JP2006066311A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2006066311A
JP2006066311A JP2004249665A JP2004249665A JP2006066311A JP 2006066311 A JP2006066311 A JP 2006066311A JP 2004249665 A JP2004249665 A JP 2004249665A JP 2004249665 A JP2004249665 A JP 2004249665A JP 2006066311 A JP2006066311 A JP 2006066311A
Authority
JP
Japan
Prior art keywords
electrode terminal
positive electrode
negative electrode
sides
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004249665A
Other languages
Japanese (ja)
Inventor
Yoshimasa Koishikawa
佳正 小石川
Yoshin Yagi
陽心 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004249665A priority Critical patent/JP2006066311A/en
Publication of JP2006066311A publication Critical patent/JP2006066311A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery in which safety in overcharge can be secured. <P>SOLUTION: As for the lithium ion secondary battery, a rectangular laminate film having four sides is used for an exterior body. Side edge parts of the four sides of the laminate film are sealed by heat welding, and a cathode terminal and an anode terminal are respectively pinched between opposite two sides of the laminate film. In the laminate film, a laminated electrode group 10 is enclosed in which cathode plates 14 and anode plates 15 are alternately laminated. The cathode plates 14 and the anode plates 15 are respectively connected to the cathode terminal and the anode terminal. As for the cathode plate 14, the three sides which are not connected to the cathode terminal are inserted sheet by sheet into separators 12 made of polyethylene worked in a bag-shape by heat welding. Inner short circuits between the cathode and anode terminals and between the cathode and anode plates are suppressed at overcharge. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はリチウム二次電池に係り、特に、正極板及び負極板がセパレータを介して配置された電極群が4辺を有するラミネート外装フィルムで密閉されたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery in which an electrode group in which a positive electrode plate and a negative electrode plate are arranged via a separator is sealed with a laminate outer film having four sides.

リチウム二次電池は、主にVTRカメラやノートパソコン、携帯電話等のポータブル機器用電源として民生用の分野に広く普及してきたが、ポータブル機器の小型化、多機能化が進み、用いられる電源にも小型・軽量化が要望されてきた。このため、リチウム二次電池の外装体として用いられてきた金属缶や樹脂の容器に代えて、食品包装や医療包装の分野で広く用いられている軽量で加工性のよいアルミニウムを基材としたラミネートフィルムを外装体として適用することが検討され、現在では、ポータブル機器用の電源に広く用いられている。   Lithium secondary batteries have been widely used in the consumer field as power sources for portable devices such as VTR cameras, laptop computers, and mobile phones. However, as portable devices have become smaller and more multifunctional, they can be used as power sources. However, there has been a demand for reduction in size and weight. For this reason, instead of metal cans and resin containers that have been used as exterior bodies for lithium secondary batteries, the base material is aluminum that is light and has good workability and is widely used in the fields of food packaging and medical packaging. The application of a laminate film as an exterior body has been studied, and is now widely used as a power source for portable devices.

一方、自動車産業界においては環境問題に対応すべく、動力源を完全に電池のみとした排出ガスのない電気自動車と、内燃機関エンジン及び電池の両方を動力源とするバイブリッド電気自動車(HEV)の開発が本格化し、一部実用化されている。電気自動車等の移動体用電源として、高エネルギー密度を有するリチウム二次電池が注目されている。また、アシスト自転車や電動スクータ等の小型移動体用の電源としても開発が盛んに進められている。このような移動体用電源の分野においても外装体に金属缶等の容器を用いた電池の開発が先行しているが、ラミネートフィルムを外装体に用いたリチウム二次電池の検討も活発化している。   On the other hand, in the automobile industry, in order to cope with environmental problems, an electric vehicle without exhaust gas whose power source is completely a battery and a hybrid electric vehicle (HEV) whose power source is both an internal combustion engine and a battery are used. Development has been in full swing and some have been put into practical use. As a power source for a mobile object such as an electric vehicle, a lithium secondary battery having a high energy density has attracted attention. In addition, development has been actively promoted as a power source for small movable bodies such as assist bicycles and electric scooters. In the field of power sources for mobile objects, the development of batteries using containers such as metal cans has been preceded in the field of mobile bodies. However, studies on lithium secondary batteries using laminate films for the exterior bodies have also become active. Yes.

移動体用の電源には、高出力・高エネルギーが要求されるため、電池容量は民生用よりも大きくなり、数十本のリチウム二次電池を接続した電池モジュールとして利用されている。外装体に金属缶等の剛体の容器を用いたリチウム二次電池では、安全性を確保するために電池容器内に電流遮断機構等の安全機構を収容することが比較的容易であり、電池モジュールでは過充電のような電池異常時でも安全性を確保するために複数の保護機能が組み込まれている。   Since a power source for a mobile body is required to have high output and high energy, the battery capacity is larger than that for consumer use, and it is used as a battery module to which several tens of lithium secondary batteries are connected. In a lithium secondary battery using a rigid container such as a metal can as an outer package, it is relatively easy to accommodate a safety mechanism such as a current interruption mechanism in the battery container in order to ensure safety. In order to ensure safety even in the event of battery abnormalities such as overcharging, multiple protection functions are incorporated.

これに対して、外装体にラミネートフィルムを用いたリチウム二次電池では、電極群を略矩形状のラミネートフィルムで包み込み、ラミネートフィルムの重ね合わせ(辺縁)部を熱溶着して封止し、熱溶着部の1辺に通電用の正負極端子を挟み込んだ構造を有している。熱溶着の際には、電池内部を減圧にし、大気圧で外装体に電極群を固定するのが一般的なため、電池内に上述した安全機構等を収容することは難しい。安全機構を備えていない電池では、過充電時に、電池が発熱して電解液の気化及び分解ガスの発生により電池内圧が上昇してラミネートフィルムが膨張し、ラミネートフィルムの熱溶着部が剥離して電池外部にガスを噴出する。この発熱及びガス噴出によりセパレータが収縮し、正極板及び負極板が電池内部で短絡すると、短絡電流による急激な発熱が生じ、活物質の熱暴走反応(多量のガス発生を伴う急激な発熱反応)を引き起こす。ラミネートフィルムの膨張を抑制するために、例えば、電極群及びラミネートフィルム間に接着材層を配置する技術が開示されている(特許文献1参照)。   On the other hand, in the lithium secondary battery using a laminate film for the exterior body, the electrode group is wrapped in a substantially rectangular laminate film, and the laminated (edge) portion of the laminate film is thermally welded and sealed, It has a structure in which a positive and negative electrode terminal for energization is sandwiched between one side of the heat welded portion. At the time of heat welding, since it is common to reduce the pressure inside the battery and fix the electrode group to the exterior body at atmospheric pressure, it is difficult to accommodate the above-described safety mechanism or the like in the battery. In batteries that do not have a safety mechanism, when overcharged, the battery generates heat, the internal pressure of the battery rises due to evaporation of the electrolyte and the generation of decomposition gas, the laminate film expands, and the heat welded part of the laminate film peels off. Gas is blown out of the battery. When the separator contracts due to this heat generation and gas ejection and the positive electrode plate and the negative electrode plate are short-circuited inside the battery, a rapid heat generation occurs due to the short-circuit current, and the thermal runaway reaction of the active material (rapid exothermic reaction with a large amount of gas generation) cause. In order to suppress the expansion of the laminate film, for example, a technique of disposing an adhesive layer between the electrode group and the laminate film is disclosed (see Patent Document 1).

特開2003−151512号公報JP 2003-151512 A

しかしながら、特許文献1の技術では、接着材層により電極群及びラミネートフィルム間の膨張は抑制されるものの、ガス発生に伴いラミネートフィルムの熱溶着部に圧力がかかり易くなるため、熱溶着部の剥離やガス噴出を抑制することはできない。また、熱溶着部が剥離してガスを噴出したラミネートフィルムの辺縁部近傍では、セパレータが収縮するため、正負極板間の内部短絡が生じ易い、という問題がある。更に、正極端子及び負極端子がラミネートフィルムの同一辺から導出されている場合には、熱溶着部の剥離に伴い正負極端子が接触し易くなるため、内部短絡を起こし熱暴走反応に移行し易くなる、という問題もある。従って、過充電時の安全性を保つためには、電池内に蓄積されたガスを速やかに電池外に放出させ、熱暴走反応を生じさせずに充電不能状態とすることが必要となる。   However, in the technique of Patent Document 1, although the expansion between the electrode group and the laminate film is suppressed by the adhesive layer, pressure is easily applied to the heat welded portion of the laminate film with the generation of gas, so that the heat welded portion is peeled off. And gas eruption cannot be suppressed. In addition, there is a problem that an internal short circuit between the positive and negative electrode plates is likely to occur in the vicinity of the edge portion of the laminate film from which the heat-welded portion has peeled off and the gas has been ejected, since the separator contracts. Furthermore, when the positive electrode terminal and the negative electrode terminal are led out from the same side of the laminate film, the positive and negative electrode terminals are likely to come into contact with the peeling of the heat-welded portion, so that an internal short circuit is likely to occur and a thermal runaway reaction is likely to occur. There is also a problem of becoming. Therefore, in order to maintain safety at the time of overcharging, it is necessary to quickly release the gas accumulated in the battery to the outside of the battery so that the battery cannot be charged without causing a thermal runaway reaction.

本発明は上記事案に鑑み、過充電時の安全性を確保することができるリチウム二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a lithium secondary battery that can ensure safety during overcharge.

上記課題を解決するために、本発明は、正極板及び負極板がセパレータを介して配置された電極群が4辺を有するラミネート外装フィルムで密閉されたリチウム二次電池において、前記電極群からの正極端子及び負極端子が前記ラミネート外装フィルムの対向する2辺の各1辺からそれぞれ導出されており、前記正極端子が導出された1辺以外の3辺に位置するセパレータ同士が前記正極板を包み込むように熱溶着されていることを特徴とする。   In order to solve the above problems, the present invention provides a lithium secondary battery in which an electrode group in which a positive electrode plate and a negative electrode plate are arranged via a separator is sealed with a laminate outer film having four sides. A positive electrode terminal and a negative electrode terminal are led out from each of the two opposite sides of the laminate outer film, and separators located on three sides other than the one side from which the positive electrode terminal is led wrap around the positive electrode plate. It is characterized by being thermally welded.

本発明では、正極端子及び負極端子がラミネート外装フィルムの対向する2辺の各1辺からそれぞれ導出されているため、過充電時に発生したガスが正極端子及び負極端子が導出された近傍から放出されても、正極端子及び負極端子間の内部短絡が抑制されると共に、正極端子が導出された辺以外の3辺に位置するセパレータ同士が正極板を包み込むように熱溶着されているため、正極端子及び負極端子がそれぞれ導出された辺以外の2辺からガスが放出されてセパレータが収縮しても、正極板及び負極板間の内部短絡が抑制されるので、熱暴走反応への移行を抑制することができリチウム二次電池の安全性を確保することができる。   In the present invention, since the positive electrode terminal and the negative electrode terminal are led out from each of the two opposite sides of the laminate outer film, the gas generated during overcharge is released from the vicinity where the positive electrode terminal and the negative electrode terminal are led out. However, since the internal short circuit between the positive electrode terminal and the negative electrode terminal is suppressed and the separators located on three sides other than the side from which the positive electrode terminal is derived are thermally welded so as to wrap the positive electrode plate, the positive electrode terminal Even if gas is released from two sides other than the side from which the negative electrode terminal is derived and the separator contracts, an internal short circuit between the positive electrode plate and the negative electrode plate is suppressed, so that the transition to a thermal runaway reaction is suppressed. The safety of the lithium secondary battery can be ensured.

この場合において、正極端子及び負極端子が、ラミネート外装フィルムから導出された幅を、該導出されたラミネート外装フィルムの辺の長さの1/2以上とすれば、過充電時に正極端子及び負極端子を通じて放熱し易くなるので、電池内部でのガス発生を抑制することができる。また、正極端子及び負極端子をラミネート外装フィルムの長辺からそれぞれ導出するようにしてもよい。更に、ラミネート外装フィルムの4辺のうち、正極端子及び負極端子がそれぞれ導出された辺以外のいずれか1辺をラミネート外装フィルム自体の折り返し部分としてもよい。また、ラミネート外装フィルムの4辺のうち、正極端子及び負極端子がそれぞれ導出された辺以外の2辺をラミネート外装フィルム自体が溶着された溶着部としてもよい。   In this case, if the width of the positive electrode terminal and the negative electrode terminal derived from the laminate outer film is not less than ½ of the length of the side of the derived laminate outer film, the positive electrode terminal and the negative electrode terminal during overcharge Since it becomes easy to radiate heat through, the gas generation inside the battery can be suppressed. Further, the positive electrode terminal and the negative electrode terminal may be led out from the long sides of the laminated exterior film, respectively. Furthermore, any one of the four sides of the laminate outer film other than the side from which the positive electrode terminal and the negative electrode terminal are derived may be used as a folded portion of the laminate outer film itself. Moreover, it is good also considering 2 sides other than the side where the positive electrode terminal and the negative electrode terminal were respectively derived | led-out among 4 sides of a laminate exterior film as the welding part to which the laminate exterior film itself was welded.

本発明によれば、過充電時でも、正極端子及び負極端子がラミネート外装フィルムの対向する2辺の各1辺からそれぞれ導出されているため、正極端子及び負極端子間の内部短絡が抑制されると共に、正極端子が導出された辺以外の3辺に位置するセパレータ同士が正極板を包み込むように熱溶着されているため、正極板及び負極板間の内部短絡が抑制されるので、熱暴走反応への移行を抑制することができリチウム二次電池の安全性を確保することができる、という効果を得ることができる。   According to the present invention, the internal short circuit between the positive electrode terminal and the negative electrode terminal is suppressed because the positive electrode terminal and the negative electrode terminal are led out from each of the two opposite sides of the laminate outer film even during overcharge. At the same time, since the separators located on three sides other than the side where the positive electrode terminal is derived are thermally welded so as to wrap the positive electrode plate, an internal short circuit between the positive electrode plate and the negative electrode plate is suppressed. The effect that it can suppress the transition to and can ensure the safety of the lithium secondary battery can be obtained.

