JP4956709B2 - Method for producing organic semiconductor film - Google Patents

Method for producing organic semiconductor film Download PDF

Info

Publication number
JP4956709B2
JP4956709B2 JP2006238133A JP2006238133A JP4956709B2 JP 4956709 B2 JP4956709 B2 JP 4956709B2 JP 2006238133 A JP2006238133 A JP 2006238133A JP 2006238133 A JP2006238133 A JP 2006238133A JP 4956709 B2 JP4956709 B2 JP 4956709B2
Authority
JP
Japan
Prior art keywords
organic semiconductor
film
substrate
semiconductor compound
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006238133A
Other languages
Japanese (ja)
Other versions
JP2008060480A (en
Inventor
収 堀田
健史 山雄
彬 鴨井
寛文 栗木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Kyoto Institute of Technology NUC
Kyoto University
Nippon Telegraph and Telephone Corp
Pioneer Corp
Original Assignee
Rohm Co Ltd
Kyoto Institute of Technology NUC
Kyoto University
Nippon Telegraph and Telephone Corp
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd, Kyoto Institute of Technology NUC, Kyoto University, Nippon Telegraph and Telephone Corp, Pioneer Corp filed Critical Rohm Co Ltd
Priority to JP2006238133A priority Critical patent/JP4956709B2/en
Publication of JP2008060480A publication Critical patent/JP2008060480A/en
Application granted granted Critical
Publication of JP4956709B2 publication Critical patent/JP4956709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機半導体化合物からなる有機半導体膜の製造方法に関する。   The present invention relates to a method for producing an organic semiconductor film made of an organic semiconductor compound.

近年、電子デバイスの軽量化や可撓化等を目的として、有機半導体化合物からなる有機半導体膜を備えた有機デバイスに関する研究が広く行われている。
有機半導体膜の製造方法としては、例えば、真空蒸着あるいはスパッタにより基板表面に有機半導体膜を形成させる気相成長法、塗布やキャスト等により有機半導体膜を形成させる液相成膜法などが知られている。また、有機半導体化合物の原料を分解用容器内で熱分解させ、その分解物を蒸着用容器内の基板に気相輸送して、基板表面に膜を成長させる気相輸送成長法などが提案されている(非特許文献1参照)。
ところで、有機半導体膜としては、電気特性や光学特性が向上することから、配向性が高いことが求められる。有機半導体膜の配向性を向上させる方法としては、例えば、気相成長法において基板表面を処理したり、温度を適宜選択したりする方法が知られ、液相成膜法においては単分子膜法等の自己配列法が知られている。
ブルース・ジェイ・ハンフレイ(Bruce J.Humphrey),「ジャーナル オブ アメリカン インスティチュート フォ コンサヴェイション(Journal of American Institute for Conservation)」,米国,1986年,第25巻,第1号,p.15−29
In recent years, research on organic devices including organic semiconductor films made of organic semiconductor compounds has been widely conducted for the purpose of reducing the weight and flexibility of electronic devices.
As a method for producing an organic semiconductor film, for example, a vapor phase growth method in which an organic semiconductor film is formed on a substrate surface by vacuum deposition or sputtering, a liquid phase film formation method in which an organic semiconductor film is formed by coating, casting, or the like is known. ing. In addition, a vapor transport growth method has been proposed in which a raw material of an organic semiconductor compound is thermally decomposed in a decomposition container, and the decomposition product is vapor transported to a substrate in a deposition container to grow a film on the substrate surface. (See Non-Patent Document 1).
By the way, the organic semiconductor film is required to have high orientation because of improved electrical characteristics and optical characteristics. As a method for improving the orientation of the organic semiconductor film, for example, a method of treating the substrate surface in a vapor phase growth method or selecting an appropriate temperature is known, and a monomolecular film method is used in a liquid phase film formation method Self-alignment methods such as are known.
Bruce J. Humphrey, “Journal of American Institute for Conservation”, USA, 1986, Vol. 25, No. 1, p. 15-29

しかし、従来知られた有機半導体膜の製造方法はいずれも簡便な方法とはいえず、実用に適していない上に、得られる有機半導体膜の配向性も不充分であった。
本発明は、前記事情を鑑みてなされたものであり、配向性が充分に高い有機半導体膜を簡便に製造できる有機半導体膜の製造方法を提供することを目的とする。
However, none of the conventionally known methods for producing an organic semiconductor film is a simple method and is not suitable for practical use, and the orientation of the obtained organic semiconductor film is insufficient.
This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of the organic-semiconductor film which can manufacture the organic-semiconductor film with sufficiently high orientation easily.

本発明は、以下の構成を包含する。
[1] テトラセン、ペンタセン、クアテルフェニル、キンクエフェニル、セクシフェニル、チオフェン−フェニレンコオリゴマー、後述する化学式(6)で表される化合物、化学式(7)で表される化合物、化学式(8)で表される化合物から選択されるから選択される有機半導体化合物を原料として用いた気相成長により、基板の表面に有機半導体膜を形成させる有機半導体膜の製造方法であって、
支持台上に有機半導体化合物を配置し、有機半導体化合物との間に10μm〜1cmの隙間が形成されると共に有機半導体化合物と基板の表面とが対向するように基板を配置した後、圧力10−2Pa〜10Paの雰囲気下で、有機半導体化合物を加熱し、昇華させることにより、基板の表面に有機半導体膜を形成させることを特徴とする有機半導体膜の製造方法。
[2] 有機半導体化合物を加熱する際に、基板と有機半導体化合物の一部とを接触させることを特徴とする[1]に記載の有機半導体膜の製造方法。
[3] 有機半導体化合物の加熱温度を、有機半導体化合物の融点以下とすることを特徴とする[2]に記載の有機半導体膜の製造方法。
[4] 基板と有機半導体化合物の全部との間に隙間を有することを特徴とする[1]に記載の有機半導体膜の製造方法。
[5] 有機半導体化合物を加熱する際の雰囲気を窒素雰囲気とすることを特徴とする[1]〜[4]のいずれかに記載の有機半導体膜の製造方法。
The present invention includes the following configurations.
[1] Tetracene, pentacene, quaterphenyl, quinquephenyl, sexual phenyl, thiophene-phenylene co-oligomer, compound represented by chemical formula (6) described later, compound represented by chemical formula (7), chemical formula (8) An organic semiconductor film manufacturing method for forming an organic semiconductor film on a surface of a substrate by vapor phase growth using an organic semiconductor compound selected from the compounds represented by
The organic semiconductor compound is placed on a support base, after which the organic semiconductor compound and the surface of the substrate placed the substrate so as to face with a gap of 10μm~1cm is formed between the organic semiconductor compound, pressure 10 - An organic semiconductor film manufacturing method comprising forming an organic semiconductor film on a surface of a substrate by heating and sublimating an organic semiconductor compound in an atmosphere of 2 Pa to 10 6 Pa.
[2] The method for producing an organic semiconductor film according to [1], wherein when the organic semiconductor compound is heated, the substrate and a part of the organic semiconductor compound are brought into contact with each other.
[3] The method for producing an organic semiconductor film according to [2], wherein the heating temperature of the organic semiconductor compound is not higher than the melting point of the organic semiconductor compound.
[4] The method for producing an organic semiconductor film according to [1], wherein a gap is provided between the substrate and all of the organic semiconductor compound.
[5] The method for producing an organic semiconductor film according to any one of [1] to [4], wherein an atmosphere when the organic semiconductor compound is heated is a nitrogen atmosphere.

本発明の有機半導体膜の製造方法によれば、配向性が充分に高い有機半導体膜を簡便に製造できる。   According to the method for producing an organic semiconductor film of the present invention, an organic semiconductor film having sufficiently high orientation can be easily produced.

(第1の実施形態例)
本発明の有機半導体膜の製造方法の第1の実施形態例について説明する。
本実施形態例の有機半導体膜の製造方法は、有機半導体化合物を原料として用いた気相成長により、基板表面に有機半導体膜を形成させる方法であって、基板と粉状の有機半導体化合物とを接触させた状態で、有機半導体化合物を加熱する方法である。
以下、具体的に説明する。
(First embodiment)
A first embodiment of the method for producing an organic semiconductor film of the present invention will be described.
The method for producing an organic semiconductor film according to the present embodiment is a method for forming an organic semiconductor film on the surface of a substrate by vapor phase growth using an organic semiconductor compound as a raw material. In this method, the organic semiconductor compound is heated in a contact state.
This will be specifically described below.

本実施形態例の有機半導体膜の製造方法では、まず、図1に示すように、ヒータ11上に配置された支持台12上に、粉状の有機半導体化合物Aを載せ、また、有機半導体化合物Aの上に基板13を載せる。ここで、有機半導体化合物Aは粉状であるため、図2に示すように、有機半導体化合物Aの一部と基板13とは接触するが、有機半導体化合物Aと基板13との間に隙間Nも形成される。
次いで、ヒータ11を加熱し、支持台12を介して有機半導体化合物Aを加熱して、有機半導体化合物Aを昇華(気化)させる。そして、基板13の下面に、有機半導体化合物からなる有機半導体膜を形成させる。
In the method for producing an organic semiconductor film of the present embodiment, first, as shown in FIG. 1, a powdery organic semiconductor compound A is placed on a support base 12 disposed on a heater 11. A substrate 13 is placed on A. Here, since the organic semiconductor compound A is in powder form, as shown in FIG. 2, a part of the organic semiconductor compound A and the substrate 13 are in contact with each other, but there is a gap N between the organic semiconductor compound A and the substrate 13. Is also formed.
Next, the heater 11 is heated, and the organic semiconductor compound A is heated via the support 12 to sublimate (vaporize) the organic semiconductor compound A. Then, an organic semiconductor film made of an organic semiconductor compound is formed on the lower surface of the substrate 13.

この製造方法においては、有機半導体化合物Aを加熱する際の雰囲気圧力を10−2Pa〜10Paとする。雰囲気の圧力を10−2Pa未満とすると、得られる有機半導体膜の配向性が低くなる。また、雰囲気の圧力を10Pa以下とすることにより、耐圧性の高い容器を用いる必要がなく、有機半導体膜を製造するための装置を簡便な構成にできる。
なお、この製造方法では、雰囲気の圧力を大気圧以上としても、得られる有機半導体膜の配向性を確保できる。
In this manufacturing method, the atmospheric pressure when heating the organic semiconductor compound A is set to 10 −2 Pa to 10 6 Pa. When the pressure of the atmosphere is less than 10 −2 Pa, the orientation of the obtained organic semiconductor film is lowered. In addition, by setting the atmospheric pressure to 10 6 Pa or less, it is not necessary to use a container with high pressure resistance, and the apparatus for manufacturing the organic semiconductor film can be configured simply.
In this manufacturing method, the orientation of the obtained organic semiconductor film can be secured even when the atmospheric pressure is set to atmospheric pressure or higher.

加熱の際の雰囲気は、例えば、窒素、アルゴン等の不活性ガス雰囲気であってもよいし、有機半導体化合物が変質しなければ空気等のように酸素を含む雰囲気であってもよい。中でも、高性能な有機半導体膜を製造できる点では、窒素雰囲気が好ましい。   The atmosphere at the time of heating may be, for example, an inert gas atmosphere such as nitrogen or argon, or may be an atmosphere containing oxygen such as air if the organic semiconductor compound is not denatured. Among these, a nitrogen atmosphere is preferable in that a high-performance organic semiconductor film can be manufactured.

有機半導体化合物Aの加熱温度は、有機半導体化合物Aの融点以下とすることが好ましく、有機半導体化合物Aの融点より1〜100℃低いことがより好ましい。ただし、加熱温度は、加熱において温度制御可能な最低温度(具体的には40℃程度)より低くすることはない。   The heating temperature of the organic semiconductor compound A is preferably not higher than the melting point of the organic semiconductor compound A, and more preferably 1 to 100 ° C. lower than the melting point of the organic semiconductor compound A. However, the heating temperature is not lower than the lowest temperature (specifically, about 40 ° C.) that can be controlled in heating.

基板13の温度は、有機半導体膜が形成しやすくなることから、有機半導体化合物Aの温度より低いことが好ましい。基板13の温度を有機半導体化合物Aの温度より低くするためには、基板13を冷却しても構わない。   The temperature of the substrate 13 is preferably lower than the temperature of the organic semiconductor compound A because an organic semiconductor film can be easily formed. In order to make the temperature of the substrate 13 lower than the temperature of the organic semiconductor compound A, the substrate 13 may be cooled.

この製造方法で使用される有機半導体化合物Aは、通常、π共役系の化合物であり、例えば、テトラセン(化学式(1))、ペンタセン(化学式(2))、クアテルフェニル(化学式(3))、キンクエフェニル(化学式(4))、セクシフェニル(化学式(5))などが挙げられる。   The organic semiconductor compound A used in this production method is usually a π-conjugated compound, for example, tetracene (chemical formula (1)), pentacene (chemical formula (2)), quaterphenyl (chemical formula (3)). , Quinquephenyl (Chemical Formula (4)), Sexiphenyl (Chemical Formula (5)), and the like.

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

また、有機半導体化合物Aとして、チオフェン−フェニレンコオリゴマーが挙げられる。ここで、チオフェン−フェニレンコオリゴマーとは、チオフェン環とフェニレン(ベンゼン)環とが一次元的に結合した化合物のことである。
チオフェン−フェニレンコオリゴマーの具体例としては、例えば、下記化学式(6)〜(23)で表されるものが挙げられる。
Moreover, as organic-semiconductor compound A, a thiophene-phenylene co-oligomer is mentioned. Here, the thiophene-phenylene co-oligomer is a compound in which a thiophene ring and a phenylene (benzene) ring are bonded one-dimensionally.
Specific examples of the thiophene-phenylene co-oligomer include those represented by the following chemical formulas (6) to (23).

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

Figure 0004956709
Figure 0004956709

上記有機半導体化合物の中でも、配向性がより高い有機半導体膜を製造できることから、チオフェン−フェニレンコオリゴマーが好ましい。
なお、上記化学式(1)〜(23)の融点を表1に示す。
Among the organic semiconductor compounds, a thiophene-phenylene co-oligomer is preferable because an organic semiconductor film with higher orientation can be produced.
In addition, Table 1 shows melting points of the chemical formulas (1) to (23).

Figure 0004956709
Figure 0004956709

基板13としては、例えば、シリコン基板等の無機半導体基板、ガラス基板、ポリイミド基板などを使用することができる。これらのうち、ポリイミド基板は有機半導体化合物に近い熱膨張係数を有しており、冷却時に有機半導体膜と略同等に収縮するため、基板13との収縮差の違いによるクラックが生じにくい。そのため、最終的に、ドメインのサイズがより大きい有機半導体膜が得られる。   As the substrate 13, for example, an inorganic semiconductor substrate such as a silicon substrate, a glass substrate, a polyimide substrate, or the like can be used. Among these, the polyimide substrate has a thermal expansion coefficient close to that of the organic semiconductor compound, and contracts substantially the same as the organic semiconductor film during cooling, so that cracks due to a difference in contraction from the substrate 13 are unlikely to occur. Therefore, an organic semiconductor film having a larger domain size is finally obtained.

以上説明した第1の実施形態例の製造方法では、加熱によって昇華した有機半導体化合物が、有機半導体化合物Aと基板13との隙間Nを通って、基板13の表面に付着する。したがって、気相成長により、基板13の表面に有機半導体化合物からなる有機半導体膜を形成させることができる。この製造方法では、高真空等の特殊な雰囲気にする必要がないし、複雑な操作も不要であるため、簡便に有機半導体膜を製造できる。しかも、本発明者らが調べた結果、本実施形態例の製造方法により得られる有機半導体膜は、配向性が充分に高いことが判明した。   In the manufacturing method according to the first embodiment described above, the organic semiconductor compound sublimated by heating adheres to the surface of the substrate 13 through the gap N between the organic semiconductor compound A and the substrate 13. Therefore, an organic semiconductor film made of an organic semiconductor compound can be formed on the surface of the substrate 13 by vapor phase growth. In this manufacturing method, it is not necessary to use a special atmosphere such as a high vacuum, and a complicated operation is not required, so that an organic semiconductor film can be easily manufactured. Moreover, as a result of investigations by the present inventors, it was found that the organic semiconductor film obtained by the manufacturing method of this embodiment example has a sufficiently high orientation.

(第2の実施形態例)
本発明の有機半導体膜の製造方法の第2の実施形態例について説明する。
本実施形態例の有機半導体膜の製造方法は、有機半導体化合物を原料として用いた気相成長により、基板表面に有機半導体膜を形成させる方法であって、有機半導体化合物と基板とを接触させず、間隔を有した状態で、有機半導体化合物を加熱する方法である。
以下、具体的に説明する。
(Second Embodiment)
A second embodiment of the method for producing an organic semiconductor film of the present invention will be described.
The method for producing an organic semiconductor film according to the present embodiment is a method of forming an organic semiconductor film on a substrate surface by vapor phase growth using an organic semiconductor compound as a raw material, without contacting the organic semiconductor compound and the substrate. In this method, the organic semiconductor compound is heated in a state having an interval.
This will be specifically described below.

本実施形態例の有機半導体膜の製造方法では、まず、図3に示すように、ヒータ11上に配置された支持台12上に膜状の有機半導体化合物Bを載せ、支持台12上の膜状の有機半導体化合物Bの両端側に2つのスペーサ14a,14bを載せ、2つのスペーサ14a,14bの上に基板13を載せる。ここで、膜状の有機半導体化合物Bとしては、例えば、粉状の有機半導体化合物を一旦溶融した後に冷却することにより得られたものなどが挙げられる。
次いで、ヒータ11を加熱し、支持台12を介して膜状の有機半導体化合物Bを加熱して、有機半導体化合物を昇華(気化)させる。そして、基板13の下面に、有機半導体化合物からなる有機半導体膜を形成させる。
In the method for producing an organic semiconductor film of this embodiment, first, as shown in FIG. 3, a film-like organic semiconductor compound B is placed on a support base 12 disposed on the heater 11, and the film on the support base 12 is placed. Two spacers 14a and 14b are placed on both ends of the organic semiconductor compound B, and the substrate 13 is placed on the two spacers 14a and 14b. Here, examples of the film-like organic semiconductor compound B include those obtained by once melting and cooling a powdery organic semiconductor compound.
Next, the heater 11 is heated, and the film-like organic semiconductor compound B is heated via the support 12 to sublimate (vaporize) the organic semiconductor compound. Then, an organic semiconductor film made of an organic semiconductor compound is formed on the lower surface of the substrate 13.

この製造方法において、第1の実施形態例と同様の理由から、膜状の有機半導体化合物Bを加熱する際の雰囲気圧力を10−2Pa〜10Paとする。
有機半導体化合物および基板13としては、第1の実施形態例と同様のものを使用することができる。
In this manufacturing method, the atmospheric pressure when heating the film-like organic semiconductor compound B is set to 10 −2 Pa to 10 6 Pa for the same reason as in the first embodiment.
As the organic semiconductor compound and the substrate 13, the same materials as those in the first embodiment can be used.

膜状の有機半導体化合物Bの加熱温度は、有機半導体化合物の融点以下であってもよいし、融点を超えてもよい。ただし、有機半導体化合物の充分な昇華量を確保するためには、加熱温度を、融点以下で(融点−100℃)以上とすることが好ましい。   The heating temperature of the film-like organic semiconductor compound B may be equal to or lower than the melting point of the organic semiconductor compound or may exceed the melting point. However, in order to ensure a sufficient amount of sublimation of the organic semiconductor compound, it is preferable that the heating temperature is not higher than the melting point and not lower than (melting point−100 ° C.).

本実施形態例では、膜状の有機半導体化合物Bの両端側の2つのスペーサ14a,14bによって基板13と膜状の有機半導体化合物Bとを接触させずに、隙間Nを設けている。基板13と膜状の有機半導体化合物Bとの間隔は10μm〜1cmであることが好ましい。基板13と膜状の有機半導体化合物Bとの間隔が10μm以上であれば、膜厚を容易に均一にでき、1cm以下であれば、結晶サイズを大きくすることができる。
スペーサの材質としては、例えば、ガラス、金属、セラミックスなどが挙げられる。
In this embodiment, the gap N is provided without contacting the substrate 13 and the film-like organic semiconductor compound B by the two spacers 14a and 14b on both ends of the film-like organic semiconductor compound B. The distance between the substrate 13 and the film-like organic semiconductor compound B is preferably 10 μm to 1 cm. If the distance between the substrate 13 and the film-like organic semiconductor compound B is 10 μm or more, the film thickness can be easily made uniform, and if it is 1 cm or less, the crystal size can be increased.
Examples of the material of the spacer include glass, metal, and ceramics.

以上説明した第2の実施形態例の製造方法では、加熱によって昇華した有機半導体化合物が、膜状の有機半導体化合物Bと基板13との隙間Nを通って、基板13の表面に付着する。したがって、本実施形態例でも、気相成長により、基板13の表面に有機半導体化合物からなる有機半導体膜を簡便に形成させることができる。しかも、本発明者らが調べた結果、本実施形態例の製造方法により得られる有機半導体膜も、配向性が充分に高いことが判明した。
また、上述した第2の実施形態例では、原料の有機半導体化合物を膜状としているため、有機半導体化合物を均一に昇華させることができ、得られる有機半導体膜の膜厚を容易に均一にできる。
In the manufacturing method of the second embodiment described above, the organic semiconductor compound sublimated by heating adheres to the surface of the substrate 13 through the gap N between the film-like organic semiconductor compound B and the substrate 13. Therefore, also in this embodiment, an organic semiconductor film made of an organic semiconductor compound can be easily formed on the surface of the substrate 13 by vapor phase growth. Moreover, as a result of investigations by the present inventors, it has been found that the organic semiconductor film obtained by the production method of this embodiment example has sufficiently high orientation.
In the second embodiment described above, since the organic semiconductor compound as a raw material is formed into a film shape, the organic semiconductor compound can be uniformly sublimated, and the thickness of the obtained organic semiconductor film can be easily made uniform. .

なお、本発明は上述した実施形態例に限定されない。例えば、上述した第1の実施形態例における有機半導体化合物は粉状であったが、図4に示すように、表面に凹凸を有する膜状の有機半導体化合物Cであってもよい。この場合でも、有機半導体化合物Cの一部が基板13と接触して、隙間Nが形成される。
また、上述した第2の実施形態例における有機半導体化合物の形態は、膜状であったが、粉状であってもよい。
また、第2の実施形態例では、スペーサを用いて有機半導体化合物と基板との間に間隔を設けたが、基板を固定する治具を用いて、有機半導体化合物と基板との間に間隔を設けてもよい。
The present invention is not limited to the above-described embodiment example. For example, although the organic semiconductor compound in the first embodiment described above is in a powder form, it may be a film-shaped organic semiconductor compound C having irregularities on the surface as shown in FIG. Even in this case, a part of the organic semiconductor compound C comes into contact with the substrate 13 to form the gap N.
The form of the organic semiconductor compound in the second embodiment described above is a film, but may be a powder.
In the second embodiment, a gap is provided between the organic semiconductor compound and the substrate using a spacer. However, a gap is provided between the organic semiconductor compound and the substrate using a jig for fixing the substrate. It may be provided.

(実施例1)
実施例1は第1の実施形態例に対応する例であり、支持台12として18mm×18mmのカバーガラスを用い、有機半導体化合物Aとして、上記化学式(22)で表される化合物(5,5''''−ジフェニル−2,2’:5’,2”:5”,2''':5''',2''''−キンクエチオフェン、以下、P5Tと表記する。)の粉末を用い、基板13として、15mm×15mmの酸化膜付シリコン基板を用いた。
本例の製造方法では、まず、ヒータ11上に配置した支持台12上に粉状のP5Tを載せ、P5Tの上に基板13を載せた。次いで、ヒータ11により、支持台12上のP5Tを、大気圧の窒素雰囲気下、ヒータ温度290℃、4時間加熱して昇華させ、粉状のP5Tの上方に位置する酸化膜付シリコン基板表面に、有機半導体膜であるP5Tの結晶膜を形成させた。
Example 1
Example 1 is an example corresponding to the first embodiment, and a cover glass of 18 mm × 18 mm is used as the support base 12, and the compound (5, 5) represented by the above chemical formula (22) is used as the organic semiconductor compound A. ″ ″ -Diphenyl-2,2 ′: 5 ′, 2 ″: 5 ″, 2 ′ ″: 5 ′ ″, 2 ″ ″-kinquethiophene, hereinafter referred to as P5T). A powder was used, and a silicon substrate with an oxide film of 15 mm × 15 mm was used as the substrate 13.
In the manufacturing method of this example, first, powdery P5T was placed on the support base 12 disposed on the heater 11, and the substrate 13 was placed on P5T. Next, the heater 11 sublimates the P5T on the support base 12 under a nitrogen atmosphere at atmospheric pressure by heating at a heater temperature of 290 ° C. for 4 hours to form a surface of the silicon substrate with an oxide film located above the powdery P5T. Then, a P5T crystal film, which is an organic semiconductor film, was formed.

