JP2006064904A - Optical system equipped with cemented lens and imaging apparatus using the same - Google Patents

Optical system equipped with cemented lens and imaging apparatus using the same Download PDF

Info

Publication number
JP2006064904A
JP2006064904A JP2004246220A JP2004246220A JP2006064904A JP 2006064904 A JP2006064904 A JP 2006064904A JP 2004246220 A JP2004246220 A JP 2004246220A JP 2004246220 A JP2004246220 A JP 2004246220A JP 2006064904 A JP2006064904 A JP 2006064904A
Authority
JP
Japan
Prior art keywords
lens
optical system
cemented
lens group
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004246220A
Other languages
Japanese (ja)
Other versions
JP4705770B2 (en
JP2006064904A5 (en
Inventor
Masahito Watanabe
正仁 渡邉
Kazuteru Kawamura
一輝 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004246220A priority Critical patent/JP4705770B2/en
Priority to US11/210,809 priority patent/US7405889B2/en
Publication of JP2006064904A publication Critical patent/JP2006064904A/en
Publication of JP2006064904A5 publication Critical patent/JP2006064904A5/ja
Priority to US12/082,661 priority patent/US7872809B2/en
Application granted granted Critical
Publication of JP4705770B2 publication Critical patent/JP4705770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1425Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being negative

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical system capable of obtaining a zoom lens excellent in image forming performance with a small number of lenses and realizing the manufacture of a thin and high-performance digital camera or a video camera, and to provide an imaging apparatus using the same. <P>SOLUTION: In the optical system equipped with the cemented lens having a bonded surface on an optical axis, air contact surfaces being a light beam incident side and a light beam emitting side in the cemented lens G2 are aspherical, and at least one bonded surface of the cemented lens G2 satisfies a following condition. (1) 6.4<¾(r/R)¾, provided that r is the radius of curvature on the optical axis of the connecting surface and R is the maximum diameter of the connecting surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、接合レンズを備えた光学系及びそれを用いた撮像装置に関し、特に、光学系部分の工夫により、薄型化を達成しつつ、デジタルカメラやビデオカメラに適した構成のズームレンズとそれを用いた撮像装置に関するものである。   The present invention relates to an optical system including a cemented lens and an image pickup apparatus using the optical system, and in particular, a zoom lens having a configuration suitable for a digital camera or a video camera while achieving a reduction in thickness by devising an optical system portion and the same. The present invention relates to an image pickup apparatus using the.

近年、ズームレンズ、特にデジタルカメラのズームレンズは、薄型化の要求がますます強まっている。銀塩カメラに比べて、一般に撮像素子の小さいデジタルカメラはレンズを小さく設計することが可能であるが、レンズ部品の製造誤差や鏡筒への組み付け誤差が相対的に大きくなり、偏心によって性能が劣化するため、歩留まりの低下を招きやすい。また、カメラ薄型化のために、ズームレンズを構成するレンズの枚数を減らす必要があり、少ないレンズ枚数で非球面を多用して収差を補正することが多い。   In recent years, zoom lenses, particularly digital camera zoom lenses, are increasingly required to be thin. Compared to a silver salt camera, a digital camera with a small imaging device can generally be designed with a small lens, but the manufacturing error of lens parts and the mounting error of the lens barrel become relatively large, and the performance is reduced by eccentricity. Since it deteriorates, it tends to reduce the yield. In addition, in order to reduce the camera thickness, it is necessary to reduce the number of lenses constituting the zoom lens. In many cases, aberration is corrected by using aspheric surfaces with a small number of lenses.

しかしながら、そのような光学系は、製造誤差による非球面レンズ間の相対偏心によって結像性能が低下しやすいため、歩留まりの良い量産と薄型化の両立は困難である。   However, in such an optical system, the imaging performance is likely to deteriorate due to the relative decentration between the aspheric lenses due to manufacturing errors, so it is difficult to achieve both mass production with a high yield and thinning.

非球面を多用してレンズ枚数削減を図った例として、特許文献1、特許文献2、特許文献3、特許文献4等のものがあるが、何れも第2レンズ群の非球面の偏心感度が高く、また、各群の総厚は十分に薄型化されているとは言えない。
特開平1−183616号公報 特開平10−282416号公報 特開平11−95102号公報 特開平11−142734号公報
Examples of reducing the number of lenses by using many aspheric surfaces include Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like. In any case, the decentration sensitivity of the second lens group is aspheric. Moreover, it cannot be said that the total thickness of each group is sufficiently thinned.
Japanese Patent Laid-Open No. 1-183616 JP-A-10-282416 JP-A-11-95102 JP-A-11-142734

このように、従来技術においては、非球面を多用して十分な収差補正をしつつ薄型化をすることと、製造誤差による歩留まりの低下を防ぐこととの両立を図ることは困難であった。   As described above, in the prior art, it has been difficult to achieve both a reduction in thickness while making sufficient aberration correction using aspheric surfaces and a reduction in yield due to manufacturing errors.

本発明は従来技術のこのような問題に鑑みてなされたものであり、その目的は、機構レイアウト上小型で簡素にしやすく、無限遠から近距離まで安定した高い結像性能を有するズームレンズで、コマ収差、非点収差や倍率色収差を十分に補正することにより、従来技術よりもカメラの収納状態での厚みを薄くすることが可能で、デジタルカメラやビデオカメラに適した光学系を提供することである。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a zoom lens having a high imaging performance that is stable and compact from infinity to a short distance. By sufficiently correcting aberrations, astigmatism and lateral chromatic aberration, it is possible to reduce the thickness of the camera in the storage state compared to the conventional technology, and to provide an optical system suitable for digital cameras and video cameras. is there.

上記目的を達成するために、本発明の第1の接合レンズを備えた光学系は、光軸上に接合面を持つ接合レンズを備えた光学系であって、前記接合レンズにおける光線の入射側及び射出側である空気接触面が非球面であり、かつ、前記接合レンズ内における少なくとも1つ接合面が以下の条件を満足することを特徴とするものである。   In order to achieve the above object, an optical system including the first cemented lens of the present invention is an optical system including a cemented lens having a cemented surface on the optical axis, and the incident side of the light beam in the cemented lens. The air contact surface on the exit side is aspherical, and at least one cemented surface in the cemented lens satisfies the following conditions.

6.4<|(r/R)| ・・・(1)
ただし、rは接合面の光軸上での曲率半径であり、Rは接合面の最大径である。
6.4 <| (r / R) | (1)
Here, r is the radius of curvature of the joint surface on the optical axis, and R is the maximum diameter of the joint surface.

以下に、本発明の第1の接合レンズを備えた光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above configuration in the optical system including the first cemented lens of the present invention will be described.

接合面前後の非球面の相対偏心を調整しながら接合レンズを構成する場合、調整部分以外の性能への影響を小さくできる。   When the cemented lens is configured while adjusting the relative decentration of the aspherical surfaces before and after the cemented surface, the influence on the performance other than the adjusted portion can be reduced.

接合面の光軸上での曲率半径が条件式(1)の下限値6.4を越えて小さくなると、接合面の径に対し、接合面の曲率半径が小さくなってしまう。そのため、接合時におけるレンズの入射面と射出面との相対偏心が起こりやすく、入射面、射出面が非球面であることによる複雑な偏心収差が発生しやすくなる。   When the radius of curvature of the joint surface on the optical axis becomes smaller than the lower limit value 6.4 of the conditional expression (1), the radius of curvature of the joint surface becomes smaller than the diameter of the joint surface. For this reason, relative decentration between the entrance surface and the exit surface of the lens at the time of cementing is likely to occur, and complex decentering aberrations due to the aspheric surfaces of the entrance surface and the exit surface are likely to occur.

本発明の第2の接合レンズを備えた光学系は、第1の光学系において、前記接合レンズが、複数の接合面を備えることを特徴とするものである。   An optical system including the second cemented lens according to the present invention is characterized in that, in the first optical system, the cemented lens includes a plurality of cemented surfaces.

以下に、本発明の第2の接合レンズを備えた光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above configuration in the optical system including the second cemented lens of the present invention will be described.

この場合は、接合レンズを複数のレンズにて構成することとなる。そのため、色収差と非点収差、像面湾曲等の補正が行いやすくなる。また、接合面が複数あることで、相対偏心による影響をキャンセルするような接合のさせ方も可能となる。接合レンズを構成するレンズ枚数は、3枚に限らす4枚以上でもよい。   In this case, the cemented lens is composed of a plurality of lenses. Therefore, it becomes easy to correct chromatic aberration, astigmatism, field curvature, and the like. In addition, since there are a plurality of bonding surfaces, it is possible to perform bonding that cancels the influence of relative eccentricity. The number of lenses constituting the cemented lens may be four or more, limited to three.

本発明の第3の接合レンズを備えた光学系は、第2の光学系において、前記接合レンズを構成するレンズ枚数が3枚であることを特徴とするものである。   The optical system including the third cemented lens according to the present invention is characterized in that the number of lenses constituting the cemented lens is three in the second optical system.

以下に、本発明の第3の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、偏心による影響を抑えつつ、光学系の全長を小さくするためには、接合レンズを3枚のレンズにて構成するとよい。   The reason and action of the above configuration in the optical system including the third cemented lens of the present invention will be described below. In order to reduce the total length of the optical system while suppressing the influence of decentering, the cemented lens is 3 It is preferable to use a single lens.

本発明の第4の接合レンズを備えた光学系は、第1〜第3の光学系において、前記光学系を結像光学系とし、前記結像光学系は、
前記接合レンズを備えた正屈折力の正レンズ群と、
変倍時に可変の間隔を挟んで前記正レンズ群の物体側に位置する負屈折力の負レンズ群と、
前記負レンズ群の射出面から前記正レンズ群の射出面との間に配された明るさ絞りとを備えたことを特徴とするものである。
An optical system including the fourth cemented lens of the present invention is the first to third optical systems, wherein the optical system is an imaging optical system, and the imaging optical system is
A positive lens group having positive refractive power including the cemented lens;
A negative lens group of negative refractive power located on the object side of the positive lens group with a variable interval at the time of zooming;
And an aperture stop disposed between the exit surface of the negative lens group and the exit surface of the positive lens group.

以下に、本発明の第4の接合レンズを備えた光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above configuration in the optical system including the fourth cemented lens of the present invention will be described.

上記の正レンズ群と負レンズ群との間隔が変化することで、変倍作用を持った結像光学系とすることができる。   By changing the distance between the positive lens group and the negative lens group, an imaging optical system having a zooming function can be obtained.

このとき、開口絞りが正レンズ群の近傍や内部にあるため、他のレンズ群と比較して第2レンズ群の径を小さくでき、屈折力を強くするのに有利となる。   At this time, since the aperture stop is in the vicinity or inside of the positive lens group, the diameter of the second lens group can be made smaller than the other lens groups, which is advantageous for increasing the refractive power.

一方、この正レンズ群は、レンズの径が小さいので、屈折力を大きくすると、正レンズ群内のレンズの偏心への影響も大きくなる。そこで、本発明の接合レンズを使用すれば、屈折力を強くしても非球面にて収差を良好に補正し得ると共に、レンズ同士の偏心の影響も低減させることが可能となる。   On the other hand, since the positive lens group has a small lens diameter, increasing the refractive power also increases the influence on the eccentricity of the lenses in the positive lens group. Therefore, if the cemented lens of the present invention is used, it is possible to correct aberrations favorably on the aspherical surface even when the refractive power is increased, and it is possible to reduce the influence of decentering between the lenses.

本発明の第5の接合レンズを備えた光学系は、物体側から像面側に順に、負の屈折力を持つ第1レンズ群と、変倍時に可変の間隔を挟んで前記第1レンズ群よりも像面側に位置する正の屈折力を持つ第2レンズ群とを有し、
前記第2レンズ群が3枚のレンズにて構成され、
前記第2レンズ群の最も像面側のレンズとそのレンズの物体側のレンズとは、光軸上の面にて接合された接合レンズとして構成され、
前記最も像面側のレンズのd線に対する屈折率n23と、そのレンズと接合された物体側のレンズのd線に対する屈折率n22とが以下の条件を満足することを特徴とするものである。
An optical system including a fifth cemented lens according to the present invention includes, in order from the object side to the image plane side, a first lens group having a negative refractive power, and the first lens group with a variable interval at the time of zooming. A second lens group having a positive refractive power located closer to the image plane side,
The second lens group is composed of three lenses,
The most image side lens and the object side lens of the second lens group are configured as a cemented lens joined on a surface on the optical axis,
The refractive index n 23 for the d-line of the lens closest to the image plane and the refractive index n 22 for the d-line of the object-side lens cemented with the lens satisfy the following conditions: is there.

0.31<|n22−n23| ・・・(2)
以下に、本発明の第5の接合レンズを備えた光学系において上記構成をとる理由と作用を説明する。
0.31 <| n 22 −n 23 | (2)
The reason and action of the above configuration in the optical system including the fifth cemented lens of the present invention will be described below.

第2レンズ群を3枚のレンズにて構成とすると、第2レンズ群での収差補正と小型化のバランスをとりやすく構成できる。   If the second lens group is composed of three lenses, it is possible to easily balance the aberration correction and miniaturization in the second lens group.

さらに、第2レンズ群に接合レンズを設けることで色収差の補正に有利となる。   Furthermore, providing a cemented lens in the second lens group is advantageous for correcting chromatic aberration.

一方、接合面の曲率半径を小さくしすぎると、接合時の偏心の影響が大きくなる。そこで、接合するレンズの屈折率差を条件式(2)を満足するように適度に確保することで、接合面における屈折力を確保しつつ曲率半径を大きくし得るので、接合時の偏心の影響を低減できる。   On the other hand, if the curvature radius of the joint surface is too small, the influence of eccentricity during joining becomes large. Therefore, by appropriately securing the refractive index difference of the lenses to be joined so as to satisfy the conditional expression (2), the radius of curvature can be increased while securing the refractive power at the joint surface, and therefore the influence of eccentricity during joining. Can be reduced.

本発明の第6の接合レンズを備えた光学系は、第5の光学系において、前記3枚のレンズを、物体側より順に、正レンズ、負レンズ、正レンズとし、最も像面側の前記正レンズの物体側面である接合面を負の屈折力の屈折面としたことを特徴とするものである。   An optical system including a sixth cemented lens according to the present invention is the fifth optical system, wherein the three lenses are a positive lens, a negative lens, and a positive lens in order from the object side, and the most optical surface side of the optical system. The cemented surface, which is the object side surface of the positive lens, is a refracting surface having a negative refractive power.

以下に、本発明の第6の接合レンズを備えた光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above configuration in the optical system including the sixth cemented lens of the present invention will be described.

負レンズと正レンズとの接合面に負の屈折力を持たせることにより、第2レンズ群全体の主点を物体側寄りにすることができる。それにより、負屈折力の第1レンズ群と正屈折力の第2レンズ群の主点同士の間隔を望遠端にて小さくすることができ、高変倍比化に有利となる。   By giving negative refractive power to the cemented surface between the negative lens and the positive lens, the principal point of the entire second lens group can be closer to the object side. Thereby, the distance between the principal points of the first lens unit having negative refracting power and the second lens unit having positive refracting power can be reduced at the telephoto end, which is advantageous for increasing the zoom ratio.

本発明の第7の接合レンズを備えた光学系は、物体側から像面側に順に、負の屈折力を持つ第1レンズ群と、変倍時に可変の間隔を挟んで前記第1レンズ群よりも像面側に位置する正の屈折力を持つ第2レンズ群とを有し、
前記第2レンズ群が3枚のレンズにて構成され、
前記第2レンズ群の最も像面側のレンズとそのレンズの物体側のレンズとは、光軸上の面にて接合された接合レンズとして構成され、
前記第1レンズ群の射出面から前記接合レンズの入射面間に明るさ絞りを配し、
前記最も像面側のレンズのd線基準のアッベ数ν23と、そのレンズと接合されたレンズのd線基準のアッベ数ν22とが以下の条件を満足することを特徴とするものである。
An optical system including a seventh cemented lens according to the present invention includes a first lens group having a negative refractive power in order from the object side to the image plane side, and the first lens group with a variable interval at the time of zooming. A second lens group having a positive refractive power located closer to the image plane side,
The second lens group is composed of three lenses,
The most image side lens and the object side lens of the second lens group are configured as a cemented lens joined on a surface on the optical axis,
An aperture stop is disposed between the exit surface of the first lens group and the entrance surface of the cemented lens,
The d-line reference Abbe number ν 23 of the lens closest to the image plane and the d-line reference Abbe number ν 22 of the lens cemented with the lens satisfy the following conditions. .

40.3<|ν22−ν23| ・・・(3)
以下に、本発明の第7の接合レンズを備えた光学系において上記構成をとる理由と作用を説明する。
40.3 <| ν 22 −ν 23 | (3)
Hereinafter, the reason and action of the above configuration in the optical system including the seventh cemented lens of the present invention will be described.

第2レンズ群を3枚のレンズにて構成とすると、第2レンズ群での収差補正と小型化のバランスをとりやすく構成できる。   If the second lens group is composed of three lenses, it is possible to easily balance the aberration correction and miniaturization in the second lens group.

さらに、第2レンズ群に接合レンズを設けることで色収差の補正に有利となる。   Furthermore, providing a cemented lens in the second lens group is advantageous for correcting chromatic aberration.

この接合レンズは、絞りに近い像面側に位置するため、上記条件式(3)を満足することで、軸上色収差、倍率の色収差の補正に有利となる。   Since this cemented lens is located on the image plane side close to the stop, satisfying the conditional expression (3) is advantageous in correcting axial chromatic aberration and lateral chromatic aberration.

本発明の第8の接合レンズを備えた光学系は、第5〜第7の光学系において、以下の条件式を満足することを特徴とするものである。   The optical system including the eighth cemented lens according to the present invention is characterized in that, in the fifth to seventh optical systems, the following conditional expression is satisfied.

−1.8<f1 /fw <−1.2 ・・・(4)
1.1<f2 /fw <1.5 ・・・(5)
1.7<ft /fw <2.5 ・・・(6)
ただし、f1 は第1レンズ群の焦点距離、f2 は第2レンズ群の焦点距離、fw は広角端での光学系全系の焦点距離、ft は望遠端での光学系全系の焦点距離である。
−1.8 <f 1 / f w <−1.2 (4)
1.1 <f 2 / f w <1.5 (5)
1.7 < ft / fw <2.5 (6)
Where f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, fw is the focal length of the entire optical system at the wide angle end, and ft is the entire optical system at the telephoto end. Is the focal length.

以下に、本発明の第8の接合レンズを備えた光学系において上記構成をとる理由と作用を説明する。   Hereinafter, the reason and action of the above configuration in the optical system including the eighth cemented lens of the present invention will be described.

条件式(4)、(5)は、第1レンズ群と第2レンズ群の適度な屈折力を広角端焦点距離にて規定し、条件式(6)は、同時に変倍比も規定するものである。   Conditional expressions (4) and (5) define the appropriate refractive power of the first lens group and the second lens group at the wide-angle end focal length, and conditional expression (6) simultaneously defines the zoom ratio. It is.

条件式(4)の下限値−1.8、条件式(5)の上限値1.5を越えると、レンズ群の屈折力が弱くなり、変倍に必要な移動スペースが大きくなったり、撮影時のレンズ系全長が大きくなる。   If the lower limit of -1.8 in conditional expression (4) and the upper limit of 1.5 in conditional expression (5) are exceeded, the refractive power of the lens group will be weakened, and the moving space required for zooming will increase, The overall length of the lens system increases.

条件式(4)の上限値−1.2、条件式(5)の下限値1.1を越えると、各レンズ群での収差補正のためにはレンズ枚数が多くなり、沈胴時の小型化が難しくなる。   If the upper limit value -1.2 of conditional expression (4) and the lower limit value 1.1 of conditional expression (5) are exceeded, the number of lenses increases for aberration correction in each lens group, and the size is reduced when retracted. Becomes difficult.

条件式(6)は、ユーザーニーズと小型化の観点にて適した変倍比を規定するものである。   Conditional expression (6) defines a zoom ratio suitable from the viewpoint of user needs and miniaturization.

さらに好ましくは、
条件式(4)の下限値を−1.7としてもよい。
More preferably,
The lower limit value of conditional expression (4) may be set to -1.7.

条件式(4)の上限値を−1.3としてもよい。   The upper limit value of conditional expression (4) may be −1.3.

条件式(5)の下限値を 1.2としてもよい。   The lower limit value of conditional expression (5) may be 1.2.

条件式(5)の上限値を 1.4としてもよい。   The upper limit value of conditional expression (5) may be set to 1.4.

本発明の第9の接合レンズを備えた光学系は、第5〜第8の光学系において、空気接触面数の半数以上が非球面であり、かつ、非球面形状を以下の式(A)に近似させたときの円錐係数Kが何れも0以下となることを特徴とするものである。   In the optical system including the ninth cemented lens according to the present invention, in the fifth to eighth optical systems, half or more of the air contact surfaces are aspheric surfaces, and the aspheric shape is expressed by the following formula (A). The conic coefficient K when approximated to 0 is 0 or less.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A4 4 +A6 6 +A8 8 +A1010 ・・・(A)
なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとり、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10はそれぞれ4次、6次、8次、10次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 (A)
In the aspherical shape, x is an optical axis with the light traveling direction being positive, y is a direction orthogonal to the optical axis, r is a paraxial radius of curvature, K is a conical coefficient, A 4 , A 6 , A 8 and A 10 are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively.

以下に、本発明の第9の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、このような構成でこのような条件を満足するようにすると、コマ収差・像面湾曲をバランス良く補正できる。   Hereinafter, the reason and action of the above configuration in the optical system including the ninth cemented lens according to the present invention will be described. When such a configuration satisfies such a condition, coma aberration / field curvature Can be corrected in a balanced manner.

本発明の第10の接合レンズを備えた光学系は、第5〜第9の光学系において、前記第1レンズ群を、物体側より順に、負レンズと正レンズの2枚のレンズにて構成し、
前記第2レンズ群を、物体側より順に、正レンズと負レンズと正レンズの3枚のレンズにて構成し、
さらに、前記第2レンズ群の像面側に可変間隔を挟んで正レンズ1枚からなる第3レンズ群を備え、前記光学系を3群ズームレンズとして構成したことを特徴とするものである。
An optical system including a tenth cemented lens according to the present invention is the fifth to ninth optical systems, wherein the first lens group is composed of two lenses of a negative lens and a positive lens in order from the object side. And
The second lens group is composed of three lenses of a positive lens, a negative lens, and a positive lens in order from the object side,
Further, a third lens group including one positive lens with a variable interval is provided on the image plane side of the second lens group, and the optical system is configured as a three-group zoom lens.

以下に、本発明の第10の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、このような構成は、広角端での画角、沈胴時の全長の小型化、収差バランスの確保にとって好ましいレンズ配置となる。   In the following, the reason and action of the above configuration in the optical system including the tenth cemented lens of the present invention will be described. Such a configuration has a field angle at the wide-angle end, downsizing of the entire length when retracted, and aberrations. This is a preferable lens arrangement for ensuring balance.

本発明の第11の接合レンズを備えた光学系は、第5〜第9の光学系において、前記第1レンズ群を、物体側より順に、負レンズと正レンズの2枚のレンズにて構成し、
前記第2レンズ群を、物体側より順に、正レンズと負レンズと正レンズの3枚のレンズにて構成し、
前記光学系を2群ズームレンズとして構成したことを特徴とするものである。
An optical system having an eleventh cemented lens according to the present invention is the fifth to ninth optical systems, wherein the first lens group is composed of two lenses of a negative lens and a positive lens in order from the object side. And
The second lens group is composed of three lenses of a positive lens, a negative lens, and a positive lens in order from the object side,
The optical system is configured as a two-group zoom lens.

以下に、本発明の第11の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、このような構成は、広角端での画角、沈胴時の全長の小型化、収差バランスの確保にとって好ましいレンズ配置となる。   Hereinafter, the reason and action of the above-described configuration in the optical system including the eleventh cemented lens of the present invention will be described. Such a configuration has a field angle at the wide-angle end, downsizing of the total length when retracted, and aberrations. This is a preferable lens arrangement for ensuring balance.

本発明の第12の接合レンズを備えた光学系は、第10〜第11の光学系において、前記第1レンズ群を、物体側より順に、像側面曲率半径絶対値が物体側面曲率半径絶対値よりも小さい負レンズと、像側に凹面を向けた正メニスカスレンズの2枚のレンズで構成し、
前記第2レンズ群を、物体側より順に、物体側面曲率半径絶対値が像側面曲率半径絶対値よりも小さい正レンズと、像側面曲率半径絶対値が物体側面曲率半径絶対値よりも小さい負レンズと、物体側面曲率半径が像側面曲率半径絶対値よりも小さい正レンズの3枚のレンズで構成したことを特徴とするものである。
An optical system including the twelfth cemented lens of the present invention is the tenth to eleventh optical systems, wherein the first lens group is moved in order from the object side, and the image side curvature radius absolute value is the object side curvature radius absolute value. Consisting of two lenses: a smaller negative lens and a positive meniscus lens with a concave surface facing the image side,
In order from the object side, the second lens group includes, in order from the object side, a positive lens in which the absolute value of the object side curvature radius is smaller than the absolute value of the image side curvature radius, and a negative lens in which the absolute value of the image side curvature radius is smaller than the absolute value of the object side curvature radius. And the object side surface radius of curvature is composed of three positive lenses having a smaller image side surface radius of curvature absolute value.

以下に、本発明の第12の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、このような構成は、少ないレンズ枚数ながら軸上収差及び軸外収差をバランス良く補正するために有利なレンズ構成となる。また、第2レンズ群の主点を第1レンズ群寄りにすることで、小型ながら望遠端側の焦点距離を伸ばしやすくなる。   Hereinafter, the reason and action of the above configuration in the optical system including the twelfth cemented lens of the present invention will be described. Such a configuration corrects on-axis aberrations and off-axis aberrations in a balanced manner with a small number of lenses. Therefore, the lens configuration is advantageous. Further, by making the principal point of the second lens group closer to the first lens group, the focal length on the telephoto end side can be easily extended while being small.

本発明の第13の接合レンズを備えた光学系は、第12の光学系において、前記第1レンズ群内の負レンズと正レンズとの光軸上での間隔が1.4mm以上1.6mm以下であることを特徴とするものである。   An optical system including the thirteenth cemented lens of the present invention is the twelfth optical system, wherein the distance on the optical axis between the negative lens and the positive lens in the first lens group is 1.4 mm or more and 1.6 mm. It is characterized by the following.

以下に、本発明の第13の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、この条件は、第1レンズ群の主点を物体側寄りにしつつレンズの大きさを適度に小さくするための条件である。   Hereinafter, the reason and action of the above configuration in the optical system including the thirteenth cemented lens of the present invention will be described. This condition determines the size of the lens while making the principal point of the first lens group closer to the object side. This is a condition for making it moderately small.

本発明の第14の接合レンズを備えた光学系は、第5〜第13の光学系において、前記第2レンズ群の3枚のレンズを接合トリプレットレンズにて構成したことを特徴とするものである。   An optical system including the fourteenth cemented lens according to the present invention is characterized in that in the fifth to thirteenth optical systems, the three lenses of the second lens group are configured by a cemented triplet lens. is there.

以下に、本発明の第14の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、このような構成は、収差補正、第2レンズ群の小型化、偏心の影響の低減を行うのに有利となる。   The reason and action of the above configuration in the optical system including the fourteenth cemented lens according to the present invention will be described below. This configuration corrects aberration, reduces the size of the second lens group, and reduces the influence of decentration. It is advantageous to perform.

本発明の第15の接合レンズを備えた光学系は、第14の光学系において、前記接合トリプレットレンズの光軸上での厚みが6mm以下であることを特徴とするものである。   An optical system provided with the fifteenth cemented lens of the present invention is characterized in that, in the fourteenth optical system, the thickness of the cemented triplet lens on the optical axis is 6 mm or less.

以下に、本発明の第15の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、第2レンズ群に配された接合トリプレットレンズはレンズ系の小型化に有利である。そのため、第2レンズ群の接合トリプレットレンズの厚さを6mm以下とすることで、沈胴時の厚さを小さくできる。   The reason and action of the above configuration in the optical system including the fifteenth cemented lens of the present invention will be described below. The cemented triplet lens arranged in the second lens group is advantageous for reducing the size of the lens system. Therefore, by setting the thickness of the cemented triplet lens of the second lens group to 6 mm or less, the thickness when retracted can be reduced.

本発明の第16の接合レンズを備えた光学系は、第15の光学系において、前記接合トリプレットレンズの光軸上での厚みが5.5mm以下であることを特徴とするするものである。   An optical system including the sixteenth cemented lens according to the present invention is characterized in that, in the fifteenth optical system, the thickness of the cemented triplet lens on the optical axis is 5.5 mm or less.

以下に、本発明の第16の接合レンズを備えた光学系において上記構成をとる理由と作用を説明すると、この条件を満たすことで、沈胴時の厚みをより小さくできる。   Hereinafter, the reason and action of the above configuration in the optical system including the sixteenth cemented lens of the present invention will be described. By satisfying this condition, the thickness when retracted can be further reduced.

本発明の第17の接合レンズを備えた光学系は、第14〜第16の光学系において、前記接合トリプレットレンズの物体側直前に明るさ絞りを配し、前記明るさ絞りの最大径に対する前記接合トリプレットレンズの厚さの比が1.4以上であることを特徴とするものである。   An optical system including the seventeenth cemented lens according to the present invention is the fourteenth to sixteenth optical system, wherein an aperture stop is arranged immediately before the object side of the cemented triplet lens, The thickness ratio of the cemented triplet lens is 1.4 or more.

以下に、本発明の第17の接合レンズを備えた光学系において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the optical system including the seventeenth cemented lens of the present invention will be described below.

このような構成により、接合レンズの各屈折面が明るさ絞りに近いものと遠いものとに適度に分散できるため、第2レンズ群で発生する収差の補正を良好に行いやすくなる。また、面間隔を適度にとることで、主点の調整、レンズ製造の容易化等が行いすくなる。   With such a configuration, since each refracting surface of the cemented lens can be appropriately dispersed between those close to the aperture stop and those far from the aperture stop, it becomes easy to favorably correct aberrations occurring in the second lens group. In addition, by adjusting the distance between the surfaces appropriately, adjustment of the main point, facilitation of lens manufacture, and the like are facilitated.

本発明の第18の撮像装置は、第5〜第9の接合レンズを備えた光学系を備え、さらに、前記光学系による光学像を電気信号に変換するための電子撮像素子を備えていることを特徴とするものである。   An eighteenth imaging device of the present invention includes an optical system including fifth to ninth cemented lenses, and further includes an electronic imaging element for converting an optical image obtained by the optical system into an electric signal. It is characterized by.

以下に、本発明の第18の撮像装置において上記構成をとる理由と作用を説明する。   The reason and action of the above configuration in the eighteenth imaging apparatus of the present invention will be described below.

本発明の光学系は、射出光束を垂直に近づけるレンズ構成にとって有利なものである。そのため、電子撮像素子を用いた撮像装置に適用することができる。   The optical system of the present invention is advantageous for a lens configuration that brings the emitted light beam close to vertical. Therefore, it can be applied to an imaging apparatus using an electronic imaging element.

本発明の第19の撮像装置は、第18の撮像装置において、前記光学系の広角端における最大像高位置での主光線の撮像素子への入射角が15°以上30°未満であることを特徴とするものである。   According to a nineteenth image pickup apparatus of the present invention, in the eighteenth image pickup apparatus, an incident angle of the chief ray at the maximum image height position at the wide angle end of the optical system is 15 ° or more and less than 30 °. It is a feature.

以下に、本発明の第19の撮像装置において上記構成をとる理由と作用を説明すると、この条件は、電子撮像素子の斜入射特性への影響と小型とのバランスをとるための条件である。下限値の15°を越えて広角端での主光線入射角が小さくなると、光学系が大型化する。上限値の30°を越えると、電子撮像素子への入射角が小さくなってしまい、色シェーディングが起こりやすくなる。   The reason and action of the above-described configuration in the nineteenth image pickup apparatus of the present invention will be described below. This condition is a condition for balancing the influence on the oblique incidence characteristic of the electronic image pickup device with the small size. If the chief ray incident angle at the wide-angle end becomes smaller than the lower limit of 15 °, the optical system becomes larger. If the upper limit of 30 ° is exceeded, the angle of incidence on the electronic image sensor becomes small and color shading tends to occur.

本発明の第20の撮像装置は、第19の撮像装置において、前記光学系の広角端における最大像高位置での主光線の撮像素子への入射角が16°以上であることを特徴とするものである。   According to a twentieth image pickup device of the present invention, in the nineteenth image pickup device, an incident angle of the principal ray at the maximum image height position at the wide angle end of the optical system is 16 ° or more. Is.

以下に、本発明の第20の撮像装置において上記構成をとる理由と作用を説明すると、この条件を満たすようにすることで、より小型化に有利となる。   The reason and action of the above configuration in the twentieth imaging apparatus of the present invention will be described below. By satisfying this condition, it is advantageous for further downsizing.

なお、本発明において、以上の複数の発明の条件を複数同時に満足するようにしてももちろんよい。   In the present invention, it goes without saying that a plurality of the above-described conditions of the invention may be satisfied simultaneously.

本発明により、少ない枚数で結像性能の優れたズームレンズを得ることができ、薄型で高性能のデジタルカメラやビデオカメラを製造することが可能となる。   According to the present invention, a zoom lens having excellent imaging performance can be obtained with a small number of sheets, and a thin and high-performance digital camera or video camera can be manufactured.

以下、本発明の接合レンズを備えたズーム光学系の実施例1〜7について説明する。実施例1〜7の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図をそれぞれ図1〜図7に示す。図中、第1レンズ群はG1、開口絞りはS、第2レンズ群はG2、第3レンズ群はG3、フィルター等の平行平板はP、像面はIで示してある。   Examples 1 to 7 of the zoom optical system provided with the cemented lens of the present invention will be described below. FIGS. 1 to 7 show lens cross-sectional views at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity in Examples 1 to 7, respectively. In the drawing, the first lens group is indicated by G1, the aperture stop is indicated by S, the second lens group is indicated by G2, the third lens group is indicated by G3, a parallel plate such as a filter is indicated by P, and the image plane is indicated by I.

実施例1のズーム光学系は、図1に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 1, the zoom optical system according to the first exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves in a concave locus on the object side, and at the telephoto end is located closer to the image plane than the wide-angle end, The aperture stop S and the second lens group G2 move monotonously as a unit to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと両凹負レンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and both lenses. The aspherical surface is composed of a cemented lens composed of a concave negative lens and a biconvex positive lens. The aspherical surface is the surface of the negative meniscus lens of the first lens group G1 and the most cemented lens of the second lens group G2. It is used for the three surfaces of the object side surface and the most image surface side surface.

実施例2のズーム光学系は、図2に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 2, the zoom optical system according to the second exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves in a concave locus on the object side, and at the telephoto end is located closer to the image plane than the wide-angle end, The aperture stop S and the second lens group G2 move monotonously as a unit to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The aspherical surface is a surface on the image surface side of the negative meniscus lens in the first lens group G1, and The three lens cemented lenses of the second lens group G2 are used for the three surfaces of the most object side surface and the most image side surface.

実施例3のズーム光学系は、図3に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 3, the zoom optical system of Embodiment 3 includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves in a concave locus on the object side, and at the telephoto end is located closer to the image plane than the wide-angle end, The aperture stop S and the second lens group G2 move monotonously as a unit to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The aspherical surface is a surface on the image surface side of the negative meniscus lens in the first lens group G1, and The three lens cemented lenses of the second lens group G2 are used for the three surfaces of the most object side surface and the most image side surface.

実施例4のズーム光学系は、図4に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹形状の軌跡を描いて移動し、望遠端では広角端より物体側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 4, the zoom optical system according to the fourth exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves in a concave locus on the object side, and at the telephoto end is located closer to the object side than the wide-angle end, The aperture stop S and the second lens group G2 move monotonously to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 has a convex surface facing the object side. A positive meniscus lens, a negative meniscus lens having a convex surface facing the object side, and a biconvex positive lens. The aspherical surface is a surface on the image surface side of the negative meniscus lens in the first lens group G1, and The three lens cemented lenses of the second lens group G2 are used for the three surfaces of the most object side surface and the most image side surface.

実施例5のズーム光学系は、図5に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹形状の軌跡を描いて移動し、望遠端では広角端より像面側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動する。   As shown in FIG. 5, the zoom optical system according to the fifth exemplary embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, and a second lens group G2 having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the first lens group G1 moves in a concave locus on the object side, and at the telephoto end is located closer to the image plane than the wide-angle end, The aperture stop S and the second lens group G2 move monotonously as a unit to the object side.

物体側から順に、第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、両凸正レンズと両凹負レンズと両凸正レンズとの3枚接合レンズからなり、非球面は、第1レンズ群G1の負メニスカスレンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. The second lens group G2 includes a biconvex positive lens and both lenses. The aspherical surface is composed of a cemented lens composed of a concave negative lens and a biconvex positive lens. The aspherical surface is the surface of the negative meniscus lens of the first lens group G1 and the most cemented lens of the second lens group G2. It is used for the three surfaces of the object side surface and the most image surface side surface.

実施例6のズーム光学系は、図6に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側に凹形状の軌跡を描いて移動し、望遠端では広角端より物体側に位置し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は物体側に凹形状の軌跡を描いて移動し、望遠端では広角端より物体側に位置する。   As shown in FIG. 6, the zoom optical system according to the sixth embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, a positive The first lens group G1 moves in a concave locus on the object side when zooming from the wide-angle end to the telephoto end, and the telephoto end. At the end, it is located closer to the object side than the wide-angle end, the aperture stop S and the second lens group G2 move monotonously and integrally to the object side, and the third lens group G3 moves along a concave locus on the object side, At the telephoto end, it is located closer to the object side than the wide-angle end.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、第3レンズ群G3は両凸正レンズ1枚からなり、非球面は、第1レンズ群G1の両凹負レンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface directed toward the object side, and the second lens group G2 includes a positive meniscus lens having a convex surface directed toward the object side and an object. The third lens group G3 is composed of a single biconvex positive lens, and the aspherical surface is a biconcave of the first lens group G1. It is used for the three surfaces of the negative lens on the image surface side and the most object side surface and the most image surface side surface of the triplet cemented lens of the second lens group G2.

実施例7のズーム光学系は、図7に示すように、物体側から順に、負の屈折力を有する第1レンズ群G1、開口絞りS、正の屈折力を有する第2レンズ群G2、正の屈折力を有する第3レンズ群G3から構成されており、広角端から望遠端への変倍をする際に、第1レンズ群G1は物体側へ移動し、開口絞りSと第2レンズ群G2は一体に物体側に単調に移動し、第3レンズ群G3は物体側に凹形状の軌跡を描いて移動し、望遠端では広角端より物体側に位置する。   As shown in FIG. 7, the zoom optical system according to the seventh embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, an aperture stop S, a second lens group G2 having a positive refractive power, The first lens group G1 moves to the object side during zooming from the wide-angle end to the telephoto end, and the aperture stop S and the second lens group. G2 integrally moves monotonically toward the object side, and the third lens group G3 moves along a locus of a concave shape on the object side, and is located closer to the object side than the wide-angle end at the telephoto end.

物体側から順に、第1レンズ群G1は、両凹負レンズと、物体側に凸面を向けた正メニスカスレンズからなり、第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズと物体側に凸面を向けた負メニスカスレンズと両凸正レンズとの3枚接合レンズからなり、第3レンズ群G3は両凸正レンズ1枚からなり、非球面は、第1レンズ群G1の両凹負レンズの像面側の面と、第2レンズ群G2の3枚接合レンズの最も物体側の面と最も像面側の面との3面に用いている。   In order from the object side, the first lens group G1 includes a biconcave negative lens and a positive meniscus lens having a convex surface directed toward the object side, and the second lens group G2 includes a positive meniscus lens having a convex surface directed toward the object side and an object. The third lens group G3 is composed of a single biconvex positive lens, and the aspherical surface is a biconcave of the first lens group G1. It is used for the three surfaces of the negative lens on the image surface side and the most object side surface and the most image surface side surface of the triplet cemented lens of the second lens group G2.

以下に、上記各実施例の数値データを示すが、記号は上記の外、fは全系焦点距離、FNOはFナンバー、ωは半画角、WEは広角端、STは中間状態、TEは望遠端、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると、下記の式にて表される。 The numerical data of each of the above embodiments are shown below. Symbols are the above, f is the total focal length, FNO is the F number, ω is the half angle of view, WE is the wide angle end, ST is the intermediate state, TE telephoto end, r 1, r 2 ... curvature radius of each lens surface, d 1, d 2 ... the spacing between the lens surfaces, n d1, n d2 ... d-line refractive index of each lens, [nu d1 , Ν d2 ... Is the Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.

x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
44 +A66 +A88 +A1010+A1212
ただし、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10はそれぞれ4次、6次、8次、10次、12次の非球面係数である。
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 + A 12 y 12
Here, r is a paraxial radius of curvature, K is a conical coefficient, and A 4 , A 6 , A 8 , and A 10 are fourth, sixth, eighth, tenth, and twelfth aspheric coefficients, respectively.

なお、以下の実施例の数値データ中、長さを示す値はmm単位の長さである。   In the numerical data of the following examples, the value indicating the length is the length in mm.


実施例1
1 = 73.835 d1 = 1.20 nd1 =1.80610 νd1 =40.74
2 = 3.773 (非球面) d2 = 1.60
3 = 6.842 d3 = 1.70 nd2 =1.84666 νd2 =23.78
4 = 17.434 d4 = (可変)
5 = ∞(絞り) d5 = -0.20
6 = 4.407 (非球面) d6 = 1.80 nd3 =1.74330 νd3 =49.33
7 = -200.000 d7 = 0.80 nd4 =1.80518 νd4 =25.42
8 = 5.242 d8 = 2.76 nd5 =1.48749 νd5 =70.44
9 = -26.974 (非球面) d9 = (可変)
10= ∞ d10= 1.30 nd6 =1.51633 νd6 =64.14
11= ∞ d11= (可変)
12= ∞(像面)
非球面係数
第2面
K = -3.269
4 = 6.23206×10-3
6 = -3.63433×10-4
8 = 2.22372×10-5
10= -6.62190×10-7
第6面
K = -3.180
4 = 4.24973×10-3
6 = -1.98823×10-4
8 = 3.04193×10-5
10= -2.69865×10-6
第9面
K = 0.000
4 = 4.93949×10-3
6 = -1.34150×10-4
8 = 1.74837×10-4
10= -1.48151×10-5
ズームデータ(∞)
WE ST TE
f (mm) 5.900 8.200 11.500
NO 3.62 4.18 5.00
ω (°) 32.8 24.1 17.5
4 7.29 3.84 1.30
9 6.56 8.37 10.96
11 1.18 1.18 1.18 。

Example 1
r 1 = 73.835 d 1 = 1.20 n d1 = 1.80610 ν d1 = 40.74
r 2 = 3.773 (aspherical surface) d 2 = 1.60
r 3 = 6.842 d 3 = 1.70 n d2 = 1.84666 ν d2 = 23.78
r 4 = 17.434 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.20
r 6 = 4.407 (aspherical surface) d 6 = 1.80 n d3 = 1.74330 ν d3 = 49.33
r 7 = -200.000 d 7 = 0.80 n d4 = 1.80518 ν d4 = 25.42
r 8 = 5.242 d 8 = 2.76 n d5 = 1.48749 ν d5 = 70.44
r 9 = -26.974 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 1.30 n d6 = 1.51633 ν d6 = 64.14
r 11 = ∞ d 11 = (variable)
r 12 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -3.269
A 4 = 6.23206 × 10 -3
A 6 = -3.63433 × 10 -4
A 8 = 2.22372 × 10 -5
A 10 = -6.62190 × 10 -7
6th page K = -3.180
A 4 = 4.24973 × 10 -3
A 6 = -1.98823 × 10 -4
A 8 = 3.04193 × 10 -5
A 10 = -2.69865 × 10 -6
Surface 9 K = 0.000
A 4 = 4.93949 × 10 -3
A 6 = -1.34150 × 10 -4
A 8 = 1.74837 × 10 -4
A 10 = -1.48151 × 10 -5
Zoom data (∞)
WE ST TE
f (mm) 5.900 8.200 11.500
F NO 3.62 4.18 5.00
ω (°) 32.8 24.1 17.5
d 4 7.29 3.84 1.30
d 9 6.56 8.37 10.96
d 11 1.18 1.18 1.18.


実施例2
1 = 31.097 d1 = 1.20 nd1 =1.80610 νd1 =40.74
2 = 3.332 (非球面) d2 = 1.60
3 = 6.133 d3 = 1.70 nd2 =1.84666 νd2 =23.78
4 = 13.488 d4 = (可変)
5 = ∞(絞り) d5 = -0.20
6 = 4.379 (非球面) d6 = 1.80 nd3 =1.74330 νd3 =49.33
7 = 50.000 d7 = 0.84 nd4 =1.80518 νd4 =25.42
8 = 4.563 d8 = 2.76 nd5 =1.48749 νd5 =70.44
9 = -15.315 (非球面) d9 = (可変)
10= ∞ d10= 1.30 nd6 =1.51633 νd6 =64.14
11= ∞ d11= (可変)
12= ∞(像面)
非球面係数
第2面
K = -3.146
4 = 8.64879×10-3
6 = -5.82477×10-4
8 = 4.16275×10-5
10= -1.37380×10-6
第6面
K = -3.878
4 = 5.28562×10-3
6 = -3.13553×10-4
8 = 3.29362×10-5
10= -2.13641×10-6
第9面
K = 0.000
4 = 4.42791×10-3
6 = -4.55843×10-5
8 = 1.14056×10-4
10= -6.29055×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.920 8.200 11.500
NO 3.58 4.16 5.00
ω (°) 32.2 24.0 17.4
4 6.60 3.56 1.30
9 6.76 8.69 11.46
11 1.23 1.22 1.23 。

Example 2
r 1 = 31.097 d 1 = 1.20 n d1 = 1.80610 ν d1 = 40.74
r 2 = 3.332 (aspherical surface) d 2 = 1.60
r 3 = 6.133 d 3 = 1.70 n d2 = 1.84666 ν d2 = 23.78
r 4 = 13.488 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.20
r 6 = 4.379 (aspherical surface) d 6 = 1.80 n d3 = 1.74330 ν d3 = 49.33
r 7 = 50.000 d 7 = 0.84 n d4 = 1.80518 ν d4 = 25.42
r 8 = 4.563 d 8 = 2.76 n d5 = 1.48749 ν d5 = 70.44
r 9 = -15.315 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 1.30 n d6 = 1.51633 ν d6 = 64.14
r 11 = ∞ d 11 = (variable)
r 12 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -3.146
A 4 = 8.64879 × 10 -3
A 6 = -5.82477 × 10 -4
A 8 = 4.16275 × 10 -5
A 10 = -1.37380 × 10 -6
6th page K = -3.878
A 4 = 5.28562 × 10 -3
A 6 = -3.13553 × 10 -4
A 8 = 3.29362 × 10 -5
A 10 = -2.13641 × 10 -6
Surface 9 K = 0.000
A 4 = 4.42791 × 10 -3
A 6 = -4.55843 × 10 -5
A 8 = 1.14056 × 10 -4
A 10 = -6.29055 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.920 8.200 11.500
F NO 3.58 4.16 5.00
ω (°) 32.2 24.0 17.4
d 4 6.60 3.56 1.30
d 9 6.76 8.69 11.46
d 11 1.23 1.22 1.23.


実施例3
1 = 27.175 d1 = 1.20 nd1 =1.80610 νd1 =40.74
2 = 3.327 (非球面) d2 = 1.60
3 = 6.087 d3 = 1.70 nd2 =1.84666 νd2 =23.78
4 = 12.927 d4 = (可変)
5 = ∞(絞り) d5 = -0.20
6 = 4.355 (非球面) d6 = 1.80 nd3 =1.74330 νd3 =49.33
7 = 50.000 d7 = 0.85 nd4 =1.84666 νd4 =23.78
8 = 5.063 d8 = 2.75 nd5 =1.51633 νd5 =64.14
9 = -20.026 (非球面) d9 = (可変)
10= ∞ d10= 1.30 nd6 =1.51633 νd6 =64.14
11= ∞ d11= (可変)
12= ∞(像面)
非球面係数
第2面
K = -3.202
4 = 8.94481×10-3
6 = -6.15065×10-4
8 = 4.52314×10-5
10= -1.53842×10-6
第6面
K = -4.132
4 = 5.81884×10-3
6 = -4.01777×10-4
8 = 5.33499×10-5
10= -4.58420×10-6
12= -1.00000×10-7
第9面
K = 0.000
4 = 4.74901×10-3
6 = -8.09534×10-5
8 = 1.32302×10-4
10= -8.52519×10-6
ズームデータ(∞)
WE ST TE
f (mm) 5.920 8.200 11.500
NO 3.58 4.16 5.00
ω (°) 32.1 23.9 17.4
4 6.60 3.56 1.30
9 6.57 8.45 11.18
11 1.23 1.22 1.21 。

Example 3
r 1 = 27.175 d 1 = 1.20 n d1 = 1.80610 ν d1 = 40.74
r 2 = 3.327 (aspherical surface) d 2 = 1.60
r 3 = 6.087 d 3 = 1.70 n d2 = 1.84666 ν d2 = 23.78
r 4 = 12.927 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.20
r 6 = 4.355 (aspherical surface) d 6 = 1.80 n d3 = 1.74330 ν d3 = 49.33
r 7 = 50.000 d 7 = 0.85 n d4 = 1.84666 ν d4 = 23.78
r 8 = 5.063 d 8 = 2.75 n d5 = 1.51633 ν d5 = 64.14
r 9 = -20.026 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 1.30 n d6 = 1.51633 ν d6 = 64.14
r 11 = ∞ d 11 = (variable)
r 12 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -3.202
A 4 = 8.94481 × 10 -3
A 6 = -6.15065 × 10 -4
A 8 = 4.52314 × 10 -5
A 10 = -1.53842 × 10 -6
6th surface K = -4.132
A 4 = 5.81884 × 10 -3
A 6 = -4.01777 × 10 -4
A 8 = 5.33499 × 10 -5
A 10 = -4.58420 × 10 -6
A 12 = -1.00000 × 10 -7
Surface 9 K = 0.000
A 4 = 4.74901 × 10 -3
A 6 = -8.09534 × 10 -5
A 8 = 1.32302 × 10 -4
A 10 = -8.52519 × 10 -6
Zoom data (∞)
WE ST TE
f (mm) 5.920 8.200 11.500
F NO 3.58 4.16 5.00
ω (°) 32.1 23.9 17.4
d 4 6.60 3.56 1.30
d 9 6.57 8.45 11.18
d 11 1.23 1.22 1.21.


実施例4
1 = 76.650 d1 = 1.20 nd1 =1.80610 νd1 =40.92
2 = 3.276 (非球面) d2 = 1.40
3 = 6.251 d3 = 1.70 nd2 =1.84666 νd2 =23.78
4 = 16.782 d4 = (可変)
5 = ∞(絞り) d5 = -0.20
6 = 4.384 (非球面) d6 = 2.30 nd3 =1.69350 νd3 =53.21
7 = 300.000 d7 = 0.80 nd4 =1.84666 νd4 =23.78
8 = 6.297 d8 = 2.40 nd5 =1.48749 νd5 =70.23
9 = -13.015 (非球面) d9 = (可変)
10= ∞ d10= 1.30 nd6 =1.51633 νd6 =64.14
11= ∞ d11= (可変)
12= ∞(像面)
非球面係数
第2面
K = -1.130
4 = 1.83732×10-3
6 = -2.30469×10-5
8 = 4.01044×10-6
10= -1.91354×10-7
第6面
K = -0.345
4 = -5.98870×10-5
6 = 6.13929×10-6
8 = -2.96420×10-6
10= 8.00000×10-7
第9面
K = 0.000
4 = 4.16180×10-3
6 = 9.37500×10-5
8 = 6.17499×10-5
10= 1.48794×10-7
ズームデータ(∞)
WE ST TE
f (mm) 5.923 7.997 11.492
NO 3.61 4.16 5.09
ω (°) 32.7 24.8 17.5
4 6.09 3.53 1.30
9 7.10 8.99 12.17
11 1.22 1.21 1.18 。

Example 4
r 1 = 76.650 d 1 = 1.20 n d1 = 1.80610 ν d1 = 40.92
r 2 = 3.276 (aspherical surface) d 2 = 1.40
r 3 = 6.251 d 3 = 1.70 n d2 = 1.84666 ν d2 = 23.78
r 4 = 16.782 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.20
r 6 = 4.384 (aspherical surface) d 6 = 2.30 n d3 = 1.69350 ν d3 = 53.21
r 7 = 300.000 d 7 = 0.80 n d4 = 1.84666 ν d4 = 23.78
r 8 = 6.297 d 8 = 2.40 n d5 = 1.48749 ν d5 = 70.23
r 9 = -13.015 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 1.30 n d6 = 1.51633 ν d6 = 64.14
r 11 = ∞ d 11 = (variable)
r 12 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -1.130
A 4 = 1.83732 × 10 -3
A 6 = -2.30469 × 10 -5
A 8 = 4.01044 × 10 -6
A 10 = -1.91354 × 10 -7
6th surface K = -0.345
A 4 = -5.98870 × 10 -5
A 6 = 6.13929 × 10 -6
A 8 = -2.96420 × 10 -6
A 10 = 8.00000 × 10 -7
Surface 9 K = 0.000
A 4 = 4.16180 × 10 -3
A 6 = 9.37500 × 10 -5
A 8 = 6.17499 × 10 -5
A 10 = 1.48794 × 10 -7
Zoom data (∞)
WE ST TE
f (mm) 5.923 7.997 11.492
F NO 3.61 4.16 5.09
ω (°) 32.7 24.8 17.5
d 4 6.09 3.53 1.30
d 9 7.10 8.99 12.17
d 11 1.22 1.21 1.18.


実施例5
1 = 114.165 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 3.318 (非球面) d2 = 1.40
3 = 6.530 d3 = 1.70 nd2 =1.84666 νd2 =23.78
4 = 20.319 d4 = (可変)
5 = ∞(絞り) d5 = -0.20
6 = 4.040 (非球面) d6 = 2.30 nd3 =1.58313 νd3 =59.38
7 = -927.117 d7 = 0.80 nd4 =1.84666 νd4 =23.78
8 = 7.532 d8 = 2.40 nd5 =1.48749 νd5 =70.23
9 = -11.782 (非球面) d9 = (可変)
10= ∞ d10= 1.30 nd6 =1.51633 νd6 =64.14
11= ∞ d11= (可変)
12= ∞(像面)
非球面係数
第2面
K = -0.497
4 = -5.19094×10-4
6 = -8.99866×10-5
8 = 3.08269×10-6
10= -4.03659×10-10
第6面
K = -1.345
4 = 1.68161×10-3
6 = 7.65859×10-5
8 = -9.37869×10-6
10= 8.94817×10-7
第9面
K = 0.000
4 = 3.57902×10-3
6 = 3.92389×10-4
8 = 2.36601×10-6
10= 2.89859×10-8
ズームデータ(∞)
WE ST TE
f (mm) 5.904 7.997 11.498
NO 3.58 4.11 5.00
ω (°) 30.5 23.0 16.2
4 6.46 3.68 1.30
9 7.51 9.43 12.66
11 1.20 1.19 1.16 。

Example 5
r 1 = 114.165 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 3.318 (aspherical surface) d 2 = 1.40
r 3 = 6.530 d 3 = 1.70 n d2 = 1.84666 ν d2 = 23.78
r 4 = 20.319 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.20
r 6 = 4.040 (aspherical surface) d 6 = 2.30 n d3 = 1.58313 ν d3 = 59.38
r 7 = -927.117 d 7 = 0.80 n d4 = 1.84666 ν d4 = 23.78
r 8 = 7.532 d 8 = 2.40 n d5 = 1.48749 ν d5 = 70.23
r 9 = -11.782 (aspherical surface) d 9 = (variable)
r 10 = ∞ d 10 = 1.30 n d6 = 1.51633 ν d6 = 64.14
r 11 = ∞ d 11 = (variable)
r 12 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.497
A 4 = -5.19094 × 10 -4
A 6 = -8.99866 × 10 -5
A 8 = 3.08269 × 10 -6
A 10 = -4.03659 × 10 -10
6th surface K = -1.345
A 4 = 1.68161 × 10 -3
A 6 = 7.65859 × 10 -5
A 8 = -9.37869 × 10 -6
A 10 = 8.94817 × 10 -7
Surface 9 K = 0.000
A 4 = 3.57902 × 10 -3
A 6 = 3.92389 × 10 -4
A 8 = 2.36601 × 10 -6
A 10 = 2.89859 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 5.904 7.997 11.498
F NO 3.58 4.11 5.00
ω (°) 30.5 23.0 16.2
d 4 6.46 3.68 1.30
d 9 7.51 9.43 12.66
d 11 1.20 1.19 1.16.


実施例6
1 = -125.182 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 3.312 (非球面) d2 = 1.40
3 = 7.062 d3 = 1.70 nd2 =1.84666 νd2 =23.78
4 = 36.331 d4 = (可変)
5 = ∞(絞り) d5 = -0.20
6 = 4.057 (非球面) d6 = 2.30 nd3 =1.58313 νd3 =59.38
7 = 100.000 d7 = 0.80 nd4 =1.84666 νd4 =23.78
8 = 6.615 d8 = 2.40 nd5 =1.48749 νd5 =70.23
9 = -13.364 (非球面) d9 = (可変)
10= 50.000 d10= 1.20 nd6 =1.48749 νd6 =70.23
11= -50.000 d11= (可変)
12= ∞ d12= 1.30 nd7 =1.51633 νd7 =64.14
13= ∞ d13= (可変)
14= ∞(像面)
非球面係数
第2面
K = -0.332
4 = -1.50043×10-3
6 = -1.60862×10-4
8 = 3.25971×10-6
10= 6.05120×10-10
第6面
K = -1.287
4 = 1.60279×10-3
6 = 7.70238×10-5
8 = -8.90829×10-6
10= 8.95272×10-7
第9面
K = 0.000
4 = 3.47544×10-3
6 = 4.02997×10-4
8 = 3.07449×10-6
10= 2.96993×10-8
ズームデータ(∞)
WE ST TE
f (mm) 5.905 7.995 11.496
NO 3.46 4.01 4.92
ω (°) 31.2 23.6 16.6
4 6.30 3.66 1.30
9 6.45 8.89 12.18
11 0.80 0.80 0.80
13 1.32 1.03 1.36 。

Example 6
r 1 = -125.182 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 3.312 (aspherical surface) d 2 = 1.40
r 3 = 7.062 d 3 = 1.70 n d2 = 1.84666 ν d2 = 23.78
r 4 = 36.331 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.20
r 6 = 4.057 (aspherical surface) d 6 = 2.30 n d3 = 1.58313 ν d3 = 59.38
r 7 = 100.000 d 7 = 0.80 n d4 = 1.84666 ν d4 = 23.78
r 8 = 6.615 d 8 = 2.40 n d5 = 1.48749 ν d5 = 70.23
r 9 = -13.364 (aspherical surface) d 9 = (variable)
r 10 = 50.000 d 10 = 1.20 n d6 = 1.48749 ν d6 = 70.23
r 11 = -50.000 d 11 = (variable)
r 12 = ∞ d 12 = 1.30 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = (variable)
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.332
A 4 = -1.50043 × 10 -3
A 6 = -1.60862 × 10 -4
A 8 = 3.25971 × 10 -6
A 10 = 6.05120 × 10 -10
6th surface K = -1.287
A 4 = 1.60279 × 10 -3
A 6 = 7.70238 × 10 -5
A 8 = -8.90829 × 10 -6
A 10 = 8.95272 × 10 -7
Surface 9 K = 0.000
A 4 = 3.47544 × 10 -3
A 6 = 4.02997 × 10 -4
A 8 = 3.07449 × 10 -6
A 10 = 2.96993 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 5.905 7.995 11.496
F NO 3.46 4.01 4.92
ω (°) 31.2 23.6 16.6
d 4 6.30 3.66 1.30
d 9 6.45 8.89 12.18
d 11 0.80 0.80 0.80
d 13 1.32 1.03 1.36.


実施例7
1 = -413.848 d1 = 1.00 nd1 =1.80610 νd1 =40.92
2 = 3.317 (非球面) d2 = 1.48
3 = 7.388 d3 = 1.70 nd2 =1.84666 νd2 =23.78
4 = 43.892 d4 = (可変)
5 = ∞(絞り) d5 = -0.20
6 = 4.055 (非球面) d6 = 2.19 nd3 =1.58313 νd3 =59.38
7 = 100.000 d7 = 1.13 nd4 =1.84666 νd4 =23.78
8 = 6.376 d8 = 2.43 nd5 =1.48749 νd5 =70.23
9 = -15.930 (非球面) d9 = (可変)
10= 44.301 d10= 1.20 nd6 =1.48749 νd6 =70.23
11= -44.574 d11= (可変)
12= ∞ d12= 1.30 nd7 =1.51633 νd7 =64.14
13= ∞ d13= (可変)
14= ∞(像面)
非球面係数
第2面
K = -0.341
4 = -1.57613×10-3
6 = -1.57295×10-4
8 = 3.25595×10-6
10= 6.64658×10-10
第6面
K = -1.258
4 = 1.50474×10-3
6 = 7.67463×10-5
8 = -8.90504×10-6
10= 8.95276×10-7
第9面
K = 0.000
4 = 3.48874×10-3
6 = 4.00153×10-4
8 = 3.07420×10-6
10= 2.96881×10-8
ズームデータ(∞)
WE ST TE
f (mm) 5.902 7.994 11.498
NO 3.53 4.24 5.00
ω (°) 30.2 22.9 16.3
4 6.20 4.05 1.00
9 3.46 8.69 8.12
11 3.68 0.78 5.04
13 1.16 1.23 1.23 。

Example 7
r 1 = -413.848 d 1 = 1.00 n d1 = 1.80610 ν d1 = 40.92
r 2 = 3.317 (aspherical surface) d 2 = 1.48
r 3 = 7.388 d 3 = 1.70 n d2 = 1.84666 ν d2 = 23.78
r 4 = 43.892 d 4 = (variable)
r 5 = ∞ (aperture) d 5 = -0.20
r 6 = 4.055 (aspherical surface) d 6 = 2.19 n d3 = 1.58313 ν d3 = 59.38
r 7 = 100.000 d 7 = 1.13 n d4 = 1.84666 ν d4 = 23.78
r 8 = 6.376 d 8 = 2.43 n d5 = 1.48749 ν d5 = 70.23
r 9 = -15.930 (aspherical surface) d 9 = (variable)
r 10 = 44.301 d 10 = 1.20 n d6 = 1.48749 ν d6 = 70.23
r 11 = -44.574 d 11 = (variable)
r 12 = ∞ d 12 = 1.30 n d7 = 1.51633 ν d7 = 64.14
r 13 = ∞ d 13 = (variable)
r 14 = ∞ (image plane)
Aspheric coefficient 2nd surface K = -0.341
A 4 = -1.57613 × 10 -3
A 6 = -1.57295 × 10 -4
A 8 = 3.25595 × 10 -6
A 10 = 6.64658 × 10 -10
6th surface K = -1.258
A 4 = 1.50474 × 10 -3
A 6 = 7.67463 × 10 -5
A 8 = -8.90504 × 10 -6
A 10 = 8.95276 × 10 -7
Surface 9 K = 0.000
A 4 = 3.48874 × 10 -3
A 6 = 4.00153 × 10 -4
A 8 = 3.07420 × 10 -6
A 10 = 2.96881 × 10 -8
Zoom data (∞)
WE ST TE
f (mm) 5.902 7.994 11.498
F NO 3.53 4.24 5.00
ω (°) 30.2 22.9 16.3
d 4 6.20 4.05 1.00
d 9 3.46 8.69 8.12
d 11 3.68 0.78 5.04
d 13 1.16 1.23 1.23.

以上の実施例1〜7の無限遠物点合焦時の収差図をそれぞれ図8〜図14に示す。これらの収差図において、(a)は広角端、(b)は中間状態、(c)は望遠端におけるの球面収差、非点収差、歪曲収差、倍率色収差を示す。なお、各収差図中、“FIY”は像高を表す。   Aberration diagrams at the time of focusing on an object point at infinity in Examples 1 to 7 are shown in FIGS. In these aberration diagrams, (a) shows the spherical aberration, astigmatism, distortion and lateral chromatic aberration at the wide-angle end, (b) the intermediate state, and (c) the telephoto end. In each aberration diagram, “FIY” represents the image height.

上記実施例1〜7の条件式(1)〜(6)の絶対値記号を除いた値は次の通りである。実施例 (1) (2) (3) (4) (5) (6)
1 -25.641 0.31769 45.02 -1.629 1.281 1.949
2 6.410 0.31769 45.02 -1.481 1.246 1.942
3 6.410 0.33033 40.36 -1.499 1.231 1.943
4 38.462 0.36589 46.45 -1.359 1.228 1.940
5 -118.861 0.36589 46.45 -1.402 1.281 1.947
6 12.821 0.36589 46.45 -1.391 1.338 1.947
7 12.821 0.36589 46.45 -1.453 1.386 1.948 。
Values excluding the absolute value symbols in the conditional expressions (1) to (6) of Examples 1 to 7 are as follows. Example (1) (2) (3) (4) (5) (6)
1 -25.641 0.31769 45.02 -1.629 1.281 1.949
2 6.410 0.31769 45.02 -1.481 1.246 1.942
3 6.410 0.33033 40.36 -1.499 1.231 1.943
4 38.462 0.36589 46.45 -1.359 1.228 1.940
5 -118.861 0.36589 46.45 -1.402 1.281 1.947
6 12.821 0.36589 46.45 -1.391 1.338 1.947
7 12.821 0.36589 46.45 -1.453 1.386 1.948.

さて、以上のような本発明によるズーム光学系で物体像を形成しその像をCCD等の撮像素子に受光させて撮影を行う電子撮影装置、とりわけデジタルカメラやビデオカメラ、情報処理装置の例であるパソコン、電話、特に持ち運びに便利な携帯電話等に用いることができる。以下に、その実施形態を例示する。   An example of an electronic photographing apparatus, particularly a digital camera, a video camera, and an information processing apparatus, which forms an object image with the zoom optical system according to the present invention as described above and receives the image with an image sensor such as a CCD. It can be used for certain personal computers, telephones, especially mobile phones that are convenient to carry. The embodiment is illustrated below.

図15〜図17は、本発明によるズーム光学系をデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図15はデジタルカメラ40の外観を示す前方斜視図、図16は同後方正面図、図17はデジタルカメラ40の構成を示す模式的な透視平面図である。ただし、図15と図17においては、撮影光学系41の非沈胴時を示している。デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッターボタン45、フラッシュ46、液晶表示モニター47、焦点距離変更ボタン61、設定変更スイッチ62等を含み、撮影光学系41の沈胴時には、カバー60をスライドすることにより、撮影光学系41とファインダー光学系43とフラッシュ46はそのカバー60で覆われる。そして、カバー60を開いてカメラ40を撮影状態に設定すると、撮影光学系41は図17の非沈胴状態になり、カメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズーム光学系を通して撮影が行われる。撮影光学系41によって形成された物体像が、IRカットコートを施したローパスフィルター及びカバーガラスを介してCCD49の撮像面上に形成される。このCCD49で受光された物体像は、処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この処理手段51には記録手段52が接続され、撮影された電子画像を記録することもできる。なお、この記録手段52は処理手段51と別体に設けてもよいし、フロッピーディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。また、CCD49に代わって銀塩フィルムを配置した銀塩カメラとして構成してもよい。   FIGS. 15 to 17 are conceptual diagrams of structures in which the zoom optical system according to the present invention is incorporated in the photographing optical system 41 of a digital camera. 15 is a front perspective view showing the appearance of the digital camera 40, FIG. 16 is a rear front view thereof, and FIG. 17 is a schematic perspective plan view showing the configuration of the digital camera 40. However, FIGS. 15 and 17 show a state in which the photographing optical system 41 is not retracted. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter button 45, a flash 46, a liquid crystal display monitor 47, a focal length change button 61, When the photographing optical system 41 is retracted, including the setting change switch 62, the photographing optical system 41, the finder optical system 43, and the flash 46 are covered with the cover 60 by sliding the cover 60. Then, when the cover 60 is opened and the camera 40 is set to the photographing state, the photographing optical system 41 enters the non-collapsed state of FIG. 17, and when the shutter button 45 disposed on the upper part of the camera 40 is pressed, the photographing is performed in conjunction therewith. Photographing is performed through the optical system 41, for example, the zoom optical system of the first embodiment. An object image formed by the photographing optical system 41 is formed on the imaging surface of the CCD 49 through a low-pass filter and a cover glass that have been subjected to IR cut coating. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the processing means 51. Further, the processing means 51 is connected to a recording means 52 so that a photographed electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51, or may be configured to perform recording / writing electronically using a floppy disk, memory card, MO, or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged in place of the CCD 49.

さらに、ファインダー用光路44上にはファインダー用対物光学系53が配置してある。ファインダー用対物光学系53は、複数のレンズ群(図の場合は3群)と2つのプリズムからなり、撮影光学系41のズーム光学系に連動して焦点距離が変化するズーム光学系からなり、このファインダー用対物光学系53によって形成された物体像は、像正立部材である正立プリズム55の視野枠57上に形成される。この正立プリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。なお、接眼光学系59の射出側にカバー部材50が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a plurality of lens groups (three groups in the figure) and two prisms, and includes a zoom optical system whose focal length changes in conjunction with the zoom optical system of the photographing optical system 41. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the erecting prism 55 which is an image erecting member. Behind the erecting prism 55, an eyepiece optical system 59 for guiding the erect image to the observer eyeball E is disposed. A cover member 50 is disposed on the exit side of the eyepiece optical system 59.

このように構成されたデジタルカメラ40は、撮影光学系41が高性能で小型で沈胴収納が可能であるあるので、高性能・小型化が実現できる。   In the digital camera 40 configured in this manner, the photographing optical system 41 has a high performance and a small size and can be retracted, so that a high performance and a small size can be realized.

次に、本発明によるズーム光学系が対物光学系として内蔵された情報処理装置の一例であるパソコンが図18〜図20に示される。図18はパソコン300のカバーを開いた前方斜視図、図19はパソコン300の撮影光学系303の断面図、図20は図18の状態の側面図である。図18〜図20に示されるように、パソコン300は、外部から繰作者が情報を入力するためのキーボード301と、図示を省略した情報処理手段や記録手段と、情報を操作者に表示するモニター302と、操作者自身や周辺の像を撮影するための撮影光学系303とを有している。ここで、モニター302は、図示しないバックライトにより背面から照明する透過型液晶表示素子や、前面からの光を反射して表示する反射型液晶表示素子や、CRTディスプレイ等であってよい。また、図中、撮影光学系303は、モニター302の右上に内蔵されているが、その場所に限らず、モニター302の周囲や、キーボード301の周囲のどこであってもよい。   Next, a personal computer which is an example of an information processing apparatus in which the zoom optical system according to the present invention is incorporated as an objective optical system is shown in FIGS. 18 is a front perspective view with the cover of the personal computer 300 opened, FIG. 19 is a sectional view of the photographing optical system 303 of the personal computer 300, and FIG. 20 is a side view of the state of FIG. As shown in FIGS. 18 to 20, the personal computer 300 includes a keyboard 301 for the writer to input information from the outside, information processing means and recording means not shown, and a monitor for displaying information to the operator. 302 and a photographing optical system 303 for photographing the operator himself and surrounding images. Here, the monitor 302 may be a transmissive liquid crystal display element that is illuminated from the back by a backlight (not shown), a reflective liquid crystal display element that reflects and displays light from the front, a CRT display, or the like. Further, in the drawing, the photographing optical system 303 is built in the upper right of the monitor 302. However, the imaging optical system 303 is not limited to the place, and may be anywhere around the monitor 302 or the keyboard 301.

この撮影光学系303は、撮影光路304上に、本発明によるズーム光学系(図では略記)からなる対物レンズ112と、像を受光する撮像素子チップ162とを有している。これらはパソコン300に内蔵されている。   The photographing optical system 303 includes an objective lens 112 including a zoom optical system (abbreviated in the drawing) according to the present invention and an image sensor chip 162 that receives an image on a photographing optical path 304. These are built in the personal computer 300.

ここで、撮像素子チップ162上には光学的ローパスフィルターFが付加的に貼り付けられて撮像ユニット160として一体に形成され、対物レンズ112の鏡枠113の後端にワンタッチで嵌め込まれて取り付け可能になっているため、対物レンズ112と撮像素子チップ162の中心合わせや面間隔の調整が不要であり、組立が簡単となっている。また、鏡枠113の先端には、対物レンズ112を保護するためのカバーガラス114が配置されている。なお、鏡枠113中のズーム光学系の駆動機構は図示を省いてある。   Here, an optical low-pass filter F is additionally attached on the image sensor chip 162 to be integrally formed as an image pickup unit 160, and can be fitted and attached to the rear end of the lens frame 113 of the objective lens 112 with one touch. Therefore, the center alignment of the objective lens 112 and the image sensor chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is simple. A cover glass 114 for protecting the objective lens 112 is disposed at the tip of the lens frame 113. The driving mechanism of the zoom optical system in the lens frame 113 is not shown.

撮像素子チップ162で受光された物体像は、端子166を介して、パソコン300の処理手段に入力され、電子画像としてモニター302に表示される、図18には、その一例として、操作者の撮影された画像305が示されている。また、この画像305は、処理手段を介し、インターネットや電話を介して、遠隔地から通信相手のパソコンに表示されることも可能である。   The object image received by the image sensor chip 162 is input to the processing means of the personal computer 300 via the terminal 166 and displayed on the monitor 302 as an electronic image. FIG. A rendered image 305 is shown. The image 305 can also be displayed on the personal computer of the communication partner from a remote location via the processing means, the Internet, or the telephone.

次に、本発明によるズーム光学系が撮影光学系として内蔵された情報処理装置の一例である電話、特に持ち運びに便利な携帯電話が図21に示される。図21(a)は携帯電話400の正面図、図21(b)は側面図、図21(c)は撮影光学系405の断面図である。図21(a)〜(c)に示されるように、携帯電話400は、操作者の声を情報として入力するマイク部401と、通話相手の声を出力するスピーカ部402と、操作者が情報を入力する入力ダイアル403と、操作者自身や通話相手等の撮影像と電話番号等の情報を表示するモニター404と、撮影光学系405と、通信電波の送信と受信を行うアンテナ406と、画像情報や通信情報、入力信号等の処理を行う処理手段(図示せず)とを有している。ここで、モニター404は液晶表示素子である。また、図中、各構成の配置位置は、特にこれらに限られない。この撮影光学系405は、撮影光路407上に配置された本発明によるズーム光学系(図では略記)からなる対物レンズ112と、物体像を受光する撮像素子チップ162とを有している。これらは、携帯電話400に内蔵されている。   Next, FIG. 21 shows a telephone which is an example of an information processing apparatus in which the zoom optical system according to the present invention is incorporated as a photographing optical system, particularly a portable telephone which is convenient to carry. 21A is a front view of the mobile phone 400, FIG. 21B is a side view, and FIG. 21C is a cross-sectional view of the photographing optical system 405. As shown in FIGS. 21A to 21C, the mobile phone 400 includes a microphone unit 401 that inputs an operator's voice as information, a speaker unit 402 that outputs the voice of the other party, and an operator who receives information. An input dial 403 for inputting information, a monitor 404 for displaying information such as a photographed image and a telephone number of the operator and the other party, a photographing optical system 405, an antenna 406 for transmitting and receiving communication radio waves, and an image And processing means (not shown) for processing information, communication information, input signals, and the like. Here, the monitor 404 is a liquid crystal display element. In the drawing, the arrangement positions of the respective components are not particularly limited to these. The photographing optical system 405 includes an objective lens 112 that is a zoom optical system (abbreviated in the drawing) according to the present invention disposed on a photographing optical path 407 and an image sensor chip 162 that receives an object image. These are built in the mobile phone 400.

ここで、撮像素子チップ162上には光学的ローパスフィルターFが付加的に貼り付けられて撮像ユニット160として一体に形成され、対物レンズ112の鏡枠113の後端にワンタッチで嵌め込まれて取り付け可能になっているため、対物レンズ112と撮像素子チップ162の中心合わせや面間隔の調整が不要であり、組立が簡単となっている。また、鏡枠113の先端には、対物レンズ112を保護するためのカバーガラス114が配置されている。なお、鏡枠113中のズーム光学系の駆動機構は図示を省いてある。   Here, an optical low-pass filter F is additionally attached on the image sensor chip 162 to be integrally formed as an image pickup unit 160, and can be fitted and attached to the rear end of the lens frame 113 of the objective lens 112 with one touch. Therefore, the center alignment of the objective lens 112 and the image sensor chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is simple. A cover glass 114 for protecting the objective lens 112 is disposed at the tip of the lens frame 113. The driving mechanism of the zoom optical system in the lens frame 113 is not shown.

撮影素子チップ162で受光された物体像は、端子166を介して、図示していない処理手段に入力され、電子画像としてモニター404に、又は、通信相手のモニターに、又は、両方に表示される。また、通信相手に画像を送信する場合、撮像素子チップ162で受光された物体像の情報を、送信可能な信号へと変換する信号処理機能が処理手段には含まれている。   The object image received by the imaging element chip 162 is input to the processing means (not shown) via the terminal 166 and displayed as an electronic image on the monitor 404, the monitor of the communication partner, or both. . Further, when transmitting an image to a communication partner, the processing means includes a signal processing function for converting information of an object image received by the image sensor chip 162 into a signal that can be transmitted.

なお、各実施例において、ローパスフィルター等のフィルター類を省略すれば、沈胴時のカメラ厚みをより薄く構成することができる。   In each embodiment, if a filter such as a low-pass filter is omitted, the camera thickness when retracted can be made thinner.

本発明によるズーム光学系の実施例1の無限遠物点合焦時の広角端(a)、中間状態(b)、望遠端(c)のレンズ断面図である。FIG. 2 is a lens cross-sectional view of the zoom optical system according to the first exemplary embodiment at the wide-angle end (a), the intermediate state (b), and the telephoto end (c) when focusing on an object point at infinity. 実施例2のズーム光学系の図1と同様のレンズ断面図である。FIG. 3 is a lens cross-sectional view similar to FIG. 1 of the zoom optical system of Example 2. 実施例3のズーム光学系の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of the zoom optical system of Example 3. 実施例4のズーム光学系の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of a zoom optical system according to Example 4. 実施例5のズーム光学系の図1と同様のレンズ断面図である。FIG. 6 is a lens cross-sectional view similar to FIG. 1 of a zoom optical system according to Example 5. 実施例6のズーム光学系の図1と同様のレンズ断面図である。FIG. 9 is a lens cross-sectional view similar to FIG. 1 of a zoom optical system according to Example 6. 実施例7のズーム光学系の図1と同様のレンズ断面図である。FIG. 10 is a lens cross-sectional view similar to FIG. 1 illustrating a zoom optical system according to a seventh embodiment. 実施例1の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 1 upon focusing on an object point at infinity. 実施例2の無限遠物点合焦時の収差図である。FIG. 6 is an aberration diagram for Example 2 upon focusing on an object point at infinity. 実施例3の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 3 upon focusing on an object point at infinity. 実施例4の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 4 upon focusing on an object point at infinity. 実施例5の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 5 upon focusing on an object point at infinity. 実施例6の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 6 upon focusing on an object point at infinity. 実施例7の無限遠物点合焦時の収差図である。FIG. 10 is an aberration diagram for Example 7 upon focusing on an object point at infinity. 本発明によるズーム光学系を組み込んだデジタルカメラの外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera incorporating the zoom optical system by this invention. 図15のデジタルカメラの後方斜視図である。FIG. 16 is a rear perspective view of the digital camera of FIG. 15. 図15のデジタルカメラの断面図である。It is sectional drawing of the digital camera of FIG. 本発明によるズーム光学系を対物光学系として組み込れたパソコンのカバーを開いた前方斜視図である。It is the front perspective view which opened the cover of the personal computer incorporating the zoom optical system by this invention as an objective optical system. パソコンの撮影光学系の断面図である。It is sectional drawing of the imaging optical system of a personal computer. 図18の状態の側面図である。It is a side view of the state of FIG. 本発明によるズーム光学系を対物光学系として組み込れた携帯電話の正面図(a)、側面図(b)、その撮影光学系の断面図(c)である。FIG. 3 is a front view (a), a side view (b), and a sectional view (c) of the photographing optical system of a mobile phone incorporating the zoom optical system according to the present invention as an objective optical system.

符号の説明Explanation of symbols

G1…第1レンズ群
G2…第2レンズ群
G3…第3レンズ群
S…開口絞り
P…平行平板
I…像面
E…観察者眼球
F…光学的ローパスフィルター
40…デジタルカメラ
41…撮影光学系
42…撮影用光路
43…ファインダー光学系
44…ファインダー用光路
45…シャッターボタン
46…フラッシュ
47…液晶表示モニター
49…CCD
50…カバー部材
51…処理手段
52…記録手段
53…ファインダー用対物光学系
55…正立プリズム
57…視野枠
59…接眼光学系
60…カバー
61…焦点距離変更ボタン
62…設定変更スイッチ
112…対物レンズ
113…鏡枠
114…カバーガラス
160…撮像ユニット
162…撮像素子チップ
166…端子
300…パソコン
301…キーボード
302…モニター
303…撮影光学系
304…撮影光路
305…画像
400…携帯電話
401…マイク部
402…スピーカ部
403…入力ダイアル
404…モニター
405…撮影光学系
406…アンテナ
407…撮影光路
G1 ... 1st lens group G2 ... 2nd lens group G3 ... 3rd lens group S ... Aperture stop P ... Parallel plate I ... Image plane E ... Observer eyeball F ... Optical low pass filter 40 ... Digital camera 41 ... Shooting optical system 42 ... Optical path for photographing 43 ... Viewfinder optical system 44 ... Optical path for viewfinder 45 ... Shutter button 46 ... Flash 47 ... Liquid crystal display monitor 49 ... CCD
DESCRIPTION OF SYMBOLS 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Finder objective optical system 55 ... Erect prism 57 ... Field frame 59 ... Eyepiece optical system 60 ... Cover 61 ... Focal length change button 62 ... Setting change switch 112 ... Objective Lens 113 ... Mirror frame 114 ... Cover glass 160 ... Imaging unit 162 ... Imaging element chip 166 ... Terminal 300 ... PC 301 ... Keyboard 302 ... Monitor 303 ... Shooting optical system 304 ... Shooting optical path 305 ... Image 400 ... Mobile phone 401 ... Microphone unit 402 ... Speaker unit 403 ... Input dial 404 ... Monitor 405 ... Shooting optical system 406 ... Antenna 407 ... Shooting optical path

Claims (20)

光軸上に接合面を持つ接合レンズを備えた光学系であって、前記接合レンズにおける光線の入射側及び射出側である空気接触面が非球面であり、かつ、前記接合レンズ内における少なくとも1つ接合面が以下の条件を満足することを特徴とする接合レンズを備えた光学系。
6.4<|(r/R)| ・・・(1)
ただし、rは接合面の光軸上での曲率半径であり、Rは接合面の最大径である。
An optical system including a cemented lens having a cemented surface on an optical axis, wherein the air contact surfaces on the light incident side and the light exit side of the cemented lens are aspheric surfaces, and at least one in the cemented lens. An optical system comprising a cemented lens, wherein the cemented surface satisfies the following conditions:
6.4 <| (r / R) | (1)
Here, r is the radius of curvature of the joint surface on the optical axis, and R is the maximum diameter of the joint surface.
前記接合レンズが、複数の接合面を備えることを特徴とする請求項1記載の接合レンズを備えた光学系。 The optical system including the cemented lens according to claim 1, wherein the cemented lens includes a plurality of cemented surfaces. 前記接合レンズを構成するレンズ枚数が3枚であることを特徴とする請求項2記載の接合レンズを備えた光学系。 3. The optical system having a cemented lens according to claim 2, wherein the number of lenses constituting the cemented lens is three. 前記光学系を結像光学系とし、前記結像光学系は、
前記接合レンズを備えた正屈折力の正レンズ群と、
変倍時に可変の間隔を挟んで前記正レンズ群の物体側に位置する負屈折力の負レンズ群と、
前記負レンズ群の射出面から前記正レンズ群の射出面との間に配された明るさ絞りとを備えたことを特徴とする請求項1から3の何れか1項記載の接合レンズを備えた光学系。
The optical system is an imaging optical system, and the imaging optical system is:
A positive lens group having positive refractive power including the cemented lens;
A negative lens group of negative refractive power located on the object side of the positive lens group with a variable interval at the time of zooming;
4. The cemented lens according to claim 1, further comprising an aperture stop disposed between an exit surface of the negative lens group and an exit surface of the positive lens group. 5. Optical system.
物体側から像面側に順に、負の屈折力を持つ第1レンズ群と、変倍時に可変の間隔を挟んで前記第1レンズ群よりも像面側に位置する正の屈折力を持つ第2レンズ群とを有し、
前記第2レンズ群が3枚のレンズにて構成され、
前記第2レンズ群の最も像面側のレンズとそのレンズの物体側のレンズとは、光軸上の面にて接合された接合レンズとして構成され、
前記最も像面側のレンズのd線に対する屈折率n23と、そのレンズと接合された物体側のレンズのd線に対する屈折率n22とが以下の条件を満足することを特徴とする接合レンズを備えた光学系。
0.31<|n22−n23| ・・・(2)
In order from the object side to the image plane side, a first lens group having a negative refractive power and a first lens group having a positive refractive power located on the image plane side with respect to the first lens group across a variable interval upon zooming. Two lens groups,
The second lens group is composed of three lenses,
The most image side lens and the object side lens of the second lens group are configured as a cemented lens joined on a surface on the optical axis,
The cemented lens, wherein the refractive index n 23 for the d-line of the lens closest to the image plane and the refractive index n 22 for the d-line of the object-side lens cemented with the lens satisfy the following conditions: An optical system with
0.31 <| n 22 −n 23 | (2)
前記3枚のレンズを、物体側より順に、正レンズ、負レンズ、正レンズとし、最も像面側の前記正レンズの物体側面である接合面を負の屈折力の屈折面としたことを特徴とする請求項5記載の接合レンズを備えた光学系。 The three lenses are a positive lens, a negative lens, and a positive lens in order from the object side, and a cemented surface that is an object side surface of the positive lens closest to the image plane is a refractive surface having a negative refractive power. An optical system comprising the cemented lens according to claim 5. 物体側から像面側に順に、負の屈折力を持つ第1レンズ群と、変倍時に可変の間隔を挟んで前記第1レンズ群よりも像面側に位置する正の屈折力を持つ第2レンズ群とを有し、
前記第2レンズ群が3枚のレンズにて構成され、
前記第2レンズ群の最も像面側のレンズとそのレンズの物体側のレンズとは、光軸上の面にて接合された接合レンズとして構成され、
前記第1レンズ群の射出面から前記接合レンズの入射面間に明るさ絞りを配し、
前記最も像面側のレンズのd線基準のアッベ数ν23と、そのレンズと接合されたレンズのd線基準のアッベ数ν22とが以下の条件を満足することを特徴とする接合レンズを備えた光学系。
40.3<|ν22−ν23| ・・・(3)
In order from the object side to the image plane side, a first lens group having a negative refractive power and a first lens group having a positive refractive power located on the image plane side with respect to the first lens group across a variable interval upon zooming. Two lens groups,
The second lens group is composed of three lenses,
The most image side lens and the object side lens of the second lens group are configured as a cemented lens joined on a surface on the optical axis,
An aperture stop is disposed between the exit surface of the first lens group and the entrance surface of the cemented lens,
A cemented lens, wherein an Abbe number ν 23 based on the d-line of the lens closest to the image plane and an Abbe number ν 22 based on the d-line of the lens cemented with the lens satisfy the following conditions: Provided optical system.
40.3 <| ν 22 −ν 23 | (3)
以下の条件式を満足することを特徴とする請求項5から7の何れか1項記載の接合レンズを備えた光学系。
−1.8<f1 /fw <−1.2 ・・・(4)
1.1<f2 /fw <1.5 ・・・(5)
1.7<ft /fw <2.5 ・・・(6)
ただし、f1 は第1レンズ群の焦点距離、f2 は第2レンズ群の焦点距離、fw は広角端での光学系全系の焦点距離、ft は望遠端での光学系全系の焦点距離である。
The optical system comprising the cemented lens according to claim 5, wherein the following conditional expression is satisfied.
−1.8 <f 1 / f w <−1.2 (4)
1.1 <f 2 / f w <1.5 (5)
1.7 < ft / fw <2.5 (6)
Where f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, fw is the focal length of the entire optical system at the wide angle end, and ft is the entire optical system at the telephoto end. Is the focal length.
空気接触面数の半数以上が非球面であり、かつ、非球面形状を以下の式(A)に近似させたときの円錐係数Kが何れも0以下となることを特徴とする請求項5から8の何れか1項記載の接合レンズを備えた光学系。
x=(y2 /r)/[1+{1−(K+1)(y/r)2 1/2
+A4 4 +A6 6 +A8 8 +A1010 ・・・(A)
なお、非球面形状は、xを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとり、rは近軸曲率半径、Kは円錐係数、A4 、A6 、A8 、A10はそれぞれ4次、6次、8次、10次の非球面係数である。
The half of the number of air contact surfaces is an aspherical surface, and the conic coefficient K when the aspherical surface shape is approximated by the following equation (A) is 0 or less: An optical system comprising the cemented lens according to claim 8.
x = (y 2 / r) / [1+ {1- (K + 1) (y / r) 2 } 1/2 ]
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 (A)
In the aspherical shape, x is an optical axis with the light traveling direction being positive, y is a direction orthogonal to the optical axis, r is a paraxial radius of curvature, K is a conical coefficient, A 4 , A 6 , A 8 and A 10 are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively.
前記第1レンズ群を、物体側より順に、負レンズと正レンズの2枚のレンズにて構成し、
前記第2レンズ群を、物体側より順に、正レンズと負レンズと正レンズの3枚のレンズにて構成し、
さらに、前記第2レンズ群の像面側に可変間隔を挟んで正レンズ1枚からなる第3レンズ群を備え、前記光学系を3群ズームレンズとして構成したことを特徴とする請求項5から9の何れか1項記載の接合レンズを備えた光学系。
The first lens group is composed of two lenses, a negative lens and a positive lens, in order from the object side,
The second lens group is composed of three lenses of a positive lens, a negative lens, and a positive lens in order from the object side,
6. The apparatus according to claim 5, further comprising a third lens group including one positive lens on the image plane side of the second lens group with a variable interval, and the optical system is configured as a three-group zoom lens. An optical system comprising the cemented lens according to claim 9.
前記第1レンズ群を、物体側より順に、負レンズと正レンズの2枚のレンズにて構成し、
前記第2レンズ群を、物体側より順に、正レンズと負レンズと正レンズの3枚のレンズにて構成し、
前記光学系を2群ズームレンズとして構成したことを特徴とする請求項5から9の何れか1項記載の接合レンズを備えた光学系。
The first lens group is composed of two lenses, a negative lens and a positive lens, in order from the object side,
The second lens group is composed of three lenses of a positive lens, a negative lens, and a positive lens in order from the object side,
10. The optical system having a cemented lens according to claim 5, wherein the optical system is configured as a two-group zoom lens.
前記第1レンズ群を、物体側より順に、像側面曲率半径絶対値が物体側面曲率半径絶対値よりも小さい負レンズと、像側に凹面を向けた正メニスカスレンズの2枚のレンズで構成し、
前記第2レンズ群を、物体側より順に、物体側面曲率半径絶対値が像側面曲率半径絶対値よりも小さい正レンズと、像側面曲率半径絶対値が物体側面曲率半径絶対値よりも小さい負レンズと、物体側面曲率半径が像側面曲率半径絶対値よりも小さい正レンズの3枚のレンズで構成したことを特徴とする請求項10又は11記載の接合レンズを備えた光学系。
The first lens group is composed of two lenses in order from the object side: a negative lens having an absolute value of the image side curvature radius smaller than the absolute value of the object side curvature radius, and a positive meniscus lens having a concave surface facing the image side. ,
In order from the object side, the second lens group includes, in order from the object side, a positive lens in which the absolute value of the object side curvature radius is smaller than the absolute value of the image side curvature radius, and a negative lens in which the absolute value of the image side curvature radius is smaller than the absolute value of the object side curvature radius. 12. An optical system comprising a cemented lens according to claim 10, wherein the optical system comprises a positive lens having an object side curvature radius smaller than an absolute value of the image side curvature radius.
前記第1レンズ群内の負レンズと正レンズとの光軸上での間隔が1.4mm以上1.6mm以下であることを特徴とする請求項12記載の接合レンズを備えた光学系。 13. The optical system having a cemented lens according to claim 12, wherein a distance on the optical axis between the negative lens and the positive lens in the first lens group is 1.4 mm or more and 1.6 mm or less. 前記第2レンズ群の3枚のレンズを接合トリプレットレンズにて構成したことを特徴とする請求項5から13の何れか1項記載の接合レンズを備えた光学系。 14. The optical system having a cemented lens according to claim 5, wherein three lenses of the second lens group are configured by a cemented triplet lens. 前記接合トリプレットレンズの光軸上での厚みが6mm以下であることを特徴とする請求項14記載の接合レンズを備えた光学系。 15. The optical system with a cemented lens according to claim 14, wherein the thickness of the cemented triplet lens on the optical axis is 6 mm or less. 前記接合トリプレットレンズの光軸上での厚みが5.5mm以下であることを特徴とする請求項15記載の接合レンズを備えた光学系。 16. The optical system having a cemented lens according to claim 15, wherein the thickness of the cemented triplet lens on the optical axis is 5.5 mm or less. 前記第接合トリプレットレンズの物体側直前に明るさ絞りを配し、前記明るさ絞りの最大径に対する前記接合トリプレットレンズの厚さの比が1.4以上であることを特徴とする請求項14から16の何れか1項記載の接合レンズを備えた光学系。 The brightness stop is disposed immediately before the object side of the first junction triplet lens, and the ratio of the thickness of the junction triplet lens to the maximum diameter of the brightness stop is 1.4 or more. An optical system comprising the cemented lens according to any one of 16. 請求項5から9の何れか1項記載の接合レンズを備えた光学系を備え、さらに、前記光学系による光学像を電気信号に変換するための電子撮像素子を備えていることを特徴とする撮像装置。 An optical system including the cemented lens according to any one of claims 5 to 9, and an electronic image sensor for converting an optical image obtained by the optical system into an electric signal. Imaging device. 前記光学系の広角端における最大像高位置での主光線の撮像素子への入射角が15°以上30°未満であることを特徴とする請求項18記載の撮像装置。 19. The imaging apparatus according to claim 18, wherein an incident angle of the principal ray at the maximum image height position at the wide-angle end of the optical system is 15 ° or more and less than 30 °. 前記光学系の広角端における最大像高位置での主光線の撮像素子への入射角が16°以上であることを特徴とする請求項19記載の撮像装置。 20. The imaging apparatus according to claim 19, wherein an incident angle of the principal ray at the maximum image height position at the wide-angle end of the optical system is 16 ° or more.
JP2004246220A 2004-08-26 2004-08-26 Optical system provided with cemented lens and imaging device using the same Expired - Fee Related JP4705770B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004246220A JP4705770B2 (en) 2004-08-26 2004-08-26 Optical system provided with cemented lens and imaging device using the same
US11/210,809 US7405889B2 (en) 2004-08-26 2005-08-25 Optical system and imaging system incorporating it
US12/082,661 US7872809B2 (en) 2004-08-26 2008-04-11 Optical system and imaging system incorporating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246220A JP4705770B2 (en) 2004-08-26 2004-08-26 Optical system provided with cemented lens and imaging device using the same

Publications (3)

Publication Number Publication Date
JP2006064904A true JP2006064904A (en) 2006-03-09
JP2006064904A5 JP2006064904A5 (en) 2007-08-09
JP4705770B2 JP4705770B2 (en) 2011-06-22

Family

ID=36111474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246220A Expired - Fee Related JP4705770B2 (en) 2004-08-26 2004-08-26 Optical system provided with cemented lens and imaging device using the same

Country Status (1)

Country Link
JP (1) JP4705770B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133755A (en) * 2004-10-07 2006-05-25 Pentax Corp Zoom lens system
JP2006276445A (en) * 2005-03-29 2006-10-12 Pentax Corp Zoom lens system
JP2007058168A (en) * 2005-07-28 2007-03-08 Kyocera Corp Zoom lens, optical module, and personal digital assistant
JP2008292911A (en) * 2007-05-28 2008-12-04 Olympus Imaging Corp Three-group zoom lens and imaging apparatus equipped with the same
WO2011148822A1 (en) 2010-05-28 2011-12-01 オリンパスメディカルシステムズ株式会社 Image formation optical system and image pickup device
JP2012247689A (en) * 2011-05-30 2012-12-13 Pentax Ricoh Imaging Co Ltd Zoom lens system and optical device using the same
WO2019054308A1 (en) * 2017-09-12 2019-03-21 Hoya株式会社 Objective lens unit for endoscope, and endoscope
CN111095069A (en) * 2017-09-12 2020-05-01 Hoya株式会社 Objective lens unit for endoscope and endoscope

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234362A (en) * 1994-02-22 1995-09-05 Nikon Corp Zoom lens
JP2001033700A (en) * 1999-04-30 2001-02-09 Sony Corp Zoom lens
JP2001305426A (en) * 2000-04-21 2001-10-31 Sony Corp Zoom lens and image pickup unit
JP2003021783A (en) * 2001-07-06 2003-01-24 Canon Inc Zoom lens and optical equipment using the same
JP2003107352A (en) * 2001-09-28 2003-04-09 Ricoh Co Ltd Zoom lens, camera and portable information terminal device
JP2003131129A (en) * 2001-10-22 2003-05-08 Nitto Kogaku Kk Zoom lens
JP2003287679A (en) * 2002-03-27 2003-10-10 Ricoh Co Ltd Zoom lens and camera device
JP2004061519A (en) * 2002-06-06 2004-02-26 Enplas Corp Objective for optical pickup
JP2004198855A (en) * 2002-12-19 2004-07-15 Ricoh Co Ltd Zoom lens, camera and personal digital assistance device
JP2004240398A (en) * 2003-01-17 2004-08-26 Sony Corp Zoom lens and imaging apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234362A (en) * 1994-02-22 1995-09-05 Nikon Corp Zoom lens
JP2001033700A (en) * 1999-04-30 2001-02-09 Sony Corp Zoom lens
JP2001305426A (en) * 2000-04-21 2001-10-31 Sony Corp Zoom lens and image pickup unit
JP2003021783A (en) * 2001-07-06 2003-01-24 Canon Inc Zoom lens and optical equipment using the same
JP2003107352A (en) * 2001-09-28 2003-04-09 Ricoh Co Ltd Zoom lens, camera and portable information terminal device
JP2003131129A (en) * 2001-10-22 2003-05-08 Nitto Kogaku Kk Zoom lens
JP2003287679A (en) * 2002-03-27 2003-10-10 Ricoh Co Ltd Zoom lens and camera device
JP2004061519A (en) * 2002-06-06 2004-02-26 Enplas Corp Objective for optical pickup
JP2004198855A (en) * 2002-12-19 2004-07-15 Ricoh Co Ltd Zoom lens, camera and personal digital assistance device
JP2004240398A (en) * 2003-01-17 2004-08-26 Sony Corp Zoom lens and imaging apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133755A (en) * 2004-10-07 2006-05-25 Pentax Corp Zoom lens system
JP2006276445A (en) * 2005-03-29 2006-10-12 Pentax Corp Zoom lens system
JP4584748B2 (en) * 2005-03-29 2010-11-24 Hoya株式会社 Zoom lens system
JP2007058168A (en) * 2005-07-28 2007-03-08 Kyocera Corp Zoom lens, optical module, and personal digital assistant
JP2008292911A (en) * 2007-05-28 2008-12-04 Olympus Imaging Corp Three-group zoom lens and imaging apparatus equipped with the same
US8331041B2 (en) 2010-05-28 2012-12-11 Olympus Medical Systems Corp. Imaging optical system and image-acquisition apparatus
WO2011148822A1 (en) 2010-05-28 2011-12-01 オリンパスメディカルシステムズ株式会社 Image formation optical system and image pickup device
JP2012247689A (en) * 2011-05-30 2012-12-13 Pentax Ricoh Imaging Co Ltd Zoom lens system and optical device using the same
WO2019054308A1 (en) * 2017-09-12 2019-03-21 Hoya株式会社 Objective lens unit for endoscope, and endoscope
JP2019049680A (en) * 2017-09-12 2019-03-28 Hoya株式会社 Objective lens unit for endoscopes and endoscope
CN111095069A (en) * 2017-09-12 2020-05-01 Hoya株式会社 Objective lens unit for endoscope and endoscope
CN111095068A (en) * 2017-09-12 2020-05-01 Hoya株式会社 Objective lens unit for endoscope and endoscope
CN111095069B (en) * 2017-09-12 2022-01-11 Hoya株式会社 Objective lens unit for endoscope and endoscope
US11525998B2 (en) 2017-09-12 2022-12-13 Hoya Corporation Endoscope objective lens unit and endoscope

Also Published As

Publication number Publication date
JP4705770B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4938068B2 (en) Electronic imaging device
JP3909989B2 (en) Camera with zoom lens and electronic image sensor
JP2007248952A (en) Bending variable power optical system
JP2005266129A (en) Zoom lens and electronic imaging apparatus having the same
JP2007156385A (en) Zoom optical system and image taking apparatus using the same
JP2010139870A (en) Image forming optical system and electronic imaging apparatus having the same
JP5424553B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP4477336B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4813102B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4803952B2 (en) Electronic imaging device
JP2012003077A (en) Imaging optical system and electronic imaging apparatus having the same
JP4790320B2 (en) Two-group zoom lens and electronic imaging apparatus including the same
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP4573378B2 (en) Zoom lens
JP5226888B2 (en) Bending imaging optical system
JP4705770B2 (en) Optical system provided with cemented lens and imaging device using the same
JP4947990B2 (en) IMAGING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
JP4503918B2 (en) Imaging device
JP2007248951A (en) Bending variable power optical system
JP4503957B2 (en) Three-group zoom lens and electronic imaging apparatus using the same
JP4472070B2 (en) Zoom lens
JP4722425B2 (en) Electronic imaging device
JP4454996B2 (en) Imaging device
JP2008122874A (en) Photographic optical system and imaging apparatus with this photographic optical system
JP2005070697A (en) 3-group zoom lens and electronic imaging apparatus using same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R151 Written notification of patent or utility model registration

Ref document number: 4705770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees