JP2006065247A - Polarizing beam splitter and manufacturing method thereof - Google Patents

Polarizing beam splitter and manufacturing method thereof Download PDF

Info

Publication number
JP2006065247A
JP2006065247A JP2004250922A JP2004250922A JP2006065247A JP 2006065247 A JP2006065247 A JP 2006065247A JP 2004250922 A JP2004250922 A JP 2004250922A JP 2004250922 A JP2004250922 A JP 2004250922A JP 2006065247 A JP2006065247 A JP 2006065247A
Authority
JP
Japan
Prior art keywords
refractive index
polarized light
transmittance
beam splitter
index layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004250922A
Other languages
Japanese (ja)
Inventor
Hideo Fujii
秀雄 藤井
Kazuhiro Yamada
和広 山田
Minoru Suzuki
実 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2004250922A priority Critical patent/JP2006065247A/en
Publication of JP2006065247A publication Critical patent/JP2006065247A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarizing beam splitter capable of utilizing s-polarized light and p-polarized light having different colors on one optical axis without using a color filter or else, to provide a manufacturing method of the polarizing beam splitter, and to provide an optical instrument having such a polarizing beam splitter. <P>SOLUTION: The polarizing beam splitter is provided with a pair of transparent base bodies 1a, 1b, and a multilayer film 2 consisting of a high refractive index layer and a low refractive index layer laminated between the transparent base bodies 1a, 1b. The polarizing beam splitter satisfies the relation (1):nL<nS, nH, the relation (2):θ>sin<SP>-1</SP>(nL/nS), and the relation (3):dLmax<λmax, the number of layers of the multilayer 2 is fifteen or more, transmittance Ts of s-polarized light is higher than transmittance Tp of p-polarized light in a first wavelength band W1, and transmittance Tp of p-polarized light is higher than transmittance Ts of s-polarized light in a second wavelength band W2. In the relations, nL denotes refractive index of the low refractive index layer, nS denotes refractive index of the transparent base body, nH denotes refractive index of the high refractive index layer, θ denotes reflection angle on the interface with the multilayer of light made vertically incident to one side transparent base body 1a, λmax denotes the maximum value of usage wavelength and dLmax denotes the maximum optical layer thickness of the low refractive index layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プロジェクター、光ディスク装置、レーザープリンター、レーザー加工機及び測定装置等の構成要素である光学素子、赤外カットフィルター及び赤外パスフィルターとして用いられる偏光ビームスプリッター及びその製造方法に関する。   The present invention relates to an optical element, which is a constituent element of a projector, an optical disk device, a laser printer, a laser processing machine, a measuring device, and the like, an infrared cut filter, a polarizing beam splitter used as an infrared pass filter, and a manufacturing method thereof.

偏光ビームスプリッターは二つのプリズムを具備し、両プリズムの斜面又は底面の間に交互に積層した高屈折率物質の層と低屈折率物質の層とを有するのが一般的である。偏光ビームスプリッターは、多層膜の干渉によって入射光をP偏光とS偏光とに効率良く分離するので、光ディスク装置や投射型表示装置等の光学系に利用されている。   The polarization beam splitter generally includes two prisms, and has a high refractive index material layer and a low refractive index material layer alternately stacked between the slopes or bottom surfaces of both prisms. Since the polarization beam splitter efficiently separates the incident light into P-polarized light and S-polarized light by interference of the multilayer film, it is used in an optical system such as an optical disk device or a projection display device.

分離する光の波長領域や、P偏光とS偏光のいずれを透過(又は反射)するかは、多層膜を構成する高屈折率物質と低屈折率物質との組み合わせによって決まる。例えば特開平11-211946号(特許文献1)に記載の偏光ビームスプリッターは、可視光波長のほぼ全域においてS偏光を反射し、P偏光を透過する。特開平9-184916号(特許文献2)に記載の偏光ビームスプリッターもS偏光を反射し、P偏光を透過するもので、入射ビームの発散角が±5°以上でも、所定の偏光特性を示す。一方、米国特許5912762号(特許文献3)に記載の偏光ビームスプリッターは、これらとは逆にS偏光を透過し、P偏光を反射する。   The wavelength range of the light to be separated and whether P-polarized light or S-polarized light is transmitted (or reflected) is determined by the combination of the high refractive index material and the low refractive index material constituting the multilayer film. For example, a polarizing beam splitter described in Japanese Patent Application Laid-Open No. 11-211946 (Patent Document 1) reflects S-polarized light and transmits P-polarized light in almost the entire visible light wavelength range. The polarizing beam splitter described in JP-A-9-184916 (Patent Document 2) also reflects S-polarized light and transmits P-polarized light, and exhibits predetermined polarization characteristics even when the incident beam has a divergence angle of ± 5 ° or more. . On the other hand, the polarization beam splitter described in US Pat. No. 5,912,762 (patent document 3) transmits S-polarized light and reflects P-polarized light.

近年、液晶プロジェクター等の分野では、黄色のS偏光と赤色のP偏光等、色の異なる偏光を同一光軸上で利用したいというニーズがある。しかし上述の例をはじめ、これまでに提案されている偏光ビームスプリッターには、(a) 特定の波長領域でP偏光とS偏光の一方のみを透過し、(b) 別の波長領域で他方のみを透過するという機能を有するものは無い。そこで、色の異なる偏光を同一光軸上で利用する場合、偏光ビームスプリッターと、カラーフィルター(ダイクロイックフィルター)及びミラーを組み合わせる必要があった。   In recent years, in the field of liquid crystal projectors and the like, there is a need to use polarized light of different colors such as yellow S-polarized light and red P-polarized light on the same optical axis. However, the polarization beam splitters proposed so far, including the example above, (a) transmit only one of P-polarized light and S-polarized light in a specific wavelength region, and (b) only the other in a different wavelength region. There is no one that has a function of transmitting light. Therefore, when using polarized light of different colors on the same optical axis, it is necessary to combine a polarizing beam splitter, a color filter (dichroic filter), and a mirror.

図10は、同一光軸上に色の異なる偏光を導く光学系の従来例を示す。この光学系は、三角プリズム3a,3b及び多層膜4からなる偏光ビームスプリッター3と、偏光ビームスプリッター3の透過光側に設けられたカラーフィルター6と、偏光ビームスプリッター3の反射光と所定の角度をなすミラー5とを具備する。カラーフィルター6は赤色の光を反射し、その他の光を透過する機能を有する。三角プリズム3aの垂直面31aに入射した光LのうちS偏光は多層膜4を透過し、P偏光は多層膜4で反射する。垂直面31bから出射したS偏光はカラーフィルター6に入射し、赤色の光Srのみカラーフィルター6で反射し、その他の光(Sg及びSb)は透過する。水平面32aから出たP偏光はミラー5で反射した後、S偏光の入射面の反対側からカラーフィルター6に入射し、赤色の光Prは反射し、緑色のS偏光Sg及び青色のS偏光Sbは透過する。   FIG. 10 shows a conventional example of an optical system that guides polarized light of different colors on the same optical axis. This optical system includes a polarizing beam splitter 3 composed of triangular prisms 3a and 3b and a multilayer film 4, a color filter 6 provided on the transmitted light side of the polarizing beam splitter 3, and reflected light from the polarizing beam splitter 3 at a predetermined angle. And a mirror 5. The color filter 6 has a function of reflecting red light and transmitting other light. Of the light L incident on the vertical surface 31 a of the triangular prism 3 a, S-polarized light is transmitted through the multilayer film 4, and P-polarized light is reflected by the multilayer film 4. The S-polarized light emitted from the vertical surface 31b is incident on the color filter 6, only the red light Sr is reflected by the color filter 6, and other light (Sg and Sb) is transmitted. The P-polarized light emitted from the horizontal plane 32a is reflected by the mirror 5, and then enters the color filter 6 from the opposite side of the S-polarized light incident surface. The red light Pr is reflected, and the green S-polarized light Sg and the blue S-polarized light Sb. Is transparent.

このように、図10に示す光学系によって、赤色のP偏光Prとシアン色のS偏光(Pg及びPb)とを同一光軸上に導くことができる。しかしこの光学系は、偏光ビームスプリッター3以外にカラーフィルター6やミラー5を要し、部品が多いので小型の光学機器には不向きであるという問題がある。   Thus, the red P-polarized light Pr and the cyan S-polarized light (Pg and Pb) can be guided on the same optical axis by the optical system shown in FIG. However, this optical system requires a color filter 6 and a mirror 5 in addition to the polarizing beam splitter 3 and has a problem that it is unsuitable for a small-sized optical apparatus because of many parts.

特開平11-211946号公報Japanese Patent Laid-Open No. 11-211946 特開平9-184916号公報JP-A-9-184916 米国特許5912762号U.S. Pat.No. 5,912,762

従って本発明の目的は、カラーフィルター等を用いることなく、一つの光軸上で色の異なるS偏光とP偏光を利用可能にする偏光ビームスプリッター及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a polarizing beam splitter that makes it possible to use S-polarized light and P-polarized light having different colors on one optical axis without using a color filter or the like, and a manufacturing method thereof.

上記目的に鑑み鋭意研究の結果、本発明者らは、透明基体と多層膜とからなる偏光ビームスプリッターにおいて、透明基体及び各層の屈折率、各層の厚さ、透明基体の屈折角並びに利用波長が所定の関係を満たすようにし、もって(a) ある波長領域においてはP偏光を反射させてS偏光を透過させ、(b) 他の波長領域においてはS偏光を反射させてP偏光を透過させるようにすると、偏光ビームスプリッターの透過光軸上で色の異なるS偏光とP偏光を利用可能になることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventors have found that in a polarizing beam splitter composed of a transparent substrate and a multilayer film, the refractive index of each of the transparent substrate and each layer, the thickness of each layer, the refraction angle of the transparent substrate, and the wavelength used. (A) Reflect P-polarized light and transmit S-polarized light in a certain wavelength region, and (b) Reflect S-polarized light and transmit P-polarized light in other wavelength regions. Then, it was discovered that S-polarized light and P-polarized light having different colors can be used on the transmission optical axis of the polarizing beam splitter, and the present invention was conceived.

すなわち本発明の偏光ビームスプリッターは一対の透明基体と、両透明基体間に積層された高屈折率層及び低屈折率層からなる多層膜とを具備し、下記式(1) 、(2) 及び(3)
nL<nS、nH ・・・(1)
θsin-1(nL/nS) ・・・(2)
dLmax<λmax ・・・(3)
(ただし、式中、nLは前記低屈折率層の屈折率を示し、nSは前記透明基体の屈折率を示し、nHは前記高屈折率層の屈折率を示し、θは一方の透明基体に垂直入射した光の前記多層膜との界面における反射角を示し、λmaxは利用波長の最大値を示し、dLmaxは低屈折率層の最大光学層厚を示す。)を満たし、前記多層膜の層数が15以上であり、第一の波長帯域においてはS偏光の透過率がP偏光の透過率より高く、第二の波長帯域においてはP偏光の透過率がS偏光の透過率より高いことを特徴とする。
That is, the polarizing beam splitter of the present invention comprises a pair of transparent substrates and a multilayer film composed of a high refractive index layer and a low refractive index layer laminated between the transparent substrates, and the following formulas (1), (2) and (3)
nL <nS, nH (1)
θ > sin -1 (nL / nS) (2)
dLmax <λmax (3)
(Where nL represents the refractive index of the low refractive index layer, nS represents the refractive index of the transparent substrate, nH represents the refractive index of the high refractive index layer, and θ represents one transparent substrate. The angle of reflection of the perpendicularly incident light at the interface with the multilayer film, λmax indicates the maximum value of the used wavelength, and dLmax indicates the maximum optical layer thickness of the low refractive index layer. The number is 15 or more, the transmittance of S-polarized light is higher than the transmittance of P-polarized light in the first wavelength band, and the transmittance of P-polarized light is higher than the transmittance of S-polarized light in the second wavelength band. Features.

前記第一及び第二の波長帯域は可視領域にあり、前記第一の波長帯域においてはS偏光の透過率が80%以上であってP偏光の透過率が20%以下であり、第二の波長帯域においてはP偏光の透過率が80%以上であってS偏光の透過率が20%以下であるのが好ましい。   The first and second wavelength bands are in a visible region, and in the first wavelength band, the transmittance of S-polarized light is 80% or more and the transmittance of P-polarized light is 20% or less. In the wavelength band, it is preferable that the transmittance of P-polarized light is 80% or more and the transmittance of S-polarized light is 20% or less.

本発明の偏光ビームスプリッターの製造方法は、第一の透明基体の底面に高屈折率層及び低屈折率層からなる多層膜を設け、前記多層膜を第二の透明基体の底面に接合するもので、前記多層膜の層数を15以上とし、下記式(1) 、(2) 及び(3)
nL<nS、nH ・・・(1)
θsin-1(nL/nS) ・・・(2)
dLmax<λmax ・・・(3)
(ただし、式中、nLは前記低屈折率層の屈折率を示し、nSは前記透明基体の屈折率を示し、nHは前記高屈折率層の屈折率を示し、θは一方の透明基体に垂直入射した光の前記多層膜との界面における反射角を示し、λmaxは利用波長の最大値を示し、dLmaxは低屈折率層の最大光学層厚を示す。)を満たすようにし、第一の波長帯域におけるS偏光の透過率をP偏光の透過率より高くし、第二の波長帯域におけるP偏光の透過率をS偏光の透過率より高くすることを特徴とする。
The method for manufacturing a polarizing beam splitter according to the present invention is such that a multilayer film comprising a high refractive index layer and a low refractive index layer is provided on the bottom surface of the first transparent substrate, and the multilayer film is bonded to the bottom surface of the second transparent substrate. The number of layers of the multilayer film is 15 or more, and the following formulas (1), (2) and (3)
nL <nS, nH (1)
θ > sin -1 (nL / nS) (2)
dLmax <λmax (3)
(Where nL represents the refractive index of the low refractive index layer, nS represents the refractive index of the transparent substrate, nH represents the refractive index of the high refractive index layer, and θ represents one transparent substrate. The angle of reflection of the perpendicularly incident light at the interface with the multilayer film is shown, λmax shows the maximum value of the used wavelength, and dLmax shows the maximum optical layer thickness of the low refractive index layer. The transmittance of S-polarized light in the wavelength band is made higher than the transmittance of P-polarized light, and the transmittance of P-polarized light in the second wavelength band is made higher than the transmittance of S-polarized light.

本発明の偏光ビームスプリッターは、第一の波長帯域においてはS偏光がP偏光より高い透過率を示して、第二の波長帯域においてはP偏光がS偏光より高い透過率を示す。また好ましい態様においては、第一の波長帯域でP偏光はほとんど透過せず、第二の波長帯域でS偏光はほとんど透過しない。このため透過光軸上には、色の異なるS偏光とP偏光が導かれる。したがって本発明の偏光ビームスプリッターを使用すると、カラーフィルター等を要することなく、色の異なるP偏光とS偏光を利用することができる。   In the polarization beam splitter of the present invention, S-polarized light exhibits higher transmittance than P-polarized light in the first wavelength band, and P-polarized light exhibits higher transmittance than S-polarized light in the second wavelength band. In a preferred embodiment, the P-polarized light hardly transmits in the first wavelength band, and the S-polarized light hardly transmits in the second wavelength band. For this reason, S-polarized light and P-polarized light having different colors are guided on the transmitted optical axis. Therefore, when the polarizing beam splitter of the present invention is used, P-polarized light and S-polarized light having different colors can be used without requiring a color filter or the like.

[1] 偏光ビームスプリッター
図1は、本発明の偏光ビームスプリッターの一例を示す。この偏光ビームスプリッターは、底面10a,10bで貼り合わされた台形プリズム1a,1bと、底面10a,10bに接合された多層膜2とからなる。
[1] Polarizing Beam Splitter FIG. 1 shows an example of the polarizing beam splitter of the present invention. This polarization beam splitter includes a trapezoidal prism 1a, 1b bonded to the bottom surfaces 10a, 10b, and a multilayer film 2 joined to the bottom surfaces 10a, 10b.

台形プリズム1a,1bは同じ形状を有するので、台形プリズム1aについてのみ形状を説明する。図2に示すように、台形プリズム1aは台形状の側面100a,101aと、水平な底面10a及び上面13aと、斜面11a,12aとからなる。図1に示す側面100aとその裏面101aは平行である。   Since the trapezoidal prisms 1a and 1b have the same shape, only the shape of the trapezoidal prism 1a will be described. As shown in FIG. 2, the trapezoidal prism 1a includes trapezoidal side surfaces 100a and 101a, horizontal bottom surface 10a and upper surface 13a, and inclined surfaces 11a and 12a. The side surface 100a and the back surface 101a shown in FIG. 1 are parallel.

台形プリズム1a,1bは同じ材料からなっても良いし、異なる材料からなっても良い。台形プリズム1a,1bの屈折率は、後述する多層膜2の屈折率との関係を満たす限り特に限定されないが、入射光の波長が300〜2000 nmである場合、一般的には1.35〜2.25程度である。台形プリズム1a,1bの材料の例として、光学ガラス、透明セラミックス及び透明プラスチックが挙げられる。   The trapezoidal prisms 1a and 1b may be made of the same material or different materials. The refractive indexes of the trapezoidal prisms 1a and 1b are not particularly limited as long as the relationship with the refractive index of the multilayer film 2 to be described later is satisfied. However, when the wavelength of incident light is 300 to 2000 nm, it is generally about 1.35 to 2.25. It is. Examples of the material of the trapezoidal prisms 1a and 1b include optical glass, transparent ceramics, and transparent plastic.

偏光ビームスプリッターは、台形プリズム1aの斜面11aに垂直に光が入射するように配置される。斜面11aに入射した光Lの一部は、多層膜2及び台形プリズム1bを透過して斜面12bから出る。残りの光は多層膜2で反射し(反射角θ)、斜面12aから出る。   The polarizing beam splitter is arranged so that light enters perpendicularly to the inclined surface 11a of the trapezoidal prism 1a. Part of the light L incident on the slope 11a passes through the multilayer film 2 and the trapezoidal prism 1b and exits from the slope 12b. The remaining light is reflected by the multilayer film 2 (reflection angle θ) and exits from the inclined surface 12a.

多層膜2は高屈折率層と、低屈折率層とを交互に有する。交互に積層された高屈折率層及び低屈折率層を有すると、各層の境界で干渉効果が起こって、特定の波長帯域においてS偏光の透過率が低下し、P偏光の透過率が上昇する。台形プリズム1a,1bの屈折率nSは、低屈折率層の屈折率nLより大きい。もちろん高屈折率層の屈折率nHは低屈折率層の屈折率nLより大きいので、下記式(1)
nL<nS、nH ・・・(1)
(ただし、nLは低屈折率層の屈折率を示し、nSは台形プリズム1a,1bの屈折率を示し、nHは高屈折率層の屈折率を示す。)により表される関係が成り立つ。低屈折率層及び台形プリズム1a,1bの屈折率nL,nSが上記式(1) を満たさないと、底面10aにおける反射角θが低屈折率層の臨界角以上であるという条件式(2) を満足できない。
The multilayer film 2 has high refractive index layers and low refractive index layers alternately. When the high refractive index layer and the low refractive index layer are alternately stacked, an interference effect occurs at the boundary between the layers, and the transmittance of S-polarized light decreases and the transmittance of P-polarized light increases in a specific wavelength band. . The refractive indexes nS of the trapezoidal prisms 1a and 1b are larger than the refractive index nL of the low refractive index layer. Of course, since the refractive index nH of the high refractive index layer is larger than the refractive index nL of the low refractive index layer, the following formula (1)
nL <nS, nH (1)
(Where nL represents the refractive index of the low refractive index layer, nS represents the refractive index of the trapezoidal prisms 1a and 1b, and nH represents the refractive index of the high refractive index layer). Conditional expression (2) that when the refractive indexes nL and nS of the low refractive index layer and the trapezoidal prisms 1a and 1b do not satisfy the above formula (1), the reflection angle θ at the bottom surface 10a is not less than the critical angle of the low refractive index layer. Can not be satisfied.

高屈折率層の屈折率nHと台形プリズム1a,1bの屈折率nSは、下記式(4)
nS<nH ・・・(4)
(ただし、nSは台形プリズム1a,1bの屈折率を示し、nHは高屈折率層の屈折率を示す。)を満たすのが好ましい。上記式(4) が成り立つように高屈折率層の屈折率nHと台形プリズム1a,1bの屈折率nSを設定すると、特定の波長帯域におけるS偏光の反射率を効率よく上昇させることができる。
The refractive index nH of the high refractive index layer and the refractive index nS of the trapezoidal prisms 1a and 1b are expressed by the following formula (4)
nS <nH (4)
(Where nS represents the refractive index of the trapezoidal prisms 1a and 1b, and nH represents the refractive index of the high refractive index layer). If the refractive index nH of the high refractive index layer and the refractive index nS of the trapezoidal prisms 1a and 1b are set so that the above formula (4) is satisfied, the reflectance of S-polarized light in a specific wavelength band can be increased efficiently.

底面10aにおける反射角をθとすると、下記式(2)
θsin-1(nL/nS) ・・・(2)
(ただし、nLは低屈折率層の屈折率を示し、nSは台形プリズム1a,1bの屈折率を示し、θは台形プリズム1aの斜面11aに垂直入射した光Lの底面10aにおける反射角を示す。)により表される関係が成り立つ。反射角θがsin-1(nL/nS)未満であると、S偏光の透過率が大きく、かつP偏光の透過率が小さい波長帯域を得ることができない。
Assuming that the reflection angle at the bottom surface 10a is θ, the following equation (2)
θ > sin -1 (nL / nS) (2)
(Where nL represents the refractive index of the low refractive index layer, nS represents the refractive index of the trapezoidal prisms 1a and 1b, and θ represents the reflection angle at the bottom surface 10a of the light L perpendicularly incident on the inclined surface 11a of the trapezoidal prism 1a. )) Is established. When the reflection angle θ is less than sin −1 (nL / nS), it is impossible to obtain a wavelength band in which the transmittance of S-polarized light is large and the transmittance of P-polarized light is small.

高屈折率層と、低屈折率層の層数の合計は15以上である。層数の合計が15未満であると、S偏光とP偏光の透過率及び反射率が可視光の波長で逆転し難過ぎる。高屈折率層及び低屈折率層の各層は同じ材料からなっても良いし、上記式(1) 及び(2) を満たすような異なる材料からなっても良い。台形プリズム1a,1bの屈折率nSが1.5〜1.8である場合、高屈折率層の例として酸化タンタル層、酸化チタン層、酸化ランタン層、酸化イットリウム層、酸化ニオブ層、酸化セリウム層、酸化ジルコニウム層、酸化イッテルビウム層、酸化ハフニウム層及び酸化アルミニウム層が挙げられる。低屈折率層の例として酸化ケイ素層、フッ化マグネシウム層、フッ化カルシウム層及びフッ化アルミニウム層が挙げられる。   The total number of layers of the high refractive index layer and the low refractive index layer is 15 or more. If the total number of layers is less than 15, the transmittance and reflectance of S-polarized light and P-polarized light are difficult to reverse at the wavelength of visible light. Each of the high refractive index layer and the low refractive index layer may be made of the same material, or may be made of different materials satisfying the above formulas (1) and (2). When the refractive index nS of the trapezoidal prisms 1a and 1b is 1.5 to 1.8, examples of the high refractive index layer include tantalum oxide layers, titanium oxide layers, lanthanum oxide layers, yttrium oxide layers, niobium oxide layers, cerium oxide layers, zirconium oxides. A layer, an ytterbium oxide layer, a hafnium oxide layer, and an aluminum oxide layer. Examples of the low refractive index layer include a silicon oxide layer, a magnesium fluoride layer, a calcium fluoride layer, and an aluminum fluoride layer.

各高屈折率層及び低屈折率層の光学層厚は、同じでも良いし異なっても良い。高屈折率層又は低屈折率層の「光学層厚」は、高屈折率層又は低屈折率層の光学的な厚さ(光学膜厚)を意味する。ただし低屈折率層の光学層厚のうち最も大きいものdLmaxは、下記式(3) dLmax<λmax ・・・(3)
(ただし、λmaxは利用波長λの最大値を示し、dLmaxは低屈折率層の最大光学層厚を示す。)を満たす必要がある。利用波長λは、偏光ビームスプリッターに照射して各偏光に分離する光の波長を示す。低屈折率層の最大光学層厚dLmaxが利用波長の最大値λmax以上であると、入射光を全反射してしまう。利用波長が300〜2000 nmの場合、一般的には低屈折率層の光学層厚は5〜2000 nm程度であり、高屈折率層の光学層厚も5〜2000 nm程度である。多層膜2の光学膜厚は、1〜1000μm程度である。
The optical layer thickness of each high refractive index layer and low refractive index layer may be the same or different. The “optical layer thickness” of the high refractive index layer or the low refractive index layer means the optical thickness (optical film thickness) of the high refractive index layer or the low refractive index layer. However, the largest dLmax of the optical layer thickness of the low refractive index layer is expressed by the following formula (3) dLmax <λmax (3)
(However, λmax indicates the maximum value of the used wavelength λ and dLmax indicates the maximum optical layer thickness of the low refractive index layer). The utilization wavelength λ indicates the wavelength of light that is irradiated onto the polarization beam splitter and separated into each polarized light. If the maximum optical layer thickness dLmax of the low refractive index layer is not less than the maximum value λmax of the used wavelength, the incident light is totally reflected. When the utilization wavelength is 300 to 2000 nm, the optical layer thickness of the low refractive index layer is generally about 5 to 2000 nm, and the optical layer thickness of the high refractive index layer is also about 5 to 2000 nm. The optical film thickness of the multilayer film 2 is about 1 to 1000 μm.

図3は、偏光ビームスプリッターの分光透過率を概略的に示す。図3中、TsはS偏光の透過率を示し、TpはP偏光の透過率を示す。第一の波長帯域W1においては、S偏光の透過率TsがP偏光の透過率Tpより大きく、第二の波長帯域W2においてはP偏光の透過率TpがS偏光の透過率Tsより大きい。第一及び第二の波長帯域W1,W2の境界は、利用波長λの範囲内にある必要がある。これらの境界が利用波長λの範囲内でないと、S偏光とP偏光の透過率の逆転を利用できない。また第一及び第二の波長帯域W1,W2は、共に可視光の領域にあるのが好ましい。第一及び第二の波長帯域W1,W2が可視光の領域にあると、斜面12bから出るS偏光及びP偏光が異なる色を示す。   FIG. 3 schematically shows the spectral transmittance of the polarizing beam splitter. In FIG. 3, Ts indicates the transmittance of S-polarized light, and Tp indicates the transmittance of P-polarized light. In the first wavelength band W1, the transmittance Ts of S-polarized light is larger than the transmittance Tp of P-polarized light, and in the second wavelength band W2, the transmittance Tp of P-polarized light is larger than the transmittance Ts of S-polarized light. The boundary between the first and second wavelength bands W1 and W2 needs to be within the range of the use wavelength λ. If these boundaries are not within the range of the used wavelength λ, the reversal of the transmittance of S-polarized light and P-polarized light cannot be used. The first and second wavelength bands W1 and W2 are preferably both in the visible light region. When the first and second wavelength bands W1 and W2 are in the visible light region, S-polarized light and P-polarized light emitted from the inclined surface 12b exhibit different colors.

例えば第一の波長帯域W1が400〜600 nmで、第二の波長帯域W2が650〜750 nmの場合、図4に示すように、赤色のP偏光Pr、並びに緑色及び青色のS偏光Sg,Sbは多層膜2を透過し、緑色及び青色のP偏光Pg,Pb、並びに赤色のS偏光Srは反射する。したがって、斜面12bに直行する光軸上では赤色のP偏光Pr、並びに緑色及び青色のS偏光Sg,Sbを利用可能であり、斜面12aに直行する光軸上では緑色及び青色のP偏光Pg,Pb、並びに赤色のS偏光Srを利用可能である。   For example, when the first wavelength band W1 is 400 to 600 nm and the second wavelength band W2 is 650 to 750 nm, as shown in FIG. 4, red P-polarized light Pr and green and blue S-polarized light Sg, Sb is transmitted through the multilayer film 2, and green and blue P-polarized light Pg and Pb and red S-polarized light Sr are reflected. Therefore, red P-polarized light Pr and green and blue S-polarized light Sg and Sb can be used on the optical axis orthogonal to the slope 12b, and green and blue P-polarized light Pg, on the optical axis orthogonal to the slope 12a. Pb and red S-polarized Sr can be used.

第一の波長帯域W1におけるS偏光の透過率Tsが80%以上であり、第二の波長帯域W2におけるP偏光の透過率Tpが80%以上であるのが好ましい。透過率Ts,Tpが80%以上であると、反射によるロスが少なく、入射光を有効に利用できる。また第一の波長帯域W1におけるP偏光の透過率Tpは20%以下であるのが好ましく、第二の波長帯域W2におけるS偏光の透過率Tsは20%以下であるのが好ましい。各波長帯域W1,W2において実質的に利用しない方の透過率が20%超であると、不要な偏光を透過光軸上に導き過ぎる。また第一の波長帯域W1におけるP偏光の透過率Tp、及び第二の波長帯域W2におけるS偏光の透過率Tsが20%以上であると、反射光軸上でこれらの偏光を有効に利用可能である。   The S-polarized light transmittance Ts in the first wavelength band W1 is preferably 80% or more, and the P-polarized light transmittance Tp in the second wavelength band W2 is preferably 80% or more. When the transmittances Ts and Tp are 80% or more, there is little loss due to reflection, and incident light can be used effectively. Further, the P-polarized light transmittance Tp in the first wavelength band W1 is preferably 20% or less, and the S-polarized light transmittance Ts in the second wavelength band W2 is preferably 20% or less. If the transmittance that is not substantially used in each of the wavelength bands W1 and W2 exceeds 20%, unnecessary polarized light is guided too much on the transmission optical axis. If the transmittance Tp of P-polarized light in the first wavelength band W1 and the transmittance Ts of S-polarized light in the second wavelength band W2 are 20% or more, these polarized lights can be used effectively on the reflected optical axis. It is.

図3に示す例では、第一の波長帯域W1が短波長側で、第二の波長帯域W2が長波長側であるが、第一及び第二の波長帯域W1,W2はこれに限定されず、第二の波長帯域W2が短波長側で、第一の波長帯域W1が長波長側でもよい。この場合、斜面12bからは長波長側の色のS偏光が出射し、斜面12aからは短波長側の色のP偏光が出射する。   In the example shown in FIG. 3, the first wavelength band W1 is on the short wavelength side and the second wavelength band W2 is on the long wavelength side, but the first and second wavelength bands W1 and W2 are not limited to this. The second wavelength band W2 may be on the short wavelength side, and the first wavelength band W1 may be on the long wavelength side. In this case, S-polarized light having a longer wavelength is emitted from the inclined surface 12b, and P-polarized light having a shorter wavelength is emitted from the inclined surface 12a.

[2] 偏光ビームスプリッターの製造方法
(1) 多層膜の設計
屈折率nH,nL,nSと、透明基体の反射角θは、下記式(1) 及び(2)
nL<nS、nH ・・・(1)
θsin-1(nL/nS) ・・・(2)
(ただし、式中、nLは前記低屈折率層の屈折率を示し、nSは前記透明基体の屈折率を示し、nHは前記高屈折率層の屈折率を示し、θは一方の透明基体に垂直入射した光の前記多層膜との界面における反射角を示す。)を満たす必要がある。
[2] Manufacturing method of polarizing beam splitter
(1) Design of multilayer film Refractive indexes nH, nL, nS and the reflection angle θ of the transparent substrate are expressed by the following equations (1) and (2)
nL <nS, nH (1)
θ > sin -1 (nL / nS) (2)
(Where nL represents the refractive index of the low refractive index layer, nS represents the refractive index of the transparent substrate, nH represents the refractive index of the high refractive index layer, and θ represents one transparent substrate. The reflection angle at the interface with the multilayer film of vertically incident light must be satisfied.

15以上の数で層数(低屈折率層及び高屈折率層の合計)を決め、下記式(3)
dLmax<λmax ・・・(3)
(ただし、λmaxは利用波長の最大値を示し、dLmaxは低屈折率層の最大光学層厚を示す。)を満たすように設定して、光学薄膜設計用のシミュレーションソフトで処理する。シミュレーションの条件としては、例えば波長400〜600 nmではS偏光の透過率を80%以上、かつP偏光の透過率を20%以下とし、波長650〜750 nmではP偏光の透過率を80%以上、かつS偏光の透過率を20%以下とする。シミュレーションソフトは、各層の光学層厚を変化させて最適化を行う。
The number of layers (the total of the low refractive index layer and the high refractive index layer) is determined by a number of 15 or more, and the following formula (3)
dLmax <λmax (3)
(However, λmax indicates the maximum value of the used wavelength, and dLmax indicates the maximum optical layer thickness of the low refractive index layer.) And is processed by simulation software for optical thin film design. The simulation conditions are, for example, that the transmittance of S-polarized light is 80% or more and the transmittance of P-polarized light is 20% or less at a wavelength of 400 to 600 nm, and the transmittance of P-polarized light is 80% or more at a wavelength of 650 to 750 nm. And the transmittance of S-polarized light is 20% or less. The simulation software performs optimization by changing the optical layer thickness of each layer.

(2) 多層膜の成膜
低屈折率層及び高屈折率層を形成する方法は特に限定されず、一般的な方法によって作製することができる。例えば蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、熱CVD、プラズマCVD、光CVD等の化学蒸着法が挙げられる。屈折率の安定性や膜厚制御性の観点から、スパッタリング法やイオンプレーティング法が好ましい。
(2) Formation of multilayer film The method of forming the low refractive index layer and the high refractive index layer is not particularly limited, and can be produced by a general method. For example, physical vapor deposition methods such as vapor deposition, sputtering, and ion plating, and chemical vapor deposition such as thermal CVD, plasma CVD, and photo-CVD are listed. From the viewpoint of refractive index stability and film thickness controllability, sputtering and ion plating are preferred.

スパッタリング法又はイオンプレーティング法によって低屈折率層又は高屈折率層を成膜する場合、蒸着時間、加熱温度等を適宜設定することにより、所望の厚さを有する層を形成することができる。   When a low refractive index layer or a high refractive index layer is formed by a sputtering method or an ion plating method, a layer having a desired thickness can be formed by appropriately setting a deposition time, a heating temperature, and the like.

(3) 透明基材の接着
台形プリズム1aの一面に形成した多層膜2に台形プリズム1bを接着するには、(a) 多層膜2の表面に接着剤を塗布して台形プリズム1bを貼り合わせても良いが、(b) 多層膜2と台形プリズム1bを真空接着する方が好ましい。真空接着によると、接着剤を用いる必要が無いので、得られる偏光ビームスプリッターが接着剤による屈折の影響を受けない。
(3) Adhesion of transparent base material To attach the trapezoid prism 1b to the multilayer film 2 formed on one surface of the trapezoid prism 1a, (a) Apply the adhesive to the surface of the multilayer film 2 and bond the trapezoid prism 1b together. However, it is preferable to vacuum-bond (b) the multilayer film 2 and the trapezoidal prism 1b. According to the vacuum bonding, it is not necessary to use an adhesive, so that the obtained polarizing beam splitter is not affected by refraction by the adhesive.

真空接着によって多層膜2と台形プリズム1bを接合するには、まず多層膜2の表面と台形プリズム1bの底面10bを当接した状態にして真空チャンバに入れる。次いで、真空チャンバ内を1Pa〜1kPa程度の減圧状態にする。多層膜2及び台形プリズム1bの表面は非常に平滑であるので、このように減圧雰囲気中で密着状態にすることによって、接着することができる。   In order to join the multilayer film 2 and the trapezoidal prism 1b by vacuum bonding, first, the surface of the multilayer film 2 and the bottom surface 10b of the trapezoidal prism 1b are brought into contact with each other and placed in a vacuum chamber. Next, the vacuum chamber is evacuated to about 1 Pa to 1 kPa. Since the surfaces of the multilayer film 2 and the trapezoidal prism 1b are very smooth, they can be bonded by bringing them into close contact in a reduced pressure atmosphere.

本発明を以下の実施例によってさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1Example 1

低屈折率層の材料をSiO2とし、高屈折率層の材料をTa2O5とし、透明基材1aを光学ガラスS-BSL7(株式会社オハラ製、屈折率nd=1.516)からなる台形プリズム1aとし、利用波長λを350〜750 nmとして48層の多層膜2を設計した。台形プリズム1aの形状は、底面10aにおける反射角が85°である以外、図1及び2に示すものと同じであった。多層膜2の構成を表1に示す。この多層膜2の低屈折率層及び高屈折率層の屈折率、並びに透明基材の屈折率は明らかに上記式(1) を満たし、sin-1(nL/nS)は74.38(<85)であるので上記式(2) も満たす。またdLmaxは351.6であるので、上記式(3) も満たす。 A trapezoidal prism made of SiO 2 as the material of the low refractive index layer, Ta 2 O 5 as the material of the high refractive index layer, and the transparent substrate 1a made of optical glass S-BSL7 (made by OHARA, refractive index nd = 1.516). 48 layers of multilayer film 2 were designed with 1a and a wavelength λ of 350 to 750 nm. The shape of the trapezoidal prism 1a was the same as that shown in FIGS. 1 and 2 except that the reflection angle at the bottom surface 10a was 85 °. The structure of the multilayer film 2 is shown in Table 1. The refractive index of the low refractive index layer and the high refractive index layer of this multilayer film 2 and the refractive index of the transparent substrate clearly satisfy the above formula (1), and sin −1 (nL / nS) is 74.38 (<85). Therefore, the above equation (2) is also satisfied. Since dLmax is 351.6, the above equation (3) is also satisfied.

台形プリズム1aの底面10aに、表1に示す多層膜を形成した。   A multilayer film shown in Table 1 was formed on the bottom surface 10a of the trapezoidal prism 1a.

Figure 2006065247
注 但し、層No.は台形プリズム1a側からNo.1、2・・・・47、48とする。
Figure 2006065247
Note However, the layer numbers are No. 1, 2, ... 47, 48 from the trapezoidal prism 1a side.

台形プリズム1aと同じ形状及び材質の台形プリズム1bの底面10bに、多層膜2の第48層を当接させて真空チャンバに入れ、チャンバ内を真空引きして多層膜と台形プリズムを接着し、偏光ビームスプリッターを作製した。   The bottom layer 10b of the trapezoidal prism 1b having the same shape and material as the trapezoidal prism 1a is brought into contact with the 48th layer of the multilayer film 2 into the vacuum chamber, and the inside of the chamber is evacuated to bond the multilayer film and the trapezoid prism. A polarizing beam splitter was produced.

実施例2
光学ガラスS-LAL56(株式会社オハラ製、屈折率nd=1.68)からなり、θ=65°である台形プリズム1a,1bを用い、台形プリズム1aの底面10aに表2に示す多層膜2を形成した以外実施例1と同様にして、偏光ビームスプリッターを作製した。この偏光ビームスプリッターの多層膜2も、上記式(1) 〜(3) を満たした。
Example 2
The multilayer film 2 shown in Table 2 is formed on the bottom surface 10a of the trapezoidal prism 1a using the trapezoidal prisms 1a and 1b made of optical glass S-LAL56 (made by OHARA INC., Refractive index nd = 1.68) and θ = 65 °. A polarizing beam splitter was produced in the same manner as in Example 1 except that. The multilayer film 2 of this polarizing beam splitter also satisfied the above equations (1) to (3).

Figure 2006065247
注 但し、層No.は台形プリズム1a側からNo.1、2・・・・47、48とする。
Figure 2006065247
Note However, the layer numbers are No. 1, 2, ... 47, 48 from the trapezoidal prism 1a side.

実施例3
光学ガラスS-LAH59(株式会社オハラ製、屈折率nd=1.82)からなり、θ=55°である台形プリズム1a,1bを用い、台形プリズム1aの底面10aに表3に示す多層膜2を形成した以外実施例1と同様にして、偏光ビームスプリッターを作製した。この偏光ビームスプリッターの多層膜2も、上記式(1) 〜(3) を満たした。
Example 3
The multilayer film 2 shown in Table 3 is formed on the bottom surface 10a of the trapezoidal prism 1a using the trapezoidal prisms 1a and 1b made of optical glass S-LAH59 (made by OHARA INC., Refractive index nd = 1.82) and θ = 55 °. A polarizing beam splitter was produced in the same manner as in Example 1 except that. The multilayer film 2 of this polarizing beam splitter also satisfied the above equations (1) to (3).

Figure 2006065247
注 但し、層No.は台形プリズム1a側からNo.1、2・・・・47、48とする。
Figure 2006065247
Note However, the layer numbers are No. 1, 2, ... 47, 48 from the trapezoidal prism 1a side.

実施例4
光学ガラスS-BSL7(株式会社オハラ製、屈折率nd=1.516)からなり、θ=85°である台形プリズム1a,1bを用い、表4に示す多層膜を台形プリズム1aの底面10aに形成した以外実施例1と同様にして、偏光ビームスプリッターを作製した。この偏光ビームスプリッターの多層膜2も、上記式(1) 〜(3) を満たした。
Example 4
The multilayer film shown in Table 4 was formed on the bottom surface 10a of the trapezoidal prism 1a using optical glass S-BSL7 (made by OHARA INC., Refractive index nd = 1.516) and using trapezoidal prisms 1a and 1b with θ = 85 °. A polarizing beam splitter was produced in the same manner as in Example 1 except that. The multilayer film 2 of this polarizing beam splitter also satisfied the above equations (1) to (3).

Figure 2006065247
注 但し、層No.は台形プリズム1a側からNo.1、2・・・・16とする。
Figure 2006065247
Note However, the layer number is No. 1, 2, ... 16 from the trapezoidal prism 1a side.

比較例1
光学ガラスS-LAL18(株式会社オハラ製、屈折率nd=1.73)からなり、θ=45°である三角プリズム3a,3bを用い、表5に示す多層膜を三角プリズム3aの垂直面31aに形成した以外実施例1と同様にして、図10に示す形状の偏光ビームスプリッターを作製した。この多層膜4のsin-1(nL/nS)は57.55(>45)であり、上記式(2) を満たさなかった。
Comparative Example 1
The multilayer film shown in Table 5 is formed on the vertical surface 31a of the triangular prism 3a using optical prism S-LAL18 (made by OHARA INC., Refractive index nd = 1.73) and triangular prisms 3a and 3b with θ = 45 °. A polarizing beam splitter having the shape shown in FIG. 10 was produced in the same manner as in Example 1 except that. This multilayer film 4 had sin −1 (nL / nS) of 57.55 (> 45), and did not satisfy the above formula (2).

Figure 2006065247
注 但し、層No.は台形プリズム1a側からNo.1、2・・・・36、37とする。
Figure 2006065247
Note, however, the layer numbers are No. 1, 2, ... 36, 37 from the trapezoidal prism 1a side.

実施例1〜4の斜面11a及び比較例1の垂直面31aに、垂直に波長350〜750 nmの光を照射し、各偏光の分光透過率を測定した。結果を図5〜9に示す。なお簡単のために、空気と透明基材1a,1bとの界面における反射の寄与を除いた値を偏光ビームスプリッターの透過率として各グラフの縦軸に示した。   The inclined surface 11a of Examples 1 to 4 and the vertical surface 31a of Comparative Example 1 were vertically irradiated with light having a wavelength of 350 to 750 nm, and the spectral transmittance of each polarized light was measured. The results are shown in FIGS. For simplicity, the value excluding the contribution of reflection at the interface between air and the transparent substrates 1a and 1b is shown on the vertical axis of each graph as the transmittance of the polarizing beam splitter.

図5〜8に示すように、実施例1〜4のS偏光及びP偏光の透過率は、波長550 nm前後で逆転していた。例えば実施例1においては、波長410〜550 nmの範囲でS偏光は85%以上の透過率を示すのに対してP偏光の透過率は5%未満であり、波長580〜740 nmの範囲ではP偏光は80%以上の透過率を示すのに対してS偏光の透過率はほぼ0%であった(図5)。一方、図9に示すように、比較例1においては、利用波長λの全範囲でP偏光の透過率の方がS偏光より大きかった。   As shown in FIGS. 5 to 8, the transmittances of S-polarized light and P-polarized light in Examples 1 to 4 were reversed around a wavelength of 550 nm. For example, in Example 1, S-polarized light exhibits a transmittance of 85% or more in the wavelength range of 410 to 550 nm, whereas the transmittance of P-polarized light is less than 5%, and in the wavelength range of 580 to 740 nm. P-polarized light showed a transmittance of 80% or higher, whereas the transmittance of S-polarized light was almost 0% (FIG. 5). On the other hand, as shown in FIG. 9, in Comparative Example 1, the transmittance of P-polarized light was larger than that of S-polarized light over the entire range of the used wavelength λ.

本発明の偏光ビームスプリッターの一例を示す側面図である。It is a side view which shows an example of the polarizing beam splitter of this invention. 台形プリズムを示す斜視図である。It is a perspective view which shows a trapezoid prism. 本発明の偏光ビームスプリッターの分光透過率を示す概略図である。It is the schematic which shows the spectral transmittance of the polarizing beam splitter of this invention. 偏光ビームスプリッターの透過光及び反射光を示す側面図である。It is a side view which shows the transmitted light and reflected light of a polarization beam splitter. 実施例1の偏光ビームスプリッターにおける各偏光の分光透過率を示すグラフである。3 is a graph showing the spectral transmittance of each polarized light in the polarizing beam splitter of Example 1. FIG. 実施例2の偏光ビームスプリッターにおける各偏光の分光透過率を示すグラフである。6 is a graph showing the spectral transmittance of each polarized light in the polarizing beam splitter of Example 2. 実施例3の偏光ビームスプリッターにおける各偏光の分光透過率を示すグラフである。10 is a graph showing the spectral transmittance of each polarized light in the polarizing beam splitter of Example 3. 実施例4の偏光ビームスプリッターにおける各偏光の分光透過率を示すグラフである。10 is a graph showing the spectral transmittance of each polarized light in the polarizing beam splitter of Example 4. 比較例1の偏光ビームスプリッターにおける各偏光の分光透過率を示すグラフである。6 is a graph showing the spectral transmittance of each polarized light in the polarizing beam splitter of Comparative Example 1. 同一光軸上に色の異なる偏光を導く光学系の一例を示す概略図である。It is the schematic which shows an example of the optical system which guide | induces the polarized light from which a color differs on the same optical axis.

符号の説明Explanation of symbols

1a、1b・・・台形プリズム
10a、10b・・・底面
11a、12a・・・斜面
13a・・・上面
100a、101a・・・側面
2・・・多層膜
3a、3b・・・プリズム
5・・・ミラー
6・・・カラーフィルター
S・・・S偏光
P・・・P偏光
Ts・・・S偏光の透過率
Tp・・・P偏光の透過率
1a, 1b ... Trapezoidal prism
10a, 10b ... Bottom
11a, 12a ... Slope
13a ・ ・ ・ Top surface
100a, 101a ... Side 2 ... Multilayer film
3a, 3b ... Prism 5 ... Mirror 6 ... Color filter
S ... S-polarized light
P ... P polarized light
Ts ・ ・ ・ S-polarized light transmittance
Tp ・ ・ ・ P-polarized light transmittance

Claims (3)

一対の透明基体と、両透明基体間に設けられた高屈折率層及び低屈折率層からなる多層膜とを具備する偏光ビームスプリッターであって、下記式(1) 、(2) 及び(3)
nL<nS、nH ・・・(1)
θsin-1(nL/nS) ・・・(2)
dLmax<λmax ・・・(3)
(ただし、式中、nLは前記低屈折率層の屈折率を示し、nSは前記透明基体の屈折率を示し、nHは前記高屈折率層の屈折率を示し、θは一方の透明基体に垂直入射した光の前記多層膜との界面における反射角を示し、λmaxは利用波長の最大値を示し、dLmaxは低屈折率層の最大光学層厚を示す。)を満たし、前記多層膜の層数が15以上であり、第一の波長帯域においてはS偏光の透過率がP偏光の透過率より高く、第二の波長帯域においてはP偏光の透過率がS偏光の透過率より高いことを特徴とする偏光ビームスプリッター。
A polarizing beam splitter comprising a pair of transparent substrates and a multilayer film composed of a high refractive index layer and a low refractive index layer provided between the transparent substrates, the following formulas (1), (2) and (3 )
nL <nS, nH (1)
θ > sin -1 (nL / nS) (2)
dLmax <λmax (3)
(Where nL represents the refractive index of the low refractive index layer, nS represents the refractive index of the transparent substrate, nH represents the refractive index of the high refractive index layer, and θ represents one transparent substrate. The angle of reflection of the perpendicularly incident light at the interface with the multilayer film, λmax indicates the maximum value of the used wavelength, and dLmax indicates the maximum optical layer thickness of the low refractive index layer. The number is 15 or more, the transmittance of S-polarized light is higher than the transmittance of P-polarized light in the first wavelength band, and the transmittance of P-polarized light is higher than the transmittance of S-polarized light in the second wavelength band. Characteristic polarization beam splitter.
請求項1に記載の偏光ビームスプリッターにおいて、前記第一及び第二の波長帯域は可視領域にあり、前記第一の波長帯域においてはS偏光の透過率が80%以上であってP偏光の透過率が20%以下であり、第二の波長帯域においてはP偏光の透過率が80%以上であってS偏光の透過率が20%以下であることを特徴とする偏光ビームスプリッター。   2. The polarizing beam splitter according to claim 1, wherein the first and second wavelength bands are in a visible region, and in the first wavelength band, the transmittance of S-polarized light is 80% or more and transmission of P-polarized light. A polarizing beam splitter, wherein the transmittance is 20% or less, and in the second wavelength band, the transmittance of P-polarized light is 80% or more and the transmittance of S-polarized light is 20% or less. 第一の透明基体の底面に高屈折率層及び低屈折率層からなる多層膜を設け、前記多層膜を第二の透明基体の底面に接合する偏光ビームスプリッターの製造方法であって、前記多層膜の層数を15以上とし、下記式(1) 、(2) 及び(3)
nL<nS、nH ・・・(1)
θsin-1(nL/nS) ・・・(2)
dLmax<λmax ・・・(3)
(ただし、式中、nLは前記低屈折率層の屈折率を示し、nSは前記透明基体の屈折率を示し、nHは前記高屈折率層の屈折率を示し、θは一方の透明基体に垂直入射した光の前記多層膜との界面における反射角を示し、λmaxは利用波長の最大値を示し、dLmaxは低屈折率層の最大光学層厚を示す。)を満たすようにし、第一の波長帯域におけるS偏光の透過率をP偏光の透過率より高くし、第二の波長帯域におけるP偏光の透過率をS偏光の透過率より高くすることを特徴とする偏光ビームスプリッターの製造方法。
A method of manufacturing a polarizing beam splitter, wherein a multilayer film comprising a high refractive index layer and a low refractive index layer is provided on the bottom surface of a first transparent substrate, and the multilayer film is bonded to the bottom surface of a second transparent substrate, comprising: The number of layers of the film is 15 or more, and the following formulas (1), (2) and (3)
nL <nS, nH (1)
θ > sin -1 (nL / nS) (2)
dLmax <λmax (3)
(Where nL represents the refractive index of the low refractive index layer, nS represents the refractive index of the transparent substrate, nH represents the refractive index of the high refractive index layer, and θ represents one transparent substrate. The angle of reflection of the perpendicularly incident light at the interface with the multilayer film is shown, λmax shows the maximum value of the used wavelength, and dLmax shows the maximum optical layer thickness of the low refractive index layer. A method of manufacturing a polarizing beam splitter, characterized in that the transmittance of S-polarized light in the wavelength band is higher than the transmittance of P-polarized light, and the transmittance of P-polarized light in the second wavelength band is higher than the transmittance of S-polarized light.
JP2004250922A 2004-08-30 2004-08-30 Polarizing beam splitter and manufacturing method thereof Withdrawn JP2006065247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250922A JP2006065247A (en) 2004-08-30 2004-08-30 Polarizing beam splitter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250922A JP2006065247A (en) 2004-08-30 2004-08-30 Polarizing beam splitter and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006065247A true JP2006065247A (en) 2006-03-09

Family

ID=36111768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250922A Withdrawn JP2006065247A (en) 2004-08-30 2004-08-30 Polarizing beam splitter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006065247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749670A (en) * 2012-07-02 2012-10-24 杭州科汀光学技术有限公司 Broadband prism multilayer film polarizing beam splitter
CN109613637A (en) * 2017-09-30 2019-04-12 张家港康得新光电材料有限公司 Decorating film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912762A (en) * 1996-08-12 1999-06-15 Li; Li Thin film polarizing device
JP2006047903A (en) * 2004-08-09 2006-02-16 Canon Inc Polarized beam splitter and projection device having the same
JP2006071754A (en) * 2004-08-31 2006-03-16 Pentax Corp Polarized beam splitter and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912762A (en) * 1996-08-12 1999-06-15 Li; Li Thin film polarizing device
JP2006047903A (en) * 2004-08-09 2006-02-16 Canon Inc Polarized beam splitter and projection device having the same
JP2006071754A (en) * 2004-08-31 2006-03-16 Pentax Corp Polarized beam splitter and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749670A (en) * 2012-07-02 2012-10-24 杭州科汀光学技术有限公司 Broadband prism multilayer film polarizing beam splitter
CN109613637A (en) * 2017-09-30 2019-04-12 张家港康得新光电材料有限公司 Decorating film
CN109613637B (en) * 2017-09-30 2021-10-26 张家港康得新光电材料有限公司 Decorative film

Similar Documents

Publication Publication Date Title
JP2008020563A (en) Dielectric multilayer film filter
JP2007183525A (en) Dielectric multilayer film filter
JP2006047903A (en) Polarized beam splitter and projection device having the same
JP2002518714A (en) Dichroic filter with small angle dependence
TW201137395A (en) Compact optical integrator
JP2006071754A (en) Polarized beam splitter and its manufacturing method
JP2008181074A (en) Polarization beam splitter and polarization conversion element
JP3584257B2 (en) Polarizing beam splitter
JPH095518A (en) Polarization beam splitter and its production
JP2006065247A (en) Polarizing beam splitter and manufacturing method thereof
JP2009031406A (en) Nonpolarization beam splitter and optical measuring instrument using the same
JP2008203493A (en) Image projection device
JP2001350024A (en) Polarizing beam splitter
JP2008116898A (en) Optical filter, projection type display device and manufacturing method of optical filter
EP1276000A2 (en) Polarisation beam splitter and method of producing the same
WO2007129375A1 (en) Optical device component
JP2008116714A (en) Optical filter and color separation prism
JP2003114326A (en) Polarized beam splitter and optical apparatus using the polarized beam splitter
CN112859228A (en) Optical element, method for manufacturing the same, and projection type image display apparatus
JP2007212694A (en) Beam splitter
JP2008058561A (en) Optical filter and color separation prism
JP2003344654A (en) Optic element and polarization conversion element
JPS62187802A (en) Beam splitter
JPH08286034A (en) Polarized light beam splitter
JP2010276941A (en) Method for manufacturing junction type optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A711 Notification of change in applicant

Effective date: 20080424

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

A131 Notification of reasons for refusal

Effective date: 20100602

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20100716

Free format text: JAPANESE INTERMEDIATE CODE: A761