JP2006066509A - Cooling system and electrical apparatus - Google Patents

Cooling system and electrical apparatus Download PDF

Info

Publication number
JP2006066509A
JP2006066509A JP2004245165A JP2004245165A JP2006066509A JP 2006066509 A JP2006066509 A JP 2006066509A JP 2004245165 A JP2004245165 A JP 2004245165A JP 2004245165 A JP2004245165 A JP 2004245165A JP 2006066509 A JP2006066509 A JP 2006066509A
Authority
JP
Japan
Prior art keywords
reserve tank
refrigerant
flow path
liquid
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004245165A
Other languages
Japanese (ja)
Other versions
JP2006066509A5 (en
JP4434880B2 (en
Inventor
Takahiro Kojima
隆洋 小島
Fumihide Nagashima
文秀 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004245165A priority Critical patent/JP4434880B2/en
Publication of JP2006066509A publication Critical patent/JP2006066509A/en
Publication of JP2006066509A5 publication Critical patent/JP2006066509A5/ja
Application granted granted Critical
Publication of JP4434880B2 publication Critical patent/JP4434880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling system capable of smoothly discharging to the outside air in a coolant flow path or reserve tank at injecting liquid, and capable of preventing a lot of air from remaining in it. <P>SOLUTION: A cooling system 1 comprises a heat receiver 2, heat radiator 3, and circulation pump 5, along with coolant flow paths 4, 9, and 10 connected to them and a reserve tank 15. The coolant flow path 9 communicates with the reserve tank 15 through a connection path 16. The reserve tank 15 is provided with a first liquid injection port 17, and the coolant flow path 9 is provided with a second liquid injection port 20. When injecting a liquid coolant for cooling, it is injected through the first liquid injection part 17. So, most of the air on the coolant flow path side is easy to be discharged to the outside through the second liquid injection port 20 without moving to the reserve tank 15 side. The air in the reserve tank 15 is discharged outside through the first liquid injection port 17. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発熱体を冷却する冷却システム、及びその冷却システムを備えた電気機器に関する。   The present invention relates to a cooling system that cools a heating element, and an electrical device including the cooling system.

電気機器、例えばノート型のパーソナルコンピュータにおいては、発熱体であるCPUを冷却するための冷却システムとして、次のような構成のものが提案されている。すなわち、液冷媒が流れる冷媒流路を有すると共に、発熱体であるCPUに熱的に接触するように設けられる受熱部と、冷媒流路を有する放熱部と、冷媒流路を介して前記受熱部及び放熱部に接続され、液冷媒を前記冷媒流路を通して循環させる循環用ポンプと、連絡路を介して前記冷媒流路に接続され、液冷媒を貯留すると共に、その貯留した液冷媒を前記連絡路を通して前記冷媒流路へ補充するリザーブタンクとを備え、前記受熱部において前記液冷媒によりCPUから熱を奪い、その奪った熱を前記放熱部において放出させることにより、CPUを冷却しようとするものである(例えば、特許文献1参照)。   In an electric apparatus, for example, a notebook personal computer, a cooling system having the following configuration has been proposed as a cooling system for cooling a CPU that is a heating element. In other words, the heat receiving part is provided with a refrigerant flow path through which the liquid refrigerant flows, and is provided so as to be in thermal contact with the CPU that is a heating element, the heat radiating part having the refrigerant flow path, and the heat receiving part via the refrigerant flow path. And a circulation pump that is connected to the heat radiating section and circulates the liquid refrigerant through the refrigerant flow path, and is connected to the refrigerant flow path via a communication path to store the liquid refrigerant and to connect the stored liquid refrigerant to the A reserve tank for replenishing the refrigerant flow path through the passage, and taking heat from the CPU by the liquid refrigerant in the heat receiving portion and trying to cool the CPU by releasing the taken heat in the heat radiating portion (For example, see Patent Document 1).

そして、リザーブタンクには注液口(継手)が設けられていて、その注液口から液冷媒を注入する構成となっている。リザーブタンクの内部と冷媒流路とは、連絡路(接続口)によって連通していて、リザーブタンク内の液冷媒と冷媒流路内の空気の入れ替えが、前記連絡路を介して行われるようになっている。
特開2004−47922号公報
The reserve tank is provided with a liquid injection port (joint), and the liquid refrigerant is injected from the liquid injection port. The inside of the reserve tank and the refrigerant flow path are communicated with each other through a communication path (connection port), so that the liquid refrigerant in the reserve tank and the air in the refrigerant flow path are exchanged via the communication path. It has become.
JP 2004-47922 A

上記した従来構成のものでは、液冷媒を注入するための注液口はリザーブタンクにのみ設けられていて、冷媒流路には、冷却システムの外部に通じる経路はなかった。このため、液冷媒を上記注液口から注入すると、上記連絡路を通じて、冷媒流路内の空気とリザーブタンク内の液冷媒とが入れ替わり、冷媒流路内に液冷媒が満たされていくのであるが、その入れ替えがスムーズに行われないことがある。このため、冷媒流路内に多量の空気が残留したままとなり、冷却システムにおいて液冷媒を収容し得る内容積に対して実際に注入された液冷媒の容量が大幅に少なくなるおそれがある。   In the above-described conventional configuration, the liquid injection port for injecting the liquid refrigerant is provided only in the reserve tank, and the refrigerant flow path has no path to the outside of the cooling system. For this reason, when liquid refrigerant is injected from the liquid injection port, the air in the refrigerant flow path and the liquid refrigerant in the reserve tank are exchanged through the communication path, and the liquid refrigerant is filled in the refrigerant flow path. However, the replacement may not be performed smoothly. For this reason, a large amount of air remains in the refrigerant flow path, and the capacity of the liquid refrigerant actually injected may be significantly reduced with respect to the internal volume that can accommodate the liquid refrigerant in the cooling system.

本発明は上記問題点を解決するためになされたもので、第1の目的は、注液時に冷媒流路やリザーブタンク内の空気をスムーズに外部へ排出できて、それらに多量の空気が残留することを防止できる冷却システム及び電気機器を提供することである。また、第2の目的は、注液時にリザーブタンク内の空気をスムーズに外部へ排出させることができると共に、リザーブタンク内に多量の空気が残留することを防止できる冷却システム及び電気機器を提供することである。   The present invention has been made to solve the above problems, and a first object is to smoothly discharge the air in the refrigerant flow path and the reserve tank to the outside during the injection, and a large amount of air remains in them. It is an object of the present invention to provide a cooling system and an electric device that can prevent this. In addition, a second object is to provide a cooling system and an electric device that can smoothly discharge the air in the reserve tank to the outside at the time of pouring and prevent a large amount of air from remaining in the reserve tank. That is.

上記した第1の目的を達成するために、本発明の第1の冷却システムは、液冷媒が流れる冷媒流路を有すると共に、発熱体に熱的に接触するように設けられる受熱部と、冷媒流路を有する放熱部と、冷媒流路を介して前記受熱部及び放熱部に接続され、液冷媒を前記冷媒流路を通して循環させる循環用ポンプと、連絡路を介して前記冷媒流路に接続され、液冷媒を貯留すると共に、その貯留した液冷媒を前記連絡路を通して前記冷媒流路へ補充するリザーブタンクとを備え、前記受熱部において前記液冷媒により前記発熱体から熱を奪い、その奪った熱を前記放熱部において放出させる構成の冷却システムであって、前記リザーブタンクに当該リザーブタンクの内外を連通させる第1の注液口を設けると共に、前記冷媒流路に当該冷媒流路の内外を連通させる第2の注液口を設けたことを特徴とする。   In order to achieve the first object described above, a first cooling system of the present invention has a refrigerant flow path through which a liquid refrigerant flows, a heat receiving portion provided so as to be in thermal contact with the heating element, and a refrigerant A heat radiating section having a flow path, a circulation pump connected to the heat receiving section and the heat radiating section via a refrigerant flow path, and circulating the liquid refrigerant through the refrigerant flow path, and connected to the refrigerant flow path via a communication path And a reserve tank that stores the liquid refrigerant and replenishes the stored liquid refrigerant to the refrigerant flow path through the communication path, and takes heat from the heating element by the liquid refrigerant in the heat receiving section. A cooling system configured to release the heat at the heat radiating portion, wherein the reserve tank is provided with a first liquid injection port that communicates the inside and outside of the reserve tank, and the refrigerant channel is provided with the refrigerant channel. Characterized in that a second liquid inlet for communicating outside.

また、上記した第2の目的を達成するために、本発明の第2の冷却システムは、液冷媒が流れる冷媒流路を有すると共に、発熱体に熱的に接触するように設けられる受熱部と、冷媒流路を有する放熱部と、冷媒流路を介して前記受熱部及び放熱部に接続され、液冷媒を前記冷媒流路を通して循環させる循環用ポンプと、連絡路を介して前記冷媒流路に接続され、液冷媒を貯留すると共に、その貯留した液冷媒を前記連絡路を通して前記冷媒流路へ補充するリザーブタンクとを備え、前記受熱部において前記液冷媒により前記発熱体から熱を奪い、その奪った熱を前記放熱部において放出させる構成の冷却システムであって、前記リザーブタンクは当該リザーブタンクの内外を連通させる注液口を有し、そのリザーブタンクを前記注液口が上向きとなる状態とした状態で、当該リザーブタンクの上部の内面が、前記注液口に向けて上昇するように傾斜していることを特徴とする。   In order to achieve the second object described above, the second cooling system of the present invention includes a refrigerant flow path through which the liquid refrigerant flows, and a heat receiving portion provided so as to be in thermal contact with the heating element. A heat radiating part having a refrigerant flow path, a circulation pump connected to the heat receiving part and the heat radiating part via the refrigerant flow path and circulating the liquid refrigerant through the refrigerant flow path, and the refrigerant flow path via the communication path And a reserve tank that stores the liquid refrigerant and replenishes the stored liquid refrigerant to the refrigerant flow path through the communication path, and removes heat from the heating element by the liquid refrigerant in the heat receiving unit, A cooling system configured to release the heat taken away at the heat radiating portion, wherein the reserve tank has a liquid injection port that communicates the inside and outside of the reserve tank, and the liquid injection port is directed upward. In the state as the upper portion of the inner surface of the reserve tank, characterized in that it is inclined so as to rise toward the pouring hole.

そして、本発明の電気機器は、上記冷却システムを備えたことを特徴とする。   And the electric equipment of this invention was equipped with the said cooling system, It is characterized by the above-mentioned.

本発明の第1の冷却システムによれば、リザーブタンクに第1の注液口が設けられていると共に、冷媒流路にも第2の注液口が設けられている。このため、例えば第1の注液口から液冷媒をリザーブタンク内に注入した場合、冷媒流路内に存していた空気の多くは、リザーブタンク側へ移動することなく、第2の注液口から外部へスムーズに排出されるようになる。また、リザーブタンク内の空気は、第1の注液口から外部へ排出されるようになる。このため、冷媒流路内やリザーブタンク内に空気が多量に残留してしまうことを防止でき、冷却システムの内容積のほぼすべてに液冷媒を満たすことができるようになる。これに伴い、補充用の液冷媒の量、すなわち、リザーブタンクの内容積を小さくすることが可能になり、リザーブタンク、ひいては、リザーブタンクを含む冷却システムの小型化が可能となる。   According to the first cooling system of the present invention, the reserve tank is provided with the first liquid injection port, and the refrigerant flow path is also provided with the second liquid injection port. For this reason, for example, when liquid refrigerant is injected into the reserve tank from the first liquid injection port, most of the air existing in the refrigerant flow path does not move to the reserve tank side, but the second liquid injection. Smooth discharge from the mouth to the outside. Moreover, the air in a reserve tank comes to be discharged | emitted from the 1st liquid injection port outside. For this reason, it is possible to prevent a large amount of air from remaining in the refrigerant flow path or the reserve tank, and the liquid refrigerant can be filled in almost all the internal volume of the cooling system. Along with this, the amount of liquid refrigerant for replenishment, that is, the internal volume of the reserve tank can be reduced, and the reserve tank, and thus the cooling system including the reserve tank, can be miniaturized.

また、本発明の第2の冷却システムによれば、リザーブタンクの注液口から液冷媒を注入した際に、リザーブタンク内の空気は、リザーブタンク内を上昇した後、傾斜した上部の内面に沿って注液口へ流れ易くなり、その注液口から外部へ排出され易くなる。このため、リザーブタンク内に空気が多量に残留してしまうことを防止でき、リザーブタンクの内容積のほぼすべてに液冷媒を満たすことができるようになる。これに伴い、補充用の液冷媒の量、すなわち、リザーブタンクの内容積を小さくすることが可能になり、リザーブタンク、ひいては、リザーブタンクを含む冷却システムの小型化が可能となる。   Further, according to the second cooling system of the present invention, when liquid refrigerant is injected from the injection port of the reserve tank, the air in the reserve tank rises in the reserve tank, and then the inner surface of the inclined upper part. It is easy to flow to the liquid injection port along, and the liquid is easily discharged from the liquid injection port to the outside. For this reason, it is possible to prevent a large amount of air from remaining in the reserve tank, and it is possible to fill almost all the internal volume of the reserve tank with the liquid refrigerant. Along with this, the amount of liquid refrigerant for replenishment, that is, the internal volume of the reserve tank can be reduced, and the reserve tank, and thus the cooling system including the reserve tank, can be miniaturized.

そして、上記した第1または第2の冷却システムを電気機器に用いることにより、電気機器も小型化が可能となる。   Then, by using the first or second cooling system described above for an electric device, the electric device can also be reduced in size.

以下、本発明の一実施形態について図1ないし図4を参照して説明する。
まず、図1には、冷却システム1の構成図が示されている。この冷却システム1の受熱部2は、内部に液冷媒が流れる冷媒流路(図示せず)を有していて、後述する発熱体が熱的に接触されるようになっている。この受熱部2は、発熱体の熱を、冷媒流路を流れる液冷媒により受ける構成となっている。放熱部3は、内部に液冷媒が流れる冷媒流路(図示せず)を有していて、冷媒流路4により受熱部2と接続されている。循環ポンプ5は、ケース6の外部に吸入口7と吐出口8とを有していて、吸入口7が、冷媒流路9を介して上記放熱部3と接続され、吐出口8が、冷媒流路10を介して上記受熱部2と接続されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
First, FIG. 1 shows a configuration diagram of the cooling system 1. The heat receiving part 2 of the cooling system 1 has a refrigerant flow path (not shown) through which the liquid refrigerant flows, and a heating element described later is in thermal contact therewith. The heat receiving portion 2 is configured to receive the heat of the heating element by the liquid refrigerant flowing through the refrigerant flow path. The heat radiating part 3 has a refrigerant flow path (not shown) through which liquid refrigerant flows, and is connected to the heat receiving part 2 by the refrigerant flow path 4. The circulation pump 5 has a suction port 7 and a discharge port 8 outside the case 6, the suction port 7 is connected to the heat radiating part 3 through a refrigerant flow path 9, and the discharge port 8 is connected to the refrigerant. The heat receiving part 2 is connected via the flow path 10.

ここで、循環ポンプ5は、図示はしないが、ケース5の内部にポンプ羽根及びこのポンプ羽根を回転駆動するモータ、並びに冷媒流路を備えていて、モータによりポンプ羽根を回転させると、ポンプ羽根のポンプ作用により、液冷媒を吸入口7から吸入すると共に、吐出口8から吐出させ、これにより、各冷媒流路4,9,10を介して液冷媒を循環させる構成となっている。   Here, although not shown, the circulation pump 5 includes a pump blade, a motor that rotationally drives the pump blade, and a refrigerant passage inside the case 5. When the pump blade is rotated by the motor, the pump blade With this pumping action, the liquid refrigerant is sucked from the suction port 7 and discharged from the discharge port 8, whereby the liquid refrigerant is circulated through the respective refrigerant flow paths 4, 9, 10.

上記冷媒流路4,9,10のうち、放熱部3と循環ポンプ5の吸入口7との間を接続する冷媒流路9の中間部の外側には、リザーブタンク15が設けられている。冷媒流路9は、リザーブタンク15を、図1中、左右方向に貫通している。冷媒流路9とリザーブタンク15との間は、水密にシールされている。冷媒流路9には、リザーブタンク15内において、孔からなる連絡路16が形成されていて、この連絡路16により、冷媒流路9内とリザーブタンク15内とを連通させている。   A reserve tank 15 is provided outside the intermediate portion of the refrigerant flow path 9 that connects between the heat radiating section 3 and the suction port 7 of the circulation pump 5 among the refrigerant flow paths 4, 9, and 10. The refrigerant flow path 9 penetrates the reserve tank 15 in the left-right direction in FIG. A space between the refrigerant flow path 9 and the reserve tank 15 is sealed in a watertight manner. The refrigerant flow path 9 is formed with a communication path 16 formed of holes in the reserve tank 15, and the communication path 16 allows the refrigerant flow path 9 and the reserve tank 15 to communicate with each other.

リザーブタンク15は、扁平な矩形容器状をなしていて、図1の上部に位置させて、リザーブタンク15内と外部とを連通させる第1の注液口17が設けられている。第1の注液口17は、上方へ突出する筒部18を有している。このリザーブタンク15の第1の注液口17を上にした図1の状態で、リザーブタンク15における上部の内面19は、図2にも示すように、第1の注液口17に向けて上昇するように傾斜している。この場合、リザーブタンク15は、左右方向の幅寸法L1が、奥行き寸法L2よりも十分大きいため、長辺側となる左右両側の内面19のみ傾斜させている。   The reserve tank 15 has a flat rectangular container shape, and is provided with a first liquid injection port 17 that is located in the upper part of FIG. 1 and that allows the inside of the reserve tank 15 to communicate with the outside. The first liquid injection port 17 has a cylindrical portion 18 that protrudes upward. In the state of FIG. 1 with the first liquid injection port 17 of the reserve tank 15 facing up, the upper inner surface 19 of the reserve tank 15 faces the first liquid injection port 17 as shown in FIG. Inclined to rise. In this case, since the reserve tank 15 has a width dimension L1 in the left-right direction that is sufficiently larger than the depth dimension L2, only the inner surfaces 19 on the left and right sides that are the long sides are inclined.

そして、上記冷媒流路9において、放熱部3とリザーブタンク15との間で、かつ当該冷媒流路9の一番高い位置に、第2の注液口20を設けている。この第2の注液口20は、冷媒流路9内と外部とを連通させている。この第2の注液口20も、上方へ突出する筒部21を有している。また、第2の注液口20は、図3にも示すように、冷媒流路9内側の開口部20aの開口面積が、その開口部20aより外側の部位20bの開口面積より大きく形成されていて、ここを液溜まり部22としている。   In the refrigerant flow path 9, a second liquid injection port 20 is provided between the heat radiating unit 3 and the reserve tank 15 and at the highest position of the refrigerant flow path 9. The second liquid injection port 20 allows the inside of the refrigerant flow path 9 to communicate with the outside. The second liquid injection port 20 also has a cylindrical portion 21 that protrudes upward. Further, as shown in FIG. 3, the second liquid injection port 20 is formed such that the opening area of the opening 20a inside the refrigerant channel 9 is larger than the opening area of the portion 20b outside the opening 20a. This is the liquid reservoir 22.

さて、上記した構成の冷却システム1の冷媒流路内に液冷媒を注入する場合には、次のようにして行う。まず、図1に示すように、リザーブタンク15の第1の注液口17を上向きとすると共に、冷媒流路9の第2の注液口20を上向きとする。この状態で、液冷媒を第1の注液口17からリザーブタンク15内に注入する。このとき、循環ポンプ5のモータによりポンプ羽根を適宜回転させる。これに伴い、リザーブタンク15内に注入された液冷媒は、連絡路16を通って冷媒流路9内に流れ込んだ後、循環ポンプ5のポンプ作用により、循環ポンプ5内の冷媒流路内、冷媒流路10内、受熱部3の冷媒流路内、冷媒流路4内、放熱部3の冷媒流路内、冷媒流路9内へと注入されるようになる。このとき、各冷媒流路内に存していた空気の多くは、リザーブタンク15側へ移動することなく、第2の注液口20から外部へスムーズに排出されるようになる。また、リザーブタンク15内の空気は、第1の注液口17から外部へ排出されるようになる。   Now, when the liquid refrigerant is injected into the refrigerant flow path of the cooling system 1 having the above-described configuration, it is performed as follows. First, as shown in FIG. 1, the first liquid injection port 17 of the reserve tank 15 faces upward, and the second liquid injection port 20 of the refrigerant flow path 9 faces upward. In this state, the liquid refrigerant is injected into the reserve tank 15 from the first liquid injection port 17. At this time, the pump blade is appropriately rotated by the motor of the circulation pump 5. Along with this, the liquid refrigerant injected into the reserve tank 15 flows into the refrigerant flow path 9 through the communication path 16, and then in the refrigerant flow path in the circulation pump 5 by the pump action of the circulation pump 5. The refrigerant is injected into the refrigerant channel 10, the refrigerant channel of the heat receiving unit 3, the refrigerant channel 4, the refrigerant channel of the heat radiating unit 3, and the refrigerant channel 9. At this time, most of the air existing in each refrigerant flow path is smoothly discharged to the outside from the second liquid injection port 20 without moving to the reserve tank 15 side. Further, the air in the reserve tank 15 is discharged from the first liquid injection port 17 to the outside.

このとき、第2の注液口20の冷媒流路9内側には液溜まり部21が形成されているため、液冷媒が冷媒流路9内を通過する際に、その液溜まり部21部分を通過する液冷媒の速度が遅くなる。このため、液溜まり部21部分を通過する液冷媒に含まれた空気(気泡)は、第2の注液口20から外部へ一層逃げ易くなる。
また、リザーブタンク15においては、上部の内面19が、第1の注液口17に向かって上昇するように傾斜しているので、リザーブタンク15内の空気は、リザーブタンク15内を上昇した後、その内面19に沿って第1の注液口17から外部へ逃げ易くなる。
At this time, since the liquid reservoir 21 is formed inside the refrigerant flow path 9 of the second liquid injection port 20, when the liquid refrigerant passes through the refrigerant flow path 9, the portion of the liquid reservoir 21 is The speed of the liquid refrigerant passing through becomes slow. For this reason, the air (bubbles) contained in the liquid refrigerant passing through the liquid reservoir 21 part is more easily escaped from the second liquid injection port 20 to the outside.
In the reserve tank 15, the upper inner surface 19 is inclined so as to rise toward the first liquid injection port 17, so that the air in the reserve tank 15 rises in the reserve tank 15. It becomes easy to escape from the first liquid injection port 17 along the inner surface 19 to the outside.

このようにして、冷却システム1の冷媒流路内への液冷媒の注入作業が終了したら、第1の注液口17及び第2の注液口20に、封止用のキャップ25,26(図4参照)を装着する。
図4は、上記冷却システム1を、電気機器として、ノート型のパーソナルコンピュータ30に組み込んだ状態が示されている。このとき、リザーブタンク15は、第1の注液口17が横向きとなるようにする。また、冷却対象の発熱体であるCPU31を、受熱部2に接触状態に配置する。
In this manner, when the operation of injecting the liquid refrigerant into the refrigerant flow path of the cooling system 1 is completed, the sealing caps 25 and 26 ( (See FIG. 4).
FIG. 4 shows a state in which the cooling system 1 is incorporated in a notebook personal computer 30 as an electric device. At this time, the reserve tank 15 is set so that the first liquid injection port 17 faces sideways. In addition, the CPU 31 that is a heating element to be cooled is arranged in contact with the heat receiving unit 2.

上記構成において、冷却システム1の循環ポンプ5を駆動させると、冷却システム1内の冷媒流路に注入された液冷媒が図1の矢印A方向に流されることにより循環される。このとき、CPU31の発生する熱は、受熱部2においてここを流れる冷媒により奪われる。熱を奪った冷媒は、放熱部3において放熱される。このようにして、CPU31の温度上昇が抑えられる。   In the above configuration, when the circulation pump 5 of the cooling system 1 is driven, the liquid refrigerant injected into the refrigerant flow path in the cooling system 1 is circulated by flowing in the direction of arrow A in FIG. At this time, the heat generated by the CPU 31 is taken away by the refrigerant flowing therethrough in the heat receiving unit 2. The refrigerant deprived of heat is radiated in the heat radiating section 3. In this way, the temperature rise of the CPU 31 is suppressed.

上記した実施形態によれば、次のような効果を得ることができる。まず、冷却システム1において、リザーブタンク15に第1の注液口17が設けられていると共に、冷媒流路9にも第2の注液口20が設けられている。このため、例えば第1の注液口17から液冷媒をリザーブタンク15内に注入した場合、冷媒流路内に存していた空気の多くは、リザーブタンク15側へ移動することなく、第2の注液口20から外部へスムーズに排出されるようになる。また、リザーブタンク15内の空気は、第1の注液口17から外部へ排出されるようになる。このため、冷媒流路内やリザーブタンク15内に空気が多量に残留してしまうことを防止でき、冷却システム1の内容積のほぼすべてに液冷媒を満たすことができるようになる。これに伴い、補充用の液冷媒の量、すなわち、リザーブタンク15の内容積を小さくすることが可能になり、リザーブタンク15、ひいては、リザーブタンク15を含む冷却システム1の小型化が可能となる。   According to the above-described embodiment, the following effects can be obtained. First, in the cooling system 1, a first liquid injection port 17 is provided in the reserve tank 15, and a second liquid injection port 20 is also provided in the refrigerant channel 9. For this reason, for example, when liquid refrigerant is injected into the reserve tank 15 from the first injection port 17, much of the air existing in the refrigerant flow path does not move to the reserve tank 15 side, but the second From the liquid injection port 20 to the outside smoothly. Further, the air in the reserve tank 15 is discharged from the first liquid injection port 17 to the outside. For this reason, it is possible to prevent a large amount of air from remaining in the refrigerant flow path or the reserve tank 15, and the liquid refrigerant can be filled in almost all the internal volume of the cooling system 1. Accordingly, the amount of liquid refrigerant for replenishment, that is, the internal volume of the reserve tank 15 can be reduced, and the reserve tank 15 and thus the cooling system 1 including the reserve tank 15 can be downsized. .

また、リザーブタンク15の第1の注液口17から液冷媒を注入した際に、リザーブタンク15内の空気は、リザーブタンク15内を上昇した後、傾斜した上部の内面19に沿って第1の注液口17へ流れ易くなり、その第1の注液口17から外部へ排出され易くなる。このため、リザーブタンク15内に空気が多量に残留してしまうことを防止でき、リザーブタンク15の内容積のほぼすべてに液冷媒を満たすことができるようになる。これに伴い、補充用の液冷媒の量、すなわち、リザーブタンク15の内容積を小さくすることが可能になり、リザーブタンク15、ひいては、リザーブタンク15を含む冷却システム1の小型化が可能となる。   Further, when liquid refrigerant is injected from the first injection port 17 of the reserve tank 15, the air in the reserve tank 15 rises in the reserve tank 15 and then moves along the inclined upper inner surface 19. It is easy to flow to the liquid injection port 17 and to be discharged from the first liquid injection port 17 to the outside. For this reason, it is possible to prevent a large amount of air from remaining in the reserve tank 15, so that almost all of the internal volume of the reserve tank 15 can be filled with the liquid refrigerant. Accordingly, the amount of liquid refrigerant for replenishment, that is, the internal volume of the reserve tank 15 can be reduced, and the reserve tank 15 and thus the cooling system 1 including the reserve tank 15 can be downsized. .

図5(a)〜(d)は、リザーブタンク15における第1の注液口17部分の第1〜4の変形例を示していて、上記した実施形態とは次の点が異なっている。
すなわち、(a)の第1の変形例は、第1の注液口17を上にした状態で、リザーブタンク15の上部の内面35は、上側へ円弧状に窪む傾斜面となっている。
(b)の第2の変形例は、第1の注液口17を上にした状態で、リザーブタンク15の上部の内面36は、リザーブタンク15の内方側へ突出するような円弧状となる傾斜面となっている。
(c)の第3の変形例では、第1の注液口17は、リザーブタンク15の左角部に配置され、リザーブタンク15の上部の内面のうち右側の内面37が、第1の注液口17へ向かって上昇するような傾斜面となっている。
(d)の第4の変形例では、第1の注液口17に筒部18がない構成となっている。この場合、第1の注液口17は、図示しない封止栓によって封止される。
これら第1〜第4の変形例においても、上記した実施形態の場合と同様な作用効果を得ることができる。
FIGS. 5A to 5D show first to fourth modifications of the first liquid injection port 17 portion in the reserve tank 15, and the following points are different from the above-described embodiment.
That is, in the first modification of (a), the upper inner surface 35 of the reserve tank 15 is an inclined surface that is recessed upward in an arc shape with the first liquid injection port 17 facing upward. .
In the second modified example of (b), the upper inner surface 36 of the reserve tank 15 has an arc shape that protrudes inward of the reserve tank 15 with the first liquid injection port 17 facing upward. It becomes an inclined surface.
In the third modification of (c), the first liquid injection port 17 is arranged at the left corner of the reserve tank 15, and the right inner surface 37 of the upper inner surface of the reserve tank 15 is the first injection port. The inclined surface rises toward the liquid port 17.
In the fourth modified example of (d), the first liquid injection port 17 has no cylindrical portion 18. In this case, the first liquid injection port 17 is sealed by a sealing stopper (not shown).
In these first to fourth modifications, the same operational effects as in the above-described embodiment can be obtained.

本発明は、上記した実施形態にのみ限定されるものではなく、次のように変形または拡張できる。
第2の注液口20は、循環ポンプ5によって液冷媒が循環する冷媒流路であれば、冷媒流路4,10に設けても良く、また、受熱部2や放熱部3、或いは循環ポンプ5内の冷媒流路に設けるようにしても良い。
また、リザーブタンク15の第1の注液口17は、1個に限られず、2個以上設けても良い。また、冷媒流路9の第2の注液口20も、1個に限られず、2個以上設けることもできる。
さらに、冷却システム1を搭載する電気機器としては、パーソナルコンピュータ以外の電気機器でも良い。
The present invention is not limited to the above-described embodiment, and can be modified or expanded as follows.
The second liquid inlet 20 may be provided in the refrigerant flow paths 4 and 10 as long as the liquid refrigerant is circulated by the circulation pump 5, and the heat receiving part 2, the heat radiating part 3, or the circulation pump. You may make it provide in the refrigerant | coolant flow path in 5. FIG.
Further, the number of the first liquid injection ports 17 of the reserve tank 15 is not limited to one, and two or more may be provided. Further, the number of second liquid injection ports 20 in the refrigerant flow path 9 is not limited to one, and two or more second liquid injection ports 20 may be provided.
Furthermore, the electrical device on which the cooling system 1 is mounted may be an electrical device other than a personal computer.

本発明の冷却システムの一実施形態を示すもので、一部を破断して示す全体の構成図1 shows an embodiment of a cooling system of the present invention, and is an overall configuration diagram showing a part thereof broken away. リザーブタンクの上部を示すもので、(a)は平面図、(b)は(a)のX1−X1線に沿う断面図、(c)は(a)のX2−X2線に沿う断面図The upper part of a reserve tank is shown, (a) is a top view, (b) is sectional drawing which follows the X1-X1 line of (a), (c) is sectional drawing which follows the X2-X2 line of (a). 第2の注液口部分の拡大断面図Enlarged sectional view of the second injection port 冷却システムをノート型のパーソナルコンピュータに組み込んだ状態の構成図Configuration diagram of the cooling system built into a notebook personal computer (a)〜(d)は、リザーブタンクの第1の注液口部分の変形例を示す断面図(A)-(d) is sectional drawing which shows the modification of the 1st injection port part of a reserve tank

符号の説明Explanation of symbols

図面中、1は冷却システム、2は受熱部、3は放熱部、4,9,10は冷媒流路、5は循環ポンプ、15はリザーブタンク、17は第1の注液口(注液口)、19は内面、20は第2の注液口、20aは開口部、22は液溜まり部、30はパーソナルコンピュータ(電気機器)、35,36,37は内面を示す。   In the drawings, 1 is a cooling system, 2 is a heat receiving unit, 3 is a heat radiating unit, 4, 9 and 10 are refrigerant flow paths, 5 is a circulation pump, 15 is a reserve tank, and 17 is a first liquid injection port (liquid injection port). ), 19 is an inner surface, 20 is a second liquid injection port, 20a is an opening, 22 is a liquid reservoir, 30 is a personal computer (electric equipment), and 35, 36, and 37 are inner surfaces.

Claims (4)

液冷媒が流れる冷媒流路を有すると共に、発熱体に熱的に接触するように設けられる受熱部と、冷媒流路を有する放熱部と、冷媒流路を介して前記受熱部及び放熱部に接続され、液冷媒を前記冷媒流路を通して循環させる循環用ポンプと、連絡路を介して前記冷媒流路に接続され、液冷媒を貯留すると共に、その貯留した液冷媒を前記連絡路を通して前記冷媒流路へ補充するリザーブタンクとを備え、前記受熱部において前記液冷媒により前記発熱体から熱を奪い、その奪った熱を前記放熱部において放出させる構成の冷却システムであって、
前記リザーブタンクに当該リザーブタンクの内外を連通させる第1の注液口を設けると共に、前記冷媒流路に当該冷媒流路の内外を連通させる第2の注液口を設けたことを特徴とする冷却システム。
It has a refrigerant flow path through which liquid refrigerant flows, a heat receiving part provided so as to be in thermal contact with the heating element, a heat radiating part having a refrigerant flow path, and connected to the heat receiving part and the heat radiating part via the refrigerant flow path A circulation pump that circulates the liquid refrigerant through the refrigerant flow path, and is connected to the refrigerant flow path through a communication path to store the liquid refrigerant and to flow the stored liquid refrigerant through the communication path. A cooling system having a reserve tank for replenishing the road, wherein the heat receiving part takes heat from the heating element by the liquid refrigerant and releases the taken heat at the heat radiating part,
The reserve tank is provided with a first liquid injection port for communicating the inside and outside of the reserve tank, and the refrigerant channel is provided with a second liquid injection port for communicating the inside and outside of the refrigerant channel. Cooling system.
前記第2の注液口は、冷媒流路内側の開口部の開口面積が、その開口部より外側の部位の開口面積より大きく形成されていることを特徴とする請求項1記載の冷却システム。   2. The cooling system according to claim 1, wherein the second liquid injection port is formed such that an opening area of an opening inside the refrigerant channel is larger than an opening area of a portion outside the opening. 液冷媒が流れる冷媒流路を有すると共に、発熱体に熱的に接触するように設けられる受熱部と、冷媒流路を有する放熱部と、冷媒流路を介して前記受熱部及び放熱部に接続され、液冷媒を前記冷媒流路を通して循環させる循環用ポンプと、連絡路を介して前記冷媒流路に接続され、液冷媒を貯留すると共に、その貯留した液冷媒を前記連絡路を通して前記冷媒流路へ補充するリザーブタンクとを備え、前記受熱部において前記液冷媒により前記発熱体から熱を奪い、その奪った熱を前記放熱部において放出させる構成の冷却システムであって、
前記リザーブタンクは当該リザーブタンクの内外を連通させる注液口を有し、そのリザーブタンクを前記注液口が上向きとなる状態とした状態で、当該リザーブタンクの上部の内面が、前記注液口に向けて上昇するように傾斜していることを特徴とする冷却システム。
It has a refrigerant flow path through which liquid refrigerant flows, a heat receiving part provided so as to be in thermal contact with the heating element, a heat radiating part having a refrigerant flow path, and connected to the heat receiving part and the heat radiating part via the refrigerant flow path A circulation pump that circulates the liquid refrigerant through the refrigerant flow path, and is connected to the refrigerant flow path through a communication path to store the liquid refrigerant and to flow the stored liquid refrigerant through the communication path. A cooling system having a reserve tank for replenishing the road, wherein the heat receiving part takes heat from the heating element by the liquid refrigerant and releases the taken heat at the heat radiating part,
The reserve tank has a liquid injection port that communicates the inside and outside of the reserve tank, and with the reserve tank in a state where the liquid injection port faces upward, the inner surface of the upper part of the reserve tank is the liquid injection port. A cooling system characterized by being inclined so as to rise upward.
請求項1ないし3のいずれかに記載の冷却システムを備えたことを特徴とする電気機器。

An electrical apparatus comprising the cooling system according to any one of claims 1 to 3.

JP2004245165A 2004-08-25 2004-08-25 Cooling system and electrical equipment Expired - Fee Related JP4434880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245165A JP4434880B2 (en) 2004-08-25 2004-08-25 Cooling system and electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245165A JP4434880B2 (en) 2004-08-25 2004-08-25 Cooling system and electrical equipment

Publications (3)

Publication Number Publication Date
JP2006066509A true JP2006066509A (en) 2006-03-09
JP2006066509A5 JP2006066509A5 (en) 2007-08-23
JP4434880B2 JP4434880B2 (en) 2010-03-17

Family

ID=36112740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245165A Expired - Fee Related JP4434880B2 (en) 2004-08-25 2004-08-25 Cooling system and electrical equipment

Country Status (1)

Country Link
JP (1) JP4434880B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027370A (en) * 2006-07-25 2008-02-07 Fujitsu Ltd Electronic device
US7672125B2 (en) 2006-07-25 2010-03-02 Fujitsu Limited Electronic apparatus
US7701715B2 (en) 2006-07-25 2010-04-20 Fujitsu Limited Electronic apparatus
US7710722B2 (en) 2006-07-25 2010-05-04 Fujitsu Limited Liquid cooling unit and heat exchanger therefor
US8050036B2 (en) 2006-07-25 2011-11-01 Fujitsu Limited Liquid cooling unit and heat receiver therefor
US8289701B2 (en) 2006-07-25 2012-10-16 Fujistu Limited Liquid cooling unit and heat receiver therefor
KR101259625B1 (en) * 2010-11-16 2013-04-29 엘지전자 주식회사 Air conditioner
WO2016132744A1 (en) * 2015-02-19 2016-08-25 パナソニックIpマネジメント株式会社 Cooling device and electronic device having same mounted thereon
JP2016156604A (en) * 2015-02-19 2016-09-01 パナソニックIpマネジメント株式会社 Cooling device and electronic apparatus mounting the same
CN107764111A (en) * 2016-08-16 2018-03-06 宏碁股份有限公司 Heat abstractor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027370A (en) * 2006-07-25 2008-02-07 Fujitsu Ltd Electronic device
US7652884B2 (en) 2006-07-25 2010-01-26 Fujitsu Limited Electronic apparatus including liquid cooling unit
US7672125B2 (en) 2006-07-25 2010-03-02 Fujitsu Limited Electronic apparatus
US7701715B2 (en) 2006-07-25 2010-04-20 Fujitsu Limited Electronic apparatus
US7710722B2 (en) 2006-07-25 2010-05-04 Fujitsu Limited Liquid cooling unit and heat exchanger therefor
EP1890219A3 (en) * 2006-07-25 2010-12-08 Fujitsu Ltd. Electronic apparatus including liquid cooling unit
US8050036B2 (en) 2006-07-25 2011-11-01 Fujitsu Limited Liquid cooling unit and heat receiver therefor
US8289701B2 (en) 2006-07-25 2012-10-16 Fujistu Limited Liquid cooling unit and heat receiver therefor
KR101259625B1 (en) * 2010-11-16 2013-04-29 엘지전자 주식회사 Air conditioner
WO2016132744A1 (en) * 2015-02-19 2016-08-25 パナソニックIpマネジメント株式会社 Cooling device and electronic device having same mounted thereon
JP2016156604A (en) * 2015-02-19 2016-09-01 パナソニックIpマネジメント株式会社 Cooling device and electronic apparatus mounting the same
CN107764111A (en) * 2016-08-16 2018-03-06 宏碁股份有限公司 Heat abstractor
CN107764111B (en) * 2016-08-16 2019-06-14 宏碁股份有限公司 Radiator

Also Published As

Publication number Publication date
JP4434880B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US10271456B2 (en) Enclosure for liquid submersion cooled electronics
KR101719821B1 (en) A liquid submersion cooled server computer and server computer case thereof
JP4592355B2 (en) Liquid feed pump, cooling system, and electrical equipment
JP4434880B2 (en) Cooling system and electrical equipment
JP4157451B2 (en) Gas-liquid separation mechanism, reserve tank, and electronic equipment
US20060187640A1 (en) Cooling device for an electronic apparatus
US10828582B2 (en) Passive air bleed for improved cooling systems
US8579143B2 (en) Reserve tank
JP2003078271A (en) Electronic apparatus
CN110444521B (en) Water cooling head
JP2014151722A (en) Industrial vehicle
JP2007200957A (en) Liquid-cooled heat dissipation apparatus
JP2004289049A (en) Heat transport device and portable electronic equipment with the device
WO2023098454A1 (en) Liquid cooling structure and electronic device
JP2004047922A (en) Cooling unit for electronic apparatus
JP4890286B2 (en) Reserve tank and engine cooling device equipped with the same
JP2005167224A (en) Expansion tank device, its manufacturing method, and liquid-cooled heat radiator
JP2005285947A (en) Cooling device
JPH1051169A (en) Semiconductor device mounting heat generating element
JP2005150240A (en) Liquid circulation type cooling apparatus and electronic apparatus using same
KR20080082814A (en) Computer cooling apparatus
JP2006335225A (en) Pipe with coolant pouring port
JP2007266403A (en) Cooling device for electronics equipment
JP2007170759A (en) Refrigerant liquid injection device and method of manufacturing cooling module
JP7306288B2 (en) Reserve tank

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R151 Written notification of patent or utility model registration

Ref document number: 4434880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees