JP2006066597A - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
JP2006066597A
JP2006066597A JP2004246651A JP2004246651A JP2006066597A JP 2006066597 A JP2006066597 A JP 2006066597A JP 2004246651 A JP2004246651 A JP 2004246651A JP 2004246651 A JP2004246651 A JP 2004246651A JP 2006066597 A JP2006066597 A JP 2006066597A
Authority
JP
Japan
Prior art keywords
layer
printed wiring
wiring board
solder
stress relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004246651A
Other languages
Japanese (ja)
Other versions
JP4353873B2 (en
Inventor
Takashi Kariya
隆 苅谷
Toshiki Furuya
俊樹 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2004246651A priority Critical patent/JP4353873B2/en
Publication of JP2006066597A publication Critical patent/JP2006066597A/en
Application granted granted Critical
Publication of JP4353873B2 publication Critical patent/JP4353873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board capable of preventing a connection with an electronic component from being broken owing to heat expansion or heat shrinkage and stably supplying electric power to the electronic component. <P>SOLUTION: On the printed wiring board 10, a conductor post 34 has a solder core body 37 differently from a conventional conductor post made of copper nearly entirely. In general, solder is lower in coefficient of elasticity (e.g. Young's modulus) than copper, so the conductor post 34 never greatly hinders elastic deformation of a stress relaxation layer 30. Further, a barrier layer 36 brings the solder core body 37 and stress relaxing layer 30 into contact with each other, so when the stress relaxation layer 30 elastically deforms, the solder core body 37 and stress relaxation layer 30 never peels off each other. Therefore, even if stress is generated due to a difference in thermal expansion between a core substrate 12 and an IC chip 50, the stress is securely relaxed by the stress relaxation layer 30, and peeling from which cracking easily originates is not caused. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プリント配線板に関し、詳しくは、コア基板の少なくとも片面に導体回路層と絶縁層とが交互に形成され各導体回路層間が前記絶縁層を貫通するスルーホール導体又はバイアホールを介して電気的に接続されると共に実装面に実装される電子部品が前記導体回路層と電気的に接続されるプリント配線板に関する。   The present invention relates to a printed wiring board, and more specifically, via a through-hole conductor or via hole in which a conductor circuit layer and an insulating layer are alternately formed on at least one surface of a core substrate, and each conductor circuit layer passes through the insulating layer. The present invention relates to a printed wiring board which is electrically connected and electronic components mounted on a mounting surface are electrically connected to the conductor circuit layer.

近年、携帯情報端末や通信端末に代表される電子機器では、高機能化及び小型化がめざましい。これらの電子機器に用いられる半導体チップを多層プリント配線板に高密度実装する形態として、半導体チップを直接多層プリント配線板に表面実装するフリップチップ方式が採用されている。このような多層プリント配線板としては、コア基板と、このコア基板上に形成されたビルドアップ層と、このビルドアップ層の上面にはんだバンプを介して半導体チップが実装される実装用電極とを備えたものが知られている。ここで、コア基板としては、エポキシ樹脂やBT(ビスマレイミド・トリアジン)樹脂、ポリイミド樹脂、ポリブタジエン樹脂、フェノール樹脂等をガラス繊維等の強化材と共に成形したものが用いられるが、これらのコア基板の熱膨張係数は約12〜20ppm/℃(30〜200℃)であり、半導体チップのシリコンの熱膨張係数(約3.5ppm/℃)と比較すると、約4倍以上も大きい。したがって、前述のフリップチップ方式では、半導体チップの発熱に伴う温度変化が繰り返し生じた場合、半導体チップとコア基板との熱膨張量及び熱収縮量の違いにより、はんだバンプが破壊されるおそれがあった。   In recent years, electronic devices typified by portable information terminals and communication terminals have been remarkably improved in function and size. As a form in which a semiconductor chip used in these electronic devices is mounted on a multilayer printed wiring board at a high density, a flip chip system in which the semiconductor chip is directly mounted on the multilayer printed wiring board is employed. As such a multilayer printed wiring board, a core substrate, a buildup layer formed on the core substrate, and a mounting electrode on which a semiconductor chip is mounted on the upper surface of the buildup layer via a solder bump are provided. What you have is known. Here, as the core substrate, epoxy resin, BT (bismaleimide / triazine) resin, polyimide resin, polybutadiene resin, phenol resin or the like molded with a reinforcing material such as glass fiber is used. The thermal expansion coefficient is about 12 to 20 ppm / ° C. (30 to 200 ° C.), which is about 4 times or more larger than the thermal expansion coefficient of silicon of the semiconductor chip (about 3.5 ppm / ° C.). Therefore, in the above-described flip chip method, when the temperature change accompanying the heat generation of the semiconductor chip repeatedly occurs, the solder bump may be destroyed due to the difference in thermal expansion amount and thermal contraction amount between the semiconductor chip and the core substrate. It was.

この問題を解決するために、ビルドアップ層上に低弾性率の応力緩和層を設け、この応力緩和層の上面に実装用電極を設け、ビルドアップ層上の導体回路層と実装用電極とを導体ポストで接続した多層プリント配線板が提案されている(特許文献1,2参照)。例えば特許文献2には、図11に示すように、ビルドアップ層130の上面に低弾性率層140が積層され、ビルドアップ層130の上面の導体回路層132と低弾性率層140の上面に形成された実装用電極152とをバイアホール150で接続した多層プリント配線板100が開示されている。
特開昭58−28848号公報 特開2001−36253号公報
In order to solve this problem, a stress relaxation layer having a low elastic modulus is provided on the buildup layer, a mounting electrode is provided on the upper surface of the stress relaxation layer, and the conductor circuit layer and the mounting electrode on the buildup layer are provided. Multilayer printed wiring boards connected by conductor posts have been proposed (see Patent Documents 1 and 2). For example, in Patent Document 2, as shown in FIG. 11, a low elastic modulus layer 140 is laminated on the upper surface of the buildup layer 130, and the conductive circuit layer 132 on the upper surface of the buildup layer 130 and the upper surface of the low elastic modulus layer 140. A multilayer printed wiring board 100 in which formed mounting electrodes 152 are connected by via holes 150 is disclosed.
JP 58-28848 A JP 2001-36253 A

しかしながら、この多層プリント配線板100では、バイアホール150を形成する材料は銅が主体であるため、加熱・冷却を繰り返し行うと電気抵抗が大きく変化することがあり、搭載したICチップ50への電源供給が不十分となるおそれがあった。   However, in this multilayer printed wiring board 100, since the material forming the via hole 150 is mainly copper, the electrical resistance may change greatly when repeated heating and cooling. There was a risk of insufficient supply.

本発明は、このような課題を解決するためになされたものであり、熱膨張・熱収縮による電子部品との接続破壊を防止すると共に電子部品へ安定して電源を供給することができるプリント配線板を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and prevents the breakage of connection with an electronic component due to thermal expansion and contraction, and can provide a stable power supply to the electronic component. The purpose is to provide a board.

本発明は、上述の目的の少なくとも一部を達成するために以下の手段を採った。   The present invention employs the following means in order to achieve at least a part of the above-described object.

本発明のプリント配線板は、コア基板の少なくとも片面に導体回路層と絶縁層とが交互に形成され各導体回路層間が前記絶縁層を貫通するスルーホール導体又はバイアホールを介して電気的に接続されると共に実装面に実装される電子部品が前記導体回路層と電気的に接続されるプリント配線板であって、
前記複数の導体回路層のうち外層に最も近い外層導体回路層を覆うように形成され前記絶縁性樹脂よりも弾性率の低い材料からなる応力緩和層と、
前記応力緩和層を貫通する貫通孔と、
前記貫通孔の内壁に形成されたバリア層と該バリア層の内側に形成されたはんだ製の芯体とからなり前記外層導体回路層と前記電子部品とを電気的に接続する導体ポストと、
を備えたものである。
In the printed wiring board of the present invention, conductor circuit layers and insulating layers are alternately formed on at least one surface of the core substrate, and each conductor circuit layer is electrically connected through a through-hole conductor or via hole penetrating the insulating layer. And a printed wiring board in which an electronic component mounted on the mounting surface is electrically connected to the conductor circuit layer,
A stress relaxation layer made of a material having a lower elastic modulus than the insulating resin, which is formed so as to cover the outer layer conductor circuit layer closest to the outer layer among the plurality of conductor circuit layers;
A through hole penetrating the stress relaxation layer;
A conductor post comprising a barrier layer formed on the inner wall of the through-hole and a solder core formed inside the barrier layer, and electrically connecting the outer conductor circuit layer and the electronic component;
It is equipped with.

