the substrate from the organic material solution to the gas phase side,
The organic material solution is held by surface tension between the substrate and the auxiliary plate, and the substrate moves by a parallel movement relative to the auxiliary plate, and as the temperature of the substrate moves away from the liquid surface in the container, The thin film forming method according to claim 1, wherein the thin film forming method decreases.
前記基板を有機材料溶液液中から気相側へ移動する工程において、
当該基板上を当該有機材料溶液が流動することを特徴とする、請求項1又は2に記載の薄膜形成方法。
In the step of moving the substrate from the organic material solution to the gas phase side,
3. The thin film forming method according to claim 1, wherein the organic material solution flows on the substrate.
前記基板の温度が、対向する補助板よりも低いことを特徴とする、請求項1〜3のいずれか1項に記載の薄膜形成方法。   The method for forming a thin film according to claim 1, wherein the temperature of the substrate is lower than that of the opposing auxiliary plate.
JP2004247726A 2004-08-27 2004-08-27 Method of forming thin film Withdrawn JP2006066662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247726A JP2006066662A (en) 2004-08-27 2004-08-27 Method of forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247726A JP2006066662A (en) 2004-08-27 2004-08-27 Method of forming thin film

Publications (1)

Publication Number Publication Date
JP2006066662A true JP2006066662A (en) 2006-03-09

Family

ID=36112860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247726A Withdrawn JP2006066662A (en) 2004-08-27 2004-08-27 Method of forming thin film

Country Status (1)

Country Link
JP (1) JP2006066662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054774A (en) * 2009-09-02 2011-03-17 Denso Corp Method of manufacturing semiconductor device
US20120153264A1 (en) * 2010-12-15 2012-06-21 Samsung Electronics Co., Ltd. Methods For Forming Organic Thin Film, Organic Thin Films, Thin Film Transistors Including The Same, And Electric Devices Including The Same
JP2015027930A (en) * 2013-06-24 2015-02-12 独立行政法人物質・材料研究機構 Method for producing colloidal crystal film, and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054774A (en) * 2009-09-02 2011-03-17 Denso Corp Method of manufacturing semiconductor device
US20120153264A1 (en) * 2010-12-15 2012-06-21 Samsung Electronics Co., Ltd. Methods For Forming Organic Thin Film, Organic Thin Films, Thin Film Transistors Including The Same, And Electric Devices Including The Same
JP2015027930A (en) * 2013-06-24 2015-02-12 独立行政法人物質・材料研究機構 Method for producing colloidal crystal film, and device therefor

Similar Documents

Publication Publication Date Title
TWI425689B (en) Electrically conductive feature fabrication process
WO2006007156A1 (en) Fabrication of crystalline materials over substrates
US20130143357A1 (en) Method of forming organic thin film and organic thin film forming apparatus, as well as method of manufacturing organic device
WO2007125950A1 (en) Organic semiconductor thin film and organic semiconductor device
CN111501097A (en) Large domain size WS2Method for growing single crystal
JP2006066662A (en) Method of forming thin film
TW201330343A (en) Method for manufacturing organic semiconductor element, semiconductor element, and electronic apparatus
US20190259954A1 (en) Thin film semiconductor comprising a small-molecular semiconducting compound and a non-conductive polymer
JP2006269740A (en) Method for forming thin film
US20190378979A1 (en) Method of manufacturing organic semiconductor thin film using bar-coating process and method of fabricating flexible organic semiconductor transistor comprising the same
JP5635407B2 (en) Thin film formation method using organic semiconductor material molecules
CN108987410A (en) The preparation method of thin film transistor (TFT) and array substrate
JP2009218406A (en) Organic field-effect transistor, and manufacturing method thereof
JP6128588B2 (en) SiC single crystal, manufacturing method thereof and surface cleaning method thereof
JP2006055722A (en) Method for forming thin film
KR101542344B1 (en) Method and apparatus for purifying organic materials using ionic liquid
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
KR101573746B1 (en) Method for purifying organic materials using ionic liquid
JP4956709B2 (en) Method for producing organic semiconductor film
JP5403578B2 (en) Organic semiconductor thin film and organic thin film transistor using the same
JP2007287968A (en) Manufacturing method of thin-film field effect transistor
CN108541278B (en) Cleaning method of SiC single crystal growth furnace
Heya et al. Properties of SiO 2 Surface and Pentacene OTFT Subjected to Atomic Hydrogen Annealing
JP2020167439A (en) Organic semiconductor film and method of manufacturing the same
JP2014154765A (en) Semiconductor crystal, method of manufacturing the same, and multilayer film structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070706

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100707