JP2006063365A - Transparent electrode manufacturing method - Google Patents

Transparent electrode manufacturing method Download PDF

Info

Publication number
JP2006063365A
JP2006063365A JP2004245356A JP2004245356A JP2006063365A JP 2006063365 A JP2006063365 A JP 2006063365A JP 2004245356 A JP2004245356 A JP 2004245356A JP 2004245356 A JP2004245356 A JP 2004245356A JP 2006063365 A JP2006063365 A JP 2006063365A
Authority
JP
Japan
Prior art keywords
film
thickness
metal
ito
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004245356A
Other languages
Japanese (ja)
Other versions
JP4521565B2 (en
Inventor
Satoshi Iwatsubo
聡 岩坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2004245356A priority Critical patent/JP4521565B2/en
Publication of JP2006063365A publication Critical patent/JP2006063365A/en
Application granted granted Critical
Publication of JP4521565B2 publication Critical patent/JP4521565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent electrode manufacturing method for manufacturing a thin electrode film of low resistance which is transparent in a range from ultraviolet ray to visible ray by suppressing the high resistance effect caused by electron scattering on a film interface occurring when the film is very thin. <P>SOLUTION: The electrode film of high transparency in a range from ultraviolet ray to visible ray is provided by employing structure in which a metal layer having a layered structure of ≤30 nm thickness and a conductive transparent oxide semiconductor of a layered structure of a thickness close to the mean free path of the bulk value of the metal are laminated, thereby suppressing the increasing effect of the resistance of the film caused by scattering of conductive electrons and a reduction in the thickness of a continuous laminar part resulting in low resistance of the thin film, and by suppressing reflection of the light of a metal film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、紫外領域から可視にわたって高い透明度をもち低抵抗な電極薄膜の製造方法に関するもので、光電子デバイスの高効率化に応用できる。   The present invention relates to a method for producing a low-resistance electrode thin film having high transparency from the ultraviolet region to the visible region, and can be applied to increase the efficiency of optoelectronic devices.

近年の情報化技術の高度化に伴い、LEDやレーザなどの発光素子においては記録密度の向上が、また、受光・変換素子においてはさらなる変換効率の改善が求められている。そのためには波長の短い紫外線を利用することが不可欠であり、電気的駆動に必要な表面部にある電極膜の透明度は素子の効率を決定する上で非常に重要になってくる。例えば、太陽電池などでこれまで透過できなかった領域の光を利用することができれば、効率は大きく向上することになる。一般に、数百nmの厚みの薄膜で紫外領域からの光を透過させるには、5eV以上のバンドギャップを持つ材料が必要になるが、この範囲の材料としては、アルミナや酸化チタンなどの絶縁体の酸化物がほとんどで、導電性を示す半導体材料で実用化されている酸化インジウムを主成分とするITO系の2.8eV程度のバンドギャップでは不十分である。その他の材料としては、特開2002−93243のバンドギャップが5eV程度あるガリウムなどの酸化物も有望であるが、処理温度が非常に高いこととITOに匹敵するほど低抵抗な膜は得られてはいないのが現状である。
特開2002−93243号公報
With the advancement of information technology in recent years, improvement in recording density is demanded for light emitting elements such as LEDs and lasers, and further improvement in conversion efficiency is required for light receiving / converting elements. For that purpose, it is indispensable to use ultraviolet rays having a short wavelength, and the transparency of the electrode film on the surface necessary for electrical driving becomes very important in determining the efficiency of the device. For example, if light in a region that could not be transmitted by a solar cell or the like can be used, the efficiency is greatly improved. In general, in order to transmit light from the ultraviolet region with a thin film having a thickness of several hundreds of nanometers, a material having a band gap of 5 eV or more is required. As a material in this range, an insulator such as alumina or titanium oxide is used. Most of these oxides are used, and an ITO-based band gap of about 2.8 eV, which is mainly composed of indium oxide and is practically used as a semiconductor material exhibiting conductivity, is insufficient. As another material, an oxide such as gallium having a band gap of about 5 eV in Japanese Patent Laid-Open No. 2002-93243 is also promising, but a film having a very high processing temperature and a low resistance comparable to ITO is obtained. There is no current situation.
JP 2002-93243 A

そこで、その一つの解決方法として導電性を示す金属膜を光の吸収が起こらない程薄くすることで、透明度を上げる方法が有効になる。しかしながら、金属膜は一般にその初期成長段階においてVolmer−Weber型の3次元的核成長を行うために、数nmと膜が薄いときには膜は島状構造のため導電性を示さないことが多く、導電性を示す層状構造になるまで膜を厚くした場合、光の透過率は著しく減少してしまうことになる。そこで、その金属膜の島状構造の発生を抑制し、連続した層状構造をもつ膜を作製するための技術が開発された。(特願2003−334683)しかしながら実際に作製された膜厚が数十nm以下の金属の薄膜では、電気伝導を担う電子の平均自由行程と膜厚の大きさがほぼ同じ大きさになるため、膜と基板界面での電子散乱効果(サイズ効果)が無視できなくなり、抵抗値がバルク値に比べて非常に上昇する傾向があった。さらに、実際の金属薄膜は図2に示すように原子オーダのスケールでみると膜表面にかなり凹凸があり、作製方法を改善しても完全に平らにすることはできないことも抵抗率上昇の一つの原因になっていた。つまり、膜厚が非常に薄くなると基板のあらさによる膜構造の不均一性やランダムな成長による結晶粒子の不均一性などが、膜厚に対して無視できない大きさになるために、膜断面が図1の左部で示すような膜の凹凸部分が膜の大部分を占めるようになり、電気伝導に関連する層状部分の厚みが減少する抵抗値上昇の効果(層状構造の厚みの減少効果)が発生する。これら2つの効果により金属の超薄膜では抵抗が非常に上昇した。   Therefore, as one solution, a method of increasing the transparency is effective by thinning the conductive metal film so that light absorption does not occur. However, since a metal film generally performs Volmer-Weber type three-dimensional nucleus growth in its initial growth stage, when the film is as thin as several nanometers, the film is often an island-like structure and thus does not exhibit conductivity. If the film is thickened to a layered structure that exhibits properties, the light transmittance will be significantly reduced. Therefore, a technique has been developed to suppress the generation of island-like structures of the metal film and to produce a film having a continuous layered structure. (Japanese Patent Application No. 2003-334683) However, in an actually produced metal thin film having a film thickness of several tens of nm or less, the average free path of electrons responsible for electrical conduction and the film thickness are almost the same. The electron scattering effect (size effect) at the interface between the film and the substrate cannot be ignored, and the resistance value tended to increase significantly compared to the bulk value. Furthermore, as shown in FIG. 2, an actual metal thin film has a considerably uneven surface on the atomic order scale, and even if the manufacturing method is improved, it cannot be completely flattened. It was one cause. In other words, when the film thickness is very thin, non-uniformity of the film structure due to the roughness of the substrate and non-uniformity of crystal grains due to random growth become non-negligible with respect to the film thickness. The uneven part of the film as shown in the left part of FIG. 1 occupies most of the film, and the effect of increasing the resistance value that the thickness of the layered part related to electrical conduction decreases (the effect of reducing the thickness of the layered structure) Will occur. Due to these two effects, the resistance of the ultra-thin metal film was greatly increased.

一般に、液晶やプラズマディスプレーなどの平面ディスプレーデバイスでは、シート抵抗値が10Ω/sq.以下の透明電極が求められている。例えば金属として金を選んだ場合、その体積抵抗率から10Ω/sq.のシート抵抗を達成するためには2〜3nmの膜厚で十分なはずであるが、現実には上記サイズ効果と層状構造の厚みの減少効果のため数百Ω/sq.程度の高い値を示す。この膜厚の金膜は光の透過率は紫外線域でも80%近くあるが、その高い抵抗値のため低抵抗を必要とされる平面ディスプレーデバイス等に応用することは困難であった。   Generally, in a flat display device such as a liquid crystal display or a plasma display, the sheet resistance value is 10Ω / sq. The following transparent electrodes are required. For example, when gold is selected as the metal, 10 Ω / sq. In order to achieve a sheet resistance of 2 to 3 nm, a film thickness of 2 to 3 nm should be sufficient. However, in reality, several hundreds Ω / sq. A high value is shown. The gold film having this thickness has a light transmittance of nearly 80% even in the ultraviolet region, but because of its high resistance value, it has been difficult to apply to a flat display device or the like that requires a low resistance.

上記問題点を解決するために、本発明では図1の右部に示すような層状構造の金属薄膜の低抵抗化を図るために、主な電子伝導ための層として利用する金属薄膜と、その金属膜表面や粒界での強い電子散乱を抑えるための金属のバルク値に近い電子の平均自由行程程度の数十nm程度の透明度の高い導電性の酸化物半導体膜を積層することで、膜全体の低抵抗化を達成する同時に、全体として薄い電極膜を構成することで紫外域から可視光にわたる広範囲な領域で高い透明度をもつ電極膜が実現できることを特徴とする。   In order to solve the above problems, in the present invention, in order to reduce the resistance of a metal thin film having a layered structure as shown in the right part of FIG. 1, a metal thin film used as a layer for main electron conduction, By laminating a highly transparent conductive oxide semiconductor film of about several tens of nanometers, which is about the mean free path of electrons close to the bulk value of the metal to suppress strong electron scattering at the metal film surface and grain boundaries, It is characterized in that an electrode film having high transparency can be realized in a wide range from the ultraviolet region to visible light by constituting a thin electrode film as a whole while simultaneously achieving low resistance.

本発明の構造を採用することで、膜が薄い場合に発生する膜表面での強い電子散乱が原因のサイズ効果と層状構造の厚みの減少効果を抑えられるために、バルク金属に近い体積抵抗率を示す金属層の非常に低い抵抗値の膜を作製することができる。さらに、本発明の導電性酸化物の厚みを8〜30nmの範囲にすることで可視光の金属膜の光の反射を防止することができ、単層のものに比べ非常に高い透過率の電極膜を作製するこができる。また、本発明の構造では金属膜の凹凸を導電性酸化物で埋めると同時に、膜表面が金属に比べて硬く滑らかな導電性酸化物で覆うため、金属膜単体では不可能な非常に滑らかな硬い膜表面を形成することが可能であるとともに、この構造では膜全体の厚みが数十nmの範囲になるため、従来の低抵抗な導電性の酸化物半導体膜で作製する場合に必要とされる数百nmの厚膜に比べて材料と処理コストを大幅に抑えることができる。   By adopting the structure of the present invention, it is possible to suppress the size effect due to strong electron scattering on the film surface that occurs when the film is thin and the effect of reducing the thickness of the layered structure, so that the volume resistivity close to that of bulk metal It is possible to manufacture a film having a very low resistance value of a metal layer showing Furthermore, by making the thickness of the conductive oxide of the present invention in the range of 8 to 30 nm, it is possible to prevent the reflection of light of the visible metal film, and an electrode having a very high transmittance as compared with a single layer. A film can be made. Further, in the structure of the present invention, the unevenness of the metal film is filled with the conductive oxide, and at the same time, the film surface is covered with a hard and smooth conductive oxide as compared with the metal, so that the metal film alone is not very smooth. It is possible to form a hard film surface, and in this structure, the thickness of the entire film is in the range of several tens of nanometers. Therefore, it is necessary when manufacturing with a conventional low-resistance conductive oxide semiconductor film. Compared with a thick film of several hundreds of nanometers, material and processing costs can be greatly reduced.

具体的には、金属薄膜の形態は図3の島状構造、図4の島状と層状が混合した状態と図5の完全に層状になっている状態の3つが考えられる。図3と図4の左側の島状部分は電気伝導とは関係の無い部分で、単に膜の透明度を落としているだけである。それらに本発明の約30nm以下の透明度の高い導電性の酸化物半導体膜を金属薄膜に積層することで、その部分も電気伝導に組み入れることができ膜の抵抗値を下げることができる。一方、理想的な層状構造をもつ図5の構造においても膜界面での強い電子散乱は避けることができず、電子の平均自由行程がその膜厚程度の長さに制限され高い抵抗を示すが、本発明の積層構造をとることで光学特性をあまり劣化させることなく電子の平均自由行程をその膜厚分増加させることができるため、バルク値に近い低い抵抗値を実現することができる。実施例1によると、金薄膜だけではシート抵抗値が90Ω/sq.波長550nmの透過率の値が70%の透明電極しか得られないが、本発明の積層構造を採用することで、シート抵抗値が18Ω/sq.波長550nmの透過率の値が80%の透明電極を作製することができる。   Specifically, there are three forms of the metal thin film: the island structure shown in FIG. 3, the state where the islands and layers are mixed as shown in FIG. 4, and the state where the layers are completely layered as shown in FIG. The island portions on the left side of FIGS. 3 and 4 are portions that are not related to electrical conduction, and merely reduce the transparency of the film. When a conductive oxide semiconductor film having a high transparency of about 30 nm or less according to the present invention is stacked on a metal thin film, the portion can also be incorporated into electric conduction and the resistance value of the film can be lowered. On the other hand, even in the structure of FIG. 5 having an ideal layered structure, strong electron scattering at the film interface cannot be avoided, and the electron mean free path is limited to the length of the film thickness and exhibits high resistance. Since the average free path of electrons can be increased by the film thickness without significantly degrading optical characteristics by adopting the laminated structure of the present invention, a low resistance value close to the bulk value can be realized. According to Example 1, a sheet resistance value of 90 Ω / sq. Although only a transparent electrode having a transmittance value of 70% at a wavelength of 550 nm can be obtained, the sheet resistance value is 18 Ω / sq. A transparent electrode having a transmittance value of 80% at a wavelength of 550 nm can be produced.

金属の導電層としては、金、銀、銅などの比抵抗の小さな金属を電子の導電層として使用する。比抵抗の小さな金属を選ぶのは、透過率を上げるために同じシート抵抗の膜を作製するための膜厚を最少にするためである。金属膜の酸化が気になる場合は、金の膜にすれば良い。シート抵抗が小さく透明度の高い膜を作製するためには、金属の超薄膜においても緻密な膜構造をもち、さらに表面が滑らかな層状構造をもつことが重要である。図6に、イオンビームスパッタ(IBS)とRFマグネトロンスパッタ(RFMS)と(特願2003−334683)のデュアルイオンビームスパッタ(NDIBS)で作製した金膜の体積抵抗率ρの膜厚依存性を示す。どの膜も上記2つの効果により膜厚が薄くなるにしたがって、ρが上昇することがわかる。これらの中で、通常のRFマグネトロンスパッタよりIBS、さらにNDIBSの膜の方が、金属薄膜は滑らかな層状構造をもつために優れた特性を示す。   As the metal conductive layer, a metal having a small specific resistance such as gold, silver or copper is used as the electron conductive layer. The reason why a metal having a small specific resistance is selected is to minimize the film thickness for producing a film having the same sheet resistance in order to increase the transmittance. If oxidation of the metal film is a concern, a gold film may be used. In order to produce a film with low sheet resistance and high transparency, it is important that a metal ultrathin film has a dense film structure and a layered structure with a smooth surface. FIG. 6 shows the film thickness dependence of the volume resistivity ρ of a gold film produced by dual ion beam sputtering (NDIBS) of ion beam sputtering (IBS), RF magnetron sputtering (RFMS), and (Japanese Patent Application No. 2003-334683). . It can be seen that ρ increases as the film thickness decreases due to the two effects described above. Among these, IBS and NDIBS films exhibit superior characteristics because the metal thin film has a smooth layered structure than normal RF magnetron sputtering.

次に、サイズ効果などを抑えるための金属のバルク値に近い電子の平均自由行程程度の透明度の高い導電性の酸化物半導体膜を積層する必要がある。図7にターゲット面から基板を45度の方向に基板を設置したIBSにより作製した金膜の体積抵抗率ρと自由電子の平均自由行程λeの膜厚依存性を示す。膜は層状構造を示したときにはじめて良好な電気伝導性を示し、膜厚が薄い100nm以下の範囲では、ρは膜厚が上昇するにしたがって単調に減少する傾向があった。そこで、金膜の電子のλeを概算してみると、膜厚より小さくその値はバルクの40nmまで、膜厚が厚くなるにしたがって増加する傾向があった。これは、膜の抵抗値がほとんどサイズ効果によって決定されることを示している。つまり、バルクの40nm以上の膜厚が無ければ、抵抗値の低い金属膜は得られないことになる。しかしながら、この値まで膜厚を厚くすると膜の透明度は著しく減少してしまい、高い透明度の電極として使用できないことになる。   Next, it is necessary to stack a highly transparent conductive oxide semiconductor film having an electron mean free path close to the bulk value of the metal for suppressing the size effect and the like. FIG. 7 shows the film thickness dependence of the volume resistivity ρ and the mean free path λe of free electrons of a gold film produced by IBS in which the substrate is placed at a 45 ° direction from the target surface. The film showed good electrical conductivity only when it showed a layered structure, and ρ tended to decrease monotonously as the film thickness increased within a thin film thickness of 100 nm or less. Thus, when the λe of the gold film is roughly estimated, the value is smaller than the film thickness and tends to increase as the film thickness increases to 40 nm in the bulk. This indicates that the resistance value of the film is almost determined by the size effect. In other words, a metal film having a low resistance value cannot be obtained without a bulk thickness of 40 nm or more. However, when the film thickness is increased to this value, the transparency of the film is remarkably reduced and it cannot be used as a highly transparent electrode.

そこで、膜の電導電子の平均自由行程を上昇させるために、金属膜の上に、あるいは、下でもよいが、数十nmの膜厚でも透明度の高い導電性のある膜を積層することで、界面での強い電子散乱を抑制し、金属膜の電導電子の平均自由行程を上昇させ、膜全体の抵抗を減少させることができる。このとき、電極膜として可視から紫外線領域への広帯域化を狙うためには、当然積層する導電性透明酸化物半導体も広帯域である必要があるが、図11に示すように約60nm以下の膜厚ではITOなどの酸化物半導体の禁止帯幅による光の吸収はあまり問題にならない。   Therefore, in order to increase the mean free path of the electroconductivity of the film, it may be above or below the metal film, but by laminating a highly transparent conductive film with a film thickness of several tens of nm, Strong electron scattering at the interface can be suppressed, the mean free path of the metal film conductor can be increased, and the resistance of the entire film can be reduced. At this time, in order to aim at widening the band from the visible region to the ultraviolet region as the electrode film, the conductive transparent oxide semiconductor to be laminated naturally needs to have a wide band. However, as shown in FIG. 11, the film thickness is about 60 nm or less. Then, light absorption due to the band gap of an oxide semiconductor such as ITO is not a problem.

現在までに紫外域で使用できる導電性透明酸化物半導体としてGaO、ZnO系の材料が研究されているが、低温合成で酸化インジウムに錫をドープしたITOに匹敵するほど十分低抵抗な透明な酸化物半導体は得られていない。本発明の低抵抗化の効果を狙うためには、積層する酸化物半導体には禁止帯幅による光の吸収よりも、むしろ金属膜に近い低抵抗率の膜であることが要求される。そのため本発明の効果を発生させるためには、導電性透明酸化物半導体膜としてITOが最も相応しい。   Up to now, GaO and ZnO-based materials have been studied as conductive transparent oxide semiconductors that can be used in the ultraviolet region, but transparent oxidation with low resistance comparable to ITO doped with tin indium oxide by low-temperature synthesis. No physical semiconductor has been obtained. In order to aim at the effect of lowering the resistance of the present invention, the oxide semiconductor to be stacked is required to be a low resistivity film close to a metal film rather than light absorption due to the band gap. Therefore, in order to generate the effect of the present invention, ITO is most suitable as the conductive transparent oxide semiconductor film.

また、下地となる金属の平均自由行程程度の膜厚の導電性酸化膜には、金属薄膜と同様、滑らかな層構造が求められる。この構造が実現できない場合は、図1の右部に示してある構造が不完全になるため、本発明の低抵抗化の効果と反射防止効果は余り期待できない。   Also, the conductive oxide film having a film thickness on the order of the mean free path of the underlying metal is required to have a smooth layer structure like the metal thin film. If this structure cannot be realized, the structure shown in the right part of FIG. 1 becomes incomplete, so that the effect of reducing the resistance and the antireflection effect of the present invention cannot be expected.

ITO膜は通常プラズマスパッタで作製されるが、その膜特性は作製条件に非常に敏感で、プラズマの影響とともにスパッタにおける反跳Arが膜にダメージを与えることが多い。そこでIBSにて、通常のスパッタ法よりターゲットと基板を対向させ基板への反跳Arによる衝撃の少ない作製条件の膜と基板をイオンビームの入射角に対象に設置した反跳Arによる衝撃の多い作製条件の膜を水冷された基板上に作製した。膜厚が300nmのITOの膜表面形態のSEM像を図8に示す。RFMSなどの通常のスパッタ法に近い反跳Arの多い作製条件では、膜表面に大きな粒界が現れ、かなり凹凸の激しい状態に成っていることがわかる。この状態で数十nmの膜を作製しても電気特性の良好な低抵抗な膜を得ることはできない。一方、IBSの反跳Arの少ない作製条件では、非常に凹凸の少ない膜を作製することができた。その表面あらさRaは、膜厚が300nm以下で基板と同等以下の0.4nm以下の値であった。   An ITO film is usually produced by plasma sputtering, but its film characteristics are very sensitive to production conditions, and recoil Ar in sputtering often damages the film along with the influence of plasma. Therefore, in IBS, a target and a substrate are opposed to each other by a normal sputtering method, and a film and a substrate having a manufacturing condition with less impact due to recoil Ar to the substrate have a large impact due to recoil Ar in which the film and the substrate are set at the incident angle of the ion beam. A film under fabrication conditions was fabricated on a water-cooled substrate. The SEM image of the film | membrane surface form of ITO with a film thickness of 300 nm is shown in FIG. It can be seen that a large grain boundary appears on the surface of the film under a production condition with a large amount of recoil Ar, which is close to that of a normal sputtering method such as RFMS, and the surface is considerably uneven. Even if a film having a thickness of several tens of nanometers is produced in this state, a low-resistance film having good electrical characteristics cannot be obtained. On the other hand, a film with very little unevenness could be produced under the production conditions with little IBS recoil Ar. The surface roughness Ra was a value of 0.4 nm or less, which is equal to or less than that of the substrate, with a film thickness of 300 nm or less.

この条件で作製したITO膜のキャリア密度Ncとその移動度μの膜厚依存性を図9に、膜のシート抵抗ρsと体積抵抗率ρの膜厚依存性を図10に示す。膜厚が10nm以下では、Ncとμが小さく、ρは急激に大きくなっていることがわかる。つまり、このIBSの作製方法で、本発明の低抵抗化の効果を狙うためにはITO膜の厚みは10nm以上にする必要があることが確かめられた。   FIG. 9 shows the film thickness dependence of the carrier density Nc and the mobility μ of the ITO film produced under these conditions, and FIG. 10 shows the film thickness dependence of the sheet resistance ρs and volume resistivity ρ of the film. It can be seen that when the film thickness is 10 nm or less, Nc and μ are small, and ρ increases rapidly. That is, it was confirmed that the thickness of the ITO film needs to be 10 nm or more in order to aim at the effect of reducing the resistance of the present invention by this IBS manufacturing method.

作製したITO膜の膜厚をパラメータとした透過率Tスペクトラムを図11に示す。波長300〜400nmの領域の透過率から判断すると、広帯域化を達成するためには約60nm以下の膜厚が望ましいことがわかる。しがって、低抵抗で広帯域な透明電極膜を作製するためには、積層する導電性透明酸化物半導体として、10から60nmの範囲の膜厚のITO膜が有効である。   FIG. 11 shows a transmittance T spectrum using the thickness of the produced ITO film as a parameter. Judging from the transmittance in the wavelength region of 300 to 400 nm, it can be seen that a film thickness of about 60 nm or less is desirable in order to achieve a broad band. Therefore, in order to produce a transparent electrode film having a low resistance and a wide bandwidth, an ITO film having a thickness in the range of 10 to 60 nm is effective as the conductive transparent oxide semiconductor to be laminated.

図12に、ITO膜と同様のスパッタ条件で作製した金薄膜単体Auと、それに29nmの膜厚のITO膜(ρsの280Ω/sq.)を積層したITO/Au膜のシート抵抗ρsの膜厚依存性を示す。Au単体のものは、9.4nmから膜が連続になり導電性を示し、膜厚が増加するにしたがって抵抗が減少する傾向を示した。一方、ITO/Au膜では、Auが2.1nmからでも導電性を示すが、Auの部分は島状になっているため、導電性は積層したITO膜に近い100Ω/sq.台の高い値を示した。そして、島状組織がお互いに連結しはじめる膜厚が7nmから18Ω/sq.と低い値を示した。これはITO/Au膜のITO膜は、金属膜が完全に連続になっていなくても島状組織を電気的に結合する効果があることを示している。   FIG. 12 shows the film thickness of sheet resistance ρs of an ITO / Au film obtained by laminating a gold thin film simple substance Au produced under the same sputtering conditions as the ITO film and an ITO film having a thickness of 29 nm (280 Ω / sq. Of ρs). Indicates dependency. In the case of Au alone, the film was continuous from 9.4 nm and exhibited conductivity, and the resistance tended to decrease as the film thickness increased. On the other hand, the ITO / Au film exhibits conductivity even when the Au is 2.1 nm, but since the Au portion has an island shape, the conductivity is 100 Ω / sq. The value of the stand was high. The film thickness at which the island-like structures start to be connected to each other is 7 nm to 18 Ω / sq. And showed a low value. This indicates that the ITO film of the ITO / Au film has an effect of electrically connecting island structures even when the metal film is not completely continuous.

次に図13に、金薄膜単体(Au)とITO膜を積層したITO/Au膜の体積抵抗率ρの膜厚依存性を示す。ITO/Au膜のρは、Au膜の厚みのみを用いて計算してある。Auのρは、膜厚が9.4nmから膜厚が厚くなるにしたがって、急激に減少する傾向があった。一方、ITO/Au膜のρは7nmより厚い連続膜の範囲では、1.2〜1.5×10−5Ωcmの範囲で徐々に上昇する傾向が見られるが、Auの膜よりも低い値を示している。 Next, FIG. 13 shows the film thickness dependence of the volume resistivity ρ of an ITO / Au film in which a single gold thin film (Au) and an ITO film are laminated. The ρ of the ITO / Au film is calculated using only the thickness of the Au film. The ρ of Au tended to decrease rapidly as the film thickness increased from 9.4 nm. On the other hand, ρ of the ITO / Au film tends to gradually increase in the range of 1.2 to 1.5 × 10 −5 Ωcm in the range of the continuous film thicker than 7 nm, but is lower than that of the Au film. Is shown.

ところで、この効果にはITO膜がAu膜に電気的に並列に入る現象も含まれるため、その影響を考慮する必要がある。そこで、単純にITO膜とAu膜が並列に入ったとして計算した膜のシート抵抗の値RAu//RITOと実測された積層膜のシート抵抗の値RITO/Auを図14に示す。膜厚が7nmで計算されたRAu//RITOは約100Ω/sq.の値であるに対して、実測のRITO/Auは18Ω/sq.と実測値の方が遙かに小さな値を示すことが確かめられた。この差が本発明の低抵抗化の効果を示している。 By the way, since this effect includes a phenomenon in which the ITO film enters the Au film electrically in parallel, it is necessary to consider the influence. Therefore, FIG. 14 shows the sheet resistance value R Au // R ITO of the film and the actually measured sheet resistance value R ITO / Au of the laminated film, calculated simply by placing the ITO film and the Au film in parallel. R Au // R ITO calculated at a film thickness of 7 nm is about 100Ω / sq. The measured RITO / Au is 18Ω / sq. It was confirmed that the measured values showed much smaller values. This difference shows the effect of reducing the resistance of the present invention.

図15にシート抵抗値ρsと波長550nmの透過率T550の関係を示す。金単体ではT550は最大75%であるが、積層構造をとることで90%近い特性のものを、また、同じρsでも透過率の高い膜を作製することができる。 FIG. 15 shows the relationship between the sheet resistance value ρs and the transmittance T 550 having a wavelength of 550 nm. Although T550 is 75% at maximum in the case of gold alone, it is possible to produce a film having a characteristic of nearly 90% by taking a laminated structure, and a film having a high transmittance even with the same ρs.

図16に膜厚が12nmの金薄膜単体(Au)に積層するITO膜の膜厚tITOを変化させた場合の透過率Tスペクトラムを示す。400〜800nmの可視領域では、ITO膜の膜厚が増加するにしたがって透明度が上昇する効果が認められた。特に650nm付近の波長範囲でその効果が著しく、可視光の透明度を上げるためには膜厚が29nm程度が最も優れている。一方、波長400nm以下の紫外線域の透過率は、ITO膜の特性から減少するが250nmでも20%以上の透過率をもっており、特開2002−93243のガリウムなどの酸化物に匹敵する高い透過率と10Ω/sq.台の低い抵抗率を実現した。この効果は、Auが完全な島状構造のときには現れなかった。 FIG. 16 shows the transmittance T spectrum when the thickness t ITO of the ITO film laminated on the gold thin film (Au) having a thickness of 12 nm is changed. In the visible region of 400 to 800 nm, the effect of increasing the transparency as the thickness of the ITO film increased was observed. In particular, the effect is remarkable in the wavelength range near 650 nm, and the film thickness of about 29 nm is the most excellent for increasing the transparency of visible light. On the other hand, the transmittance in the ultraviolet region with a wavelength of 400 nm or less is reduced due to the characteristics of the ITO film, but has a transmittance of 20% or more even at 250 nm. 10Ω / sq. The low resistivity of the stand was realized. This effect did not appear when Au had a complete island structure.

以上のことから、本発明で紫外域に高い透明度を得るためには、ITO膜の厚みを約60nm以下に薄くすればよく、酸化物は比較的硬度も高いので金属層の保護膜としての機能もあり、使用目的に応じてそれらの膜厚を制御すれば良いことがわかる。   From the above, in order to obtain high transparency in the ultraviolet region in the present invention, the thickness of the ITO film may be reduced to about 60 nm or less, and the oxide has a relatively high hardness, so it functions as a protective film for the metal layer. It can be seen that the film thickness may be controlled according to the purpose of use.

低抵抗化のためには、金属薄膜の部分は膜厚が薄いときでも層状構造の膜を作製することが重要である。そのため一般的なPVD法における膜成長過程を考えれば、金属材料として高融点金属が相応しいと考えられる。そこで、タンタル(Ta)、白金(Pt)と低融点であるがITOのドーパントとして使用されている錫(Sn)の3種類の膜をIBSにて作製し、それら金属薄膜のシート抵抗ρsと波長300と550nmの光の透過率T550とT300の関係を調べた。その結果を図17に示す。Ta、PtはAuより膜厚の薄い領域から層状構造ができるが、材料自体の比抵抗の高さからAuと同じシート抵抗を得るためにはその差の分厚い膜が必要になることと、さらに微結晶化するため膜の抵抗値も非常に高く、Auよりも低抵抗で高い透過率の膜を作製することができないことがわかった。一方、低融点のSnの関しては、膜が層状になるのは数十nm以上の非常に厚い領域からで、導電性が得られる膜厚において透明度はほとんどなかった。以上の結果から金属薄膜としては、比抵抗の小さいAuが最も優れていると考えられた。その他の材料としては、比抵抗の小さい銀Ag、銅Cuなども有効である。それらの中で酸化しにくく安定なAuが最も信頼性があり有望な材料と考えられる。 In order to reduce the resistance, it is important to produce a layered film even when the metal thin film portion is thin. Therefore, considering the film growth process in a general PVD method, a refractory metal is considered suitable as a metal material. Therefore, three types of films of tantalum (Ta), platinum (Pt) and tin (Sn), which have a low melting point but are used as a dopant for ITO, are prepared by IBS, and sheet resistance ρs and wavelength of these metal thin films. The relationship between transmittances T 550 and T 300 for light at 300 and 550 nm was examined. The result is shown in FIG. Ta and Pt can have a layered structure from a region having a smaller film thickness than Au, but in order to obtain the same sheet resistance as Au due to the high specific resistance of the material itself, a thicker film of the difference is necessary, and It was found that since the film was microcrystallized, the resistance value of the film was very high, and a film having a lower resistance and higher transmittance than Au could not be produced. On the other hand, with respect to Sn having a low melting point, the film was layered from a very thick region of several tens of nm or more, and there was almost no transparency in the film thickness at which conductivity was obtained. From the above results, it was considered that Au having a small specific resistance was the most excellent as the metal thin film. As other materials, silver Ag, copper Cu and the like having a small specific resistance are also effective. Among them, Au, which is difficult to oxidize and is stable, is considered to be the most reliable and promising material.

図18に膜厚を165nmと350nmのITO膜表面のSEM像を示す。膜厚が165nm以下の場合、膜表面が非常に滑らかでFE−SEMでもその粒界を観察することができなかった。膜厚が350nm以上で大きな粒界が現れ、それが膜厚の増加とともに明確になり膜表面があれてくることがわかった。そこで、AFMで表面あらさRaを測定したところ、膜厚が165nm以下では基板とほぼ同じ0.46nm以下で、それ以上の厚みから増加する傾向を示し、膜厚が350nmで1.4nmになった。このことは、ITO単体で低抵抗な膜を作製する場合膜をある程度厚くする必要があるが、その状態では電極表面があれるため、高い平坦度が求められるデバイスへの応用は期待できないことを示している。   FIG. 18 shows SEM images of the surface of the ITO film having film thicknesses of 165 nm and 350 nm. When the film thickness was 165 nm or less, the film surface was very smooth and the grain boundary could not be observed even with FE-SEM. It was found that a large grain boundary appeared when the film thickness was 350 nm or more, which became clear as the film thickness increased and the film surface was raised. Therefore, when the surface roughness Ra was measured by AFM, when the film thickness was 165 nm or less, it was about 0.46 nm or less, which was almost the same as the substrate, and showed a tendency to increase from that thickness, and the film thickness became 1.4 nm at 350 nm. . This means that when a low resistance film is made of ITO alone, the film needs to be thickened to some extent, but in that state there is an electrode surface, so application to a device that requires high flatness cannot be expected. Show.

非常に滑らかな表面をもつITO膜の効果を示すために、図19に膜厚がIBSで作製された25nmの膜厚のAu膜とさらにITO膜を積層した膜のAFM像の比較を行った。Au単体の膜では直径が約20nmの粒子成長が発生し、膜表面に大きな凸凹が現れているが、本発明のITO膜を積層することでその凸凹が埋められ、図1の右部に示すような非常に滑らかな膜表面が形成されていた。そのため、滑らかな表面をもつ低抵抗な透明電極膜として、本発明の構造の膜が優れていることを示している。   In order to show the effect of the ITO film having a very smooth surface, FIG. 19 compares the AFM images of the 25 nm-thickness Au film made of IBS and the ITO film laminated. . In the film of Au alone, particle growth with a diameter of about 20 nm occurs, and large irregularities appear on the film surface, but the irregularities are filled by laminating the ITO film of the present invention, which is shown in the right part of FIG. Such a very smooth film surface was formed. Therefore, it is shown that the film of the structure of the present invention is excellent as a low-resistance transparent electrode film having a smooth surface.

図20に金薄膜単体(Au)とさらにITOを積層した膜の表面あらさRaの膜厚の関係を示す。Raは一辺が1μmの正方形領域のAFM像から求めてある。両者とも膜厚が9.4nmまでのAuの膜が島状構造のときには、膜厚が増加するにしたがってRaは増加する傾向があるが、それ以上の厚みの膜が島状構造のときには、Raが減少する傾向を示した。特に、ITOを積層した膜のRaは非常に小さくなり、基板表面のRaの0.4より小さな0.14nmの値を示した。このことは、本発明の膜の断面構造が完全に図1の状態になっていることを示している。そのため、金属薄膜単体では、基板表面があれている場合、膜自体が局所的に切れてしまう可能性があり、広範囲に連続した電極膜を形成することが困難で、それを防ぐためにある程度厚い膜を付ける必要があるが、本発明の積層構造ではその効果は軽減できるため、基板の表面あらさを小さくすることができない樹脂フィルムなどの基板でも滑らかな表面の膜を作製できる。このことは本発明の膜は、有機ELなどの透明電極として非常に有効である。また、膜が全体で数十nmと非常に薄いため、フレキシブルな基板でも剥離し難く、電子ペーパやフレキシブルなディスプレへの応用も容易である。   FIG. 20 shows the relationship between the film thickness Ra and the surface roughness Ra of a film obtained by laminating a single gold thin film (Au) and ITO. Ra is obtained from an AFM image of a square region having a side of 1 μm. In both cases, when the Au film having a film thickness of up to 9.4 nm has an island-like structure, Ra tends to increase as the film thickness increases. Showed a tendency to decrease. In particular, the Ra of the ITO laminated film was very small, showing a value of 0.14 nm, which is smaller than 0.4 of Ra on the substrate surface. This indicates that the cross-sectional structure of the film of the present invention is completely in the state shown in FIG. Therefore, in the case of a single metal thin film, if the substrate surface is rough, the film itself may be locally cut, and it is difficult to form a continuous electrode film over a wide range. However, since the effect can be reduced in the laminated structure of the present invention, even a substrate such as a resin film that cannot reduce the surface roughness of the substrate can produce a smooth surface film. This indicates that the film of the present invention is very effective as a transparent electrode such as organic EL. Further, since the film is very thin as a few tens of nanometers as a whole, it is difficult to peel even a flexible substrate, and application to electronic paper or a flexible display is easy.

図21にITO膜と金薄膜単体と本発明のρsが18と10Ω/sq.の膜の透過率特性を示す。ρsが10Ω/sq.のITO膜単体では、400nm以下の波長で急激にTが減少するが、本発明の膜ではなだらかに減少していることがわかる。また、膜が薄いために光の干渉が発生せず、可視領域においてITO膜と同等な透過率を示している。中でもρsが18Ω/sq.の場合は、400nmで60%以上650nmで90%以上の透過率の膜を作製することができた。   FIG. 21 shows an ITO film, a gold thin film alone, and ρs of 18 and 10 Ω / sq. The transmittance | permeability characteristic of this film | membrane is shown. ρs is 10Ω / sq. It can be seen that with the ITO film alone, T decreases rapidly at a wavelength of 400 nm or less, but with the film of the present invention, it decreases gently. Further, since the film is thin, no light interference occurs, and the transmittance is the same as that of the ITO film in the visible region. Among them, ρs is 18Ω / sq. In this case, a film having a transmittance of 60% or more at 400 nm and 90% or more at 650 nm could be produced.

この様に本発明は、実施例から膜界面あるいは粒界での電子散乱効果を抑えるとともに、金属薄膜単層では電気伝導に関連しない層状構造の上の島状構造の領域も電気伝導領域に組み込むことができるため低抵抗で、紫外域から可視にわたる広い範囲において、高い透明度をもつ滑らかな電極膜を実現することができる非常に有効な方法であることが示された。   As described above, the present invention suppresses the electron scattering effect at the film interface or grain boundary from the embodiment, and also incorporates the island-like region on the layered structure that is not related to the electric conduction in the metal thin film single layer into the electric conduction region. Therefore, it was shown that this is a very effective method that can realize a smooth electrode film having a low resistance and a high transparency in a wide range from the ultraviolet region to the visible region.

本発明の透明電極では、紫外線から可視光にわたる広範囲な領域で透明度が高く、低い値を示す特長をもっているため、その波長領域で利用される平面ディスプレなどの発光デバイスや太陽電池などのエネルギー変換型受光電気デバイスの特性向上に応用できる。また、非常に滑らかな膜表面を形成できるために、樹脂フィルム上の有機ELディスプレ用の透明電極としても最適である。   In the transparent electrode of the present invention, since it has a feature of high transparency and low value in a wide range from ultraviolet light to visible light, it is an energy conversion type such as a light emitting device such as a flat display or a solar cell used in the wavelength region. It can be applied to improve the characteristics of light receiving electrical devices. Moreover, since a very smooth film | membrane surface can be formed, it is optimal also as a transparent electrode for organic electroluminescent displays on a resin film.

従来の金属膜と本発明の積層構造の膜の概念図である。It is a conceptual diagram of the conventional metal film and the film | membrane of the laminated structure of this invention. 金薄膜の表面SEM像である。It is a surface SEM image of a gold thin film. 従来の島状構造を持つ金属薄膜(左)と本発明の積層構造の膜(右)の電導電子の動きを示した断面図である。It is sectional drawing which showed the motion of the electroconductivity of the metal thin film (left) with the conventional island-like structure, and the film | membrane (right) of the laminated structure of this invention. 従来の島状と層状構造を合わせ持つ金属薄膜(左)と本発明の積層構造の膜(右)の電導電子の動きを示した断面図である。It is sectional drawing which showed the motion of the electroconductivity of the metal thin film (left) which has the conventional island shape and layered structure, and the film | membrane (right) of the laminated structure of this invention. 従来の完全な層状構造を持つ金属薄膜(左)と本発明の積層構造の膜(右)の電導電子の動きを示した断面図である。It is sectional drawing which showed the motion of the electroconductivity of the metal thin film (left) with the conventional perfect layered structure, and the film | membrane (right) of the laminated structure of this invention. 様々な方法で作製された金Au膜の体積抵抗率ρの膜厚依存性である。This is the film thickness dependence of the volume resistivity ρ of the gold Au film produced by various methods. 基板をターゲット面から45度の方向に設置したイオンビームスパッタ法IBSで作製されたAu膜の体積抵抗率ρと電子の平均自由行程λeの膜厚依存性である。This is the film thickness dependence of the volume resistivity ρ and the mean free path λe of electrons of an Au film produced by ion beam sputtering IBS with the substrate placed at a direction of 45 degrees from the target surface. IBSで作製されたAu膜のITO膜のSEM像である。It is a SEM image of the ITO film | membrane of Au film | membrane produced by IBS. IBSで作製されたITO膜のキャリア密度Ncとその移動度μの膜厚依存性である。This is the film thickness dependence of the carrier density Nc and the mobility μ of the ITO film produced by IBS. ITO膜のシート抵抗ρsと体積抵抗率ρの膜厚依存性である。This is the film thickness dependence of the sheet resistance ρs and volume resistivity ρ of the ITO film. ITO膜の膜厚をパラメータとした透過率Tスペクトラムである。It is a transmittance T spectrum using the thickness of the ITO film as a parameter. 金薄膜単体(Au)とITO膜を積層した(ITO/Au)膜のシート抵抗ρsの膜厚依存性である。This is the film thickness dependence of the sheet resistance ρs of an (ITO / Au) film in which a single gold thin film (Au) and an ITO film are laminated. 金薄膜単体(Au)とITO膜を積層した(ITO/Au)膜の体積抵抗率ρの膜厚依存性である。This is the film thickness dependence of the volume resistivity ρ of an (ITO / Au) film in which a single gold thin film (Au) and an ITO film are laminated. 実測のシート抵抗値ρsと上部のITO膜を並列接続した場合のシート抵抗ρsの計算値RITO//RAuと実測されたRITO/Auの比較図である。FIG. 6 is a comparison diagram of a measured value RITO / RAu and a measured value RITO / Au when a measured sheet resistance value ρs and an upper ITO film are connected in parallel. Au単層膜と積層膜のシート抵抗ρsと波長550nmの透過率T550の関係である。This is the relationship between the sheet resistance ρs of the Au single layer film and the laminated film and the transmittance T 550 at a wavelength of 550 nm. 金薄膜単体(Au)に積層するITO膜の膜厚を変化させた場合の透過率Tのスペクトラムである。This is a spectrum of transmittance T when the film thickness of the ITO film laminated on a single gold thin film (Au) is changed. 様々な金属の薄膜のシート抵抗値ρsと波長300と550nmの光の透過率T300とT550の関係である。This is the relationship between the sheet resistance value ρs of various metal thin films and the light transmittances T 300 and T 550 at wavelengths of 300 and 550 nm. 膜厚が165nmと350nmのITO膜表面のSEM像である。It is a SEM image of the ITO film | membrane surface with a film thickness of 165 nm and 350 nm. 膜厚が25nmのAu膜とさらにITO膜を積層した膜のAFM像である。It is an AFM image of a film in which an Au film having a film thickness of 25 nm and an ITO film are further laminated. 金薄膜単体(Au)とさらにITOを積層した膜の表面あらさRaの膜厚の関係である。This is the relationship between the film thickness Ra and the surface roughness Ra of a film obtained by laminating a single gold thin film (Au) and ITO. ITO膜と金薄膜単体と本発明のρsが18と10Ω/sq.の膜の透過率Tのスペクトラムである。The ITO film, the gold thin film alone, and the rho of the present invention is 18 and 10Ω / sq. It is the spectrum of the transmittance | permeability T of this film | membrane.

符号の説明Explanation of symbols

1 金属薄膜
2 透明酸化物半導体
3 電導電子
4 基板
5 金属内での電子の平均自由行程
6 透明酸化物半導体内での電子の平均自由行程
7 島状構造の厚み
8 層状構造の厚み
1 Metal thin film 2 Transparent oxide semiconductor 3 Conductor 4 Substrate 5 Mean free path of electrons in metal 6 Mean free path of electrons in transparent oxide semiconductor 7 Thickness of island structure 8 Thickness of layer structure

Claims (5)

30nm以下の層状構造をもつ金属層とその金属のバルク値の平均自由行程に近い厚みの層状構造の導電性透明酸化物半導体を積層する構造であって、金属層の膜表面や粒界の電子散乱による抵抗上昇を抑制したシート抵抗が50Ω/sq.以下の低い抵抗値の紫外線から可視光の範囲で透明なことを特徴とする電極薄膜   A structure in which a metal layer having a layer structure of 30 nm or less and a conductive transparent oxide semiconductor having a layer structure having a thickness close to the mean free path of the bulk value of the metal are stacked, and the electron on the film surface and grain boundary of the metal layer Sheet resistance with suppressed resistance increase due to scattering is 50 Ω / sq. An electrode thin film characterized by being transparent in the range of ultraviolet to visible light having the following low resistance value: 前記金属層に金を用いた請求項1記載の透明電極薄膜   The transparent electrode thin film according to claim 1, wherein gold is used for the metal layer. 前記記載の透明酸化物半導体として酸化インジウムを含有する請求項1記載の透明電極薄膜   2. The transparent electrode thin film according to claim 1, comprising indium oxide as the transparent oxide semiconductor. 前記導電性透明酸化物半導体の厚みを10〜30nmにすることによって金属膜の光の反射を抑えた請求項1記載又は請求項2記載又は請求項3記載の透明電極薄膜   The transparent electrode thin film according to claim 1, wherein reflection of light of the metal film is suppressed by setting the thickness of the conductive transparent oxide semiconductor to 10 to 30 nm. 基板とターゲットを対向させ反跳Arを抑制した基板配置のイオンビームスパッタ法を用いて作製した請求項3の透明酸化物半導体をもつ透明電極薄膜   4. A transparent electrode thin film having a transparent oxide semiconductor according to claim 3, which is fabricated by using an ion beam sputtering method in which a substrate and a target are opposed to each other and a recoil Ar is suppressed.
JP2004245356A 2004-08-25 2004-08-25 Transparent electrode film Expired - Fee Related JP4521565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245356A JP4521565B2 (en) 2004-08-25 2004-08-25 Transparent electrode film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245356A JP4521565B2 (en) 2004-08-25 2004-08-25 Transparent electrode film

Publications (2)

Publication Number Publication Date
JP2006063365A true JP2006063365A (en) 2006-03-09
JP4521565B2 JP4521565B2 (en) 2010-08-11

Family

ID=36110110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245356A Expired - Fee Related JP4521565B2 (en) 2004-08-25 2004-08-25 Transparent electrode film

Country Status (1)

Country Link
JP (1) JP4521565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151625A (en) * 2020-09-04 2020-12-29 泰州隆基乐叶光伏科技有限公司 Solar cell, production method and cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255246A (en) * 1988-08-22 1990-02-23 Nippon Sheet Glass Co Ltd Heat ray-shading glass of high permanence and production thereof
JPH10309778A (en) * 1997-05-13 1998-11-24 Toppan Printing Co Ltd Laminate
JP2004034312A (en) * 2002-06-28 2004-02-05 Mitsui Chemicals Inc Manufacturing method for transparent conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255246A (en) * 1988-08-22 1990-02-23 Nippon Sheet Glass Co Ltd Heat ray-shading glass of high permanence and production thereof
JPH10309778A (en) * 1997-05-13 1998-11-24 Toppan Printing Co Ltd Laminate
JP2004034312A (en) * 2002-06-28 2004-02-05 Mitsui Chemicals Inc Manufacturing method for transparent conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151625A (en) * 2020-09-04 2020-12-29 泰州隆基乐叶光伏科技有限公司 Solar cell, production method and cell module
CN112151625B (en) * 2020-09-04 2022-10-14 泰州隆基乐叶光伏科技有限公司 Solar cell, production method and cell module

Also Published As

Publication number Publication date
JP4521565B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP4888119B2 (en) Transparent conductive film and method for producing the same, transparent conductive substrate, and light-emitting device
WO2010021106A1 (en) Semiconductor device, method for manufacturing semiconductor device, transistor substrate, light emitting device and display device
JP6150646B2 (en) Transparent conductive oxide thin film substrate, method for producing the same, organic electroluminescent device including the same, and photovoltaic cell
El Hajj et al. Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion Beam Sputtering for optoelectronic devices
JP5211121B2 (en) Manufacturing method of semiconductor light emitting device
JP2013522813A (en) Transparent electrodes based on a combination of transparent conductive oxides, metals, and oxides
KR20110005217A (en) Electronic device, method of manufacturing the same, display and sensor
JP6016083B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
KR101583147B1 (en) Electrode laminate and organic light emitting device
JP2013510397A (en) Multilayer metal electrodes for optoelectronic devices
JP4971618B2 (en) Display electrode pattern manufacturing method
JP2010241638A (en) Thin film laminate with metal nanoparticle layer interposed
US20140349070A1 (en) Reflective anode electrode for use in an organic electroluminescent display and method for making the same
JP6190847B2 (en) Low reflective electrode for flat display or curved display
JP2022176332A (en) Electrochromic lighting control member, light-transmissive conductive glass film, and electrochromic lighting control element
KR101764053B1 (en) Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target
EP4160624B1 (en) Double-sided conductive film, coating method, and touch screen
JP4960511B1 (en) Semiconductor light emitting device and manufacturing method thereof
JP2007163995A (en) Substrate with transparent conductive film and manufacturing method thereof
JP2004277780A (en) Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it
KR101700884B1 (en) Maganese tin oxide Transparent Conducting Oxide and transparent conductive film using the same and method for fabricating transparent conductive film
JP4521565B2 (en) Transparent electrode film
KR20150105798A (en) Transparent electrode and manufacturing method thereof
EP2973728B1 (en) Transparent electrode and substrate for optoelectronic or plasmonic applications comprising silver
JP2009158288A (en) Transparent conductive film and solar cell using transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070622

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070622

A977 Report on retrieval

Effective date: 20091015

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100430

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130604

LAPS Cancellation because of no payment of annual fees