このプリント配線板では、導体ポストはほとんどが銅で形成された従来のものとは異なりはんだからなる芯体を有するものである。ここで、一般にはんだは銅よりも弾性率(例えばヤング率)が低いことから、この導体ポストが応力緩和層の弾性変形を大きく妨げることはない。また、バリア層ははんだからなる芯体と応力緩和層とを密着させるため、応力緩和層が弾性変形したときに芯体と応力緩和層との間で剥離が生じることもない。したがって、コア基板と電子部品との熱膨張差に起因する応力が発生したとしても、その応力は応力緩和層によって確実に緩和されるしクラックの起点になりやすい剥離が生じることもない。この結果、外層配線パターンと電子部品との接続破壊を防止することができるし、加熱・冷却を繰り返したときの電気抵抗の変化率を小さく抑え電子部品へ安定して電源を供給することができる。   In this printed wiring board, the conductor post has a core made of solder, unlike the conventional one that is mostly made of copper. Here, since the solder generally has a lower elastic modulus (for example, Young's modulus) than copper, this conductor post does not greatly hinder the elastic deformation of the stress relaxation layer. In addition, since the barrier layer causes the core made of solder and the stress relaxation layer to adhere to each other, peeling does not occur between the core and the stress relaxation layer when the stress relaxation layer is elastically deformed. Therefore, even if a stress due to a difference in thermal expansion between the core substrate and the electronic component occurs, the stress is surely relieved by the stress relaxation layer, and peeling that tends to become a starting point of a crack does not occur. As a result, it is possible to prevent breakage of the connection between the outer layer wiring pattern and the electronic component, and it is possible to stably supply power to the electronic component while suppressing the rate of change in electrical resistance when heating and cooling are repeated. .

本発明のプリント配線板において、前記導体ポストは、アスペクト比(高さ/直径)が1.5以上であることが好ましい。こうすれば、導体ポストの柔軟性が高まり変形しやすくなるため、導体ポストが応力緩和層の弾性変形を妨げることがない。   In the printed wiring board of the present invention, the conductor post preferably has an aspect ratio (height / diameter) of 1.5 or more. By doing so, the flexibility of the conductor post is increased and the conductor post is easily deformed, so that the conductor post does not hinder the elastic deformation of the stress relaxation layer.

本発明のプリント配線板において、前記芯体は、超音波探傷法によるヤング率が40GPa以上70GPa未満のはんだからなることが好ましい。芯体のヤング率が40GPa未満になると、導体ポストが応力緩和層の変形を規制できずその変形量が大きくなりすぎるため不具合を生じるおそれがあり、芯体のヤング率が70GPa以上になると、導体ポストが応力緩和層の変形を阻止しすぎるため不具合を生じるおそれがあるからである。   In the printed wiring board of the present invention, it is preferable that the core body is made of solder having a Young's modulus of 40 GPa or more and less than 70 GPa by an ultrasonic flaw detection method. When the Young's modulus of the core is less than 40 GPa, the conductor post cannot regulate the deformation of the stress relaxation layer, and the amount of deformation becomes too large, which may cause a problem. When the Young's modulus of the core is 70 GPa or more, the conductor This is because the post may prevent deformation of the stress relaxation layer and may cause a problem.

ここで、超音波探傷法によるヤング率Eは、常温にて縦波の伝搬時間と横波の伝搬時間を測定し、それらに基づいて縦波音速(VL)と横波音速(VS)を求め、例えば下記式により算出することができる。なお、σは密度である。また、超音波探傷器としては、例えば栄進化学(株)のSONICシリーズが利用可能である。
E={σVS 2(3VL 2−4VS 2)}/(VL 2−VS 2
Here, the Young's modulus E by the ultrasonic flaw detection method is determined by measuring the propagation time of the longitudinal wave and the propagation time of the transverse wave at room temperature, and obtaining the longitudinal wave velocity (V L ) and the transverse wave velocity (V S ) based on them. For example, it can be calculated by the following formula. Here, σ is a density. In addition, as an ultrasonic flaw detector, for example, the SONIC series of Eisin Chemical Co., Ltd. can be used.
E = {σV S 2 (3V L 2 −4V S 2 )} / (V L 2 −V S 2 )

本発明のプリント配線板において、前記芯体は、Sn,Ag,Cu,In,Bi及びZnからなる群より選ばれる少なくとも2種の金属からなる鉛フリーはんだからなるものが好ましい。このような鉛フリーはんだは、超音波探傷法によるヤング率が40GPa以上70GPa未満であることが多いからである。   In the printed wiring board of the present invention, the core is preferably made of lead-free solder made of at least two metals selected from the group consisting of Sn, Ag, Cu, In, Bi, and Zn. This is because such lead-free solder often has a Young's modulus of 40 GPa or more and less than 70 GPa by an ultrasonic flaw detection method.

本発明のプリント配線板において、前記バリア層は、厚みが0.03〜5μmであることが好ましい。バリア層の厚みが0.03μm未満だと、はんだの濡れ性が悪くなり芯体を設ける際にバリア層と芯体との間にボイドが発生するおそれがあり、バリア層の厚みが5μmを超えると、導体ポストが硬くなるため応力緩和層の変形を阻止しすぎて不具合が生じるおそれがあるからである。   In the printed wiring board of the present invention, the barrier layer preferably has a thickness of 0.03 to 5 μm. If the thickness of the barrier layer is less than 0.03 μm, solder wettability may be deteriorated, and voids may be generated between the barrier layer and the core when the core is provided. The thickness of the barrier layer exceeds 5 μm. This is because the conductor post becomes hard, so that deformation of the stress relaxation layer is prevented so that a problem may occur.

本発明のプリント配線板において、前記バリア層は、Cu,Au,Pd,Ni−Au,Ni−Pd−Au及びNi−Pdからなる群より選ばれた金属からなることが好ましい。これらの金属は、はんだ濡れ性が良好なため、芯体を設ける際にバリア層と芯体との間にボイドが発生しにくいからである。   In the printed wiring board of the present invention, it is preferable that the barrier layer is made of a metal selected from the group consisting of Cu, Au, Pd, Ni—Au, Ni—Pd—Au, and Ni—Pd. This is because these metals have good solder wettability, so that voids are not easily generated between the barrier layer and the core when the core is provided.

本発明のプリント配線板において、前記応力緩和層は、JIS K7113に準拠したヤング率が10MPa〜1GPaであることが好ましい。このヤング率は常温での値である。こうすれば、応力緩和層は熱膨張差に起因する応力を確実に緩和することができる。また、この応力緩和層は、ヤング率が10MPa〜500MPaであることがより好ましく、10MPa〜100MPaであることが最も好ましい。例えば、熱可塑性樹脂であるポリオレフィン系樹脂やポリイミド系樹脂、熱硬化性樹脂であるシリコーン樹脂やNBR等を含有する変性エポキシ樹脂などが挙げられる。   In the printed wiring board of the present invention, the stress relaxation layer preferably has a Young's modulus in accordance with JIS K7113 of 10 MPa to 1 GPa. This Young's modulus is a value at room temperature. If it carries out like this, the stress relaxation layer can relieve | moderate the stress resulting from a thermal expansion difference reliably. The stress relaxation layer has a Young's modulus of more preferably 10 MPa to 500 MPa, and most preferably 10 MPa to 100 MPa. Examples thereof include polyolefin resins and polyimide resins that are thermoplastic resins, silicone resins that are thermosetting resins, and modified epoxy resins containing NBR and the like.

次に、本発明の実施の形態を図面に基づいて説明する。図1は、本発明の一実施形態であるプリント配線板の使用状態を表す断面図である。なお、本明細書において「上」や「下」と表現することがあるが、これは相対的な位置関係を便宜的に表現したものに過ぎないので、例えば上と下を入れ替えたり上下を左右に置き換えたりしてもよい。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a use state of a printed wiring board according to an embodiment of the present invention. In this specification, it may be expressed as “upper” or “lower”, but this is merely a representation of the relative positional relationship for convenience. Or you may.

本実施形態のプリント配線板10は、実装面40に半導体素子であるICチップ50が実装されるものである。本実施形態では、ICチップ50は、3GHz以上のクロック周波数で動作するものであり、下面に多数のパッド52が格子状又は千鳥状に配設されている。このICチップ50は、熱膨張係数が約3.5ppm/℃である。   In the printed wiring board 10 of the present embodiment, an IC chip 50 that is a semiconductor element is mounted on a mounting surface 40. In the present embodiment, the IC chip 50 operates at a clock frequency of 3 GHz or more, and a large number of pads 52 are arranged on the lower surface in a grid pattern or a staggered pattern. The IC chip 50 has a thermal expansion coefficient of about 3.5 ppm / ° C.

このプリント配線板10は、各層を形成するためのベースとなるコア基板12と、このコア基板12の上下両面に積層されたビルドアップ層20と、このビルドアップ層20に積層され低弾性率材料からなる応力緩和層30と、この応力緩和層30の上面に形成された実装面40とを備えている。   The printed wiring board 10 includes a core substrate 12 serving as a base for forming each layer, a buildup layer 20 laminated on both upper and lower surfaces of the core substrate 12, and a low elastic modulus material laminated on the buildup layer 20. And a mounting surface 40 formed on the upper surface of the stress relaxation layer 30.

コア基板12は、BT(ビスマレイミド−トリアジン)樹脂やガラスエポキシ樹脂等からなるコア基板本体14の上下両面に銅からなる配線パターン16,16と、コア基板本体14を貫通するスルーホールの内周面に形成された銅からなるスルーホール導体18とを有しており、両配線パターン16,16はスルーホール導体18を介して電気的に接続されている。   The core substrate 12 includes wiring patterns 16 and 16 made of copper on the upper and lower surfaces of the core substrate body 14 made of BT (bismaleimide-triazine) resin, glass epoxy resin, and the like, and an inner periphery of a through hole that penetrates the core substrate body 14 A through-hole conductor 18 made of copper is formed on the surface, and both wiring patterns 16 and 16 are electrically connected via the through-hole conductor 18.

ビルドアップ層20は、コア基板12の上下両面に絶縁層22と導体回路層24とを交互に積層したものであり、コア基板12の配線パターン16とビルドアップ層20の導体回路層24との電気的な接続やビルドアップ層20における導体回路層24,24同士の電気的な接続は絶縁層22を貫通するフィルドビア26によって確保されている。ここで絶縁層22は、JIS K7113に準拠した常温でのヤング率が3〜7GPaの絶縁性樹脂からなる。このビルドアップ層20は、周知のサブトラクティブ法やアディティブ法(セミアディティブ法やフルアディティブ法を含む)を利用することにより形成される。具体的には、例えば以下のようにして形成される。すなわち、まず、コア基板12の上下両面に絶縁層22となる樹脂シートを貼り付ける。この樹脂シートは、変成エポキシ系樹脂シート、ポリフェニレンエーテル系樹脂シート、ポリイミド系樹脂シート、シアノエステル系樹脂シートなどで形成され、その厚みは概ね20〜80μmである。次に、貼り付けた樹脂シートに炭酸ガスレーザやUVレーザ、YAGレーザ、エキシマレーザなどにより穴開けを行う。続いて、樹脂シートの表面(穴の内壁や底面を含む)に無電解銅めっきを施し、無電解銅めっき層の上にフォトレジストを形成しパターンマスクを通じて露光・現像してパターン化する。次いで、フォトレジストの非形成部に電解銅めっきを施したあとフォトレジストを剥離し、そのフォトレジストが存在していた部分の無電解銅めっきをエッチングで除去する。これにより、絶縁層22の表層には導体回路層24が形成され、絶縁層22に開けた穴には銅めっきで充填されたフィルドビア26が形成される。あとは、この手順を繰り返すことによりビルドアップ層20が形成される。この手法はビルドアップ法と呼ばれるものであり、例えば「ビルドアップ多層プリント配線板技術」(日刊工業新聞社、2000年6月20日発行)などに記載されている。なお、コア基板12の上下両面にビルドアップ層20が形成されたものを多層プリント配線板Aと称する。   The buildup layer 20 is formed by alternately laminating insulating layers 22 and conductor circuit layers 24 on both upper and lower surfaces of the core substrate 12, and the wiring pattern 16 of the core substrate 12 and the conductor circuit layers 24 of the buildup layer 20 are formed. Electrical connection and electrical connection between the conductor circuit layers 24 and 24 in the build-up layer 20 are ensured by a filled via 26 penetrating the insulating layer 22. Here, the insulating layer 22 is made of an insulating resin having a Young's modulus of 3 to 7 GPa at room temperature in accordance with JIS K7113. The buildup layer 20 is formed by using a well-known subtractive method or additive method (including a semi-additive method or a full additive method). Specifically, for example, it is formed as follows. That is, first, resin sheets to be the insulating layers 22 are attached to the upper and lower surfaces of the core substrate 12. This resin sheet is formed of a modified epoxy resin sheet, a polyphenylene ether resin sheet, a polyimide resin sheet, a cyanoester resin sheet, or the like, and has a thickness of approximately 20 to 80 μm. Next, the bonded resin sheet is punched with a carbon dioxide laser, UV laser, YAG laser, excimer laser, or the like. Subsequently, electroless copper plating is applied to the surface (including the inner wall and bottom surface of the hole) of the resin sheet, a photoresist is formed on the electroless copper plating layer, and patterning is performed by exposure and development through a pattern mask. Next, after electrolytic copper plating is performed on a portion where the photoresist is not formed, the photoresist is peeled off, and the portion of the electroless copper plating where the photoresist was present is removed by etching. Thereby, the conductor circuit layer 24 is formed on the surface layer of the insulating layer 22, and the filled via 26 filled with copper plating is formed in the hole formed in the insulating layer 22. After that, the build-up layer 20 is formed by repeating this procedure. This method is called a build-up method, and is described in, for example, “Build-Up Multilayer Printed Wiring Board Technology” (Nikkan Kogyo Shimbun, issued June 20, 2000). A structure in which the build-up layers 20 are formed on the upper and lower surfaces of the core substrate 12 is referred to as a multilayer printed wiring board A.

応力緩和層30は、ビルドアップ層20の絶縁層22よりも弾性率が低い弾性材料、具体的にはJIS K7113に準拠した常温でのヤング率が10〜1000MPa(好ましくは10〜300MPa、より好ましくは10〜100MPa)の弾性材料で形成されている。応力緩和層30のヤング率がこの範囲だと、実装面40に実装されるICチップ50と多層プリント配線板A(主にコア基板12)との間に両者の熱膨張差に起因する応力が発生したとしても応力緩和層30が弾性変形してその応力を緩和することができる。また、応力緩和層30に用いられる弾性材料としては、例えばエポキシ樹脂、イミド系樹脂、フェノール樹脂、シリコーン樹脂等の熱硬化性樹脂や、ポリオレフィン系樹脂、ビニル系樹脂、イミド系樹脂等の熱可塑性樹脂にポリブタジエン、シリコーンゴム、ウレタン、SBR、NBR等のゴム系成分やシリカ、アルミナ、ジルコニア等の無機成分が分散した樹脂などのうち上述したヤング率に合致したものが挙げられる。なお、樹脂に分散させる成分は、1種でも2種以上でもよく、ゴム成分と無機成分の両方を分散させてもよい。   The stress relaxation layer 30 is an elastic material having an elastic modulus lower than that of the insulating layer 22 of the buildup layer 20, specifically, a Young's modulus at room temperature in accordance with JIS K7113 is preferably 10 to 1000 MPa (preferably 10 to 300 MPa, more preferably Is formed of an elastic material of 10 to 100 MPa). When the Young's modulus of the stress relaxation layer 30 is within this range, the stress caused by the difference in thermal expansion between the IC chip 50 mounted on the mounting surface 40 and the multilayer printed wiring board A (mainly the core substrate 12) is present. Even if it occurs, the stress relaxation layer 30 can be elastically deformed to relieve the stress. Examples of the elastic material used for the stress relaxation layer 30 include thermosetting resins such as epoxy resins, imide resins, phenol resins, and silicone resins, and thermoplastic resins such as polyolefin resins, vinyl resins, and imide resins. Examples of the resin include those that meet the above-mentioned Young's modulus among resins in which rubber components such as polybutadiene, silicone rubber, urethane, SBR, and NBR, and inorganic components such as silica, alumina, and zirconia are dispersed. The component dispersed in the resin may be one type or two or more types, and both the rubber component and the inorganic component may be dispersed.

この応力緩和層30は、複数の貫通孔32と、各貫通孔32内に形成された導体ポスト34とを備えている。複数の貫通孔32は、ICチップ50の各パッド52に対応するように格子状又は千鳥状に形成されている。また、導体ポスト34は、貫通孔32の内壁及び底面を覆うように形成されたバリア層36と、このバリア層36によって囲まれた空間内に形成されたはんだ芯体37とから構成されている。この導体ポスト34は、径Dが30〜50μmでアスペクト比(高さh/径D)が1.5以上となるように形成されている。このうち、バリア層36は、はんだ濡れ性が良好な金属例えばCu,Au,Pd,Ni−Au,Ni−Pd−Au及びNi−Pdからなる群より選ばれた金属で厚さが0.03〜5μmとなるように形成されている。このバリア層36は、応力緩和層30の貫通孔32の内壁表面が粗化された状態で形成されているため貫通孔32との密着性に優れ、またはんだ濡れ性が良好なためはんだ芯体37との密着性にも優れる。つまり、バリア層36により応力緩和層30とはんだ芯体37とは密着性が確保されている。また、バリア層36は、貫通孔32の開口周辺にも形成され、この開口周辺の鍔状の部分はランド部36aとなっている。一方、はんだ芯体37は、超音波探傷法で測定したヤング率が40GPa以上70GPa未満の鉛フリーはんだ例えばSn,Ag,Cu,In,Bi及びZnからなる群より選ばれる少なくとも2種の金属からなる鉛フリーはんだにより形成されている。はんだ芯体37の上部には、応力緩和層30の上面より上に突出するように形成されたはんだバンプ部38が形成されている。このはんだバンプ部38は、ICチップ50と電気的に接続される。   The stress relaxation layer 30 includes a plurality of through holes 32 and a conductor post 34 formed in each through hole 32. The plurality of through holes 32 are formed in a lattice shape or a zigzag shape so as to correspond to each pad 52 of the IC chip 50. The conductor post 34 includes a barrier layer 36 formed so as to cover the inner wall and the bottom surface of the through hole 32, and a solder core body 37 formed in a space surrounded by the barrier layer 36. . The conductor post 34 is formed so that the diameter D is 30 to 50 μm and the aspect ratio (height h / diameter D) is 1.5 or more. Among these, the barrier layer 36 is a metal selected from the group consisting of metals having good solder wettability such as Cu, Au, Pd, Ni—Au, Ni—Pd—Au, and Ni—Pd, and has a thickness of 0.03. It is formed to be ˜5 μm. Since the barrier layer 36 is formed in a state in which the inner wall surface of the through hole 32 of the stress relaxation layer 30 is roughened, the barrier layer 36 is excellent in adhesion to the through hole 32 or has good wettability, so that the solder core body. Excellent adhesion to 37. That is, the adhesion between the stress relaxation layer 30 and the solder core 37 is ensured by the barrier layer 36. The barrier layer 36 is also formed around the opening of the through hole 32, and a hook-shaped portion around the opening is a land portion 36a. On the other hand, the solder core 37 is made of lead-free solder having a Young's modulus measured by an ultrasonic flaw detection method of 40 GPa or more and less than 70 GPa, for example, at least two metals selected from the group consisting of Sn, Ag, Cu, In, Bi and Zn. It is made of lead-free solder. A solder bump portion 38 formed so as to protrude above the upper surface of the stress relaxation layer 30 is formed on the solder core 37. The solder bump portion 38 is electrically connected to the IC chip 50.

なお、プリント配線板10の下面には、図示しないマザーボードに電気的に接続するためのはんだバンプ48が多数形成されている。   Note that a large number of solder bumps 48 are formed on the lower surface of the printed wiring board 10 for electrical connection to a mother board (not shown).

次に、このように構成されたプリント配線板10の使用例について説明する。まず、プリント配線板10のはんだバンプ部38に、ICチップ50の下面に配設された複数のパッド52が接触するように載置し、リフローする。次いで、プリント配線板10の下面に形成された複数のはんだバンプ48を、図示しないマザーボードのパッドに載置し、リフローする。この結果、はんだバンプ部38を介してICチップ50とプリント配線板10とが接合され、はんだバンプ48を介してプリント配線板10とマザーボードとが接合される。これにより、ICチップ50はプリント配線板10を介してマザーボードに電気的に接続されるため、電源が供給されたり接地されたり信号のやり取りを行ったりする。なお、プリント配線板10とマザーボードとの接続は、これ以外に、プリント配線板10に立設したピンを介して行ってもよいし、マザーボード側に設けた針状端子を介して行ってもよい。   Next, a usage example of the printed wiring board 10 configured as described above will be described. First, the plurality of pads 52 disposed on the lower surface of the IC chip 50 are placed in contact with the solder bump portions 38 of the printed wiring board 10 and reflowed. Next, a plurality of solder bumps 48 formed on the lower surface of the printed wiring board 10 are placed on a motherboard pad (not shown) and reflowed. As a result, the IC chip 50 and the printed wiring board 10 are joined via the solder bump portions 38, and the printed wiring board 10 and the mother board are joined via the solder bumps 48. Thereby, since the IC chip 50 is electrically connected to the mother board via the printed wiring board 10, power is supplied, grounded, and signals are exchanged. In addition, the connection between the printed wiring board 10 and the mother board may be made via a pin erected on the printed wiring board 10 or a needle terminal provided on the mother board side. .

次に、プリント配線板10の製造方法を図2〜図8を参照して説明する。ここでは、ビルドアップ層20まで形成されているものとし、応力緩和層30の作製手順を中心に説明する。まず、ビルドアップ層20の外層導体回路層24a(図2参照)の上面に、低弾性率材料シート300を貼り付けた(図3参照)。ここでは、低弾性率材料として、ナフタレン型のエポキシ樹脂(日本化薬(株)製、商品名:NC−7000L)100重量部、フェノール−キシリレングリコール縮合樹脂(三井化学製、商品名:XLC−LL)20重量部、架橋ゴム粒子としてTgが−50℃のカルボン酸変性NBR(JSR(株)製、商品名:XER−91)90重量部、1−シアノエチル−2−エチル−4−メチルイミダゾール4重量部を乳酸エチル300重量部に溶解した樹脂組成物からなる材料を使用した。この低弾性率材料は、JIS K7113に準拠した30℃におけるヤング率が500MPaである。   Next, a method for manufacturing the printed wiring board 10 will be described with reference to FIGS. Here, it is assumed that the build-up layer 20 has been formed, and the manufacturing procedure of the stress relaxation layer 30 will be mainly described. First, the low elastic modulus material sheet 300 was affixed on the upper surface of the outer conductor circuit layer 24a (see FIG. 2) of the buildup layer 20 (see FIG. 3). Here, as a low elastic modulus material, naphthalene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: NC-7000L), 100 parts by weight, phenol-xylylene glycol condensation resin (made by Mitsui Chemicals, trade name: XLC) -LL) 20 parts by weight, carboxylic acid-modified NBR having a Tg of -50 ° C. (trade name: XER-91) as crosslinked rubber particles, 90 parts by weight, 1-cyanoethyl-2-ethyl-4-methyl A material composed of a resin composition in which 4 parts by weight of imidazole was dissolved in 300 parts by weight of ethyl lactate was used. This low elastic modulus material has a Young's modulus at 30 ° C. in accordance with JIS K7113 of 500 MPa.

続いて、炭酸ガスレーザやUVレーザ、YAGレーザ、エキシマレーザなどにより、低弾性率材料シート300のうちICチップ50の各パッド52と対応する位置に貫通孔32を形成した(図4参照)。続いて、過マンガン酸カリウム溶液を用いて貫通孔32内の銅表面のスミアを除去すると共に低弾性率材料シート300のうち外部に露出している露出面(貫通孔32の内壁を含む)を粗面化したあと、この露出面に無電解めっき触媒を付与し、その後無電解銅めっき水溶液中に浸漬することにより、厚さ0.03〜5.0μmの無電解銅めっき膜360を形成した(図5参照)。ここで、先ほど露出面を粗面化したため、無電解銅めっき膜360はいわゆるアンカー効果によって良好に密着した。なお、無電解銅めっきの代わりにスパッタ等の物理的蒸着を採用してもよい。   Subsequently, through holes 32 were formed at positions corresponding to the pads 52 of the IC chip 50 in the low elastic modulus material sheet 300 by a carbon dioxide laser, UV laser, YAG laser, excimer laser, or the like (see FIG. 4). Then, while removing the smear of the copper surface in the through-hole 32 using a potassium permanganate solution, the exposed surface (including the inner wall of the through-hole 32) exposed to the outside of the low elastic modulus material sheet 300 is removed. After roughening, an electroless plating catalyst was applied to the exposed surface, and then immersed in an electroless copper plating aqueous solution to form an electroless copper plating film 360 having a thickness of 0.03 to 5.0 μm. (See FIG. 5). Here, since the exposed surface was roughened earlier, the electroless copper plating film 360 adhered well due to the so-called anchor effect. Note that physical vapor deposition such as sputtering may be employed instead of electroless copper plating.

次に、作製途中の基板の全面を覆うようにフォトレジストであるドライフィルムをラミネートしたあとパターンマスクを通して露光、現像することによりパターン化したレジスト362を形成した(図6参照)。このレジスト362は貫通孔32の開口を塞ぐようにパターン化した。そして、レジスト362で覆われていない部分つまり無電解銅めっき膜360のうち表面に露出している部分をエッチング等の化学的方法又は逆スパッタやブラスト等の物理的方法により除去したあと、レジスト362を剥離した(図7参照)。これにより、貫通孔32の内壁にはバリア層36が形成された。ここでは、バリア層36を貫通孔32の開口周辺まで及ぶように形成し、開口周辺のツバ状に形成された部分をランド部36aとした。また、低弾性率材料シート300は応力緩和層30となった。   Next, a dry film as a photoresist was laminated so as to cover the entire surface of the substrate being fabricated, and then exposed and developed through a pattern mask to form a patterned resist 362 (see FIG. 6). The resist 362 was patterned so as to close the opening of the through hole 32. Then, after removing a portion not covered with the resist 362, that is, a portion exposed on the surface of the electroless copper plating film 360, by a chemical method such as etching or a physical method such as reverse sputtering or blasting, the resist 362 is removed. Was peeled off (see FIG. 7). Thereby, a barrier layer 36 was formed on the inner wall of the through hole 32. Here, the barrier layer 36 is formed so as to extend to the periphery of the opening of the through hole 32, and the land portion 36 a is formed in the shape of a flange around the opening. Further, the low elastic modulus material sheet 300 became the stress relaxation layer 30.

最後に、マスクを用いたスキージ印刷法により貫通孔32の内部(つまりバリア層36に囲まれた領域)にはんだを充填すると共にランド部36aの上部にもはんだを積層し、その後リフローによりはんだを溶融させたあと冷却し、貫通孔32内にはんだ芯体37を形成した(図8参照)。ここでは、はんだとして、Sn−Ag系の鉛フリーはんだであって、超音波探傷法によるヤング率が40GPa以上70GPa未満のものを使用した。また、バリア層36ははんだ濡れ性が良好な銅からなるため、貫通孔32の内部にははんだがボイドを生じることなく充填された。また、はんだバンプ部38をはんだ芯体37と一体に形成した。このはんだバンプ部38は、ランド部36aよりも上側のはんだが一旦溶融してから冷却固化したものである。   Finally, the squeegee printing method using a mask is used to fill the inside of the through-hole 32 (that is, the region surrounded by the barrier layer 36) with solder and to stack the solder on the land 36a, and then reflow the solder. After being melted, it was cooled to form a solder core 37 in the through hole 32 (see FIG. 8). Here, Sn—Ag lead-free solder having a Young's modulus of 40 GPa or more and less than 70 GPa by an ultrasonic flaw detection method was used as the solder. Further, since the barrier layer 36 is made of copper having good solder wettability, the solder was filled in the through holes 32 without causing voids. In addition, the solder bump portion 38 is formed integrally with the solder core 37. The solder bump portion 38 is obtained by once the solder above the land portion 36a is melted and then cooled and solidified.

以上詳述した本実施形態のプリント配線板10では、導体ポスト34は従来使用されていた銅よりもヤング率の低いはんだ芯体37を有しているため、導体ポスト34が応力緩和層30の弾性変形を妨げることはない。また、バリア層36ははんだ芯体37と応力緩和層30とを密着させるため、応力緩和層30が弾性変形したときに導体ポスト34と応力緩和層30との間で剥離が生じることもない。したがって、ICチップ50とコア基板12の熱膨張差に起因する応力が発生したとしても、その応力は応力緩和層30によって確実に緩和されるしクラックの起点になりやすい剥離が生じることもない。この結果、外層導体回路層24aとICチップ50との接続破壊を防止することができるし、加熱・冷却を繰り返したときの電気抵抗の変化率を小さく抑えICチップ50へ安定して電源を供給することができる。   In the printed wiring board 10 of the present embodiment described in detail above, the conductor post 34 has the solder core body 37 having a Young's modulus lower than that of conventionally used copper. It does not hinder elastic deformation. In addition, since the barrier layer 36 causes the solder core 37 and the stress relaxation layer 30 to adhere to each other, no peeling occurs between the conductor post 34 and the stress relaxation layer 30 when the stress relaxation layer 30 is elastically deformed. Therefore, even if a stress due to the difference in thermal expansion between the IC chip 50 and the core substrate 12 is generated, the stress is surely relieved by the stress relaxation layer 30, and peeling that tends to be a starting point of a crack does not occur. As a result, it is possible to prevent the connection breakage between the outer conductor circuit layer 24a and the IC chip 50, and the power supply can be stably supplied to the IC chip 50 while suppressing the rate of change in electrical resistance when heating and cooling are repeated. can do.

また、導体ポスト34はアスペクト比(高さ/直径)が1.5以上であり柔軟性が高まり変形しやすくなるため、この点でも、導体ポスト34が応力緩和層30の弾性変形を妨げることがない。   Further, since the conductor post 34 has an aspect ratio (height / diameter) of 1.5 or more and becomes flexible and easily deforms, the conductor post 34 also prevents elastic deformation of the stress relaxation layer 30 in this respect. Absent.

更に、はんだ芯体37は、超音波探傷法によるヤング率が40GPa以上70GPa未満のはんだからなるため、導体ポスト34が応力緩和層30の変形を適度に規制することができる。つまり、導体ポスト34が応力緩和層30の変形を規制できずその変形量が大きくなりすぎて不具合を生じることもないし、導体ポスト34が応力緩和層30の変形を阻止しすぎて不具合を生じることもない。   Furthermore, since the solder core 37 is made of a solder having a Young's modulus of 40 GPa or more and less than 70 GPa by an ultrasonic flaw detection method, the conductor post 34 can appropriately regulate the deformation of the stress relaxation layer 30. That is, the conductor post 34 cannot regulate the deformation of the stress relaxation layer 30 and the deformation amount is too large to cause a problem, and the conductor post 34 prevents the deformation of the stress relaxation layer 30 and causes a problem. Nor.

更にまた、バリア層36は厚みが0.03〜5μmであるため、バリア層36とはんだ芯体37との密着性が良く、導体ポスト34が硬くなり過ぎて応力緩和層30の変形を阻止し過ぎることもない。   Furthermore, since the barrier layer 36 has a thickness of 0.03 to 5 μm, the adhesion between the barrier layer 36 and the solder core 37 is good, and the conductor post 34 becomes too hard to prevent deformation of the stress relaxation layer 30. Never too much.

そしてまた、応力緩和層30はヤング率が10〜1000MPaの低弾性率材料からなるため、熱膨張差に起因する応力を確実に緩和することができる。   Moreover, since the stress relaxation layer 30 is made of a low elastic modulus material having a Young's modulus of 10 to 1000 MPa, the stress due to the difference in thermal expansion can be reliably relaxed.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、導体ポスト34のバリア層36にランド部36aを設けたが、ランド部36aを設けなくてもよい。また、はんだ芯体37の上部にはんだバンプ部38を設けたが、はんだバンプ部38を設けずにはんだ芯体37をバリア層36に囲まれた領域のみにとどめてもよい。この場合、はんだバンプを導体ポスト34の上面に後から形成してもよいし、はんだバンプをICチップ50のパッド52に形成してもよい。また、ビルドアップ層20の導体回路層24,24同士の層間接続をフィルドビア26により行ったが、導体を充填していないビアホールにより行ってもよい。   For example, in the above-described embodiment, the land portion 36a is provided in the barrier layer 36 of the conductor post 34, but the land portion 36a may not be provided. Further, although the solder bump portion 38 is provided on the upper portion of the solder core body 37, the solder core body 37 may be limited only to the region surrounded by the barrier layer 36 without providing the solder bump portion 38. In this case, solder bumps may be formed later on the upper surface of the conductor post 34, or solder bumps may be formed on the pads 52 of the IC chip 50. Further, although the interlayer connection between the conductor circuit layers 24 and 24 of the buildup layer 20 is performed by the filled via 26, it may be performed by a via hole not filled with a conductor.

また、上述した実施形態の作製手順の代わりに、図9の手順で応力緩和層30を形成してもよい。まず、図5に示すように低弾性率材料シート300に貫通孔32を開け全表面に無電解銅めっき膜360を形成するまでは、上述した実施形態の作製手順と同様にして行った後、フォトレジストであるドライフィルムをラミネートしたあとパターンマスクを通して露光、現像することによりパターン化したレジスト364を形成した(図9(a)参照)。このレジスト364は貫通孔32の開口及び開口周辺を除く領域を覆うようにパターン化した。そして、レジスト364で覆われていない部分つまり無電解銅めっき膜360のうち表面に露出している部分にはんだめっきを行い、バリア層36に囲まれた領域とその領域の上方空間であってレジスト364で囲まれた領域にはんだ380を充填した(図9(b)参照)。続いて、レジスト364を剥離し、アルカリエッチングにより低弾性率材料シート300の上面に露出した無電解銅めっき膜360を除去した(図9(c)参照)。その後、リフローによりはんだを溶融させたあと冷却し、貫通孔32内にはんだ芯体37とバリア層36からなる導体ポスト34を形成した(図9(d)参照)。この結果、低弾性率材料シート300が応力緩和層30となった。なお、ここでも、はんだとして、Sn−Ag系の鉛フリーはんだであって、超音波探傷法によるヤング率が40GPa以上70GPa未満のものを使用した。   Moreover, you may form the stress relaxation layer 30 in the procedure of FIG. 9 instead of the preparation procedure of embodiment mentioned above. First, as shown in FIG. 5, after the through holes 32 are opened in the low elastic modulus material sheet 300 and the electroless copper plating film 360 is formed on the entire surface, the same procedure as in the above-described embodiment is performed. After laminating a dry film as a photoresist, exposure and development were performed through a pattern mask to form a patterned resist 364 (see FIG. 9A). The resist 364 was patterned so as to cover the opening of the through hole 32 and the region excluding the periphery of the opening. Then, solder plating is performed on a portion that is not covered with the resist 364, that is, a portion exposed on the surface of the electroless copper plating film 360, and a region surrounded by the barrier layer 36 and a space above the region are exposed to the resist. The region surrounded by 364 was filled with solder 380 (see FIG. 9B). Subsequently, the resist 364 was peeled off, and the electroless copper plating film 360 exposed on the upper surface of the low elastic modulus material sheet 300 was removed by alkali etching (see FIG. 9C). Thereafter, the solder was melted by reflow and then cooled to form a conductor post 34 including a solder core 37 and a barrier layer 36 in the through hole 32 (see FIG. 9D). As a result, the low elastic modulus material sheet 300 became the stress relaxation layer 30. In this case as well, a Sn-Ag lead-free solder having a Young's modulus by an ultrasonic flaw detection method of 40 GPa or more and less than 70 GPa was used.

あるいは、図10の作製手順で応力緩和層30を形成してもよい。まず、図4に示すように低弾性率材料シート300に貫通孔32を開けるまでは、上述した実施形態の製造手順と同様にして行った後、過マンガン酸カリウム溶液を用いて貫通孔32内の銅表面のスミアを除去すると共に低弾性率材料シート300の露出面(貫通孔32の内壁を含む)を粗面化したあと、フォトレジストであるドライフィルムをラミネートし、続いてパターンマスクを通して露光、現像することによりパターン化したレジスト366を形成した(図10(a)参照)。このレジスト366は貫通孔32の開口及び開口周辺を除く領域を覆うようにパターン化した。続いて、作製途中の基板の表面全体(レジスト366上も含む)にスパッタリングによりNi/Auの金属被膜368を形成したあと(図10(b)参照)、レジスト366を剥離することにより不要部分の金属被膜368をレジスト366と共に除去した(図10(c)参照)。この結果、残った金属被膜368がバリア層36となった。この手法はリフトオフ法として広く知られている。その後、上述した実施形態と同様、印刷法により貫通孔32の内部(つまりバリア層36に囲まれた領域)にはんだを充填すると共にランド部36aの上部にもはんだを積層し、その後リフローによりはんだを溶融したあと冷却し、貫通孔32内にはんだ芯体37を形成した(図10(d)参照)。この結果、低弾性率材料シート300が応力緩和層30となった。ここでも、はんだとして、Sn−Ag系の鉛フリーはんだであって、超音波探傷法によるヤング率が40GPa以上70GPa未満のものを使用した。また、バリア層36ははんだ濡れ性が良好なニッケル−金からなるため、貫通孔32の内部にははんだがボイドを生じることなく充填された。また、はんだバンプ部38をはんだ芯体37と一体に形成した。このはんだバンプ部38は、ランド部36aよりも上側のはんだが一旦溶融してから冷却固化したものである。   Or you may form the stress relaxation layer 30 in the preparation procedure of FIG. First, as shown in FIG. 4, until the through-hole 32 is opened in the low elastic modulus material sheet 300, after performing the same as the manufacturing procedure of the above-described embodiment, the inside of the through-hole 32 using the potassium permanganate solution. After removing the smear on the copper surface and roughening the exposed surface (including the inner wall of the through hole 32) of the low elastic modulus material sheet 300, a dry film as a photoresist is laminated, and then exposed through a pattern mask. Then, a patterned resist 366 was formed by development (see FIG. 10A). The resist 366 was patterned so as to cover the opening of the through hole 32 and the region excluding the periphery of the opening. Subsequently, after a Ni / Au metal film 368 is formed by sputtering on the entire surface (including the resist 366) of the substrate being fabricated (see FIG. 10B), the resist 366 is removed to remove unnecessary portions. The metal film 368 was removed together with the resist 366 (see FIG. 10C). As a result, the remaining metal coating 368 became the barrier layer 36. This method is widely known as a lift-off method. Thereafter, as in the above-described embodiment, the inside of the through-hole 32 (that is, the region surrounded by the barrier layer 36) is filled with solder by a printing method, and the solder is laminated on the land portion 36a, and then soldered by reflow. After being melted, it was cooled to form a solder core 37 in the through hole 32 (see FIG. 10D). As a result, the low elastic modulus material sheet 300 became the stress relaxation layer 30. Also here, Sn-Ag lead-free solder having a Young's modulus of 40 GPa or more and less than 70 GPa by an ultrasonic flaw detection method was used. Further, since the barrier layer 36 is made of nickel-gold having good solder wettability, the inside of the through hole 32 was filled with solder without causing voids. In addition, the solder bump portion 38 is formed integrally with the solder core 37. The solder bump portion 38 is obtained by once the solder above the land portion 36a is melted and then cooled and solidified.

以下に、本発明のプリント配線板の効果を実証するための実験例について説明する。まず、上述した実施形態の製法手順に準じて作製した実験例1〜15のプリント配線板につき、表1に示すバリア層材料、バリア層厚さ、はんだ組成(フラックス入り)、ポスト径及びアスペクト比のものを作製した。続いて、各プリント配線板にICチップを実装し、その後ICチップとプリント配線板との間に封止樹脂を充填した。そして、ICチップを介して特定回路の電気抵抗(プリント配線板のICチップ搭載面とは反対側の面に露出しICチップと導通している一対の電極間の電気抵抗)を測定し、その値を初期値とした。その後、ICチップを搭載したプリント配線板に、−55℃×30分、125℃×30分を1サイクルとしこれを1000サイクル繰り返すヒートサイクル試験を行った。1000サイクル目が終了した時点で先ほどと同様にして電気抵抗を測定し、初期値との変化率(100×(測定値−初期値)/初期値(%))を求めた。そして、電気抵抗の変化率が±5%以内のものを「○」、±5を超えるが±10%以下のものを「△」、±10%を超えたものを「×」とした。その結果を1000サイクル後の抵抗変化(以下、単に抵抗変化という)として表1に示す。   Below, the experiment example for demonstrating the effect of the printed wiring board of this invention is demonstrated. First, for the printed wiring boards of Experimental Examples 1 to 15 manufactured according to the manufacturing procedure of the above-described embodiment, the barrier layer material, barrier layer thickness, solder composition (with flux), post diameter, and aspect ratio shown in Table 1 Was made. Subsequently, an IC chip was mounted on each printed wiring board, and then a sealing resin was filled between the IC chip and the printed wiring board. Then, the electrical resistance of the specific circuit (the electrical resistance between the pair of electrodes exposed to the surface opposite to the IC chip mounting surface of the printed wiring board and conducting to the IC chip) is measured via the IC chip, The value was taken as the initial value. Thereafter, a heat cycle test was performed on the printed wiring board on which the IC chip was mounted, with −55 ° C. × 30 minutes and 125 ° C. × 30 minutes as one cycle and repeating this 1000 cycles. When the 1000th cycle was completed, the electrical resistance was measured in the same manner as described above, and the rate of change from the initial value (100 × (measured value−initial value) / initial value (%)) was obtained. The change rate of electrical resistance was within ± 5%, “◯”, over ± 5 but within ± 10%, “Δ”, and over ± 10%, “×”. The results are shown in Table 1 as resistance change after 1000 cycles (hereinafter simply referred to as resistance change).

Figure 2006066597
Figure 2006066597

表1から明らかなように、バリア層を設けずはんだのみで形成した導体ポストの場合には抵抗変化が著しく大きかったのに対して(実験例15)、バリア層を設けた導体ポストの場合には抵抗変化を小さく抑えることができた(実験例1〜14)。これは、バリア層が存在しないと応力緩和層と導体ポスト(はんだのみ)との間に剥離が発生し、この剥離部分を起点としてICチップやビルドアップ層にクラックが入ることによると推察される。また、アスペクト比が1では抵抗変化の抑制効果が小さかった(実験例1)のに対して、1.5以上では抵抗変化の抑制効果が大きかった(実験例2〜8,10〜14)。更に、導体ポストの径が25μmでアスペクト比が9.6のものでは抵抗変化の抑制効果が小さかった(実験例9)のに対して、導体ポストの径が30〜50μmでアスペクト比が1.5〜8のものでは抵抗変化の抑制効果が大きかった(実験例2〜8,10〜14)。バリア層の材料は銅、Ni/Au、Pd/Au、Au、Ni/Pdのいずれも問題なく使用でき、バリア層の厚さは0.03〜0.5μmでいずれも問題なく使用できることがわかった。はんだ組成は、Sn−Agの2成分系、Sn−Ag−Biの3成分系、Sn−Cuの2成分系のいずれも問題なく使用できることがわかった。   As is clear from Table 1, the resistance change was remarkably large in the case of the conductor post formed only by solder without providing the barrier layer (Experimental Example 15), whereas in the case of the conductor post provided with the barrier layer. Was able to suppress the resistance change small (Experimental Examples 1 to 14). This is presumably because if there is no barrier layer, peeling occurs between the stress relaxation layer and the conductor post (solder only), and the IC chip or build-up layer cracks starting from this peeling portion. . Further, when the aspect ratio was 1, the resistance change suppressing effect was small (Experimental Example 1), whereas when the aspect ratio was 1.5 or more, the resistance change suppressing effect was large (Experimental Examples 2-8, 10-14). Further, when the diameter of the conductor post was 25 μm and the aspect ratio was 9.6, the effect of suppressing the resistance change was small (Experimental Example 9), whereas the diameter of the conductor post was 30 to 50 μm and the aspect ratio was 1. In the case of 5-8, the resistance change suppression effect was large (Experimental Examples 2-8, 10-14). As for the material of the barrier layer, any of copper, Ni / Au, Pd / Au, Au, and Ni / Pd can be used without any problem, and the thickness of the barrier layer is 0.03 to 0.5 μm. It was. As for the solder composition, it was found that any of a two-component system of Sn-Ag, a three-component system of Sn-Ag-Bi, and a two-component system of Sn-Cu can be used without any problem.

同じく上述した実施形態の製法に準じて作製した実験例16〜26のプリント配線板につき、表2に示すはんだ組成、はんだ組成(フラックス入り)、はんだヤング率、ポスト径及びアスペクト比のものを作製した。なお、実験例16〜26では、応力緩和層の厚さはすべて75μm、導体ポストのポスト径はすべて50μm、バリア層はすべて厚さ0.3μmの銅層とした。また、はんだヤング率は、超音波探傷法により求めた。各プリント配線板にICチップを実装し、その後ICチップとプリンと配線板との間に封止樹脂を充填した。そして、先ほどと同様のヒートサイクル試験を行い、1000サイクル後の抵抗変化を測定した。その結果を表2に示す。   Similarly, the printed wiring boards of Experimental Examples 16 to 26 manufactured according to the manufacturing method of the above-described embodiment are manufactured with the solder composition, solder composition (with flux), solder Young's modulus, post diameter, and aspect ratio shown in Table 2. did. In Experimental Examples 16 to 26, the thicknesses of the stress relaxation layers were all 75 μm, the post diameters of the conductor posts were all 50 μm, and the barrier layers were all copper layers having a thickness of 0.3 μm. Further, the solder Young's modulus was obtained by an ultrasonic flaw detection method. An IC chip was mounted on each printed wiring board, and then a sealing resin was filled between the IC chip, the pudding, and the wiring board. Then, the same heat cycle test as before was performed, and the resistance change after 1000 cycles was measured. The results are shown in Table 2.

Figure 2006066597
Figure 2006066597

表2から明らかなように、はんだヤング率が37GPaの場合(実験例16)や70GPaの場合(実験例26)では抵抗変化の抑制効果が小さかったが、はんだヤング率が40,62.3,63.7,67,68GPaの場合には抵抗変化の抑制効果が大きかった(実験例17,18,20,24,25)。この点につき、はんだヤング率が37GPaでは、応力緩和層と導体ポストがプリント配線板と一緒に動いて変形量が大きくなり、応力緩和層で応力をあまり吸収できなかったことが原因で抵抗変化の抑制効果が小さかったと推察される。また、はんだヤング率が70GPaでは、導体ポストが応力緩和層の変形を阻止しすぎたことが原因で抵抗変化の抑制効果が小さかったと推察される。   As apparent from Table 2, when the solder Young's modulus was 37 GPa (Experimental Example 16) or 70 GPa (Experimental Example 26), the resistance change suppressing effect was small, but the solder Young's modulus was 40, 62.3. In the case of 63.7, 67, 68 GPa, the resistance change suppression effect was large (Experimental Examples 17, 18, 20, 24, 25). With respect to this point, when the solder Young's modulus is 37 GPa, the stress relaxation layer and the conductor post move together with the printed wiring board to increase the amount of deformation, and the resistance change due to the fact that the stress relaxation layer cannot absorb much stress. It is inferred that the inhibitory effect was small. Further, when the solder Young's modulus is 70 GPa, it is presumed that the effect of suppressing the resistance change was small because the conductor post prevented the deformation of the stress relaxation layer too much.

プリント配線板の使用状態を表す断面図である。It is sectional drawing showing the use condition of a printed wiring board. プリント配線板の作製手順を表す断面図である。It is sectional drawing showing the preparation procedure of a printed wiring board. プリント配線板の作製手順を表す断面図である。It is sectional drawing showing the preparation procedure of a printed wiring board. プリント配線板の作製手順を表す断面図である。It is sectional drawing showing the preparation procedure of a printed wiring board. プリント配線板の作製手順を表す断面図である。It is sectional drawing showing the preparation procedure of a printed wiring board. プリント配線板の作製手順を表す断面図である。It is sectional drawing showing the preparation procedure of a printed wiring board. プリント配線板の作製手順を表す断面図である。It is sectional drawing showing the preparation procedure of a printed wiring board. プリント配線板の作製手順を表す断面図である。It is sectional drawing showing the preparation procedure of a printed wiring board. 他のプリント配線板の作製手順を表す断面図である。It is sectional drawing showing the preparation procedure of another printed wiring board. 他のプリント配線板作製手順を表す断面図である。It is sectional drawing showing the other printed wiring board preparation procedure. 従来のプリント配線板の使用状態を表す断面図である。It is sectional drawing showing the use condition of the conventional printed wiring board.

符号の説明Explanation of symbols

10 プリント配線板、12 コア基板、14 コア基板本体、16 配線パターン、18 スルーホール導体、20 ビルドアップ層、22 絶縁層、24 導体回路層、24a 外層導体回路層、26 フィルドビア、30 応力緩和層、32 貫通孔、34 導体ポスト、36 バリア層、36a ランド部、37 はんだ芯体、38 はんだバンプ部、40 実装面、48 はんだバンプ、50 ICチップ、52 パッド、300 低弾性率材料シート、360 無電解銅めっき膜、362 レジスト、364 レジスト、366 レジスト、368 金属被膜、380 はんだ。   DESCRIPTION OF SYMBOLS 10 Printed wiring board, 12 core board | substrate, 14 core board | substrate body, 16 wiring pattern, 18 through-hole conductor, 20 buildup layer, 22 insulating layer, 24 conductor circuit layer, 24a outer layer conductor circuit layer, 26 filled via, 30 stress relaxation layer , 32 Through-hole, 34 Conductor post, 36 Barrier layer, 36a Land part, 37 Solder core, 38 Solder bump part, 40 Mounting surface, 48 Solder bump, 50 IC chip, 52 pad, 300 Low elastic material sheet 360 Electroless copper plating film, 362 resist, 364 resist, 366 resist, 368 metal coating, 380 solder.

Claims (7)

コア基板の少なくとも片面に導体回路層と絶縁層とが交互に形成され各導体回路層間が前記絶縁層を貫通するスルーホール導体又はバイアホールを介して電気的に接続されると共に実装面に実装される電子部品が前記導体回路層と電気的に接続されるプリント配線板であって、
前記複数の導体回路層のうち外層に最も近い外層導体回路層を覆うように形成され前記絶縁性樹脂よりも弾性率の低い材料からなる応力緩和層と、
前記応力緩和層を貫通する貫通孔と、
前記貫通孔の内壁に形成されたバリア層と該バリア層の内側に形成されたはんだ製の芯体とからなり前記外層導体回路層と前記電子部品とを電気的に接続する導体ポストと、
を備えたプリント配線板。
Conductor circuit layers and insulating layers are alternately formed on at least one surface of the core substrate, and each conductor circuit layer is electrically connected through a through-hole conductor or via hole penetrating the insulating layer and mounted on the mounting surface. A printed wiring board in which the electronic component is electrically connected to the conductor circuit layer,
A stress relaxation layer made of a material having a lower elastic modulus than the insulating resin, which is formed so as to cover the outer layer conductor circuit layer closest to the outer layer among the plurality of conductor circuit layers;
A through hole penetrating the stress relaxation layer;
A conductor post comprising a barrier layer formed on the inner wall of the through-hole and a solder core formed inside the barrier layer, and electrically connecting the outer conductor circuit layer and the electronic component;
Printed wiring board with
前記導体ポストは、アスペクト比が1.5以上である、請求項1に記載のプリント配線板。   The printed wiring board according to claim 1, wherein the conductor post has an aspect ratio of 1.5 or more. 前記芯体は、超音波探傷法によるヤング率が40GPa以上70GPa未満のはんだからなる、請求項1又は2に記載のプリント配線板。   The printed wiring board according to claim 1, wherein the core is made of a solder having a Young's modulus of 40 GPa or more and less than 70 GPa by an ultrasonic flaw detection method. 前記芯体は、Sn,Ag,Cu,In,Bi及びZnからなる群より選ばれる少なくとも2種の金属からなる鉛フリーはんだからなる、請求項1〜3のいずれかに記載のプリント配線板。   The printed wiring board according to claim 1, wherein the core is made of lead-free solder made of at least two kinds of metals selected from the group consisting of Sn, Ag, Cu, In, Bi, and Zn. 前記バリア層は、厚みが0.03〜5μmである、請求項1〜4のいずれかに記載のプリント配線板。   The printed wiring board according to claim 1, wherein the barrier layer has a thickness of 0.03 to 5 μm. 前記バリア層は、Cu,Au,Pd,Ni−Au,Ni−Pd−Au及びNi−Pdからなる群より選ばれた金属からなる、請求項1〜5のいずれかに記載のプリント配線板。   The printed wiring board according to claim 1, wherein the barrier layer is made of a metal selected from the group consisting of Cu, Au, Pd, Ni—Au, Ni—Pd—Au, and Ni—Pd. 前記応力緩和層は、JIS K7113に準拠して測定したヤング率が10MPa〜1GPaである、請求項1〜6のいずれかに記載のプリント配線板。   The said stress relaxation layer is a printed wiring board in any one of Claims 1-6 whose Young's modulus measured based on JISK7113 is 10MPa-1GPa.
JP2004246651A 2004-08-26 2004-08-26 Printed wiring board Active JP4353873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246651A JP4353873B2 (en) 2004-08-26 2004-08-26 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246651A JP4353873B2 (en) 2004-08-26 2004-08-26 Printed wiring board

Publications (2)

Publication Number Publication Date
JP2006066597A true JP2006066597A (en) 2006-03-09
JP4353873B2 JP4353873B2 (en) 2009-10-28

Family

ID=36112802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246651A Active JP4353873B2 (en) 2004-08-26 2004-08-26 Printed wiring board

Country Status (1)

Country Link
JP (1) JP4353873B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537968A (en) * 2006-05-16 2009-10-29 アーテー・ウント・エス・オーストリア・テヒノロギー・ウント・ジュステームテッヒニク・アクチェンゲゼルシャフト Method for securing electronic components on a printed circuit board and system having a printed circuit board and at least one electronic component
WO2009151108A1 (en) * 2008-06-12 2009-12-17 日本電気株式会社 Mounting substrate, substrate and methods for manufacturing mounting substrate and substrate
JP2010157690A (en) * 2008-12-29 2010-07-15 Ibiden Co Ltd Board for mounting electronic component thereon, and method of manufacturing the same
JP2011138873A (en) * 2009-12-28 2011-07-14 Cmk Corp Component built-in type multilayer printed circuit board and method of manufacturing the same
JP2012054519A (en) * 2010-09-02 2012-03-15 Samsung Electro-Mechanics Co Ltd Semiconductor package substrate and its manufacturing method
JP2012151509A (en) * 2012-05-01 2012-08-09 Shinko Electric Ind Co Ltd Wiring substrate, method of manufacturing the same, and semiconductor package
JP7354550B2 (en) 2019-02-08 2023-10-03 富士電機株式会社 External connection part of semiconductor module, semiconductor module, external connection terminal, and method for manufacturing external connection terminal of semiconductor module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537968A (en) * 2006-05-16 2009-10-29 アーテー・ウント・エス・オーストリア・テヒノロギー・ウント・ジュステームテッヒニク・アクチェンゲゼルシャフト Method for securing electronic components on a printed circuit board and system having a printed circuit board and at least one electronic component
US8541690B2 (en) 2006-05-16 2013-09-24 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Method for fixing an electronic component on a printed circuit board and system comprising a printed circuit board and at least one electronic component
WO2009151108A1 (en) * 2008-06-12 2009-12-17 日本電気株式会社 Mounting substrate, substrate and methods for manufacturing mounting substrate and substrate
JP5541157B2 (en) * 2008-06-12 2014-07-09 日本電気株式会社 Mounting substrate, substrate, and manufacturing method thereof
JP2010157690A (en) * 2008-12-29 2010-07-15 Ibiden Co Ltd Board for mounting electronic component thereon, and method of manufacturing the same
JP2011138873A (en) * 2009-12-28 2011-07-14 Cmk Corp Component built-in type multilayer printed circuit board and method of manufacturing the same
JP2012054519A (en) * 2010-09-02 2012-03-15 Samsung Electro-Mechanics Co Ltd Semiconductor package substrate and its manufacturing method
JP2013058775A (en) * 2010-09-02 2013-03-28 Samsung Electro-Mechanics Co Ltd Semiconductor package substrate and method of manufacturing the same
JP2012151509A (en) * 2012-05-01 2012-08-09 Shinko Electric Ind Co Ltd Wiring substrate, method of manufacturing the same, and semiconductor package
JP7354550B2 (en) 2019-02-08 2023-10-03 富士電機株式会社 External connection part of semiconductor module, semiconductor module, external connection terminal, and method for manufacturing external connection terminal of semiconductor module

Also Published As

Publication number Publication date
JP4353873B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4504975B2 (en) Multilayer printed wiring board
JP4504925B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4673207B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2010153863A (en) Printed wiring board and method of manufacturing the same
JP2010232636A (en) Multilayer printed wiring board
US20100108371A1 (en) Wiring board with built-in electronic component and method for manufacturing the same
WO2006046510A1 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
WO2007129545A1 (en) Circuit wiring board incorporating heat resistant substrate
JPWO2008053833A1 (en) Multilayer printed wiring board
WO2005081312A1 (en) Substrate for mounting semiconductor
KR100619348B1 (en) Method for manufacturing package substrate using a electroless Ni plating
JP2001036253A (en) Multi-layered wiring circuit board and its manufacture
JP2001217550A (en) Multilayer circuit board and semiconductor device
JP4022405B2 (en) Circuit board for mounting semiconductor chips
JP4353873B2 (en) Printed wiring board
JP4376891B2 (en) Semiconductor module
JP2005347391A (en) Printed wiring board
JP5861400B2 (en) Semiconductor mounting materials
JP5432800B2 (en) Wiring board manufacturing method
JP2008091377A (en) Printed wiring board and its manufacturing method
JP6107021B2 (en) Wiring board manufacturing method
JP2012074487A (en) Method of manufacturing semiconductor package
JP2002271040A (en) Method for manufacturing multilayer printed wiring board
JP2005136042A (en) Wiring board, electric apparatus, and their manufacturing method
JP2001217356A (en) Multilayer circuit board and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Ref document number: 4353873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250