以下、図面を参照して、本発明を適用可能なラミネートフィルムを外装体としたリチウムイオン二次電池の実施の形態について説明する。   Hereinafter, with reference to the drawings, an embodiment of a lithium ion secondary battery using a laminate film to which the present invention can be applied as an exterior body will be described.

(構成)
本実施形態のリチウムイオン二次電池1は、図1に示すように、外装体に4辺を有する矩形状のラミネートフィルム2が使用されている。ラミネートフィルム2内には、図示を省略した積層電極群が封入されている。図示を省略した積層電極群の上側のラミネートフィルム2は凸状に、下側のラミネートフィルム2は略平坦状にそれぞれ形成されている。ラミネートフィルム2の辺縁部の4辺は熱溶着で封止されており、リチウムイオン二次電池1は密閉構造とされている。ラミネートフィルム2の辺縁部の対向する2辺には、正極端子4及び負極端子5がそれぞれ先端部を互いに反対方向の外側に突出させて、ラミネートフィルム2の熱溶着部に挟み込まれている。
(Constitution)
As shown in FIG. 1, the lithium ion secondary battery 1 of the present embodiment uses a rectangular laminate film 2 having four sides on the exterior body. A laminated electrode group (not shown) is enclosed in the laminate film 2. The laminated film 2 on the upper side of the laminated electrode group (not shown) is formed in a convex shape, and the lower laminated film 2 is formed in a substantially flat shape. Four sides of the edge portion of the laminate film 2 are sealed by heat welding, and the lithium ion secondary battery 1 has a sealed structure. The positive electrode terminal 4 and the negative electrode terminal 5 are respectively sandwiched between the heat-welded portions of the laminate film 2 on the two opposite sides of the laminate film 2 with the tip portions protruding outward in opposite directions.

ラミネートフィルム2には、基材として厚さ40μmのアルミニウム(以下、Alと略記する。)箔が用いられている。Al箔は、一面に絶縁保護用の厚さ25μmのナイロン(以下、ONと略記する。)製フィルムが、他面に厚さ80μmの熱溶着樹脂のポリプロピレン(以下、PPと略記する。)製フィルムが積層されている。ラミネートフィルム2は、ON製フィルム、Al箔、PP製フィルムの順に接着剤を介して積層されプレス加工されており、3層構造を有している。   The laminate film 2 uses an aluminum (hereinafter abbreviated as “Al”) foil having a thickness of 40 μm as a base material. The Al foil has a 25 μm-thick nylon (hereinafter abbreviated as ON) film for insulation protection on one side, and a heat-welded resin polypropylene (hereinafter abbreviated as “PP”) 80 μm thick on the other side. Films are laminated. The laminate film 2 is laminated and pressed through an adhesive in the order of an ON film, an Al foil, and a PP film, and has a three-layer structure.

正極端子4には断面の厚さ0.1mm、幅が後述する所定幅のAl板が使用されており、Al板の外周にはシールテープとして厚さ100μm、幅10mmのPP製テープが貼り付けられている。負極端子5には断面の厚さ0.1mm、幅が後述する所定幅のニッケル(以下、Niと略記する。)板が使用されており、Ni板の外周にはシールテープとして厚さ100μm、幅10mmのPP製テープが貼り付けられている。正極端子4及び負極端子5の周囲には、熱溶着時に軟化したラミネートフィルム2のPP樹脂が隙間なく密着している。   The positive electrode terminal 4 uses an Al plate having a cross-sectional thickness of 0.1 mm and a predetermined width as described later. A PP tape having a thickness of 100 μm and a width of 10 mm is attached to the outer periphery of the Al plate as a seal tape. It has been. The negative electrode terminal 5 uses a nickel (hereinafter abbreviated as Ni) plate having a cross-sectional thickness of 0.1 mm and a width that will be described later. The outer periphery of the Ni plate has a thickness of 100 μm as a seal tape, A PP tape having a width of 10 mm is attached. Around the positive electrode terminal 4 and the negative electrode terminal 5, the PP resin of the laminate film 2 softened at the time of heat welding is in close contact.

図2に示すように、積層電極群10は、10枚の正極板14と11枚の負極板15とが、積層電極群10の上下両端が負極板15となるように交互に積層されている。正極板14は、厚さ40μmで矩形状のポリエチレン製フィルムの3辺が熱溶着で袋状に加工されたセパレータ12に1枚ずつ挿入されている。このため、各正極板14及び負極板15間にはセパレータ12が介在している。また、積層電極群10の対向する2辺のうち1辺には図示を省略した正極リード片が位置し、他辺には図示しない負極リード片が位置するように積層されている。正極リード片及び負極リード片はそれぞれ集合させて正極端子4及び負極端子5にそれぞれ超音波溶接で接続されている。   As shown in FIG. 2, in the laminated electrode group 10, ten positive electrode plates 14 and eleven negative electrode plates 15 are alternately laminated so that the upper and lower ends of the laminated electrode group 10 are the negative electrode plates 15. . The positive plates 14 are inserted one by one into a separator 12 having a thickness of 40 μm and a rectangular polyethylene film that is processed into a bag shape by heat welding. For this reason, the separator 12 is interposed between each positive electrode plate 14 and the negative electrode plate 15. Further, the stacked electrode group 10 is laminated so that a positive electrode lead piece (not shown) is located on one of the two opposite sides of the laminated electrode group 10 and a negative electrode lead piece (not shown) is located on the other side. The positive electrode lead piece and the negative electrode lead piece are respectively assembled and connected to the positive electrode terminal 4 and the negative electrode terminal 5 by ultrasonic welding.

積層電極群10を構成する正極板14は、正極集電体として厚さ20μmのアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質としてマンガン酸リチウムを含む正極合剤が塗着されている。正極合剤には、例えば、マンガン酸リチウム100重量部に対して、導電剤として鱗片状黒鉛の10重量部及び結着剤としてポリフッ化ビニリデン(以下、PVDFと略記する。)の5重量部が配合されている。正極合剤のアルミニウム箔への塗布時には、分散溶媒としてN−メチルピロリドン(以下、NMPと略記する。)が使用される。正極合剤塗布後、乾燥、プレス、裁断することで厚さ90μmで矩形状の正極板14が形成される。なお、正極集電体の1辺には、アルミニウム製で帯状の正極リード片が超音波溶接されている。   The positive electrode plate 14 constituting the laminated electrode group 10 has an aluminum foil having a thickness of 20 μm as a positive electrode current collector. A positive electrode mixture containing lithium manganate as a positive electrode active material is applied to both surfaces of the aluminum foil. In the positive electrode mixture, for example, 10 parts by weight of scaly graphite as a conductive agent and 5 parts by weight of polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a conductive agent with respect to 100 parts by weight of lithium manganate. It is blended. When the positive electrode mixture is applied to the aluminum foil, N-methylpyrrolidone (hereinafter abbreviated as NMP) is used as a dispersion solvent. After application of the positive electrode mixture, drying, pressing and cutting form a rectangular positive electrode plate 14 having a thickness of 90 μm. Note that, on one side of the positive electrode current collector, a strip-shaped positive electrode lead piece made of aluminum is ultrasonically welded.

一方、負極板15は、負極集電体として厚さ10μmの圧延銅箔を有している。圧延銅箔の両面には、負極活物質として非晶質炭素粉末を含む負極合剤が塗着されている。負極合剤には、例えば、非晶質炭素粉末90重量部に対して、結着剤としてPVDFの10重量部が配合されている。負極合剤の圧延銅箔への塗布時には分散溶媒としてNMPが使用される。負極合剤塗布後、乾燥、プレス、裁断することで厚さ70μmで矩形状の負極板15が形成される。なお、負極集電体の一辺には、銅製で帯状の負極リード片が超音波溶接されている。   On the other hand, the negative electrode plate 15 has a rolled copper foil having a thickness of 10 μm as a negative electrode current collector. A negative electrode mixture containing amorphous carbon powder as a negative electrode active material is coated on both surfaces of the rolled copper foil. In the negative electrode mixture, for example, 10 parts by weight of PVDF as a binder is blended with 90 parts by weight of amorphous carbon powder. NMP is used as a dispersion solvent when the negative electrode mixture is applied to the rolled copper foil. After applying the negative electrode mixture, the negative electrode plate 15 having a thickness of 70 μm is formed by drying, pressing and cutting. Note that a strip-like negative electrode lead piece made of copper is ultrasonically welded to one side of the negative electrode current collector.

(電池組立)
積層電極群10の形状に合わせて凹部が形成されたシリコンゴム製の受け台に、ラミネートフィルム2、積層電極群10をこの順に受け台の凹部に合わせて載置した。凹部のラミネートフィルム2に非水電解液15mlを注液後、別の1枚のラミネートフィルム2を被せて2枚のラミネートフィルム2の辺縁部同士を重ね合わせた。このとき、正極端子4及び負極端子5の先端部がラミネートフィルム2の対向する2辺の辺縁部からそれぞれ反対方向の外側に突出するようにした。積層電極群10に被せたラミネートフィルム2の上側にPP製フィルムの溶融温度に加熱した金属板を減圧雰囲気下で押し当てることでラミネートフィルム2の辺縁部を熱溶着させて電池重量約80g、容量4Ahのリチウムイオン二次電池1の組立を完成させた。非水電解液には、例えば、エチレンカーボネートとジメチルカーボネートとの混合溶媒にリチウム塩(電解質)として6フッ化リン酸リチウム(LiPF)を1モル/リットル(1M)溶解したものを用いることができる。
(Battery assembly)
The laminated film 2 and the laminated electrode group 10 were placed in this order in accordance with the concave portions of the cradle on a silicon rubber cradle having concave portions formed in accordance with the shape of the laminated electrode group 10. After injecting 15 ml of the non-aqueous electrolyte into the laminate film 2 in the recess, the other laminate film 2 was covered and the edge portions of the two laminate films 2 were overlapped. At this time, the tip portions of the positive electrode terminal 4 and the negative electrode terminal 5 were projected from the opposite edge portions of the laminate film 2 to the outside in opposite directions. A metal plate heated to the melting temperature of the PP film is pressed on the upper side of the laminated film 2 placed on the laminated electrode group 10 in a reduced-pressure atmosphere to thermally weld the edge of the laminated film 2 to a battery weight of about 80 g, The assembly of the lithium ion secondary battery 1 having a capacity of 4 Ah was completed. As the non-aqueous electrolyte, for example, a solution obtained by dissolving 1 mol / liter (1M) of lithium hexafluorophosphate (LiPF 6 ) as a lithium salt (electrolyte) in a mixed solvent of ethylene carbonate and dimethyl carbonate is used. it can.

以下、本実施形態に従い作製したリチウムイオン二次電池1の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。各実施例では図3に、各比較例では図4にそれぞれ示すように、ラミネートフィルム2を、縦方向の長さL1、横方向の長さL2の外寸とし、正極端子4及び負極端子5のラミネートフィルム2の辺に沿う幅W1として説明する。   Hereinafter, examples of the lithium ion secondary battery 1 manufactured according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison. As shown in FIG. 3 in each example and in FIG. 4 in each comparative example, the laminate film 2 has outer dimensions of a length L1 in the vertical direction and a length L2 in the horizontal direction. The width W1 along the side of the laminate film 2 will be described.

(実施例1)
下表1に示すように、実施例1では、ラミネートフィルム2の外寸を、縦(L1)80mm、横(L2)100mmとし、正極端子4及び負極端子5の幅(W1)をいずれも20mmとした。正極端子4及び負極端子5をラミネートフィルム2の対向する2辺にそれぞれ挟み込み、ラミネートフィルム2の4辺を熱溶着した。このため、実施例1のリチウムイオン二次電池1では、正極端子4及び負極端子5の挟み込まれた辺以外の2辺も熱溶着されている(図3参照)。熱溶着されたラミネートフィルム2の熱溶着部3は、熱溶着幅5mmに設定されている。
Example 1
As shown in Table 1 below, in Example 1, the outer dimensions of the laminate film 2 are 80 mm in length (L1) and 100 mm in width (L2), and the width (W1) of the positive electrode terminal 4 and the negative electrode terminal 5 are both 20 mm. It was. The positive electrode terminal 4 and the negative electrode terminal 5 were respectively sandwiched between two opposing sides of the laminate film 2, and the four sides of the laminate film 2 were thermally welded. For this reason, in the lithium ion secondary battery 1 of Example 1, two sides other than the side where the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched are also thermally welded (see FIG. 3). The heat welding part 3 of the heat-laminated laminate film 2 is set to a heat welding width of 5 mm.

Figure 2006066311
Figure 2006066311

(実施例2〜実施例3)
表1に示すように、実施例2〜実施例3では、正極端子4及び負極端子5の幅W1を変える以外は実施例1と同様にした。幅W1は、実施例2では40mm、実施例3では60mmとした。
(Example 2 to Example 3)
As shown in Table 1, Example 2 to Example 3 were the same as Example 1 except that the width W1 of the positive electrode terminal 4 and the negative electrode terminal 5 was changed. The width W1 was 40 mm in Example 2 and 60 mm in Example 3.

(実施例4)
表1に示すように、実施例4では、ラミネートフィルム2の外寸を縦(L1)100mm、横(L2)80mmとする以外は実施例3と同様にした。
Example 4
As shown in Table 1, Example 4 was the same as Example 3 except that the outer dimensions of the laminate film 2 were 100 mm in length (L1) and 80 mm in width (L2).

(実施例5)
表1に示すように、実施例5では、外寸が縦200mm、横80mmのラミネートフィルム2を使用し、縦方向に折り返して3辺を熱溶着する以外は実施例3と同様にした。このため、実施例5のリチウムイオン二次電池1では、正極端子4及び負極端子5の挟み込まれた2辺以外の2辺のうち1辺がラミネートフィルム2の折り返し部分となり、外寸が縦(L1)100mm、横(L2)80mmとなる。
(Example 5)
As shown in Table 1, Example 5 was the same as Example 3 except that a laminate film 2 having an outer dimension of 200 mm in length and 80 mm in width was used and folded in the vertical direction to thermally weld three sides. For this reason, in the lithium ion secondary battery 1 of Example 5, one side of the two sides other than the two sides sandwiched between the positive electrode terminal 4 and the negative electrode terminal 5 is a folded portion of the laminate film 2, and the outer dimension is vertical ( L1) 100 mm and horizontal (L2) 80 mm.

(比較例1)
表1に示すように、比較例1では、正極端子4及び負極端子5をラミネートフィルム2の同一辺に挟み込ませる以外は実施例1と同様にしてリチウムイオン二次電池を作製した(図4参照)。
(Comparative Example 1)
As shown in Table 1, in Comparative Example 1, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode terminal 4 and the negative electrode terminal 5 were sandwiched between the same sides of the laminate film 2 (see FIG. 4). ).

(比較例2)
表1に示すように、比較例2では、ラミネートフィルム2の外寸を縦(L1)100mm、横(L2)80mmとする以外は比較例1と同様にした。
(Comparative Example 2)
As shown in Table 1, Comparative Example 2 was the same as Comparative Example 1 except that the outer dimensions of the laminate film 2 were 100 mm in length (L1) and 80 mm in width (L2).

(試験)
作製した実施例及び比較例の電池の各20個について、過充電試験を実施し、電池中央部の最高温度、電池の現象及び発火発生率を測定した。過充電試験は、電流値4A(10C相当)とし、満充電状態から破裂発火等の現象が生じて通電不能になるまで、又は、何の現象も生じない場合は過充電率200%(12分)まで実施した。下表2に過充電試験の結果を示す。
(test)
An overcharge test was carried out for each of the 20 batteries of the produced examples and comparative examples, and the maximum temperature at the center of the battery, the phenomenon of the battery and the firing rate were measured. In the overcharge test, the current value is 4A (equivalent to 10C), and the overcharge rate is 200% (12 minutes) until a phenomenon such as rupture and ignition occurs from the fully charged state and the current cannot be supplied. ). Table 2 below shows the results of the overcharge test.

Figure 2006066311
Figure 2006066311

表2に示すように、正極端子4及び負極端子5がラミネートフィルム2の同一辺に挟み込まれた比較例1及び比較例2の電池では、それぞれ10%及び15%の割合の電池が激しく白煙を噴出した後に発火に到り、最高温度は測定不能であった。これに対し、正極端子4及び負極端子5がラミネートフィルム2の対向する2辺にそれぞれ挟み込まれた実施例1〜実施例5の電池では、穏やかに白煙が発生したのみで発火に到るものは認められなかった。また、正極端子4及び負極端子5の幅W1が長さL1の1/2未満の実施例1の電池では、最高温度が160°Cであるのと比較して、幅W1を長さL1の1/2以上とした実施例2及び実施例3の電池では、最高温度も135〜145°Cと低く抑えられることが判った。更に、正極端子4及び負極端子5が挟み込まれた2辺をラミネートフィルム2の長辺とした(L1>L2)実施例4及び実施例5の電池では、最高温度130°Cと更に低く抑えられることが判った。また、正極端子4及び負極端子5が挟み込まれた辺以外の2辺のうち1辺をラミネートフィルム2の折り返し部分とした実施例5の電池でも、最高温度が130°Cに抑えられることが判った。   As shown in Table 2, in the batteries of Comparative Example 1 and Comparative Example 2 in which the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched between the same sides of the laminate film 2, the batteries of 10% and 15% respectively have intense white smoke. After erupting, ignition occurred and the maximum temperature could not be measured. On the other hand, in the batteries of Examples 1 to 5 in which the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched between two opposing sides of the laminate film 2, only white smoke is gently generated and ignition occurs. Was not recognized. Moreover, in the battery of Example 1 in which the width W1 of the positive electrode terminal 4 and the negative electrode terminal 5 is less than ½ of the length L1, the width W1 is set to the length L1 as compared with the maximum temperature of 160 ° C. It was found that in the batteries of Example 2 and Example 3 that were ½ or more, the maximum temperature could be kept low at 135 to 145 ° C. Furthermore, in the batteries of Example 4 and Example 5 in which the two sides between which the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched are the long sides of the laminate film 2 (L1> L2), the maximum temperature of 130 ° C. can be further reduced. I found out. Further, it was found that the maximum temperature can be suppressed to 130 ° C. even in the battery of Example 5 in which one of the two sides other than the side where the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched is the folded portion of the laminate film 2. It was.

(作用等)
次に、本実施形態のリチウムイオン二次電池1の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 1 of the present embodiment will be described.

従来のラミネートフィルムを外装体としたリチウムイオン二次電池では、過充電時に電池が発熱して非水電解液の気化及び分解ガスの発生により電池の内圧が上昇すると、ラミネートフィルムの熱溶着部が剥離し、発生したガスが電池外部に噴出する。この発熱及びガス噴出によりセパレータが収縮して正極板と負極板とが電池内部で短絡すると、短絡電流による急激な発熱が起こり、活物質の熱暴走反応に移行して激しい反応を引き起こす。過充電時の安全性を確保するために、本発明者らは、鋭意検討した結果、ガスを噴出したラミネートフィルムの熱溶着部近傍で正極板及び負極板間の内部短絡が生じることを見出した。また、正負極端子が挟み込まれた周辺では、正負極端子を通じて外部に放熱されるため、電池が発熱した際の温度上昇が抑えられ、ラミネートフィルムの熱溶着部の剥離強度が強い反面、正極端子及び負極端子が同一辺に挟み込まれている(正極端子及び負極端子の取り出し方向が同一方向である)場合に、正極端子及び負極端子間の内部短絡から熱暴走反応に移行し易いことを見出した。従って、過充電時の安全性の確保には、電池内に蓄積されたガスを速やかに電池外に放出させ、熱暴走反応を生じさせずに充電不能とすることが必要となる。   In a lithium ion secondary battery using a conventional laminate film as an outer package, when the battery generates heat during overcharge and the internal pressure of the battery rises due to vaporization of the non-aqueous electrolyte and generation of decomposition gas, the heat welded portion of the laminate film becomes Peeling occurs and the generated gas is ejected outside the battery. When the separator contracts due to this heat generation and gas ejection and the positive electrode plate and the negative electrode plate are short-circuited inside the battery, a rapid heat generation occurs due to the short-circuit current, and the active material shifts to a thermal runaway reaction, causing a severe reaction. In order to ensure the safety at the time of overcharge, the present inventors have intensively studied and found that an internal short circuit occurs between the positive electrode plate and the negative electrode plate in the vicinity of the heat-welded portion of the laminate film from which gas has been ejected. . Also, in the vicinity where the positive and negative terminals are sandwiched, heat is radiated to the outside through the positive and negative terminals, so the temperature rise when the battery generates heat is suppressed, and the peel strength of the heat-welded part of the laminate film is strong, but the positive terminal And when the negative electrode terminal is sandwiched between the same sides (the extraction direction of the positive electrode terminal and the negative electrode terminal is the same direction), it has been found that it is easy to shift from an internal short circuit between the positive electrode terminal and the negative electrode terminal to a thermal runaway reaction. . Therefore, in order to ensure safety during overcharge, it is necessary to quickly release the gas accumulated in the battery to the outside of the battery, thereby making it impossible to charge without causing a thermal runaway reaction.

本実施形態のリチウムイオン二次電池1では、正極端子4及び負極端子5がラミネートフィルム2の対向する2辺の各1辺にそれぞれ挟み込まれている。このため、過充電時に発生したガスが正極端子4及び負極端子5の挟み込まれた近傍から放出されても、正極端子及び負極端子間の内部短絡を防止することができる。また、セパレータ12が正極板14の正極端子4に接続された辺以外の3辺で正極板14を包み込むように袋状に熱溶着されている。このため、過充電時に発生したガスが正極端子4及び負極端子5がそれぞれ挟み込まれた辺以外の2辺から放出されても、正極板14及び負極板15間の内部短絡を抑制することができる。従って、正負極端子間及び正負極板間の内部短絡が抑制されるので、熱暴走反応への移行を抑制してガスを穏やかに放出させることができ、リチウムイオン二次電池1の安全性を確保することができる。   In the lithium ion secondary battery 1 of the present embodiment, the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched between each of the two opposite sides of the laminate film 2. For this reason, even if the gas generated at the time of overcharge is released from the vicinity where the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched, an internal short circuit between the positive electrode terminal and the negative electrode terminal can be prevented. The separator 12 is heat-sealed in a bag shape so as to wrap the positive electrode plate 14 at three sides other than the side connected to the positive electrode terminal 4 of the positive electrode plate 14. For this reason, even if the gas generated during overcharge is released from two sides other than the side where the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched, internal short circuit between the positive electrode plate 14 and the negative electrode plate 15 can be suppressed. . Therefore, since internal short circuit between the positive and negative electrode terminals and between the positive and negative electrode plates is suppressed, the transition to the thermal runaway reaction can be suppressed and the gas can be released gently, and the safety of the lithium ion secondary battery 1 can be improved. Can be secured.

また、本実施形態のリチウムイオン二次電池1では、ラミネートフィルム2の対向する2辺に互いに反対方向に挟み込まれた正極端子4及び負極端子5を通じて放熱される。このため、正極端子4及び負極端子5近傍では温度上昇が抑制されるので、ガス放出及び内部短絡を正極端子4及び負極端子5がそれぞれ挟み込まれたラミネートフィルム2の対向する2辺以外の2辺側で発生させるように制限することができる。更に、正極板14及び負極板15間の内部短絡が正極端子4及び負極端子5近傍で生じても熱暴走反応への移行を抑制することができる。   Further, in the lithium ion secondary battery 1 of the present embodiment, heat is radiated through the positive electrode terminal 4 and the negative electrode terminal 5 that are sandwiched in opposite directions by two opposite sides of the laminate film 2. For this reason, since the temperature rise is suppressed in the vicinity of the positive electrode terminal 4 and the negative electrode terminal 5, two sides other than the two opposite sides of the laminate film 2 in which the positive electrode terminal 4 and the negative electrode terminal 5 are sandwiched between the gas release and the internal short circuit, respectively. Can be limited to occur on the side. Furthermore, even if an internal short circuit between the positive electrode plate 14 and the negative electrode plate 15 occurs in the vicinity of the positive electrode terminal 4 and the negative electrode terminal 5, the transition to the thermal runaway reaction can be suppressed.

更に、本実施形態のリチウムイオン二次電池1では、正極端子4及び負極端子5が、ラミネートフィルム2に挟み込まれた幅W1を、挟み込まれたラミネートフィルム2の辺の長さL1の1/2以上とすることで、過充電時の発熱が正極端子4及び負極端子5を通じて放熱し易くなるため、電池中央部の最高温度を低く抑えることができる(実施例2及び実施例3参照)。また、長方形状のラミネートフィルム2を使用したときに、正極端子4及び負極端子5をラミネートフィルム2の長辺にそれぞれ挟み込むことで、幅W1をより大きく設定することができるため、正極端子4及び負極端子5を通じた放熱が更に容易となり、電池中央部の最高温度を更に低く抑えることができる(実施例4参照)。更に、正極端子4及び負極端子5の幅W1を大きくすることで正負極端子の断面積が大きくなるので、大電流通電を可能とすることができる。   Furthermore, in the lithium ion secondary battery 1 of the present embodiment, the positive electrode terminal 4 and the negative electrode terminal 5 have a width W1 sandwiched between the laminate films 2 and ½ of the side length L1 of the sandwich film 2 sandwiched. By setting it as the above, since the heat_generation | fever at the time of overcharge becomes easy to thermally radiate through the positive electrode terminal 4 and the negative electrode terminal 5, the maximum temperature of a battery center part can be restrained low (refer Example 2 and Example 3). Further, when the rectangular laminate film 2 is used, the width W1 can be set larger by sandwiching the positive electrode terminal 4 and the negative electrode terminal 5 in the long sides of the laminate film 2, respectively. Heat dissipation through the negative electrode terminal 5 is further facilitated, and the maximum temperature at the center of the battery can be further reduced (see Example 4). Furthermore, since the cross-sectional area of the positive and negative electrode terminals is increased by increasing the width W1 of the positive electrode terminal 4 and the negative electrode terminal 5, a large current can be applied.

また更に、本実施形態のリチウムイオン二次電池1では、ラミネートフィルム2を半分に折り返して積層電極群10を封入することで正極端子4及び負極端子5がそれぞれ挟み込まれた辺以外の2辺のうち1辺をラミネートフィルム2の折り返し部分とすることができる。このため、ガス放出及び内部短絡を折り返し部分と対向する辺側で発生させるように制限することができる(実施例5参照)ので、熱暴走反応への移行を抑制することができ、リチウムイオン二次電池1の安全性を確保することができる。   Furthermore, in the lithium ion secondary battery 1 according to the present embodiment, the laminate film 2 is folded in half and the laminated electrode group 10 is enclosed, so that the positive electrode terminal 4 and the negative electrode terminal 5 are disposed on two sides other than the sides sandwiched respectively. One side can be a folded portion of the laminate film 2. For this reason, since it can restrict | limit so that gas discharge | release and an internal short circuit may generate | occur | produce on the side opposite to a folding | turning part (refer Example 5), the transition to a thermal runaway reaction can be suppressed, lithium ion 2 The safety of the secondary battery 1 can be ensured.

なお、本実施形態では、ラミネートフィルム2に、ON製フィルム/Al箔/PP製フィルムの3層で構成され、各構成層の厚さが、ON=25μm、Al=40μm、PP=80μmのものを例示したが、本発明はラミネートフィルム2を構成する材料や各構成層の厚さに特に制限されるものではない。通常、絶縁保護層、基材層及び熱溶着層の3層であればよく、これらの層間に他の構成層を有していてもよい。   In this embodiment, the laminate film 2 is composed of three layers of ON film / Al foil / PP film, and the thickness of each component layer is ON = 25 μm, Al = 40 μm, PP = 80 μm. However, the present invention is not particularly limited to the material constituting the laminate film 2 and the thickness of each constituent layer. Usually, there are three layers of an insulating protective layer, a base material layer, and a heat welding layer, and other constituent layers may be provided between these layers.

また、本実施形態では、正極端子4及び負極端子5がラミネートフィルム2の対向する2辺にそれぞれ挟み込まれている例を示したが、本発明はこれに限定されるものではなく、ラミネートフィルム2の対向する2辺からそれぞれ導出されていればよい。更に、本実施形態では、長方形状のラミネートフィルム2を例示したが、本発明はこれに限定されるものではなく、例えば、正方形状、菱形状としてもよい。   Moreover, in this embodiment, although the example in which the positive electrode terminal 4 and the negative electrode terminal 5 were each pinched | interposed into two opposite sides of the laminate film 2 was shown, this invention is not limited to this, The laminate film 2 What is necessary is just to be derived from two opposing sides. Further, in the present embodiment, the rectangular laminate film 2 is exemplified, but the present invention is not limited to this, and may be, for example, a square shape or a rhombus shape.

更に、本実施形態では、セパレータ12の材質にポリエチレンを使用する例を示したが、本発明は、セパレータの材質や厚さ等に特に制限されるものではない。例えば、ポリプロピレン等のポリオレフィン樹脂のフィルムを使用してもよく、複数の材質のフィルムを積層して使用してもよい。   Furthermore, in this embodiment, although the example which uses polyethylene for the material of the separator 12 was shown, this invention is not restrict | limited in particular to the material, thickness, etc. of a separator. For example, a film of polyolefin resin such as polypropylene may be used, or a plurality of films may be laminated and used.

また更に、本実施形態では、短冊状の正極板14及び負極板15を交互に積層して積層電極群10を作製する例を示したが、本発明はこれに限定されるものではなく、例えば、帯状に形成した正極板14及び負極板15を扁平状に捲回して作製してもよい。   Furthermore, in the present embodiment, an example in which the laminated positive electrode plate 14 and the negative electrode plate 15 are alternately laminated to produce the laminated electrode group 10 is shown, but the present invention is not limited to this, for example, Alternatively, the positive electrode plate 14 and the negative electrode plate 15 formed in a belt shape may be wound into a flat shape.

更にまた、本実施形態では、正極活物質にマンガン酸リチウムを、負極活物質に非晶質炭素を使用する例を示したが、本発明は正極活物質及び負極活物質に制限されるものではない。通常リチウムイオン二次電池に使用される正負極の活物質を使用してもよい。また、本実施形態では、非水電解液にLiPFを電解質とし、有機溶媒としてエチレンカーボネートとジメチルカーボネートとの混合溶媒を用いる例を示したが、本発明は、使用される電解質及び有機溶媒に特に制限されるものではない。更に、正極端子4にAl板、負極端子5にNi板を用いる例を示したが、本発明はこれらの材料に限定されるものではなく、一般に電池の端子として使用される材料を用いることができる。 Furthermore, in the present embodiment, an example in which lithium manganate is used as the positive electrode active material and amorphous carbon is used as the negative electrode active material is shown, but the present invention is not limited to the positive electrode active material and the negative electrode active material. Absent. You may use the active material of the positive / negative electrode normally used for a lithium ion secondary battery. In this embodiment, LiPF 6 is used as the electrolyte for the non-aqueous electrolyte, and an example of using a mixed solvent of ethylene carbonate and dimethyl carbonate as the organic solvent is shown. However, the present invention is not limited to the electrolyte and organic solvent used. There is no particular limitation. Furthermore, although the example which uses an Al plate for the positive electrode terminal 4 and the Ni plate for the negative electrode terminal 5 is shown, the present invention is not limited to these materials, and a material generally used as a battery terminal may be used. it can.

本発明は過充電時の安全性を確保することができるリチウム二次電池を提供するため、リチウム二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention contributes to the manufacture and sale of lithium secondary batteries in order to provide a lithium secondary battery that can ensure safety during overcharging, it has industrial applicability.

本発明を適用可能な実施形態の外装体にラミネートフィルムを使用したリチウムイオン二次電池の斜視図である。It is a perspective view of the lithium ion secondary battery which uses the laminate film for the exterior body of embodiment which can apply this invention. 実施形態のリチウムイオン二次電池の電極群を示す断面図である。It is sectional drawing which shows the electrode group of the lithium ion secondary battery of embodiment. 実施形態に従い作製した実施例のリチウムイオン二次電池について外寸及び正負極端子の幅を示す平面図である。It is a top view which shows the external dimension and the width | variety of a positive / negative electrode terminal about the lithium ion secondary battery of the Example produced according to embodiment. 比較例のリチウムイオン二次電池について外寸及び正負極端子の幅を示す平面図である。It is a top view which shows the external dimension about the lithium ion secondary battery of a comparative example, and the width | variety of a positive / negative terminal.

符号の説明Explanation of symbols

1 リチウムイオン二次電池(リチウム二次電池)
2 ラミネートフィルム(ラミネート外装フィルム)
4 正極端子
5 負極端子
10 積層電極群
12 セパレータ
14 正極板
15 負極板
1 Lithium ion secondary battery (lithium secondary battery)
2 Laminate film (laminate film)
4 Positive Terminal 5 Negative Terminal 10 Multilayer Electrode Group 12 Separator 14 Positive Plate 15 Negative Plate

Claims (5)

正極板及び負極板がセパレータを介して配置された電極群が4辺を有するラミネート外装フィルムで密閉されたリチウム二次電池において、前記電極群からの正極端子及び負極端子が前記ラミネート外装フィルムの対向する2辺の各1辺からそれぞれ導出されており、前記正極端子が導出された辺以外の3辺に位置するセパレータ同士が前記正極板を包み込むように熱溶着されていることを特徴とするリチウム二次電池。   In a lithium secondary battery in which an electrode group in which a positive electrode plate and a negative electrode plate are arranged via a separator is sealed with a laminate outer film having four sides, the positive electrode terminal and the negative electrode terminal from the electrode group are opposed to the laminate outer film. The lithium is derived from each of the two sides, and the separators located on three sides other than the side from which the positive electrode terminal is derived are heat-welded so as to enclose the positive electrode plate. Secondary battery. 前記正極端子及び負極端子は、前記ラミネート外装フィルムから導出された幅が、該導出されたラミネート外装フィルムの辺の長さの1/2以上であることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium according to claim 1, wherein the positive electrode terminal and the negative electrode terminal have a width derived from the laminate exterior film that is not less than ½ of a side length of the derived laminate exterior film. Secondary battery. 前記正極端子及び負極端子は、前記ラミネート外装フィルムの長辺からそれぞれ導出されていることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein the positive electrode terminal and the negative electrode terminal are respectively led out from long sides of the laminated exterior film. 前記ラミネート外装フィルムの4辺のうち、前記正極端子及び負極端子がそれぞれ導出された辺以外のいずれか1辺は、前記ラミネート外装フィルム自体の折り返し部分であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のリチウム二次電池。   The one side of the four sides of the laminate outer film other than the side from which the positive electrode terminal and the negative electrode terminal are respectively derived is a folded portion of the laminate outer film itself. Item 4. The lithium secondary battery according to any one of items 3. 前記ラミネート外装フィルムの4辺のうち、前記正極端子及び負極端子がそれぞれ導出された辺以外の2辺は、前記ラミネート外装フィルム自体が溶着された溶着部であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のリチウム二次電池。   The two sides other than the sides from which the positive electrode terminal and the negative electrode terminal are respectively led out of the four sides of the laminate exterior film are welded portions to which the laminate exterior film itself is welded. The lithium secondary battery according to claim 1.
JP2004249665A 2004-08-30 2004-08-30 Lithium secondary battery Pending JP2006066311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249665A JP2006066311A (en) 2004-08-30 2004-08-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249665A JP2006066311A (en) 2004-08-30 2004-08-30 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2006066311A true JP2006066311A (en) 2006-03-09

Family

ID=36112599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249665A Pending JP2006066311A (en) 2004-08-30 2004-08-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2006066311A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335307A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
JP2008027741A (en) * 2006-07-21 2008-02-07 Matsushita Battery Industrial Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2008171579A (en) * 2007-01-09 2008-07-24 Hitachi Maxell Ltd Lithium-ion secondary battery, and battery pack of lithium-ion secondary battery
JP2009533834A (en) * 2006-04-17 2009-09-17 エルジー・ケム・リミテッド Pouch type battery
JP2010080325A (en) * 2008-09-26 2010-04-08 Asahi Kasei Corp Nonaqueous lithium type storage element and method of manufacturing the same
JP2012516009A (en) * 2009-01-26 2012-07-12 リ−テック・バッテリー・ゲーエムベーハー Electrochemical energy storage cell
JP2013120659A (en) * 2011-12-06 2013-06-17 Denso Corp Laminate type nonaqueous secondary battery
JP2015065178A (en) * 2014-12-02 2015-04-09 日本電気株式会社 Method for manufacturing film exterior battery
WO2016052294A1 (en) * 2014-09-30 2016-04-07 大日本印刷株式会社 Packaging material for batteries
JP2016072159A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Battery-packaging material
JP2018170163A (en) * 2017-03-30 2018-11-01 Tdk株式会社 Lithium ion secondary battery
JP2020017398A (en) * 2018-07-25 2020-01-30 積水化学工業株式会社 Power storage element
JP2022100328A (en) * 2020-09-28 2022-07-05 大日本印刷株式会社 Battery packaging material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501343B2 (en) 2006-04-17 2013-08-06 Lg Chem, Ltd. Pouch-type battery
JP2009533834A (en) * 2006-04-17 2009-09-17 エルジー・ケム・リミテッド Pouch type battery
JP2007335307A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
JP2008027741A (en) * 2006-07-21 2008-02-07 Matsushita Battery Industrial Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery
JP2008171579A (en) * 2007-01-09 2008-07-24 Hitachi Maxell Ltd Lithium-ion secondary battery, and battery pack of lithium-ion secondary battery
JP2010080325A (en) * 2008-09-26 2010-04-08 Asahi Kasei Corp Nonaqueous lithium type storage element and method of manufacturing the same
JP2012516009A (en) * 2009-01-26 2012-07-12 リ−テック・バッテリー・ゲーエムベーハー Electrochemical energy storage cell
JP2013120659A (en) * 2011-12-06 2013-06-17 Denso Corp Laminate type nonaqueous secondary battery
WO2016052294A1 (en) * 2014-09-30 2016-04-07 大日本印刷株式会社 Packaging material for batteries
JP2016072159A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Battery-packaging material
US11476524B2 (en) 2014-09-30 2022-10-18 Dai Nippon Printing Co., Ltd. Packaging material for batteries
JP2015065178A (en) * 2014-12-02 2015-04-09 日本電気株式会社 Method for manufacturing film exterior battery
JP2018170163A (en) * 2017-03-30 2018-11-01 Tdk株式会社 Lithium ion secondary battery
JP2020017398A (en) * 2018-07-25 2020-01-30 積水化学工業株式会社 Power storage element
JP2022100328A (en) * 2020-09-28 2022-07-05 大日本印刷株式会社 Battery packaging material

Similar Documents

Publication Publication Date Title
JP4920111B2 (en) Pouch type secondary battery
JP5732687B2 (en) Pouch type case and battery pack including the same
JP6292583B2 (en) Secondary battery with improved energy density
JP5541514B2 (en) Multilayer secondary battery
JP2003242952A (en) Secondary battery
US20120028100A1 (en) Prismatic secondary battery
KR101734703B1 (en) Battery Cell
KR101984265B1 (en) Pouch type secondary battery and method of fabricating the same
KR101766047B1 (en) Battery Cell
JP2006066311A (en) Lithium secondary battery
KR101779156B1 (en) Pouch type secondary battery and method of fabricating the same
US20130280576A1 (en) Battery
JP6634671B2 (en) Secondary battery, electric vehicle, power storage system, and manufacturing method
JP4925427B2 (en) Laminated non-aqueous secondary battery
WO2015002094A1 (en) Cell
JP7038946B2 (en) Battery pack and this manufacturing method
JP4172328B2 (en) Battery and battery pack
JP2019016543A (en) Manufacturing method of secondary battery and secondary battery
JP2008059966A (en) Nonaqueous secondary battery
JP2005251548A (en) Square shape secondary battery
JP2002305032A (en) Battery
JP2004164905A (en) Film-armored battery and battery pack
JPH1167165A (en) Polymer electrolyte battery
KR101458259B1 (en) Pouch type secondary battery and method for manufacturing the same
JP2008059766A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110