JP2008130370A - Secondary battery for large-current discharge - Google Patents

Secondary battery for large-current discharge Download PDF

Info

Publication number
JP2008130370A
JP2008130370A JP2006314351A JP2006314351A JP2008130370A JP 2008130370 A JP2008130370 A JP 2008130370A JP 2006314351 A JP2006314351 A JP 2006314351A JP 2006314351 A JP2006314351 A JP 2006314351A JP 2008130370 A JP2008130370 A JP 2008130370A
Authority
JP
Japan
Prior art keywords
film
battery
secondary battery
films
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006314351A
Other languages
Japanese (ja)
Other versions
JP2008130370A5 (en
Inventor
Mikio Oguma
幹男 小熊
Takenori Ishizu
竹規 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2006314351A priority Critical patent/JP2008130370A/en
Publication of JP2008130370A publication Critical patent/JP2008130370A/en
Publication of JP2008130370A5 publication Critical patent/JP2008130370A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery for large-current discharge capable of exerting a high output even at large-current discharge and securing safety at abnormalities of the battery. <P>SOLUTION: For a lithium-ion secondary battery 20, two sheets of films 1, 1' having polypropylene (PP) films of a melting layer are used for a battery container. An electrode group 4 is sealed between the films 1, 1'. The films 1, 1' are provided with a melting part 9 with the PP films thermally melted with each other. At two opposite sides of the films 1, 1', a cathode terminal 2 and an anode terminal 3 each are arranged. At one side other than the two with the cathode terminal 2 and the anode terminal 3 arranged, respectively, a resin film 11 is pinched in and thermally melted. As the resin film 11, a PE film with a softening temperature lower than that of the PP film of the melting layer is used. At abnormalities of the battery, the resin film 11 is softened earlier than the PP films of the melting layer to generate a gap at the melting part 9. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は大電流放電用二次電池に係り、特に、熱溶着性フィルム同士が熱溶着された溶着部を有するフィルム状密閉容器に電極群が収容された大電流放電用二次電池に関する。   The present invention relates to a secondary battery for large current discharge, and more particularly to a secondary battery for large current discharge in which an electrode group is housed in a film-like sealed container having a welded portion in which heat weldable films are thermally welded to each other.

従来、電気自動車やハイブリッド車などの大電流充放電用電源には、複数個の二次電池を直列ないし直並列に接続した組電池が用いられていた。一般に、このような大電流充放電用電源では、例えば、40〜100個の円筒型二次電池が使用されている。   Conventionally, an assembled battery in which a plurality of secondary batteries are connected in series or in series-parallel has been used for a large-current charge / discharge power source such as an electric vehicle or a hybrid vehicle. Generally, in such a large current charging / discharging power source, for example, 40 to 100 cylindrical secondary batteries are used.

円筒型二次電池に用いられる円筒型容器には、コスト低減のため、鉄系材料を用いるのが一般的である。ところが、鉄は比重が大きいため、電池の重量あたりのエネルギー効率を上げる(軽量化を図る)上で大きな制約となっていた。この問題は、射出成形の樹脂製容器を用いた小型の密閉式鉛電池においても共通しており、重量がさほど軽くならない上に、肉厚の関係で体積あたりのエネルギー効率を上げることが難しい、という問題があった。このため、古くから内層にガスバリア層としてアルミニウム箔などを組込み、熱溶着層に熱溶着性フィルムを用いた、いわゆるラミネートフィルム(以下、単にフィルムという。)を電池容器として用いたフィルム型二次電池(ラミネートセル)の技術が開示されている(例えば、特許文献1参照)。このようなフィルム型二次電池では、熱溶着性フィルム同士が熱溶着された溶着部を有するフィルム状密閉容器に電極群が収容されている。   In order to reduce costs, an iron-based material is generally used for a cylindrical container used for a cylindrical secondary battery. However, since iron has a large specific gravity, it has been a major limitation in increasing the energy efficiency per unit weight of the battery (to reduce weight). This problem is also common in small sealed lead batteries using injection molded resin containers, and it is difficult to increase the energy efficiency per volume due to the thickness, as well as the weight is not so light. There was a problem. For this reason, a film-type secondary battery using a so-called laminate film (hereinafter simply referred to as a film) in which an aluminum foil or the like is incorporated in the inner layer as a gas barrier layer and a heat-weldable film is used as a heat-welded layer as a battery container. A technique of (laminate cell) is disclosed (for example, see Patent Document 1). In such a film-type secondary battery, an electrode group is housed in a film-like sealed container having a welded portion where heat-weldable films are heat-welded.

また、二次電池においては、充電装置の故障や誤用などのために万一過充電状態となった場合や、高温環境下で使用された場合には、二次電池が異常状態となり、温度上昇に伴う電解液の気化や分解等で発生したガスにより電池内圧が上昇する。このような場合に備え、円筒型二次電池では、電池内部に脆弱な接合部を形成しておくことで、内圧上昇により接合部が破断して電流を遮断する電流遮断機構(安全機構)が組込まれる。ところが、フィルム型二次電池では、極めて単純な構造のため、このような電流遮断機構を電池内部に組込むことが難しい。このため、電池異常時の内圧上昇で二次電池が膨張すると、フィルムの溶着部が剥離して電池外部にガスを噴出する。この発熱及びガス噴出により正負極間が短絡すると、短絡電流による急激な発熱が生じ、活物質の熱暴走反応(多量のガス発生を伴う急激な発熱反応)を引き起こす、という問題があった。   In addition, in the case of a secondary battery, if it becomes overcharged due to a failure or misuse of the charging device, or if it is used in a high temperature environment, the secondary battery becomes abnormal and the temperature rises. The internal pressure of the battery rises due to the gas generated by vaporization or decomposition of the electrolyte accompanying this. In preparation for such a case, a cylindrical secondary battery has a current interrupting mechanism (safety mechanism) that cuts off the current by breaking the joint due to an increase in internal pressure by forming a weak joint inside the battery. Incorporated. However, since the film type secondary battery has a very simple structure, it is difficult to incorporate such a current interruption mechanism inside the battery. For this reason, when the secondary battery expands due to an increase in internal pressure when the battery is abnormal, the welded portion of the film is peeled off and gas is ejected outside the battery. When the positive and negative electrodes are short-circuited due to this heat generation and gas ejection, there is a problem that rapid heat generation occurs due to a short-circuit current, causing a thermal runaway reaction of the active material (rapid exothermic reaction with a large amount of gas generation).

これを解決するために、矩形状の1辺から正極端子および負極端子が取出され、正極端子および負極端子の間の溶着部に熱溶着性フィルムより融点の低い樹脂フィルムが挟み込まれて熱溶着されたフィルム型二次電池の技術が開示されている(例えば、特許文献2参照)。また、溶着部に低融点の樹脂フィルムを挟み込む場合に、樹脂フィルムに電解液が付着することを避けるために樹脂フィルムの端部が溶着部の境界に挟まれないようにする技術も開示されている(特許文献3参照)。これらの技術では、低融点の樹脂フィルムを挟み込むことで、溶着部に脆弱な部分が形成される。このため、電池異常時に温度、内圧が上昇すると、低融点の樹脂フィルムが熱溶融してガス放出経路が形成されるため、内圧を低減することができる。   In order to solve this, the positive electrode terminal and the negative electrode terminal are taken out from one side of the rectangular shape, and a resin film having a melting point lower than that of the heat weldable film is sandwiched between the positive electrode terminal and the negative electrode terminal and thermally welded. Further, a technique of a film type secondary battery is disclosed (for example, see Patent Document 2). In addition, when a low melting point resin film is sandwiched in the welded portion, a technique for preventing the end portion of the resin film from being sandwiched by the boundary of the welded portion is also disclosed in order to prevent the electrolytic solution from adhering to the resin film. (See Patent Document 3). In these techniques, a fragile portion is formed in the welded portion by sandwiching a low melting point resin film. For this reason, when the temperature and the internal pressure rise when the battery is abnormal, the low melting point resin film is melted by heat and a gas discharge path is formed, so that the internal pressure can be reduced.

特開昭60−230354号公報JP-A-60-230354 特開2001−93489号公報JP 2001-93489 A 特開2005−276700号公報JP 2005-276700 A

しかしながら、特許文献2の技術では、樹脂フィルムが正極端子および負極端子の間に位置するため、樹脂フィルムの熱溶融に伴い、電池内圧の上昇と相俟って、溶着部が剥離すると正極端子および負極端子が短絡して熱暴走反応に移行しやすくなる、という問題がある。また、特許文献2、3の技術では、正極端子および負極端子が矩形状の一辺から導出されているため、電極群から端子までの距離が長くなり内部抵抗が大きくなることから、大電流放電時の出力を低下させる要因となり、特にエンジン始動時に大電流放電が不可欠のハイブリッド車用電源に使用される二次電池としては不適であった。   However, in the technique of Patent Document 2, since the resin film is located between the positive electrode terminal and the negative electrode terminal, along with the increase in the internal pressure of the battery due to the thermal melting of the resin film, the positive electrode terminal and There is a problem that the negative electrode terminal is short-circuited and is likely to shift to a thermal runaway reaction. In the techniques of Patent Documents 2 and 3, since the positive electrode terminal and the negative electrode terminal are derived from one side of the rectangular shape, the distance from the electrode group to the terminal is increased and the internal resistance is increased. Therefore, it is not suitable as a secondary battery used for a power source for a hybrid vehicle in which a large current discharge is indispensable when starting the engine.

本発明は上記事案に鑑み、大電流放電時でも高出力を発揮し、電池異常時の安全性を確保することができる大電流放電用二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a secondary battery for large current discharge that can exhibit high output even during large current discharge and can ensure safety when the battery is abnormal.

上記課題を解決するために、本発明は、熱溶着性フィルム同士が熱溶着された溶着部を有するフィルム状密閉容器に電極群が収容された大電流放電用二次電池において、前記電極群から導出された正極端子と負極端子とが前記密閉容器の対向する2辺にそれぞれ配設されており、前記溶着部の少なくとも一部に前記熱溶着性フィルムより低い温度で軟化する樹脂フィルムが挟み込まれて熱溶着されていることを特徴とする。   In order to solve the above problems, the present invention provides a secondary battery for large current discharge in which an electrode group is housed in a film-like sealed container having a welded portion in which heat-welding films are thermally welded to each other. The extracted positive electrode terminal and negative electrode terminal are respectively disposed on two opposite sides of the sealed container, and a resin film that is softened at a temperature lower than that of the heat-weldable film is sandwiched between at least a part of the welded portions. It is characterized by being thermally welded.

本発明では、電極群から導出された正極端子と負極端子とが密閉容器の対向する2辺にそれぞれ配設されており、電極群から最短距離で端子までの導電経路が形成されるため、内部抵抗が小さく大電流放電時でも高出力を発揮することができ、溶着部の少なくとも一部に熱溶着性フィルムより低い温度で軟化する樹脂フィルムが挟み込まれて熱溶着されているため、電池異常時に温度および内圧が上昇したときに、密閉容器の耐圧限度に達する前に樹脂フィルムが熱溶融して内圧を解放する解放経路が形成されるので、内圧を低減して電池機能を穏やかに終了させることができ、電池異常時の安全性を確保することができる。   In the present invention, the positive electrode terminal and the negative electrode terminal derived from the electrode group are respectively disposed on two opposite sides of the sealed container, and a conductive path from the electrode group to the terminal is formed at the shortest distance. Since the resistance is small and high output can be achieved even during large current discharge, a resin film that softens at a temperature lower than that of the heat-weldable film is sandwiched and heat-sealed at least in part of the welded part. When the temperature and internal pressure rise, before the pressure limit of the closed container is reached, a release path is formed where the resin film melts and releases the internal pressure, thus reducing the internal pressure and gently terminating the battery function. It is possible to ensure safety when the battery is abnormal.

この場合において、樹脂フィルムの軟化温度を熱溶着性フィルムの軟化温度より40°C以上低くすれば、密閉容器の耐圧限度に達する前に確実に樹脂フィルムを熱溶融させることができる。また、樹脂フィルムをポリオレフィン系樹脂としてもよい。また、樹脂フィルムが正極端子と負極端子とがそれぞれ配設された2辺以外の溶着部に挟み込まれて熱溶着されていれば、正極端子と負極端子とが配設された溶着部では熱溶着フィルム同士の熱溶着により密閉性が維持されるので、通常充放電時の電池機能を確保することができる。   In this case, if the softening temperature of the resin film is lower by 40 ° C. or more than the softening temperature of the heat-weldable film, the resin film can be reliably melted by heat before reaching the pressure limit of the sealed container. The resin film may be a polyolefin resin. Also, if the resin film is sandwiched and thermally welded between the welded portions other than the two sides where the positive electrode terminal and the negative electrode terminal are respectively disposed, thermal welding is performed at the welded portion where the positive electrode terminal and the negative electrode terminal are disposed. Since the hermeticity is maintained by heat welding between the films, the battery function during normal charging and discharging can be ensured.

本発明によれば、正極端子と負極端子とが密閉容器の対向する2辺にそれぞれ配設されており、電極群から最短距離で端子までの導電経路が形成されるため、内部抵抗が小さく大電流放電時でも高出力を発揮することができ、溶着部の少なくとも一部に熱溶着性フィルムより低い温度で軟化する樹脂フィルムが挟み込まれて熱溶着されているため、電池異常時に、樹脂フィルムが熱溶融して内圧を解放する解放経路が形成されるので、内圧を低減して電池機能を穏やかに終了させることができ、安全性を確保することができる、という効果を得ることができる。   According to the present invention, the positive electrode terminal and the negative electrode terminal are respectively disposed on two opposite sides of the sealed container, and a conductive path from the electrode group to the terminal is formed at the shortest distance, so that the internal resistance is small and large. A high output can be exhibited even during current discharge, and a resin film that is softened at a temperature lower than that of the heat-weldable film is sandwiched and heat-welded in at least a part of the welded portion. Since a release path for releasing the internal pressure by heat melting is formed, it is possible to obtain an effect that the internal pressure can be reduced, the battery function can be terminated gently, and safety can be ensured.

以下、図面を参照して、本発明をラミネートフィルムを電池容器としハイブリッド車用電源に使用するリチウムイオン二次電池に適用した実施の形態について説明する。本実施形態のリチウムイオン二次電池は、複数個が直列ないし直並列接続された電池モジュールとして使用される。   Hereinafter, an embodiment in which the present invention is applied to a lithium ion secondary battery used for a power source for a hybrid vehicle using a laminate film as a battery container will be described with reference to the drawings. The lithium ion secondary battery of this embodiment is used as a battery module in which a plurality are connected in series or in series-parallel.

(構成)
図1に示すように、本実施形態のリチウムイオン二次電池20は、電池容器に2枚の矩形状の可撓性フィルムのラミネートフィルム(以下、単に、フィルムという。)1、1’が使用されている。
(Constitution)
As shown in FIG. 1, in the lithium ion secondary battery 20 of the present embodiment, two rectangular flexible film laminate films (hereinafter simply referred to as films) 1, 1 ′ are used for the battery container. Has been.

図2に示すように、フィルム1は、内層にガスバリア層となるアルミニウム箔1bを有している。アルミニウム箔1bの一方の面には溶着層となる熱溶着性フィルムとしてのポリプロピレン(以下、PPと略記する。)フィルム1aが貼り合わされており、他方の面にはポリエチレンテレフタレート(以下、PETと略記する。)フィルム1cが貼り合わされている。フィルム1は、本例では、厚さ約120μmに設定されている。フィルム1’は、フィルム1と同様に、PPフィルム1’a、アルミニウム箔1’bおよびPETフィルム1’cで構成されている。図1に示すように、フィルム1’は平面状の平面状フィルムであり、フィルム1は略中央部が凸状に成形されたカップ状フィルムである。フィルム1、1’は、PPフィルム1a、1’aが対向するように配置されている。フィルム1、1’の間には、電極群4が配置されている。フィルム1、1’の対向する2辺には、正極端子2及び負極端子3がそれぞれ2つずつ先端部を互いに反対方向の外側に突出させて配設されている。フィルム1、1’
は、周縁部にPPフィルム1a、1’a同士が熱溶着された溶着部9を有している。このため、電極群4は周縁部に溶着部9を有するフィルム状密閉容器に収容されており、リチウムイオン二次電池20は密閉構造とされている。溶着部9には、各正極端子2および各負極端子3が封止材10を介して挟み込まれ熱溶着されている。
As shown in FIG. 2, the film 1 has the aluminum foil 1b used as a gas barrier layer in an inner layer. A polypropylene (hereinafter abbreviated as PP) film 1a as a heat-welding film to be a welding layer is bonded to one surface of the aluminum foil 1b, and a polyethylene terephthalate (hereinafter abbreviated as PET) is bonded to the other surface. The film 1c is bonded. In this example, the film 1 is set to a thickness of about 120 μm. Similar to the film 1, the film 1 ′ is composed of a PP film 1′a, an aluminum foil 1′b, and a PET film 1′c. As shown in FIG. 1, the film 1 ′ is a flat planar film, and the film 1 is a cup-shaped film having a substantially central portion formed into a convex shape. The films 1 and 1 ′ are disposed so that the PP films 1a and 1′a face each other. An electrode group 4 is disposed between the films 1 and 1 '. Two positive electrode terminals 2 and two negative electrode terminals 3 are arranged on two opposite sides of the films 1 and 1 ′, respectively, with their tip portions protruding outward in opposite directions. Film 1, 1 '
Has a welded portion 9 in which the PP films 1a, 1'a are thermally welded to each other at the peripheral portion. For this reason, the electrode group 4 is accommodated in a film-like hermetic container having a welded portion 9 at the periphery, and the lithium ion secondary battery 20 has a hermetically sealed structure. Each positive electrode terminal 2 and each negative electrode terminal 3 are sandwiched and welded to the welding part 9 via a sealing material 10.

また、図2に示すように、溶着部9には、正極端子2および負極端子3がそれぞれ配設された2辺以外の辺の一方の略中央部に、矩形状の樹脂フィルム11が挟み込まれて熱溶着されている。樹脂フィルム11には、軟化温度がPPフィルム1a、1’aの軟化温度より低い材質が選択されている。すなわち、樹脂フィルム11は、PPフィルム1a、1’aより低融点である。本例では、PPフィルム1a、1’aの軟化温度が約150°Cであるのに対して、樹脂フィルム11には、軟化温度約80°Cのポリエチレン(以下、PEと略記する。)フィルムが使用されている。樹脂フィルム11は、本例では、フィルム1、1’の辺に沿う長手方向の長さが約30mmであり、長手方向と直交する幅方向の大きさが溶着部9の溶着幅より大きく、厚さが約30μmである。   In addition, as shown in FIG. 2, a rectangular resin film 11 is sandwiched between the welded portion 9 and substantially the center of one of the sides other than the two sides where the positive electrode terminal 2 and the negative electrode terminal 3 are respectively disposed. Heat welded. For the resin film 11, a material whose softening temperature is lower than the softening temperature of the PP films 1a and 1'a is selected. That is, the resin film 11 has a lower melting point than the PP films 1a and 1'a. In this example, the softening temperature of the PP films 1a and 1′a is about 150 ° C., whereas the resin film 11 is a polyethylene (hereinafter abbreviated as PE) film having a softening temperature of about 80 ° C. Is used. In this example, the length of the resin film 11 in the longitudinal direction along the sides of the films 1 and 1 ′ is about 30 mm, and the size in the width direction perpendicular to the longitudinal direction is larger than the welding width of the welded portion 9. Is about 30 μm.

電極群4は、正極板19枚と負極板20枚とが交互に重ねられている。各正極板は、熱溶着で袋状に成形されたセパレータに挿入されている。セパレータには、例えば、厚さ25μm、幅100mmのポリエチレン製多孔膜が用いられている。正極板および負極板は、正極端子2および負極端子3が互いに反対方向に導出されるように重ねられている。2つの正極端子2、2つの負極端子3は、フィルム1、1’の対向する2辺と直交する中心線Mに対して対称となるようにそれぞれ配設されている。   In the electrode group 4, 19 positive plates and 20 negative plates are alternately stacked. Each positive electrode plate is inserted into a separator formed into a bag shape by heat welding. For example, a polyethylene porous film having a thickness of 25 μm and a width of 100 mm is used as the separator. The positive electrode plate and the negative electrode plate are overlapped so that the positive electrode terminal 2 and the negative electrode terminal 3 are led out in directions opposite to each other. The two positive terminals 2 and the two negative terminals 3 are arranged so as to be symmetric with respect to a center line M orthogonal to two opposing sides of the films 1, 1 ′.

正極端子2と一体に形成された正極ストラップ部5には、厚さ0.3mmのアルミニウム合金A3003−H12が用いられており、電解液に接するおそれのない正極端子2の部分(電池外部に露出した部分)にのみ、片面に厚さ0.1mmのニッケル板がクラッド加工されている。一方、負極端子3と一体に形成された負極ストラップ部7には、厚さ0.3mmの銅板C1020−1/2Hが用いられており、電池外部に露出した負極端子3の部分にのみ両面に厚さ0.05mmのニッケル板がクラッド加工されている。正極ストラップ部5、負極ストラップ部7は、正極集電体の無地部6、負極集電体の無地部8にそれぞれ超音波溶接で接合されている。電極群4の厚さはおよそ4.8mmである。   The positive electrode strap portion 5 formed integrally with the positive electrode terminal 2 uses an aluminum alloy A3003-H12 having a thickness of 0.3 mm, and the portion of the positive electrode terminal 2 that is not in contact with the electrolytic solution (exposed to the outside of the battery). The nickel plate having a thickness of 0.1 mm is clad on one side only. On the other hand, a copper plate C1020-1 / 2H having a thickness of 0.3 mm is used for the negative electrode strap portion 7 formed integrally with the negative electrode terminal 3, and only on both sides of the negative electrode terminal 3 exposed to the outside of the battery. A nickel plate having a thickness of 0.05 mm is clad. The positive electrode strap part 5 and the negative electrode strap part 7 are joined to the plain part 6 of the positive electrode current collector and the plain part 8 of the negative electrode current collector, respectively, by ultrasonic welding. The thickness of the electrode group 4 is approximately 4.8 mm.

リチウムイオン二次電池20の組立時には、電極群4がフィルム1の略中央部に載置され、電極群4の上側にフィルム1’が載せられ、4辺が熱溶着されて溶着部9が形成される。この際、正極端子2、負極端子3を配設していない辺の一部に熱溶着せずに残しておいたフィルム1、1’の合わせ面から注射器を用いて所定量の非水電解液が注入される。この合わせ面の熱溶着時には、樹脂フィルム11が挟み込まれて熱溶着される。フィルム1、1’の4辺が熱溶着で封止されてリチウムイオン二次電池20を完成した。溶着部9の溶着幅は、本例では、全周にわたって約10mmに設定されている。正極端子2、負極端子3は、それぞれ正極ストラップ部5、負極ストラップ部7を介して電池容器の対向する2辺から2つずつ導出されている。   At the time of assembling the lithium ion secondary battery 20, the electrode group 4 is placed at a substantially central portion of the film 1, the film 1 'is placed on the upper side of the electrode group 4, and the four sides are thermally welded to form the welded portion 9. Is done. At this time, a predetermined amount of non-aqueous electrolyte is used by using a syringe from the mating surface of the films 1 and 1 ′ left without being thermally welded to a part of the side where the positive electrode terminal 2 and the negative electrode terminal 3 are not provided. Is injected. During the thermal welding of the mating surfaces, the resin film 11 is sandwiched and thermally welded. The four sides of the films 1, 1 ′ were sealed by heat welding to complete the lithium ion secondary battery 20. In this example, the welding width of the welding part 9 is set to about 10 mm over the entire circumference. Two positive electrode terminals 2 and two negative electrode terminals 3 are led out from two opposite sides of the battery container via a positive electrode strap portion 5 and a negative electrode strap portion 7, respectively.

電極群4を構成する正極板の作製時には、正極活物質としてマンガン酸リチウム等のリチウム遷移金属複酸化物と、導電材として炭素粉末と、結着剤としてポリフッ化ビニリデンとが、溶媒であるN−メチル−2−ピロリドンに分散して混合されてスラリが作製される。このスラリが正極集電体である厚さ20μmのアルミニウム箔の両面に塗布され、乾燥後、プレスされて一体化される。このとき、アルミニウム箔の1辺には、スラリが塗工されない無地部6が形成される。その後、幅94mmに切断されて短冊状の正極板が作製される。塗工部の幅86mm、無地部6の幅10mmに設定されている。   At the time of producing the positive electrode plate constituting the electrode group 4, a lithium transition metal double oxide such as lithium manganate as a positive electrode active material, carbon powder as a conductive material, and polyvinylidene fluoride as a binder are N as solvents. -A slurry is prepared by dispersing and mixing in methyl-2-pyrrolidone. This slurry is applied to both surfaces of a 20 μm thick aluminum foil as a positive electrode current collector, dried, pressed and integrated. At this time, a plain portion 6 on which no slurry is applied is formed on one side of the aluminum foil. Thereafter, it is cut into a width of 94 mm to produce a strip-like positive electrode plate. The width of the coated part is set to 86 mm, and the width of the plain part 6 is set to 10 mm.

一方、負極板の作製時には、負極活物質として炭素粒子と、結着剤としてポリフッ化ビニリデンとが溶媒であるN−メチル−2−ピロリドンに投入され混合されて、スラリ状の溶液が作製される。このスラリが負極集電体である厚さ10μmの銅箔の両面に塗布され、乾燥後、プレスされて一体化される。このとき、銅箔の1辺には、スラリが塗工されない無地部8が形成される。その後、幅96mmに切断されて短冊状の負極板が作製される。塗工部の幅88mm、無地部8の幅10mmに設定されている。   On the other hand, at the time of producing the negative electrode plate, carbon particles as a negative electrode active material and polyvinylidene fluoride as a binder are charged and mixed in N-methyl-2-pyrrolidone as a solvent to produce a slurry solution. . This slurry is applied to both sides of a 10 μm thick copper foil as a negative electrode current collector, dried, pressed and integrated. At this time, a plain portion 8 on which no slurry is applied is formed on one side of the copper foil. Then, it cut | disconnects to width 96mm and a strip-shaped negative electrode plate is produced. The width of the coating part is set to 88 mm, and the width of the plain part 8 is set to 10 mm.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

本実施形態のリチウムイオン二次電池20では、電池容器としてフィルム1、1’で構成されたフィルム状密閉容器が用いられているので、鉄系材料の電池容器を用いた電池と比較して、電池の軽量化を図ることができる。また、本実施形態のリチウムイオン二次電池20では、PPフィルム1a、1’a同士が熱溶着された溶着部9に樹脂フィルム11が挟み込まれて熱溶着されている。樹脂フィルム11には、軟化温度がPPフィルム1a、1’aより低いPEフィルムが使用されている。このため、温度上昇を伴う電池異常時には、樹脂フィルム11がPPフィルム1a、1’aより早く軟化ないし溶融する。樹脂フィルム11が軟化すると、電池内圧が上昇していることから、溶着部9に隙間が生じて電池内で発生したガスを放出する放出経路(電池内圧を解放する解放経路)が形成される。この放出経路を介してガスが放出され始めると、電池内圧が上昇していることとも相俟って、樹脂フィルム11の長さの範囲で、溶着部9に生じた隙間が広がる(フィルム1、1’間が剥がれる)。これにより、電池内で発生したガスの放出が促進されるので、電池内圧を低下させることができる。更に、ガス放出に伴う非水電解液の揮発により気化熱が奪われるので、電池温度を低下させることができる。従って、リチウムイオン二次電池20では、電池機能を穏やかに終了させることができ、電池異常時の安全性を確保することができる。   In the lithium ion secondary battery 20 of the present embodiment, since a film-like hermetic container composed of films 1 and 1 ′ is used as a battery container, compared with a battery using a battery container of an iron-based material, The weight of the battery can be reduced. Further, in the lithium ion secondary battery 20 of the present embodiment, the resin film 11 is sandwiched and thermally welded to the welded portion 9 where the PP films 1a and 1'a are thermally welded. As the resin film 11, a PE film having a softening temperature lower than that of the PP films 1a and 1'a is used. For this reason, the resin film 11 softens or melts faster than the PP films 1a and 1'a when the battery is abnormally accompanied by a temperature rise. When the resin film 11 is softened, the internal pressure of the battery is increased, so that a gap is generated in the welded portion 9 to form a discharge path for releasing gas generated in the battery (a release path for releasing the internal pressure of the battery). When gas starts to be released through this discharge path, coupled with the fact that the battery internal pressure is rising, the gap generated in the welded portion 9 is widened in the range of the length of the resin film 11 (film 1, 1 'is peeled off). Thereby, the release of the gas generated in the battery is promoted, so that the internal pressure of the battery can be reduced. Furthermore, since the heat of vaporization is lost due to volatilization of the non-aqueous electrolyte accompanying gas release, the battery temperature can be lowered. Therefore, in the lithium ion secondary battery 20, the battery function can be terminated gently, and the safety when the battery is abnormal can be ensured.

また、本実施形態のリチウムイオン二次電池20では、正極端子2および負極端子3がフィルム1、1’の対向する2辺にそれぞれ配設されている。このため、電池異常時に、樹脂フィルム11が軟化してガスが放出されても、正極端子2および負極端子3の接触を抑制することができる。これにより、正極端子2および負極端子3間の内部短絡が抑制されるので、急激な温度、圧力の上昇を伴う熱暴走反応への移行を抑制し、電池異常時の安全性を確保することができる。   Moreover, in the lithium ion secondary battery 20 of this embodiment, the positive electrode terminal 2 and the negative electrode terminal 3 are each arrange | positioned at the two opposing sides of the films 1 and 1 '. For this reason, even if the resin film 11 is softened and gas is released when the battery is abnormal, contact between the positive electrode terminal 2 and the negative electrode terminal 3 can be suppressed. Thereby, since an internal short circuit between the positive electrode terminal 2 and the negative electrode terminal 3 is suppressed, it is possible to suppress a transition to a thermal runaway reaction accompanied by a rapid increase in temperature and pressure, and to ensure safety in the event of battery abnormality. it can.

更に、本実施形態のリチウムイオン二次電池20では、電極群4を構成する正極板および負極板は、正極端子2および負極端子3が互いに反対方向に導出されるように重ねられており、正極端子2および負極端子3がフィルム1、1’の対向する2辺にそれぞれ2つずつ配設されている。このため、正極板、負極板から正極端子2、負極端子3までの導電距離が最短となり、内部抵抗を低下させることができる。これにより、大電流放電時でも出力低下を抑制し高出力を確保することができる。従って、本実施形態のリチウムイオン二次電池20は、電池異常時の安全性に優れ、大電流放電時でも高出力を発揮するため、特に発進時に大電流放電が不可欠のハイブリッド車用電源等の二次電池として好適に使用することができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the positive electrode plate and the negative electrode plate constituting the electrode group 4 are stacked such that the positive electrode terminal 2 and the negative electrode terminal 3 are led out in opposite directions. Two terminals 2 and two negative terminals 3 are provided on each of two opposing sides of the films 1 and 1 '. For this reason, the conductive distance from the positive electrode plate and the negative electrode plate to the positive electrode terminal 2 and the negative electrode terminal 3 becomes the shortest, and the internal resistance can be reduced. Thereby, a high output can be secured by suppressing a decrease in output even during a large current discharge. Accordingly, the lithium ion secondary battery 20 of the present embodiment is excellent in safety in the event of battery abnormality and exhibits high output even during large current discharge. It can be suitably used as a secondary battery.

従来電池容器がフィルムで構成されたリチウムイオン二次電池では、過充電時や高温環境下での使用時に電池温度が異常に上昇する電池異常時に非水電解液の気化や分解ガスの発生により電池内圧が上昇すると、フィルムの熱溶着部が剥離し、発生したガスが電池外部に噴出する。このとき、正極板と負極板とが短絡すると、短絡電流による急激な発熱が起こり、熱暴走反応に移行して激しい反応を引き起こす。また、正極端子および負極端子が同一辺に挟み込まれている(正極端子および負極端子の取り出し方向が同一方向である)場合には、正負極板から正負極端子までの導電経路が長くなり内部抵抗が増大するため、大電流放電時の出力を低下させる要因となる。このような電池異常時に生じる電池温度や内圧の上昇は、電池容量が大きくなるほど急激に(激しく)なる傾向にある。一般に、大電流放電用二次電池では、小型民生用の二次電池と比較して、電池容量が大きいため、電池異常時の安全性を確保することが極めて重要である。これに加えて、ハイブリッド車用電源等に使用される場合には、エンジン始動時に大電流(例えば、500A以上)の放電が要求され、回生時に大電流充電が要求されるため、内部抵抗を低減して高出力を確保することも重要である。本実施形態は、これらを解決することができるリチウムイオン二次電池20である。   Conventional lithium-ion secondary batteries with a battery container made of a film are produced by vaporization of non-aqueous electrolyte and generation of decomposition gas when the battery temperature abnormally rises when overcharged or when used in a high temperature environment. When the internal pressure rises, the heat welded part of the film is peeled off, and the generated gas is ejected outside the battery. At this time, when the positive electrode plate and the negative electrode plate are short-circuited, rapid heat generation occurs due to the short-circuit current, and the reaction shifts to a thermal runaway reaction, causing a violent reaction. In addition, when the positive electrode terminal and the negative electrode terminal are sandwiched between the same sides (the extraction direction of the positive electrode terminal and the negative electrode terminal is the same direction), the conductive path from the positive / negative electrode plate to the positive / negative electrode terminal becomes long, and the internal resistance Increases, which causes a decrease in output during large current discharge. The increase in battery temperature and internal pressure that occurs when the battery is abnormal tends to become more rapid (violent) as the battery capacity increases. In general, a secondary battery for discharging a large current has a larger battery capacity than a secondary battery for a small consumer, and thus it is extremely important to ensure safety when the battery is abnormal. In addition to this, when used for a hybrid vehicle power supply or the like, a large current (for example, 500 A or more) is required to discharge when starting the engine, and a large current charging is required during regeneration, reducing internal resistance. It is also important to ensure high output. The present embodiment is a lithium ion secondary battery 20 that can solve these problems.

なお、本実施形態では、樹脂フィルム11を正極端子2および負極端子3が配設された2辺以外の溶着部9に挟み込む例を示したが、本発明はこれに限定されるものではない。例えば、2つの正極端子2の間や2つの負極端子3の間に挟み込み熱溶着するようにしてもよい。このようにした場合でも、正極端子2および負極端子3が対向する2辺に配設されているので、樹脂フィルム11が軟化しても正極端子2および負極端子3の接触を回避することができ、上述した効果を得ることができる。正極端子2、負極端子3の配設された部分では通常充放電での長期間の使用に耐える信頼性を要求されることを考慮すれば、樹脂フィルム11を挟み込む部分は、正極端子2および負極端子3が配設された2辺以外とすることが望ましい。また、本実施形態では、樹脂フィルム11を溶着部9の1箇所に挟み込む例を示したが、2箇所以上に挟み込むようにしてもよい。更に、樹脂フィルム11の大きさについても特に制限されるものではない。   In the present embodiment, the example in which the resin film 11 is sandwiched between the welding portions 9 other than the two sides on which the positive electrode terminal 2 and the negative electrode terminal 3 are disposed has been described, but the present invention is not limited thereto. For example, it may be sandwiched between two positive terminals 2 or two negative terminals 3 and heat-sealed. Even if it does in this way, since the positive electrode terminal 2 and the negative electrode terminal 3 are arrange | positioned at 2 sides which oppose, even if the resin film 11 softens, the contact of the positive electrode terminal 2 and the negative electrode terminal 3 can be avoided. The effects described above can be obtained. Considering that the portion where the positive electrode terminal 2 and the negative electrode terminal 3 are disposed is required to have reliability that can withstand long-term use in normal charging / discharging, the portion sandwiching the resin film 11 includes the positive electrode terminal 2 and the negative electrode terminal. It is desirable to use other than the two sides where the terminals 3 are disposed. Moreover, in this embodiment, although the example which pinches | interposes the resin film 11 in one place of the welding part 9 was shown, you may make it pinch | pinch in two or more places. Further, the size of the resin film 11 is not particularly limited.

また、本実施形態では、樹脂フィルム11としてPEフィルムを例示したが、本発明はこれに限定されるものではなく、軟化温度がフィルム1、1’の溶着層を構成する熱溶着性フィルムの軟化温度より低い(低融点の)フィルムであればよい。フィルム1、1’の溶着層には一般的にPPフィルムが用いられていることを考慮すれば、例えば、PEやPP等のポリオレフィン系樹脂のフィルムを使用することが好ましい。   Moreover, although PE film was illustrated as the resin film 11 in this embodiment, this invention is not limited to this, Softening of the heat-weldable film which comprises the welding layer whose softening temperature is the films 1 and 1 '. Any film lower than the temperature (low melting point) may be used. Considering that generally a PP film is used for the welding layers of the films 1 and 1 ′, it is preferable to use a film of a polyolefin resin such as PE or PP, for example.

更に、本実施形態では、フィルム1、1’としてPPフィルム1a、1’a/アルミニウム箔1b、1’b/PETフィルム1c、1’cの3層で構成されたフィルムを例示したが、本発明はフィルムの構成に特に制限されるものではなく、電池容器として使用可能な可撓性フィルムであればいかなる構成のフィルムでも使用することができる。また、本実施形態では、矩形状のフィルム1、1’を使用する例を示したが、本発明はこれに限定されるものではない。正極端子2および負極端子3を配設するために対向する2辺を有していればよく、対向する2辺以外については、例えば、円弧状としてもよい。更に、本実施形態では、2枚のフィルム1、1’を使用し4辺を熱溶着することで密閉容器を構成する例を示したが、1枚のフィルムを使用し長手方向の中央部を折り返すようにしてもよい。この場合には、3辺を熱溶着することで密閉容器を構成することができる。   Furthermore, in this embodiment, although the film 1 and 1 'illustrated the film comprised by three layers, PP film 1a, 1'a / aluminum foil 1b, 1'b / PET film 1c, 1'c, The invention is not particularly limited to the structure of the film, and any film having a flexible structure that can be used as a battery container can be used. In the present embodiment, an example in which the rectangular films 1 and 1 ′ are used has been described, but the present invention is not limited to this. It suffices to have two sides facing each other in order to dispose the positive electrode terminal 2 and the negative electrode terminal 3, and the portions other than the two facing sides may be, for example, arcuate. Furthermore, in this embodiment, although the example which comprises a sealed container by using two films 1 and 1 'and heat-welding four sides was shown, the center part of the longitudinal direction was used using one film. You may make it return. In this case, the hermetic container can be configured by thermally welding the three sides.

また更に、本実施形態では、正極端子2および負極端子3をそれぞれ2つずつ配設する例を示したが、本発明はこれに限定されるものではなく、例えば、1つずつや3つずつとしてもよい。大電流充放電を考慮すれば、通電面積を確保する上で複数ずつ配設されていることが好ましい。また、本実施形態では、短冊状に形成した正極板および負極板を交互に積層した電極群4を例示したが、本発明はこれに限定されるものではなく、例えば、帯状に形成した正極板及び負極板を扁平状に捲回するようにしてもよい。   Furthermore, in the present embodiment, an example in which two positive terminals 2 and two negative terminals 3 are provided has been shown. However, the present invention is not limited to this, for example, one by one or three by three. It is good. In consideration of large current charging / discharging, it is preferable to arrange a plurality of currents in order to secure a current-carrying area. Further, in the present embodiment, the electrode group 4 in which the positive electrode plates and the negative electrode plates formed in a strip shape are alternately laminated is illustrated, but the present invention is not limited to this, and for example, the positive electrode plate formed in a belt shape And you may make it wind a negative electrode plate flatly.

更にまた、本実施形態では、リチウムイオン二次電池20を例示したが、本発明はこれに限定されるものではなく、電池容器に可撓性フィルムを使用した二次電池に適用することができる。また、リチウムイオン二次電池に用いられる正負極活物質等の材料に制限のないことはもちろんである。   Furthermore, in the present embodiment, the lithium ion secondary battery 20 is exemplified, but the present invention is not limited to this, and can be applied to a secondary battery using a flexible film as a battery container. . Of course, there is no limitation on materials such as positive and negative electrode active materials used in the lithium ion secondary battery.

次に、本実施形態に従い製造したリチウムイオン二次電池20の実施例について説明する。なお、比較のために製造した比較例のリチウムイオン二次電池についても併記する。   Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example manufactured for the comparison.

下表1に示すように、実施例1〜実施例3では、樹脂フィルム11を代えてリチウムイオン二次電池20を製造した。樹脂フィルム11には、実施例1では軟化温度約80°CのPEフィルム、実施例2では軟化温度約110°CのPPフィルム、実施例3では軟化温度約140°CのPPフィルムをそれぞれ用いた。一方、比較例1では、樹脂フィルム11を挟み込まないこと以外は本実施形態と同様にしてリチウムイオン二次電池を製造した。従って、比較例1は従来のリチウムイオン二次電池である。なお、PPフィルム1a,1’aの軟化温度は約150°Cである。   As shown in Table 1 below, in Examples 1 to 3, the resin film 11 was replaced and a lithium ion secondary battery 20 was manufactured. As the resin film 11, a PE film having a softening temperature of about 80 ° C in Example 1, a PP film having a softening temperature of about 110 ° C in Example 2, and a PP film having a softening temperature of about 140 ° C in Example 3 are used. It was. On the other hand, in Comparative Example 1, a lithium ion secondary battery was manufactured in the same manner as in this embodiment except that the resin film 11 was not sandwiched. Therefore, Comparative Example 1 is a conventional lithium ion secondary battery. The softening temperature of the PP films 1a and 1'a is about 150 ° C.

(安全性評価)
各実施例および比較例のリチウムイオン二次電池20の100個ずつについて、5V、1CA(3.2A)で過充電となるまで充電したときの発火の有無(安全性)を評価した。安全性の評価結果を下表1に合わせて示した。なお、表1において、低融点フィルムは樹脂フィルム11を示している。
(Safety evaluation)
For each 100 lithium ion secondary batteries 20 of each example and comparative example, the presence or absence of ignition (safety) when charging until overcharged at 5 V, 1 CA (3.2 A) was evaluated. The safety evaluation results are shown in Table 1 below. In Table 1, the low melting point film indicates the resin film 11.

Figure 2008130370
Figure 2008130370

表1に示すように、低融点フィルムを挟み込んでいない比較例1のリチウムイオン二次電池では、理論容量に対して約110%の充電時(つまり約10%の過充電時)に内圧、温度が徐々に上昇し始め、約230〜260%充電に達したところで、試験した100個の全てが発火に至った。   As shown in Table 1, in the lithium ion secondary battery of Comparative Example 1 in which no low melting point film was sandwiched, the internal pressure and temperature were about 110% charged (that is, about 10% overcharged) with respect to the theoretical capacity. Gradually began to rise, reaching about 230-260% charge, and all 100 tested tested ignited.

これに対して、軟化温度80°CのPEフィルムを挟み込んだ実施例1のリチウムイオン二次電池20では、比較例1と同様に約110%の充電時に内圧、温度が上昇し始めたが、約150%充電に達したところでPEフィルムの軟化温度に達して熱溶着部9に隙間が形成された。これによって、内部のガスが放出されると共に、温度上昇が抑制された。このことは、ガス放出に伴い非水電解液が急速に気化して電池外に放出され、その気化熱が奪われたためと考えられる。さらに、そのまま約8時間充電を続けたが、微小な電流が流れ続けるだけで、いずれのリチウムイオン二次電池20も発火に至ることはなかった。このことは、非水電解液が気化したためにリチウムイオン二次電池20の内部抵抗が急激に上昇して、端子電圧がついに電源電圧(5V)に達し、以後は急速に電流値が低下したためと考えられる。また、軟化温度が110°CのPPフィルムを挟み込んだ実施例2のリチウムイオン二次電池20では、同様に内圧、温度が上昇し、約170%充電に達したところでPPフィルムが軟化し熱溶着部9に隙間が形成され、その後は実施例1のリチウムイオン二次電池20と同様の経過をたどり、同じく発火には至らなかった。   On the other hand, in the lithium ion secondary battery 20 of Example 1 in which a PE film having a softening temperature of 80 ° C. was sandwiched, the internal pressure and temperature began to rise at the time of charging of about 110% as in Comparative Example 1, When about 150% charge was reached, the softening temperature of the PE film was reached, and a gap was formed in the heat welded portion 9. As a result, the internal gas was released and the temperature rise was suppressed. This is presumably because the non-aqueous electrolyte was rapidly vaporized and released outside the battery as the gas was released, and the heat of vaporization was taken away. Furthermore, although charging was continued for about 8 hours as it was, only a minute current continued to flow, and none of the lithium ion secondary batteries 20 ignited. This is because the internal resistance of the lithium ion secondary battery 20 suddenly increased due to the vaporization of the non-aqueous electrolyte, the terminal voltage finally reached the power supply voltage (5 V), and then the current value rapidly decreased. Conceivable. Further, in the lithium ion secondary battery 20 of Example 2 in which a PP film having a softening temperature of 110 ° C. was sandwiched, the internal pressure and temperature similarly increased, and when the battery reached about 170% charge, the PP film softened and was thermally welded. A gap was formed in the portion 9, and thereafter, the same process as that of the lithium ion secondary battery 20 of Example 1 was followed, and the ignition did not occur.

一方、軟化温度が140°CのPPフィルムを挟み込んだ実施例3のリチウムイオン二次電池20では、約210%充電に達したところで熱溶着部9に隙間が形成された。評価した100個中79個のリチウムイオン二次電池20については、実施例1、2のリチウムイオン二次電池20と同様の経過をたどり、発火には至らなかった。残りの21個のリチウムイオン二次電池20については、温度上昇が続き、約240〜260%充電に達したところで発火に至った。これは、樹脂フィルム11と、PPフィルム1a、1’aとの軟化温度の差が40°Cに満たないことから、樹脂フィルム11の軟化が遅くなり、電池容器が耐圧限度に達する直前まで内圧、温度の上昇が続いたためと考えられる。従って、樹脂フィルム11の軟化温度をPPフィルム1a、1’aより40°C以上小さくする(軟化温度の差を40°C以上とする)ことが望ましいことが判明した。   On the other hand, in the lithium ion secondary battery 20 of Example 3 in which a PP film having a softening temperature of 140 ° C. was sandwiched, a gap was formed in the heat-welded portion 9 when the charging reached about 210%. About 79 of the 100 lithium ion secondary batteries 20 evaluated, the same process as that of the lithium ion secondary battery 20 of Examples 1 and 2 was followed, and no ignition occurred. The remaining 21 lithium ion secondary batteries 20 continued to rise in temperature, and reached ignition when they reached about 240 to 260% charge. This is because the difference in softening temperature between the resin film 11 and the PP films 1a and 1′a is less than 40 ° C., so the softening of the resin film 11 is delayed and the internal pressure is increased until just before the battery container reaches the pressure limit. This is probably because the temperature continued to rise. Therefore, it has been found that it is desirable that the softening temperature of the resin film 11 is 40 ° C. or less lower than the PP films 1a and 1′a (the difference in softening temperature is 40 ° C. or more).

以上の評価結果から、本実施形態のリチウムイオン二次電池20は、万一充電システム等の故障によって過充電になっても、発火や爆発に至ることがなく、安全性に優れていることが確かめられた。   From the above evaluation results, the lithium ion secondary battery 20 of the present embodiment is excellent in safety without being ignited or exploding even if it is overcharged due to a failure of the charging system or the like. It was confirmed.

本発明は大電流放電時でも高出力を発揮し、電池異常時の安全性を確保することができる大電流放電用二次電池を提供するため、大電流放電用二次電池の製造、販売に寄与するため、産業上の利用可能性を有する。   The present invention provides a secondary battery for large current discharge that can exhibit high output even during large current discharge and can ensure safety in the event of battery abnormality. In order to contribute, it has industrial applicability.

本発明を適用した実施形態のリチウムイオン二次電池のカップ状フィルムを一部除いた平面図および側断面図である。It is the top view and side sectional view which removed a part of cup-shaped film of the lithium ion secondary battery of embodiment which applied this invention. 図1のA−A’断面におけるラミネートフィルムと樹脂フィルムとの位置関係を示す断面図である。It is sectional drawing which shows the positional relationship of the laminate film and resin film in the A-A 'cross section of FIG.

符号の説明Explanation of symbols

1、1’ ラミネートフィルム
1a、1’a ポリプロピレンフィルム(熱溶着性フィルム)
2 正極端子
3 負極端子
4 電極群
9 溶着部
11 樹脂フィルム
20 リチウムイオン二次電池
1, 1 'Laminate film 1a, 1'a Polypropylene film (heat welding film)
2 Positive electrode terminal 3 Negative electrode terminal 4 Electrode group 9 Welding part 11 Resin film 20 Lithium ion secondary battery

Claims (4)

熱溶着性フィルム同士が熱溶着された溶着部を有するフィルム状密閉容器に電極群が収容された大電流放電用二次電池において、前記電極群から導出された正極端子と負極端子とが前記密閉容器の対向する2辺にそれぞれ配設されており、前記溶着部の少なくとも一部に前記熱溶着性フィルムより低い温度で軟化する樹脂フィルムが挟み込まれて熱溶着されていることを特徴とする二次電池。   In a secondary battery for large current discharge in which an electrode group is housed in a film-like sealed container having a welded portion in which heat-welding films are thermally welded, the positive electrode terminal and the negative electrode terminal derived from the electrode group are sealed. A resin film that is disposed at two opposite sides of the container and is softened at least at a part of the welded portion by sandwiching a resin film that softens at a temperature lower than that of the heat-weldable film. Next battery. 前記樹脂フィルムの軟化温度は、前記熱溶着性フィルムの軟化温度より40°C以上低いことを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the softening temperature of the resin film is 40 ° C. or more lower than the softening temperature of the heat-weldable film. 前記樹脂フィルムは、ポリオレフィン系樹脂であることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the resin film is a polyolefin-based resin. 前記樹脂フィルムは、前記正極端子と前記負極端子とがそれぞれ配設された2辺以外の溶着部に挟み込まれて熱溶着されていることを特徴とする請求項1に記載の二次電池。   2. The secondary battery according to claim 1, wherein the resin film is thermally welded by being sandwiched between welding portions other than two sides where the positive electrode terminal and the negative electrode terminal are respectively disposed.
JP2006314351A 2006-11-21 2006-11-21 Secondary battery for large-current discharge Pending JP2008130370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314351A JP2008130370A (en) 2006-11-21 2006-11-21 Secondary battery for large-current discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314351A JP2008130370A (en) 2006-11-21 2006-11-21 Secondary battery for large-current discharge

Publications (2)

Publication Number Publication Date
JP2008130370A true JP2008130370A (en) 2008-06-05
JP2008130370A5 JP2008130370A5 (en) 2009-11-26

Family

ID=39556003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314351A Pending JP2008130370A (en) 2006-11-21 2006-11-21 Secondary battery for large-current discharge

Country Status (1)

Country Link
JP (1) JP2008130370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157265A (en) * 2012-01-31 2013-08-15 Gs Yuasa Corp Battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283800A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Thin battery
JP2003242952A (en) * 2002-02-05 2003-08-29 Samsung Sdi Co Ltd Secondary battery
JP2005116235A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Laminate jacket battery, battery module, and battery pack
JP2005276700A (en) * 2004-03-25 2005-10-06 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2008091269A (en) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd Thin battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283800A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Thin battery
JP2003242952A (en) * 2002-02-05 2003-08-29 Samsung Sdi Co Ltd Secondary battery
JP2005116235A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Laminate jacket battery, battery module, and battery pack
JP2005276700A (en) * 2004-03-25 2005-10-06 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2008091269A (en) * 2006-10-04 2008-04-17 Nissan Motor Co Ltd Thin battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157265A (en) * 2012-01-31 2013-08-15 Gs Yuasa Corp Battery

Similar Documents

Publication Publication Date Title
JP4920111B2 (en) Pouch type secondary battery
CN109473572B (en) Battery module having structure for disconnecting connector using exhaust gas
KR101370265B1 (en) Secondary battery, Element for secondary battery applied for it and Method of manufacturing the same
KR101547403B1 (en) Secondary battery comprising unified positive lead and negative lead and the method for preparing thereof
JP5958841B2 (en) Secondary battery component and method for manufacturing the same, and secondary battery and multi-battery system manufactured using the component
JP5037308B2 (en) Secondary battery module
JP6250921B2 (en) battery
JP2003242952A (en) Secondary battery
KR101734703B1 (en) Battery Cell
JP6902607B2 (en) Pouch type rechargeable battery including electrode leads using conductive polymer
JP2008130360A (en) Nonaqueous electrolyte secondary battery
KR101123061B1 (en) Secondary Battery of Improved Safety
JP5004769B2 (en) Secondary battery module
US10644345B2 (en) Short circuiting structure for lithium secondary battery having excellent stability against overcharge and pouch type lithium secondary batter comprising the same
JP2011165352A (en) Laminated secondary battery
KR20180090099A (en) Lead for Lithium Secondary Battery Having Excellent Stability against Overcharge and Pouch Type Lithium Secondary Battery Comprising the Same
KR102185959B1 (en) Battery cell with improved safety
JP2016110940A (en) Secondary battery, electric vehicle, power storage system and manufacturing method
JP2006066311A (en) Lithium secondary battery
JP2022526077A (en) Busbar module and its manufacturing method
JP4785360B2 (en) Secondary battery
JP2005251548A (en) Square shape secondary battery
JP3618219B2 (en) Non-aqueous battery and electrode terminal
JP2008130370A (en) Secondary battery for large-current discharge
KR101458259B1 (en) Pouch type secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120