図5,6に、実施例1の製造方法により得たP5Tの結晶膜の顕微鏡像を示し、図7,8に偏光顕微鏡像を示す。なお、図6の顕微鏡像は図5の顕微鏡像を45度回転させた像であり、図8の偏光顕微鏡像は図7の偏光顕微鏡像を45度回転させたものである。
これらの像より、数十μm四方の範囲にわたって配向していることが確認できる。また、図7の偏光顕微鏡像において線で囲った白く見えている部分が、45度回転後の図8の偏光顕微鏡像では暗くなっていた。したがって、得られた結晶膜は高い偏光性を持っており、高い配向性を有している。
5 and 6 show microscopic images of the P5T crystal film obtained by the manufacturing method of Example 1, and FIGS. 6 is an image obtained by rotating the microscope image of FIG. 5 by 45 degrees, and the polarization microscope image of FIG. 8 is an image obtained by rotating the polarization microscope image of FIG. 7 by 45 degrees.
From these images, it can be confirmed that the film is oriented over a range of several tens of μm square. Further, the white portion surrounded by a line in the polarization microscope image of FIG. 7 was dark in the polarization microscope image of FIG. 8 after being rotated by 45 degrees. Therefore, the obtained crystal film has high polarization and high orientation.

(実施例2)
実施例2は第2の実施形態例に対応する例であり、支持台12として18mm×18mmのカバーガラスを用い、有機半導体化合物Aとして、上記化学式(23)で表される化合物(5,5'''''−ジフェニル−2,2’:5’,2”:5”,2''':5''',2'''':5'''',2'''''−セクシチオフェン、以下、P6Tと表記する。)の膜を用い、基板13として、2.9mm×20mmの酸化膜付シリコン基板を用いた。
P6Tの膜は次のようにして作製した。まず、ヒータ上に9mm×23mmのシリコン基板を載せ、その上にP6Tの粉末5.03mgを載せ、P6Tの粉末の上に18mm×18mmのカバーガラスを載せた。次いで、P6Tの粉末を融点である392℃まで加熱して溶融させた後、室温まで冷却して膜を形成した。なお、有機半導体膜の製造の際には、シリコン基板とカバーガラスとを引き剥がした後の、カバーガラスに付着した膜(厚さ約30μm)を用いた。
(Example 2)
Example 2 is an example corresponding to the second embodiment, and a cover glass of 18 mm × 18 mm is used as the support 12, and the compound (5, 5) represented by the above chemical formula (23) is used as the organic semiconductor compound A. '''''-Diphenyl-2,2': 5 ', 2 ": 5", 2''': 5 ''',2'''':5'''',2''''' A film of Seccithiophene (hereinafter referred to as P6T) was used, and a silicon substrate with an oxide film of 2.9 mm × 20 mm was used as the substrate 13.
The P6T film was produced as follows. First, a 9 mm × 23 mm silicon substrate was placed on the heater, 5.03 mg of P6T powder was placed thereon, and a cover glass of 18 mm × 18 mm was placed on the P6T powder. Next, the P6T powder was melted by heating to a melting point of 392 ° C., and then cooled to room temperature to form a film. In the production of the organic semiconductor film, a film (thickness of about 30 μm) attached to the cover glass after peeling off the silicon substrate and the cover glass was used.

本例の製造方法では、まず、ヒータ11上に配置した支持台12上にP6Tの膜を載せ、支持台12上のP6Tの膜の両端側に厚さ145μmの2つのガラス製スペーサ14a,14bを配置させ、また、2つのガラス製スペーサ14a,14bの上に基板13を載せた。次いで、ヒータ11により、支持台12上のP6Tを、大気圧の空気雰囲気下、ヒータ温度370℃、1時間加熱して昇華させ、P6Tの膜の上方に位置する酸化膜付シリコン基板表面に、有機半導体膜であるP6Tの結晶膜を形成させた。
図9に、実施例2の製造方法により得たP6Tの結晶膜の顕微鏡像を示す。この像より、配向性の高い膜が得られたことが判明した。
In the manufacturing method of this example, first, a P6T film is placed on the support base 12 disposed on the heater 11, and two glass spacers 14a and 14b having a thickness of 145 μm are formed on both ends of the P6T film on the support base 12. The substrate 13 was placed on the two glass spacers 14a and 14b. Next, the heater 11 sublimates the P6T on the support base 12 by heating at a heater temperature of 370 ° C. for 1 hour in an air atmosphere at atmospheric pressure, and on the surface of the silicon substrate with an oxide film located above the P6T film, A crystal film of P6T, which is an organic semiconductor film, was formed.
FIG. 9 shows a microscopic image of the crystal film of P6T obtained by the manufacturing method of Example 2. From this image, it was found that a highly oriented film was obtained.

(実施例3)
スペーサとして厚さ290μmのものを用い、酸化膜付きシリコン基板として2.3mm×20mmのものを用いたこと以外は実施例2と同様にして、P6Tの結晶膜を製造した。
図10に、実施例3の製造方法により得たP6Tの結晶膜の顕微鏡像を示す。この像より、配向性の高い膜が得られたことが判明した。
(Example 3)
A P6T crystal film was manufactured in the same manner as in Example 2 except that a spacer having a thickness of 290 μm was used and a silicon substrate with an oxide film having a thickness of 2.3 mm × 20 mm was used.
FIG. 10 shows a microscopic image of the crystal film of P6T obtained by the manufacturing method of Example 3. From this image, it was found that a highly oriented film was obtained.

(実施例4)
実施例4は第2の実施形態例に対応する例であり、支持台12として18mm×18mmのカバーガラスを用い、有機半導体化合物Aとして、上記化学式(19)で表される化合物(1,4−ビス(5’−フェニルチオフェン−2’−イル)ベンゼン、以下、AC5と表記する。)の膜を用い、基板13として、10mm×10mmの酸化膜付シリコン基板を用いた。
AC5の膜は次のようにして作製した。まず、ヒータ上に6.5mm×18mmのシリコン基板を載せ、その上にAC5の粉末を約5mg載せ、AC5の粉末の上に18mm×18mmのカバーガラスを載せた。次いで、AC5の粉末を融点である306℃まで加熱して溶融させた後、室温まで冷却して膜を形成した。なお、有機半導体膜の製造の際には、シリコン基板とカバーガラスとを引き剥がした後の、カバーガラスに付着した膜(厚さ約30μm)を用いた。
Example 4
Example 4 is an example corresponding to the second embodiment, and a cover glass of 18 mm × 18 mm is used as the support base 12, and the compound (1, 4) represented by the above chemical formula (19) is used as the organic semiconductor compound A. A film of bis (5′-phenylthiophen-2′-yl) benzene (hereinafter referred to as AC5) was used, and a 10 mm × 10 mm silicon substrate with an oxide film was used as the substrate 13.
The AC5 film was prepared as follows. First, a 6.5 mm × 18 mm silicon substrate was placed on the heater, about 5 mg of AC5 powder was placed thereon, and a cover glass of 18 mm × 18 mm was placed on the AC5 powder. Next, AC5 powder was heated to a melting point of 306 ° C. and melted, and then cooled to room temperature to form a film. In the production of the organic semiconductor film, a film (thickness of about 30 μm) attached to the cover glass after peeling off the silicon substrate and the cover glass was used.

本例の製造方法では、まず、ヒータ11上に配置した支持台12上にAC5の膜を載せ、支持台12上のAC5の両端側に厚さ150μmの2つのスペーサ14a,14bを配置させ、また、両端の2つのガラス製スペーサ14a,14bの上に基板13を載せた。次いで、ヒータ11により、支持台12上のAC5を、大気圧の空気雰囲気下、ヒータ温度220℃、1時間加熱して昇華させ、AC5の膜の上方に位置する酸化膜付シリコン基板表面に、有機半導体膜であるAC5の結晶膜を形成させた。
図11に、実施例4の製造方法により得たAC5の結晶膜の顕微鏡像を示す。
In the manufacturing method of this example, first, an AC5 film is placed on the support base 12 disposed on the heater 11, and two spacers 14a and 14b having a thickness of 150 μm are disposed on both ends of the AC5 on the support base 12, The substrate 13 was placed on the two glass spacers 14a and 14b at both ends. Next, the heater 11 causes the AC5 on the support 12 to be sublimated by heating at 220 ° C. for 1 hour in an air atmosphere at atmospheric pressure, and on the surface of the silicon substrate with an oxide film located above the AC5 film, A crystal film of AC5 which is an organic semiconductor film was formed.
FIG. 11 shows a microscopic image of a crystal film of AC5 obtained by the manufacturing method of Example 4.

(実施例5)
ヒータ温度を230℃としたこと以外は実施例4と同様にして、AC5の結晶膜を製造した。図12に、実施例5の製造方法により得たAC5の結晶膜の顕微鏡像を示す。
(Example 5)
An AC5 crystal film was produced in the same manner as in Example 4 except that the heater temperature was 230 ° C. FIG. 12 shows a microscopic image of a crystal film of AC5 obtained by the manufacturing method of Example 5.

(実施例6)
ヒータ温度を240℃とし、酸化膜付きシリコン基板として8.5mm×19mmのものを用いたこと以外は実施例4と同様にして、AC5の結晶膜を製造した。図13に、実施例6により得たAC5の結晶膜の顕微鏡像を示す。
(Example 6)
An AC5 crystal film was produced in the same manner as in Example 4 except that the heater temperature was 240 ° C. and a silicon substrate with an oxide film of 8.5 mm × 19 mm was used. FIG. 13 shows a microscopic image of the crystal film of AC5 obtained in Example 6.

(実施例7)
ヒータ温度を250℃とし、酸化膜付きシリコン基板として7.5mm×19mmのものを用いたこと以外は実施例4と同様にして、AC5の結晶膜を製造した。図14に、実施例7により得たAC5の結晶膜の顕微鏡像を示す。
(Example 7)
An AC5 crystal film was produced in the same manner as in Example 4 except that the heater temperature was 250 ° C., and a silicon substrate with an oxide film was 7.5 mm × 19 mm. FIG. 14 shows a microscopic image of the crystal film of AC5 obtained in Example 7.

(実施例8)
ヒータ温度を260℃とし、酸化膜付きシリコン基板として10mm×18mmのものを用いたこと以外は実施例4と同様にして、AC5の結晶膜を製造した。図15に、実施例8の製造方法により得たAC5の結晶膜の顕微鏡像を示す。
(Example 8)
An AC5 crystal film was produced in the same manner as in Example 4 except that the heater temperature was 260 ° C. and a silicon substrate with an oxide film was 10 mm × 18 mm. FIG. 15 shows a microscopic image of the crystal film of AC5 obtained by the production method of Example 8.

図11〜15に示す顕微鏡像より、いずれも明瞭な6角形の結晶が存在しており、AC5結晶に特徴的な結晶面が現れていることを確認できた。また、いずれの例でも、数100μmサイズで配向性の高い結晶膜を作製できることが判明した。
また、実施例4〜8の結果より、加熱温度が低くなる程、得られる有機半導体膜の量が少なくなることが判明した。
From the microscopic images shown in FIGS. 11 to 15, it was confirmed that any hexagonal crystal was present and a characteristic crystal plane appeared in the AC5 crystal. Also, in any of the examples, it has been found that a crystal film having a high orientation with a size of several hundred μm can be produced.
Moreover, it turned out that the quantity of the organic-semiconductor film obtained becomes small, so that heating temperature becomes low from the result of Examples 4-8.

(実施例9)
実施例9は第2の実施形態例に対応する例であり、支持台12として18mm×18mmのカバーガラスを用い、有機半導体化合物Aとして、上記化学式(17)で表される化合物(2,5−ビス(4−ビフェニリル)−2,2’:5’,2”−ターチオフェン、以下、BP3Tと表記する。)の膜を用い、基板13として、3.5mm×22mmの酸化膜付シリコン基板を用いた。
BP3Tの膜は次のようにして作製した。まず、ヒータ11上に配置したヒータ上に7mm×18mmのシリコン基板を載せ、その上にBP3Tの粉末を3.95mg載せ、BP3Tの粉末の上に18mm×18mmのカバーガラスを載せた。次いで、BP3Tの粉末を融点である388℃まで加熱して溶融させた後、室温まで冷却して膜を形成した。なお、有機半導体膜の製造の際には、シリコン基板とカバーガラスとを引き剥がした後の、カバーガラスに付着した膜(厚さ約20μm)を用いた。
Example 9
Example 9 is an example corresponding to the second embodiment, and a cover glass of 18 mm × 18 mm is used as the support base 12, and the compound (2, 5) represented by the above chemical formula (17) is used as the organic semiconductor compound A. A film of bis (4-biphenylyl) -2,2 ′: 5 ′, 2 ″ -terthiophene (hereinafter referred to as BP3T), and a silicon substrate with an oxide film of 3.5 mm × 22 mm as the substrate 13 Was used.
The BP3T film was prepared as follows. First, a 7 mm × 18 mm silicon substrate was placed on the heater disposed on the heater 11, 3.95 mg of BP3T powder was placed thereon, and a cover glass of 18 mm × 18 mm was placed on the BP3T powder. Next, the BP3T powder was heated to a melting point of 388 ° C. and melted, and then cooled to room temperature to form a film. In the production of the organic semiconductor film, a film (thickness of about 20 μm) attached to the cover glass after peeling off the silicon substrate and the cover glass was used.

本例の製造方法では、まず、支持台12上にBP3Tの膜を載せ、BP3Tの膜の両端側に厚さ145μmの2つのガラス製スペーサ14a,14bを配置させ、また、2つのスペーサ14a,14bの上に基板13を載せた。次いで、ヒータ11により、支持台12上のBP3Tを、大気圧の空気雰囲気下、ヒータ温度330℃、1時間加熱して昇華させ、BP3Tの膜の上方に位置する酸化膜付シリコン基板表面に、有機半導体膜であるBP3Tの結晶膜を形成させた。
図16に、実施例9の製造方法により得たBP3Tの結晶膜の顕微鏡像を示す。この顕微鏡像より求めた平均結晶サイズは100μmであった。また、得られた結晶膜は配向性が高かった。
In the manufacturing method of this example, first, a BP3T film is placed on the support base 12, two glass spacers 14a and 14b having a thickness of 145 μm are disposed on both ends of the BP3T film, and two spacers 14a, 14a, The substrate 13 was placed on 14b. Next, the heater 11 sublimates the BP3T on the support base 12 by heating at a heater temperature of 330 ° C. for 1 hour in an atmospheric air atmosphere, and on the surface of the silicon substrate with an oxide film located above the BP3T film, A crystal film of BP3T, which is an organic semiconductor film, was formed.
FIG. 16 shows a microscopic image of the BP3T crystal film obtained by the manufacturing method of Example 9. The average crystal size determined from this microscopic image was 100 μm. Moreover, the obtained crystal film had high orientation.

(実施例10)
BP3Tの加熱時間を3時間とし、酸化膜付きシリコン基板として4.0mm×22mmのものを用いたこと以外は実施例9と同様にして、BP3Tの結晶膜を製造した。図17に、実施例10の製造方法により得たBP3Tの結晶膜の顕微鏡像を示す。この顕微鏡像より求めた平均結晶サイズは300μmであった。また、得られた結晶膜は配向性が高かった。
(Example 10)
A BP3T crystal film was manufactured in the same manner as in Example 9 except that the heating time of BP3T was 3 hours, and a silicon substrate with an oxide film of 4.0 mm × 22 mm was used. FIG. 17 shows a microscopic image of the BP3T crystal film obtained by the manufacturing method of Example 10. The average crystal size determined from this microscopic image was 300 μm. Moreover, the obtained crystal film had high orientation.

(実施例11)
BP3Tの加熱時間を7時間とし、酸化膜付きシリコン基板として2.5mm×22mmのものを用いたこと以外は実施例9と同様にして、BP3Tの結晶膜を製造した。図18に、実施例11の製造方法により得たBP3Tの結晶膜の顕微鏡像を示す。この顕微鏡像より求めた平均結晶サイズは400μmであった。また、得られた結晶膜は配向性が高かった。
(Example 11)
A BP3T crystal film was manufactured in the same manner as in Example 9 except that the heating time of BP3T was set to 7 hours and a silicon substrate with an oxide film of 2.5 mm × 22 mm was used. FIG. 18 shows a microscopic image of the crystal film of BP3T obtained by the manufacturing method of Example 11. The average crystal size determined from this microscopic image was 400 μm. Moreover, the obtained crystal film had high orientation.

実施例9〜11に示すように、加熱時間が長くなる程、結晶の平均サイズが大きくなることが判明した。   As shown in Examples 9 to 11, it was found that the longer the heating time, the larger the average crystal size.

本発明の有機半導体膜の製造方法の第1の実施形態例を説明する図である。It is a figure explaining the 1st example of an embodiment of a manufacturing method of an organic semiconductor film of the present invention. 図1に示す実施形態例において、粉状の有機半導体化合物に基板が接触する部分を拡大した図である。In the example of embodiment shown in FIG. 1, it is the figure which expanded the part which a board | substrate contacts with a powdery organic-semiconductor compound. 本発明の有機半導体膜の製造方法の第2の実施形態例を説明する図である。It is a figure explaining the 2nd Embodiment of the manufacturing method of the organic-semiconductor film of this invention. 膜状の有機半導体化合物に基板が接触する部分を拡大した図である。It is the figure which expanded the part which a board | substrate contacts to a film-form organic-semiconductor compound. 実施例1における有機半導体膜の顕微鏡像である。2 is a microscopic image of an organic semiconductor film in Example 1. FIG. 図5に示す顕微鏡像を45度回転させた状態の像である。It is an image of the state which rotated the microscope image shown in FIG. 5 45 degree | times. 実施例1における有機半導体膜の偏光顕微鏡像である。2 is a polarization microscope image of an organic semiconductor film in Example 1. FIG. 図7に示す偏光顕微鏡像を45度回転させた状態の像である。It is an image of the state which rotated the polarization microscope image shown in FIG. 7 45 degree | times. 実施例2における有機半導体膜の顕微鏡像である。3 is a microscopic image of an organic semiconductor film in Example 2. 実施例3における有機半導体膜の顕微鏡像である。6 is a microscopic image of an organic semiconductor film in Example 3. 実施例4における有機半導体膜の顕微鏡像である。6 is a microscopic image of an organic semiconductor film in Example 4. 実施例5における有機半導体膜の顕微鏡像である。6 is a microscopic image of an organic semiconductor film in Example 5. 実施例6における有機半導体膜の顕微鏡像である。7 is a microscopic image of an organic semiconductor film in Example 6. FIG. 実施例7における有機半導体膜の顕微鏡像である。10 is a microscopic image of an organic semiconductor film in Example 7. 実施例8における有機半導体膜の顕微鏡像である。10 is a microscopic image of an organic semiconductor film in Example 8. 実施例9における有機半導体膜の顕微鏡像である。10 is a microscopic image of an organic semiconductor film in Example 9. 実施例10における有機半導体膜の顕微鏡像である。It is a microscope image of the organic-semiconductor film in Example 10. 実施例11における有機半導体膜の顕微鏡像である。It is a microscope image of the organic-semiconductor film in Example 11.

符号の説明Explanation of symbols

11 ヒータ
12 支持台
13 基板
14a,14b スペーサ
A,B,C 有機半導体化合物
N 隙間


11 Heater 12 Support stand 13 Substrate 14a, 14b Spacer A, B, C Organic semiconductor compound N Gap


Claims (5)

テトラセン、ペンタセン、クアテルフェニル、キンクエフェニル、セクシフェニル、チオフェン−フェニレンコオリゴマー、下記化学式(6)で表される化合物、下記化学式(7)で表される化合物、下記化学式(8)で表される化合物から選択される有機半導体化合物を原料として用いた気相成長により、基板の表面に有機半導体膜を形成させる有機半導体膜の製造方法であって、
支持台上に有機半導体化合物を配置し、有機半導体化合物との間に10μm〜1cmの隙間が形成されると共に有機半導体化合物と基板の表面とが対向するように基板を配置した後、圧力10−2Pa〜10Paの雰囲気下で、有機半導体化合物を加熱し、昇華させることにより、基板の表面に有機半導体膜を形成させることを特徴とする有機半導体膜の製造方法。
Figure 0004956709
Tetracene, pentacene, quaterphenyl, quinquephenyl, sexual phenyl, thiophene-phenylene co-oligomer, compound represented by the following chemical formula (6), compound represented by the following chemical formula (7), represented by the following chemical formula (8) An organic semiconductor film manufacturing method for forming an organic semiconductor film on a surface of a substrate by vapor phase growth using an organic semiconductor compound selected as a raw material as a raw material,
The organic semiconductor compound is placed on a support base, after which the organic semiconductor compound and the surface of the substrate placed the substrate so as to face with a gap of 10μm~1cm is formed between the organic semiconductor compound, pressure 10 - An organic semiconductor film manufacturing method comprising forming an organic semiconductor film on a surface of a substrate by heating and sublimating an organic semiconductor compound in an atmosphere of 2 Pa to 10 6 Pa.
Figure 0004956709
有機半導体化合物を加熱する際に、基板と有機半導体化合物の一部とを接触させることを特徴とする請求項1に記載の有機半導体膜の製造方法。 The method for producing an organic semiconductor film according to claim 1, wherein when the organic semiconductor compound is heated, the substrate and a part of the organic semiconductor compound are brought into contact with each other. 有機半導体化合物の加熱温度を、有機半導体化合物の融点以下とすることを特徴とする請求項2に記載の有機半導体膜の製造方法。   The method for producing an organic semiconductor film according to claim 2, wherein the heating temperature of the organic semiconductor compound is set to be equal to or lower than the melting point of the organic semiconductor compound. 基板と有機半導体化合物の全部との間に隙間を有することを特徴とする請求項1に記載の有機半導体膜の製造方法。   The method for producing an organic semiconductor film according to claim 1, wherein a gap is provided between the substrate and all of the organic semiconductor compound. 有機半導体化合物を加熱する際の雰囲気を窒素雰囲気とすることを特徴とする請求項1〜4のいずれかに記載の有機半導体膜の製造方法。   The method for producing an organic semiconductor film according to claim 1, wherein the atmosphere in heating the organic semiconductor compound is a nitrogen atmosphere.
JP2006238133A 2006-09-01 2006-09-01 Method for producing organic semiconductor film Expired - Fee Related JP4956709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238133A JP4956709B2 (en) 2006-09-01 2006-09-01 Method for producing organic semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238133A JP4956709B2 (en) 2006-09-01 2006-09-01 Method for producing organic semiconductor film

Publications (2)

Publication Number Publication Date
JP2008060480A JP2008060480A (en) 2008-03-13
JP4956709B2 true JP4956709B2 (en) 2012-06-20

Family

ID=39242835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238133A Expired - Fee Related JP4956709B2 (en) 2006-09-01 2006-09-01 Method for producing organic semiconductor film

Country Status (1)

Country Link
JP (1) JP4956709B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464880B (en) 2016-06-02 2020-04-14 清华大学 Preparation method and preparation device of organic thin film transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223628B2 (en) * 2003-07-25 2007-05-29 The Regents Of The University Of California High temperature attachment of organic molecules to substrates
JP4506228B2 (en) * 2004-03-25 2010-07-21 三菱化学株式会社 Organic field effect transistor, display element and electronic paper

Also Published As

Publication number Publication date
JP2008060480A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
Mitzi et al. Hybrid field‐effect transistor based on a low‐temperature melt‐processed channel layer
TW574387B (en) Method of manufacturing high-mobility organic thin films using organic vapor phase deposition
JP2013177692A5 (en)
KR20010006904A (en) Process for fabricating organic circuits
JP2013207085A (en) Organic semiconductor composition, organic semiconductor film formation method, organic semiconductor multilayer, and semiconductor device
WO2016011687A1 (en) Heating apparatus for use in oled material deposition
US20150225844A1 (en) Thin graphene film formation
JP4956709B2 (en) Method for producing organic semiconductor film
JP5732288B2 (en) Manufacturing method of free-standing substrate
Yamamoto et al. Preparation and characterization of ZnO nanowires
Yamao et al. Field-effect transistors based on organic single crystals grown by an improved vapor phase method
JP7399499B2 (en) Organic semiconductor device, method for manufacturing an organic semiconductor single crystal film, and method for manufacturing an organic semiconductor device
JP2007197274A (en) Method for manufacturing silicon carbide single crystal
JP5812342B2 (en) Method for producing graphite film
JPWO2005091377A1 (en) Substrate having organic thin film, transistor using the same, and manufacturing method thereof
US11049717B2 (en) Method for fabricating ultra-thin graphite film on silicon carbide substrate from siloxane-coupling-group-containing polyamic acid solution
JP5635407B2 (en) Thin film formation method using organic semiconductor material molecules
KR101585194B1 (en) Method for forming a graphene layer on the surface of a substrate including a silicon layer
WO2011065122A1 (en) Method for manufacturing semiconductor substrate
JP2006103997A (en) Method for manufacturing semiconductor crystal
JP2007266142A (en) Method of manufacturing rubrene-based compound single crystal, method of manufacturing organic semiconductor element, and organic semiconductor element
RU2135648C1 (en) Method of preparing crystalline fullerenes
JP5403578B2 (en) Organic semiconductor thin film and organic thin film transistor using the same
JP4358567B2 (en) Deposition method of organic thin film
JPH04139005A (en) Production of inorganic thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees