JP2006063186A - Method for producing polypropylene film - Google Patents

Method for producing polypropylene film Download PDF

Info

Publication number
JP2006063186A
JP2006063186A JP2004246973A JP2004246973A JP2006063186A JP 2006063186 A JP2006063186 A JP 2006063186A JP 2004246973 A JP2004246973 A JP 2004246973A JP 2004246973 A JP2004246973 A JP 2004246973A JP 2006063186 A JP2006063186 A JP 2006063186A
Authority
JP
Japan
Prior art keywords
polypropylene
film
polypropylene resin
stretching
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246973A
Other languages
Japanese (ja)
Inventor
Tatsuya Ito
達也 伊藤
Isamu Moriguchi
勇 森口
Hiroyuki Kato
宏之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004246973A priority Critical patent/JP2006063186A/en
Publication of JP2006063186A publication Critical patent/JP2006063186A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a biaxially stretched polypropylene film by which biaxial stretching properties are excellent with excellent thickness uniformity and thermal dimensional stability of the resultant biaxially stretched film and even breakdown voltage can be maintained at a high level at high temperatures while raising the regularity of the polypropylene resin. <P>SOLUTION: The method for producing the polypropylene film is carried out as follows. A polypropylene resin (A) having ≤5 ratio (Mw/Mn) of the weight-average molecular weight (Mw) to the number-average molecular weight (Mn) and a polypropylene resin (B) having high melt tension are melt kneaded and the resultant polypropylene resin is melt extruded. After cooling and casting, biaxial stretching is performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二軸延伸ポリプロピレンフイルムの製造方法に関するものであり、特にコンデンサ用途、離型用途等に用いられる、耐熱性、厚み・フイルム物性の高い均一性の要求される二軸延伸ポリプロピレンフイルムの製造方法に関するものである。   The present invention relates to a method for producing a biaxially stretched polypropylene film, particularly for a biaxially stretched polypropylene film that is used for capacitor applications, mold release applications, etc. and requires high uniformity of heat resistance, thickness and film properties. It relates to a manufacturing method.

ポリプロピレンはポリオレフイン樹脂の中でも融点が高く耐熱性に優れ、電気特性、離型性に優れ、その二軸延伸フイルムは、食品類、スナック類、雑貨等の包装材料、粘着テープ、プリントラミネーション等に幅広く用いられている。中でも、その電気特性を生かしたコンデンサ用途、離型性を生かした液晶材料等の光学材料製造用の工程紙等については、更なる耐熱性の向上が求められており、このための改善技術について多くの提案がなされている。   Polypropylene has a high melting point among polyolefin resins, excellent heat resistance, excellent electrical properties and releasability, and its biaxially stretched film is widely used for packaging materials such as foods, snacks, sundries, adhesive tapes, and print lamination. It is used. In particular, there is a need for further improvements in heat resistance for capacitor applications that make use of its electrical characteristics and process paper for manufacturing optical materials such as liquid crystal materials that make use of releasability. Many proposals have been made.

具体的には、ポリプロピレンの融点と低分子量物の量を規定する方法(特許文献1)、ポリプロピレン樹脂の立体規則性を上げる方法(特許文献2〜4)、等が例示される。
特開2001−146536号公報(特許請求の範囲) 特開H10−156938号広報(特許請求の範囲) 特開H10−156939号広報(特許請求の範囲) 特開H10−156940号広報(特許請求の範囲) しかしながら、このような方法をとった場合、いたずらにポリプロピレン樹脂の結晶性を上げてしまい、2軸延伸が困難になったり、延伸ができたとしてもフイルム厚みの均一性に劣ったものとなったり、ボイドが多発して絶縁破壊電圧の低いフイルムになってしまい、結果的に実用上の問題を生じることがあった。
Specific examples include a method of defining the melting point of polypropylene and the amount of low molecular weight (Patent Document 1), a method of increasing the stereoregularity of polypropylene resin (Patent Documents 2 to 4), and the like.
JP 2001-146536 A (Claims) JP H10-156938 PR (Claims) JP H10-156939 PR (Claims) However, when such a method is used, the crystallinity of the polypropylene resin is unnecessarily increased, and biaxial stretching becomes difficult or can be stretched. However, the film thickness may be inferior in uniformity, or voids may occur frequently, resulting in a film having a low dielectric breakdown voltage, resulting in practical problems.

本発明は、ポリプロピレン樹脂の規則性を高めながら、2軸延伸性に優れ、得られた2軸延伸フイルムの厚み斑、熱寸法安定性に優れ、かつ高温での耐電圧も高く維持できることが可能な2軸延伸ポリプロピレンフイルムを製造法する方法を提案せんとするものである。   The present invention is excellent in biaxial stretchability while improving the regularity of the polypropylene resin, excellent in uneven thickness and thermal dimensional stability of the obtained biaxially stretched film, and can maintain high withstand voltage at high temperature. I would like to propose a method for producing such a biaxially oriented polypropylene film.

本発明は、上述の問題を解決するために、
(1)数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が5以下であるポリプロピレン樹脂(A)と、高溶融張力ポリプロピレン樹脂(B)とを溶融混練して得られるポリプロピレン樹脂を溶融押出し、冷却キャストしたのち2軸延伸を施してなるポリプロピレンフイルムの製造方法。
(2)ポリプロピレン樹脂(A)のメソペンタッド分率が0.945〜0.995であることを特徴とする(1)項に記載のポリプロピレンフイルムの製造方法。
(3)ポリプロピレン樹脂(A)100重量部に対してポリプロピレン樹脂(B)を0.2〜50重量部添加することを特徴とする(1)項または(2)項に記載のポリプロピレンフイルムの製造方法。
(4)少なくとも一軸に延伸する際のフイルム温度がポリプロピレン樹脂(A)の該融点−15(℃)〜該融点+5(℃)であることを特徴とする(1)項〜(3)項のいずれかに記載のポリプロピレンフイルムの製造方法。
(5)ポリプロピレンフイルムの厚みが2.5〜6μmであることを特徴とする(1)項〜(4)項のいずれかに記載のポリプロピレンフイルムの製造方法。
(6)ポリプロピレンフイルムの厚みが30〜100μmであることを特徴とする(1)項〜(4)項のいずれかに記載のポリプロピレンフイルムの製造方法。
を提案するものである。
In order to solve the above problems, the present invention
(1) Melting and kneading a polypropylene resin (A) having a ratio (Mw / Mn) of number average molecular weight (Mn) to weight average molecular weight (Mw) of 5 or less and a high melt tension polypropylene resin (B) A method for producing a polypropylene film obtained by melt-extrusion of the obtained polypropylene resin, cooling casting, and biaxial stretching.
(2) The method for producing a polypropylene film as described in (1), wherein the mesopentad fraction of the polypropylene resin (A) is 0.945 to 0.995.
(3) The production of the polypropylene film as described in (1) or (2), wherein 0.2 to 50 parts by weight of the polypropylene resin (B) is added to 100 parts by weight of the polypropylene resin (A). Method.
(4) Item (1) to (3) characterized in that the film temperature at the time of stretching at least uniaxially is from the melting point −15 (° C.) to the melting point +5 (° C.) of the polypropylene resin (A). The manufacturing method of the polypropylene film in any one.
(5) The method for producing a polypropylene film according to any one of (1) to (4), wherein the thickness of the polypropylene film is 2.5 to 6 μm.
(6) The method for producing a polypropylene film according to any one of (1) to (4), wherein the thickness of the polypropylene film is 30 to 100 μm.
This is a proposal.

本発明は、高規則性のポリプロピレン樹脂をその構成要件としながら、高溶融張力ポリプロピレン樹脂を添加することにより、2軸延伸性に優れ、厚み均一性に優れ、高い熱寸法安定性、高耐電圧を有するポリプロピレンフイルムを得ることができる。もちろん、包装用途、プリントラミネーション用途、粘着テープ用途等の一般のポリプロピレンフイルム用途としても好適であるが、特にコンデンサ用途、離型用途に好適な2軸延伸ポリプロピレンフイルムを得る方法として最適である。   In the present invention, by adding a high melt tension polypropylene resin while having a highly ordered polypropylene resin as its constituent requirements, it has excellent biaxial stretchability, excellent thickness uniformity, high thermal dimensional stability, and high withstand voltage. A polypropylene film having the following can be obtained. Of course, it is also suitable for general polypropylene film applications such as packaging applications, print lamination applications, adhesive tape applications, etc., but is particularly suitable as a method for obtaining biaxially stretched polypropylene films suitable for capacitor applications and mold release applications.

以下に、本発明について、望ましい実施の形態とともに詳細に説明する。   Hereinafter, the present invention will be described in detail together with preferred embodiments.

本発明は少なくともポリプロピレン樹脂(A)とポリプロピレン樹脂(B)とからなることを基本要件とするものである。   The basic requirement of the present invention is that it comprises at least a polypropylene resin (A) and a polypropylene resin (B).

ポリプロピレン樹脂(A)としては、数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が5以下であることが必要であり、更に好ましくは4以下であることが好ましい。Mw/Mnはポリプロピレン樹脂の分子量分布の分散度すなわち分子量分布を示すパラメータで、GPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。Mw/Mnが小さいほど分子量分布が小さいことを意味するが、Mw/Mnが小さすぎると、溶融ポリマーをシート状に成形する際の均一性が低下したり、2軸延伸性が低下する等の問題を生じる。しかしながら、一方で構造に寄与しない低分子量成分が少ないために耐熱性の点で優れた樹脂と言える。本発明においては、Mw/Mnが5を越えた場合は耐熱性の改善効果が小さいかまたは全く効果が発現せずに、高温での耐電圧や機械特性が劣ったものになってしまう。一方、Mw/Mnの下限としてはその値は1となるが、これは単一分子量の樹脂を意味し、現在の触媒技術では工業的に得ることが困難であり、実用上はMw/Mnは2以上、好ましくは2.5以上である。   The polypropylene resin (A) needs to have a ratio (Mw / Mn) of the number average molecular weight (Mn) to the weight average molecular weight (Mw) of 5 or less, more preferably 4 or less. . Mw / Mn is a parameter indicating the degree of dispersion of the molecular weight distribution of the polypropylene resin, that is, the molecular weight distribution, and is obtained by a GPC (gel permeation chromatography) method. This means that the smaller the Mw / Mn is, the smaller the molecular weight distribution is. However, if the Mw / Mn is too small, the uniformity when the molten polymer is formed into a sheet shape decreases, or the biaxial stretchability decreases. Cause problems. However, on the other hand, since there are few low molecular weight components which do not contribute to a structure, it can be said that it is resin excellent in heat resistance. In the present invention, when Mw / Mn exceeds 5, the effect of improving the heat resistance is small or not exhibited at all, and the withstand voltage at high temperatures and the mechanical properties are inferior. On the other hand, the lower limit of Mw / Mn is 1. However, this means a resin having a single molecular weight, which is difficult to obtain industrially by the current catalyst technology. 2 or more, preferably 2.5 or more.

このような分子量を有するポリプロピレン樹脂を得るためには、触媒構成を最適化することにより可能であり、公知のチーグラーナッタ系触媒、メタロセン系触媒で最適化することができる。別な方法としては、ある程度高分子量のポリプロピレン樹脂を重合しておき、ペレタイズ時にパーオキサイド等で熱減量することでも得る方法、一旦得られた樹脂パウダーをnヘプタン、キシレン等の溶媒、あるいはプロピレンモノマーで洗浄することで、所定のMw/Mnとする方法等が例示される。   In order to obtain a polypropylene resin having such a molecular weight, it is possible to optimize the catalyst configuration, and it can be optimized with a known Ziegler-Natta catalyst or metallocene catalyst. Another method is to polymerize a polypropylene resin having a high molecular weight to some extent, and obtain by heat loss with peroxide or the like at the time of pelletization. The resin powder once obtained is a solvent such as n-heptane or xylene, or a propylene monomer. The method etc. which are set to predetermined Mw / Mn by washing | cleaning are illustrated.

更に好ましいポリプロピレン樹脂(A)の性状としては、立体規則性の指標であるメソペンタッド分率が0.945〜0.995であることが好ましく、更に好ましくは0.955〜0.990である。メソペンタッド分率が低すぎると耐熱性、機械強度が低下する恐れがある。一方メソペンタッド分率の上限については現時点工業的に得られる上限値で規定されているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。   As a more preferable property of the polypropylene resin (A), the mesopentad fraction, which is an index of stereoregularity, is preferably 0.945 to 0.995, and more preferably 0.955 to 0.990. If the mesopentad fraction is too low, heat resistance and mechanical strength may be reduced. On the other hand, the upper limit of the mesopentad fraction is defined by the upper limit value obtained industrially at present, but this is not the case when a resin having higher regularity at an industrial level is developed in the future.

次いで、ポリプロピレン樹脂(B)はいわゆる高溶融張力ポリプロピレンである。
ここで高溶融張力ポリプロピレン、分岐状の構造を有するポリプロピレン樹脂である。高溶融張力ポリプロピレンの特徴は230℃で測定した時の溶融張力(MS)とメルトフローレート(MFR)の関係が次式(1)
log(MS)>−0.56・log(MFR)+0.74 (1)
(ただし、MS:230℃で測定した溶融張力(cN)、MFR:メルトフローレート(g/10分) )
を満たすことである。このような分岐構造を有するポリプロピレン樹脂としては具体的にはBasell社製“HMS−PP”(PF−814、PF−633,PF−611,SD−632等)、製、Borealis社製“HMS−PP”(WB130HMS等)が例示される。
Next, the polypropylene resin (B) is a so-called high melt tension polypropylene.
Here, it is a high melt tension polypropylene or a polypropylene resin having a branched structure. The characteristic of high melt tension polypropylene is the relationship between melt tension (MS) and melt flow rate (MFR) when measured at 230 ° C. (1)
log (MS)> − 0.56 · log (MFR) +0.74 (1)
(However, MS: melt tension (cN) measured at 230 ° C., MFR: melt flow rate (g / 10 min))
Is to satisfy. Specific examples of the polypropylene resin having such a branched structure include “HMS-PP” (PF-814, PF-633, PF-611, SD-632, etc.) manufactured by Basell, “HMS-” manufactured by Borealis. PP "(WB130HMS etc.) is illustrated.

このような分岐構造を有するポリプロピレン樹脂を添加することでポリプロピレン樹脂の溶融結晶化温度を上昇せしめることができかつ延伸性の低下も殆ど無いばかりか場合によっては延伸性が改善され厚みの均一性も向上するので好ましい。   By adding a polypropylene resin having such a branched structure, the melt crystallization temperature of the polypropylene resin can be increased and there is almost no decrease in stretchability. In some cases, stretchability is improved and thickness uniformity is also improved. Since it improves, it is preferable.

本発明においては、該ポリプロピレン樹脂(A)100重量部に対して該ポリプロピレン樹脂(B)を0.2〜50重量部添加することが必要であり、好ましくは0.5〜30重量部、更に好ましくは1〜10重量部である。ポリプロピレン樹脂(B)の添加量が少なすぎると加工適正が改善されず厚み斑の劣ったフイルムになってしまう。一方、添加量が多すぎると耐熱性、特に熱収縮の大きいフイルムしか得られなくなる。   In the present invention, it is necessary to add 0.2 to 50 parts by weight of the polypropylene resin (B) to 100 parts by weight of the polypropylene resin (A), preferably 0.5 to 30 parts by weight, Preferably it is 1-10 weight part. If the added amount of the polypropylene resin (B) is too small, the processing suitability is not improved and the film has poor thickness spots. On the other hand, when the addition amount is too large, only a film having a high heat resistance, particularly a large thermal shrinkage can be obtained.

本発明においてはシート成形された未延伸フイルムを延伸する際の一軸方向の延伸温度はポリプロピレン樹脂(A)の融点の−15〜+5℃としておくことが好ましい。このようにすると厚みの均一性が増すばかりか熱収縮が小さく、かつ高温時の耐電圧も優れたものが得られるので好ましい。   In the present invention, the stretching temperature in the uniaxial direction when stretching the sheet-formed unstretched film is preferably set to −15 to + 5 ° C. of the melting point of the polypropylene resin (A). This is preferable because not only the thickness uniformity is increased but also the thermal shrinkage is small and the withstand voltage at high temperature is excellent.

特にテンター法による逐次2軸延伸法は、Tダイ等のスリットダイから樹脂を溶融押出し冷却ドラム上で冷却し、未延伸シートを得て、更に加熱された金属ロール等で該シートを予熱した後に周速差を設けた複数のロール間で長手方向に延伸し、更にテンターによって両端部をクリップで把持し、オーブン中で横方向に延伸することにより二軸延伸フイルムを得る方法であるが、この場合は、特に縦延伸の際に該シートの温度が、ポリプロピレン樹脂(A)の融点−15〜+5℃の温度範囲なるようにコントロールすることが好ましい。このようにするとフイルムの熱寸法安定性が一層良好になると同時に横延伸でのフイルム厚みの均一性が良好となるので好ましい。ここで横延伸でのフイルム厚みの均一性は長手方向に延伸した後のフイルム上に一定間隔のマーキングを行い、横延伸後の該マーキングの間隔を測定することで実質的な延伸倍率を測定する方法で評価できる。具体的には正方枡を転写させ横延伸前後での面積を測定し、延伸前後での該面積比(=実効倍率)がフイルム幅方向でどの程度ばらついているかで評価する方法が例示される。   In particular, the sequential biaxial stretching method by the tenter method is a method in which a resin is melt-extruded from a slit die such as a T die, cooled on a cooling drum, an unstretched sheet is obtained, and the sheet is preheated with a heated metal roll or the like. It is a method of obtaining a biaxially stretched film by stretching in the longitudinal direction between a plurality of rolls provided with a difference in peripheral speed, further gripping both ends with clips by a tenter, and stretching in the transverse direction in an oven. In such a case, it is preferable to control the temperature of the sheet so as to be in the temperature range of the melting point of the polypropylene resin (A) from -15 to + 5 ° C., particularly in the longitudinal stretching. This is preferable because the thermal dimensional stability of the film is further improved and the uniformity of the film thickness in lateral stretching is improved. Here, the uniformity of the film thickness in the transverse stretching is to measure a substantial stretching ratio by performing marking at regular intervals on the film after stretching in the longitudinal direction and measuring the spacing of the markings after transverse stretching. It can be evaluated by the method. Specifically, there is exemplified a method in which square squares are transferred, the area before and after transverse stretching is measured, and the extent to which the area ratio (= effective magnification) before and after stretching varies in the film width direction is exemplified.

本発明ポリプロピレンフイルムの製造方法として好ましい2軸延伸後のフイルム厚みとしては、2.5〜6μmといった薄いフイルムかまたは30〜100μmといった厚いフイルムであるが好ましい。すなわち、本発明の樹脂構成とすることで安定して薄いシートを形成することが可能になる。更に延伸時の延伸応力も安定し均一性を一層増すことができる。一方を上述の様に厚いフイルムでは分子量分布の狭い樹脂をキャストすると球晶が発達するために延伸時のボイド形成が著しくヘイズに劣ったものになるばかりか、特に逐次2軸延伸法で製造する場合、横延伸の際の均一性を得ることが困難となり、厚み斑の劣ったフイルムとなりやすい。   The film thickness after biaxial stretching that is preferable as a method for producing the polypropylene film of the present invention is preferably a thin film of 2.5 to 6 μm or a thick film of 30 to 100 μm. That is, by using the resin configuration of the present invention, it is possible to stably form a thin sheet. Furthermore, the stretching stress at the time of stretching can be stabilized and the uniformity can be further increased. On the other hand, when a resin having a narrow molecular weight distribution is cast in a thick film as described above, spherulites develop, so that not only the formation of voids at the time of stretching becomes extremely inferior to the haze, but also the sequential biaxial stretching method is used. In this case, it becomes difficult to obtain uniformity during transverse stretching, and the film tends to be inferior in thickness unevenness.

本発明フイルムには、滑り性、帯電防止性、耐酸化劣化性等を改善する目的で、公知の有機・無機の滑り剤、帯電防止剤、一次及び/または2次酸化防止剤等を添加することができる。またその他の機能性付与として、耐光性、隠蔽性等のため、UV吸収剤、フィラー、他のポリオレフイン、ポリエステル、ポリアミド等の樹脂等を添加することができる。   For the purpose of improving slipping property, antistatic property, oxidation deterioration resistance, etc., known organic / inorganic slip agents, antistatic agents, primary and / or secondary antioxidants, etc. are added to the film of the present invention. be able to. As other functional additions, UV absorbers, fillers, other polyolefins, polyesters, polyamides, and other resins can be added for light resistance and concealment.

また、本発明フイルムは目的に反しない範囲で少なくとも1層以上の他の樹脂層との共押出・共延伸をすることが可能であることは言うまでも無い。   It goes without saying that the film of the present invention can be co-extruded and co-stretched with at least one other resin layer within a range not departing from the object.

以下実施例に基づき、本発明の実施態様を説明するが、本実施例に限定されるもので
無い。
Hereinafter, embodiments of the present invention will be described based on examples, but the present invention is not limited to the examples.

次に本発明の実施例に用いる測定法及び評価法について説明する。   Next, measurement methods and evaluation methods used in the examples of the present invention will be described.

(1)分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー(GPC)を用いて単分散ポリスチレン基準により求めた。
(1) Molecular weight distribution (Mw / Mn)
It calculated | required by the monodisperse polystyrene reference | standard using the gel permeation chromatography (GPC).

数平均分子量(Mn)、重量平均分子量(Mw)はぞれぞれ、分子量校正曲線を介して得られたGPC曲線の各溶出位置の分子量(Mi)の分子数(Ni)により次式で定義される。   The number average molecular weight (Mn) and the weight average molecular weight (Mw) are defined by the following formulas based on the molecular number (Ni) of the molecular weight (Mi) at each elution position of the GPC curve obtained through the molecular weight calibration curve. Is done.

数平均分子量: Mn=Σ(Ni・Mi)/ΣNi
重量平均分子量:Mw=Σ(Ni・Mi)/Σ(Ni・Mi)
分子量分布: Mw/Mn 。
Number average molecular weight: Mn = Σ (Ni · Mi) / ΣNi
Weight average molecular weight: Mw = Σ (Ni · Mi 2 ) / Σ (Ni · Mi)
Molecular weight distribution: Mw / Mn.

なお、測定条件は次の様にした(( )内はメーカーを示す)
装置: ゲル浸透クロマトグラフ GPC−150C (Waters)
検出器:示差屈折率検出器 RI 感度 32×、20% (Waters)
カラム:Shodex HT−806M(2)(昭和電工)
溶媒: 1,2,4−トリクロロベンゼン(BHT 0.1w/v%添加)(Ardrich)
流速: 1.0ml/min
温度: 135℃
試料: 溶解条件 165±5℃×10分(攪拌)
濃度 0.20w/v%
濾過 メンブレンフィルター孔径0.45μm(昭和電工)
注入量:200μl
分子量校正:単分散ポリスチレン(東ソー)を検体と同一条件で測定して得られた分子量と保持時間との関係を用い、ポリプロピレンの分子量とした。ポリスチレン基準の相対値である
データ処理:(株)東レリサーチセンター製GPCデータ処理システムによった。
(2)メソペンタッド分率
メソペンタッド分率(mmmm)の測定
試料を溶媒に溶解し、13C−NMRを用いて、以下の条件にてメソペンタッド分率(mmmm)(100分率)を求める。
・測定条件
装置:Bruker社製、DRX−500
測定核:13C核(共鳴周波数:125.8MHz)
測定濃度:10wt%(試料10wt%、溶媒90wt%)
溶媒:ベンゼン/重オルトジクロロベンゼン=1:3混合溶液(容積比)
測定温度:130℃
スピン回転数:12Hz
NMR試料管:5mm管
パルス幅:45°(4.5μs)
パルス繰り返し時間:10秒
データポイント:64K
換算回数:10000回
測定モード:complete decoupling
・解析条件
LB(ラインブロードニングファクター)を1.0としてフーリエ変換を行い、mmmmピークを21.86ppmとした。WINFITソフト(Bruker社製)を用いて、ピーク分割を行う。その際に、高磁場側のピークから以下の様にピーク分割を行い、更にソフトの自動フィッテイングを行い、ピーク分割の最適化を行った上で、mmmmとss(mmmmのスピニングサイドバンドピーク)のピーク分率の合計をメソペンタッド分率(mmmm)とする。
尚、測定はn=5で行い、その平均値を求める。
・ピーク
(a)mrrm
(b)(c)rrrm(2つのピークとして分割)
(d)rrrr
(e)mrmm+rmrr
(f)mmrr
(g)mmmr
(h)ss(mmmmのスピニングサイドバンドピーク)
(i)mmmm
(j)rmmr 。
The measurement conditions were as follows (() indicates the manufacturer)
Apparatus: Gel permeation chromatograph GPC-150C (Waters)
Detector: Differential refractive index detector RI Sensitivity 32 ×, 20% (Waters)
Column: Shodex HT-806M (2) (Showa Denko)
Solvent: 1,2,4-trichlorobenzene (BHT 0.1 w / v% added) (Ardrich)
Flow rate: 1.0 ml / min
Temperature: 135 ° C
Sample: Dissolution condition 165 ± 5 ° C. × 10 minutes (stirring)
Concentration 0.20w / v%
Filtration Membrane filter pore size 0.45μm (Showa Denko)
Injection volume: 200 μl
Molecular weight calibration: The molecular weight of polypropylene was determined using the relationship between molecular weight and retention time obtained by measuring monodisperse polystyrene (Tosoh) under the same conditions as the specimen. Data processing which is a relative value based on polystyrene: According to a GPC data processing system manufactured by Toray Research Center.
(2) Measurement of mesopentad fraction Mesopentad fraction (mmmm) The sample was dissolved in a solvent, and the mesopentad fraction (mmmm) (100 fraction) was determined under the following conditions using 13C-NMR.
Measurement conditions Device: Bruker DRX-500
Measurement nucleus: 13C nucleus (resonance frequency: 125.8 MHz)
Measurement concentration: 10 wt% (sample 10 wt%, solvent 90 wt%)
Solvent: benzene / heavy orthodichlorobenzene = 1: 3 mixed solution (volume ratio)
Measurement temperature: 130 ° C
Spin rotation speed: 12Hz
NMR sample tube: 5 mm tube Pulse width: 45 ° (4.5 μs)
Pulse repetition time: 10 seconds Data point: 64K
Number of conversions: 10000 times Measurement mode: complete decoupling
-Analysis conditions Fourier transform was performed by setting LB (line broadening factor) to 1.0, and the mmmm peak was set to 21.86 ppm. Peak splitting is performed using WINFIT software (manufactured by Bruker). At that time, the peak splitting is performed from the peak on the high magnetic field side as shown below, and the soft automatic fitting is performed to optimize the peak splitting. The sum of the peak fractions is defined as the mesopentad fraction (mmmm).
The measurement is performed with n = 5, and the average value is obtained.
・ Peak (a) mrrm
(B) (c) rrrrm (divided as two peaks)
(D) rrrr
(E) mrmm + rmrr
(F) mmrr
(G) mmmr
(H) ss (mmmm spinning sideband peak)
(I) mmmm
(J) rmmmr.

(3)極限粘度([η])
試料0.1mgを135℃のテトラリン100mlに溶解させ、この溶液を135℃の恒温槽中で粘度計を用いて測定し、比粘度Sにより次式にしたがって極限粘度[η]をもとめた(単位:dl/g)。
(3) Intrinsic viscosity ([η])
0.1 mg of a sample was dissolved in 100 ml of tetralin at 135 ° C., and this solution was measured using a viscometer in a constant temperature bath at 135 ° C., and the intrinsic viscosity [η] was determined from the specific viscosity S according to the following formula (unit: : Dl / g).

[η]=(S/0.1)×(1+0.22×S) 。     [Η] = (S / 0.1) × (1 + 0.22 × S).

(4)融点(℃)
セイコー社製RDC220示差走査熱量計を用いて、下記の条件で測定を行った。
試料の調整:ポリプロピレン樹脂10mgを測定用のアルミパンに封入する。
・測定条件
室温より20℃/分の割合で280℃まで昇温した際に観測される吸熱ピークを融点(Tm(℃))とした。該ピーク値が複数ある場合は最もピーク面積が大きい融解ピークを採用する。上記測定を5回繰り返し、その内の最大値と最小値の2点を省いた残り3点の平均値をTm(℃)とした。
(4) Melting point (° C)
The measurement was performed under the following conditions using a Seiko RDC220 differential scanning calorimeter.
Preparation of sample: 10 mg of polypropylene resin is sealed in an aluminum pan for measurement.
Measurement conditions The endothermic peak observed when the temperature was raised from room temperature to 280 ° C. at a rate of 20 ° C./min was defined as the melting point (Tm (° C.)). When there are a plurality of peak values, the melting peak having the largest peak area is adopted. The above measurement was repeated 5 times, and the average value of the remaining 3 points, excluding 2 points of the maximum value and the minimum value, was defined as Tm (° C.).

(5)延伸均一性
テンター式逐次2軸延伸法を用いて、以下の様に2軸延伸性の評価を実施した。
(A)2軸延伸
スクリュー径65mmφの押出機よりスリット幅300mmのT型口金からシート成型冷却ドラム上でシート化した未延伸シートを、ロール延伸装置に導いて長手方向に表2に示す温度で4.6倍に延伸した後に、テンターにて幅方向に158℃の温度で機械倍率で7倍延伸した。なお、冷却ドラム温度は、2軸延伸フイルム厚みで15μm以上は60℃として、10μm以下は90℃とした。
(B)延伸均一性
テンターの入り口で10mm×10mmの正方枡を有する碁盤目状の刻印(15枡×15枡)により、該正方枡をそれぞれの辺がフィルムの長手方向、幅方向に平行になるように一軸延伸フイルム上に転写し、得られた2軸延伸フイルムの各升目の面積(mm)を求め、以下の式により延伸均一性を求めた。なお、測定する升目は升目パターンの転写性のよい1列分(フィルム幅方向)を選択して、その列の15枡分を測定した。
(5) Stretching Uniformity Using a tenter sequential biaxial stretching method, biaxial stretching properties were evaluated as follows.
(A) Biaxial stretching An unstretched sheet formed on a sheet-forming cooling drum from a T-shaped die having a slit width of 300 mm from an extruder having a screw diameter of 65 mmφ is guided to a roll stretching device at a temperature shown in Table 2 in the longitudinal direction. After stretching 4.6 times, it was stretched 7 times at a mechanical magnification at a temperature of 158 ° C. in the width direction with a tenter. The cooling drum temperature was 60 ° C. when the thickness of the biaxially stretched film was 15 μm or more, and 90 ° C. when the thickness was 10 μm or less.
(B) Stretching uniformity By a grid-like engraving (15 mm x 15 mm) having a square mm of 10 mm x 10 mm at the entrance of the tenter, each side of the square is parallel to the longitudinal direction and the width direction of the film. The film was transferred onto a uniaxially stretched film so that the area (mm 2 ) of each square of the obtained biaxially stretched film was determined, and the stretch uniformity was determined by the following equation. In addition, the cell to measure measured 1 row | line | column (film width direction) with the good transferability of the cell pattern, and measured 15 line | wire of the row | line | column.

各升目での延伸倍率Xiを 延伸後の面積(mm)/延伸前面積(100mm) で求めて、15枡の平均値Xと最大値Xmaxと最小値Xminから延伸均一性指数を次のように求めた。延伸均一性指数は90%以上であると好ましい。 The draw ratio Xi at each square is determined by the area after stretching (mm 2 ) / the area before stretching (100 mm 2 ), and the stretch uniformity index is calculated from the average value X, maximum value Xmax, and minimum value Xmin of 15 mm Asked. The stretching uniformity index is preferably 90% or more.

延伸均一性指数=100−(Xmax−Xmin)/X×100(%) 。         Stretching uniformity index = 100− (Xmax−Xmin) / X × 100 (%).

(6)140℃熱収縮率
JIS−Z−1712に準拠し、サンプルフイルムを熱風オーブン中で140℃、15分で以下の条件で保持した際の寸法変化率を熱収縮率とする。製膜のMD(長手方向)については5%以下、TD(幅方向)については2%以下であることが好ましい。
(6) 140 ° C. Heat Shrinkage Based on JIS-Z-1712, the rate of dimensional change when the sample film is held in a hot air oven at 140 ° C. for 15 minutes under the following conditions is defined as the heat shrinkage. The MD (longitudinal direction) of film formation is preferably 5% or less, and the TD (width direction) is preferably 2% or less.

(a)サンプル 幅10mm×長さ200mm
(b)オーブン条件:140℃、荷重3g
(c)測定長は処理前L0=100mmを基準として、処理前後のフイルム長さL1(mm)の精読値を用いて次式で求める
熱収縮率(%)=(L0−L1)/L0×100 。
(A) Sample width 10mm x length 200mm
(B) Oven conditions: 140 ° C., load 3 g
(C) The measurement length is calculated by the following formula using the read value of the film length L1 (mm) before and after the processing based on L0 = 100 mm before the processing, and the thermal contraction rate (%) = (L0−L1) / L0 × 100.

(7)絶縁破壊電圧(V/μm)
JIS C2330(2001年版)7.4.11.2 B法(平板電極法)によった。フイルム厚みが4μmの場合は、絶縁破壊電圧が600V/μm以上であることが好ましい。
(7) Dielectric breakdown voltage (V / μm)
According to JIS C2330 (2001 edition) 7.4.11.2 B method (plate electrode method). When the film thickness is 4 μm, the dielectric breakdown voltage is preferably 600 V / μm or more.

(8)ヘイズ(%)
JIS−Z−1712に準拠し測定した。
(8) Haze (%)
It measured based on JIS-Z-1712.

次に、本発明の実施例に基づき説明する。   Next, description will be made based on an embodiment of the present invention.

ポリプロピレン樹脂を重合する際に重合触媒を変更して表1に示す特性を有するポリプロピレン樹脂3種(A−1,A−2,A−3)を用意した。また、高溶融張力ポリプロピレン樹脂として、サンアロマー社製PF-814(B−1)、Borealis社製WB130HMS(B−2)を用意した。   When polymerizing the polypropylene resin, the polymerization catalyst was changed to prepare three types of polypropylene resins (A-1, A-2, A-3) having the characteristics shown in Table 1. Further, as a high melt tension polypropylene resin, PF-814 (B-1) manufactured by Sun Allomer and WB130HMS (B-2) manufactured by Borealis were prepared.

これらの樹脂を溶融押出しする際に、表2の組み合わせであらかじめチップブレンドしたものを押出機に導いて所定の厚みにシート化して、2軸延伸フイルムを製膜した際の製膜性と得られたフイルムの延伸均一性と熱収縮率を評価した結果を表2に取りまとめた。
以下、実施例、比較例毎に評価結果を説明する。
(実施例1〜3)
表2に示すようにポリプロピレン樹脂(A−1,A−2)と高溶融張力ポリプロピレン樹脂(B−1,B−2)を用いてフイルム厚み4μmの2軸延伸フイルムを得た。いずれも延伸性に優れ、横(TD)方向の熱収縮率も1%台と小さかった。
(比較例1)
比較例1として高溶融張力PPを添加せず実施例1の条件で延伸しようとしたが、MD延伸時にフイルムが破断したために、実施例2で採用したMD延伸の145℃で延伸した。この結果得られたフイルムの延伸均一性はやや劣ったものになったと同時に熱収縮率も大きくなった。
(比較例2)
ポリプロピレン樹脂としてタイプA−1を用いた以外は実施例2と同様にして2軸延伸フイルムを得た。熱収縮率の大きいものが得られた。
(実施例4)
ポリプロピレン樹脂としてA−1とB−1を用い、2軸延伸後のフイルム厚みが60μmのフイルムを得た。延伸均一性に優れ、熱収縮率の小さい耐熱性に優れていた。
(比較例3)
ポリプロピレン樹脂としてA−1のみを用いて、実施例4と同様に延伸を行ったが、延伸均一性に劣り、熱収縮率が高く、透明性に劣ったフイルムとなった。
When these resins are melt-extruded, those obtained by chip blending in advance with the combinations shown in Table 2 are guided to an extruder and formed into a sheet having a predetermined thickness. Table 2 summarizes the results of evaluating the stretching uniformity and thermal shrinkage of the film.
Hereinafter, an evaluation result is demonstrated for every Example and a comparative example.
(Examples 1-3)
As shown in Table 2, a biaxially stretched film having a film thickness of 4 μm was obtained using polypropylene resins (A-1, A-2) and high melt tension polypropylene resins (B-1, B-2). All of them were excellent in stretchability, and the thermal shrinkage in the transverse (TD) direction was as small as 1%.
(Comparative Example 1)
As Comparative Example 1, an attempt was made to stretch under the conditions of Example 1 without adding high melt tension PP. However, the film was broken at the time of MD stretching, and thus the film was stretched at 145 ° C., which was the MD stretching employed in Example 2. As a result, the stretch uniformity of the film obtained was slightly inferior, and at the same time, the heat shrinkage ratio was increased.
(Comparative Example 2)
A biaxially stretched film was obtained in the same manner as in Example 2 except that type A-1 was used as the polypropylene resin. A product having a large heat shrinkage rate was obtained.
Example 4
A-1 and B-1 were used as the polypropylene resin to obtain a film having a film thickness of 60 μm after biaxial stretching. Excellent stretching uniformity and excellent heat resistance with small heat shrinkage.
(Comparative Example 3)
Stretching was performed in the same manner as in Example 4 using only A-1 as the polypropylene resin, but the film was inferior in stretching uniformity, high in heat shrinkage, and inferior in transparency.

Figure 2006063186
Figure 2006063186

Figure 2006063186
Figure 2006063186

本発明により得られるポリプロピレンフイルムは耐熱性に優れ、厚み、フイルム物性の均一性に優れることから、食品包装用途、粘着テープ類として好ましく用いることができる。特に、コンデンサ用途、離型用途のように高度な均一性と耐熱性、耐電圧特性を要求される用途についてはその要求特性を満足するフイルムを得ることができるので特に好ましい。   Since the polypropylene film obtained by the present invention is excellent in heat resistance and excellent in uniformity in thickness and film physical properties, it can be preferably used for food packaging applications and adhesive tapes. In particular, applications that require high uniformity, heat resistance, and withstand voltage characteristics such as capacitor applications and mold release applications are particularly preferred because a film that satisfies the required characteristics can be obtained.

Claims (6)

数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が5以下であるポリプロピレン樹脂(A)と、高溶融張力ポリプロピレン樹脂(B)とを溶融混練して得られるポリプロピレン樹脂を溶融押出し、冷却キャストしたのち2軸延伸を施してなるポリプロピレンフイルムの製造方法。   Polypropylene obtained by melt-kneading a polypropylene resin (A) having a ratio (Mw / Mn) of number average molecular weight (Mn) to weight average molecular weight (Mw) of 5 or less and a high melt tension polypropylene resin (B) A method for producing a polypropylene film, in which a resin is melt-extruded, cooled and cast, and then biaxially stretched. ポリプロピレン樹脂(A)のメソペンタッド分率が0.945〜0.995であることを特徴とする請求項1に記載のポリプロピレンフイルムの製造方法。   The method for producing a polypropylene film according to claim 1, wherein the mesopentad fraction of the polypropylene resin (A) is 0.945 to 0.995. ポリプロピレン樹脂(A)100重量部に対してポリプロピレン樹脂(B)を0.2〜50重量部添加することを特徴とする請求項1または2に記載のポリプロピレンフイルムの製造方法。   The method for producing a polypropylene film according to claim 1 or 2, wherein 0.2 to 50 parts by weight of the polypropylene resin (B) is added to 100 parts by weight of the polypropylene resin (A). 少なくとも1軸方向に延伸する際のフィルム温度がポリプロピレン樹脂(A)の融点−15(℃)〜融点+5(℃)であることを特徴とする請求項1〜3のいずれかに記載のポリプロピレンフイルムの製造方法。   The polypropylene film according to any one of claims 1 to 3, wherein the film temperature at the time of stretching in at least one axial direction is a melting point of the polypropylene resin (A) -15 (° C) to a melting point +5 (° C). Manufacturing method. ポリプロピレンフイルムの厚みが2.5〜6μmであることを特徴とする請求項1〜4のいずれかに記載のポリプロピレンフイルムの製造方法。   The method for producing a polypropylene film according to any one of claims 1 to 4, wherein the thickness of the polypropylene film is 2.5 to 6 µm. ポリプロピレンフイルムの厚みが30〜100μmであることを特徴とする請求項1〜4のいずれかに記載のポリプロピレンフイルムの製造方法。   The method for producing a polypropylene film according to any one of claims 1 to 4, wherein the thickness of the polypropylene film is 30 to 100 µm.
JP2004246973A 2004-08-26 2004-08-26 Method for producing polypropylene film Pending JP2006063186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246973A JP2006063186A (en) 2004-08-26 2004-08-26 Method for producing polypropylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246973A JP2006063186A (en) 2004-08-26 2004-08-26 Method for producing polypropylene film

Publications (1)

Publication Number Publication Date
JP2006063186A true JP2006063186A (en) 2006-03-09

Family

ID=36109949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246973A Pending JP2006063186A (en) 2004-08-26 2004-08-26 Method for producing polypropylene film

Country Status (1)

Country Link
JP (1) JP2006063186A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084813A (en) * 2005-08-26 2007-04-05 Toray Ind Inc Polypropylene film and method for producing the same
JP2007290380A (en) * 2006-03-28 2007-11-08 Toray Ind Inc Metallized biaxially oriented polypropylene film and capacitor comprised of the same
EP1894715A1 (en) * 2006-08-31 2008-03-05 Treofan Germany GmbH &amp; Co.KG Biaxially oriented, electrically insulating film
EP1894716A1 (en) * 2006-08-31 2008-03-05 Treofan Germany GmbH &amp; Co.KG Biaxially oriented, electrically insulating film
JP2008133351A (en) * 2006-11-28 2008-06-12 Prime Polymer:Kk Propylene-based polymer for capacitor film
WO2009060944A1 (en) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. Biaxially stretched polypropylene film for capacitor, deposition-coated film obtained from the same, and capacitor employing the same
DE102010022336A1 (en) 2009-06-04 2010-12-09 Oji Paper Co., Ltd. Biaxially-oriented polypropylene film useful in metal polypropylene film for capacitor, comprises isotactic polypropylene resin mixture with two kinds of different stereoregularity in isotactic polypropylene resin with molecular properties
CN102509610A (en) * 2011-12-28 2012-06-20 宁波绿海电子材料有限公司 Preparation method for 2.5 mu m polypropylene capacitor thin film
JP2012209541A (en) * 2011-03-17 2012-10-25 Toray Ind Inc Biaxial stretching polypropylene film for capacitor, metalized film and film capacitor
CN103985540A (en) * 2014-04-30 2014-08-13 宁波大东南万象科技有限公司 Preparation method of ultrathin high-temperature resistant capacitance film applied to capacitors of power-driven and hybrid electric vehicles
WO2017221985A1 (en) * 2016-06-24 2017-12-28 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor
JP2020007443A (en) * 2018-07-06 2020-01-16 三井化学東セロ株式会社 Packaging film for food product, and package for food product
EP3732698A4 (en) * 2017-12-25 2021-09-01 ABB Power Grids Switzerland AG Biaxially oriented polypropylene film, power capacitor, and associated manufacturing method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10119127A (en) * 1996-10-17 1998-05-12 Toray Ind Inc Biaxially oriented polypropylene film and condenser
JPH10156939A (en) * 1996-10-04 1998-06-16 Toray Ind Inc Polypropylene film and capacitor
JP2004161799A (en) * 2002-11-08 2004-06-10 Toray Ind Inc Biaxially oriented polyproylene film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156939A (en) * 1996-10-04 1998-06-16 Toray Ind Inc Polypropylene film and capacitor
JPH10119127A (en) * 1996-10-17 1998-05-12 Toray Ind Inc Biaxially oriented polypropylene film and condenser
JP2004161799A (en) * 2002-11-08 2004-06-10 Toray Ind Inc Biaxially oriented polyproylene film

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084813A (en) * 2005-08-26 2007-04-05 Toray Ind Inc Polypropylene film and method for producing the same
JP2007290380A (en) * 2006-03-28 2007-11-08 Toray Ind Inc Metallized biaxially oriented polypropylene film and capacitor comprised of the same
US9431172B2 (en) 2006-08-31 2016-08-30 Borealis Technology Oy Biaxially oriented electrical insulating film
EP1894716A1 (en) * 2006-08-31 2008-03-05 Treofan Germany GmbH &amp; Co.KG Biaxially oriented, electrically insulating film
WO2008025796A1 (en) * 2006-08-31 2008-03-06 Treofan Germany Gmbh & Co. Kg Biaxially oriented electrical insulating film
WO2008034694A1 (en) * 2006-08-31 2008-03-27 Treofan Germany Gmbh & Co. Kg Biaxially oriented electrical insulating film
JP2010501382A (en) * 2006-08-31 2010-01-21 トレオファン・ジャーマニー・ゲーエムベーハー・ウント・コンパニー・カーゲー Biaxially stretched electrical insulation film
EP1894715A1 (en) * 2006-08-31 2008-03-05 Treofan Germany GmbH &amp; Co.KG Biaxially oriented, electrically insulating film
EA016729B1 (en) * 2006-08-31 2012-07-30 Треофан Джермани Гмбх Унд Ко. Кг Biaxially oriented electrical insulating film
JP2008133351A (en) * 2006-11-28 2008-06-12 Prime Polymer:Kk Propylene-based polymer for capacitor film
WO2009060944A1 (en) * 2007-11-07 2009-05-14 Oji Paper Co., Ltd. Biaxially stretched polypropylene film for capacitor, deposition-coated film obtained from the same, and capacitor employing the same
DE102010022336A1 (en) 2009-06-04 2010-12-09 Oji Paper Co., Ltd. Biaxially-oriented polypropylene film useful in metal polypropylene film for capacitor, comprises isotactic polypropylene resin mixture with two kinds of different stereoregularity in isotactic polypropylene resin with molecular properties
KR20100130957A (en) 2009-06-04 2010-12-14 오지 세이시 가부시키가이샤 Biaxially-oriented polypropylene film for capacitor, metal deposition film thereof and cast raw sheet
JP2012209541A (en) * 2011-03-17 2012-10-25 Toray Ind Inc Biaxial stretching polypropylene film for capacitor, metalized film and film capacitor
CN102509610A (en) * 2011-12-28 2012-06-20 宁波绿海电子材料有限公司 Preparation method for 2.5 mu m polypropylene capacitor thin film
CN103985540A (en) * 2014-04-30 2014-08-13 宁波大东南万象科技有限公司 Preparation method of ultrathin high-temperature resistant capacitance film applied to capacitors of power-driven and hybrid electric vehicles
WO2017221985A1 (en) * 2016-06-24 2017-12-28 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor
JPWO2017221985A1 (en) * 2016-06-24 2019-03-28 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor
JP2020193342A (en) * 2016-06-24 2020-12-03 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitor
JP7068665B2 (en) 2016-06-24 2022-05-17 王子ホールディングス株式会社 Biaxially stretched polypropylene film, metallized film, and capacitors
EP3732698A4 (en) * 2017-12-25 2021-09-01 ABB Power Grids Switzerland AG Biaxially oriented polypropylene film, power capacitor, and associated manufacturing method and system
JP2020007443A (en) * 2018-07-06 2020-01-16 三井化学東セロ株式会社 Packaging film for food product, and package for food product
JP7321682B2 (en) 2018-07-06 2023-08-07 三井化学東セロ株式会社 Food packaging film and food package

Similar Documents

Publication Publication Date Title
JP4929923B2 (en) Polypropylene film and method for producing the same
JP6241039B2 (en) Stretched polypropylene film
US20090136714A1 (en) Biaxially Oriented Polypropylene Film
JP4940986B2 (en) Biaxially oriented polypropylene film
TWI607021B (en) Polypropylene film
JP2006063186A (en) Method for producing polypropylene film
JP2007169595A (en) Polypropylene film for capacitor
JP2014055283A (en) Stretched polypropylene film
JP6554765B2 (en) Polypropylene laminated stretched film
WO2014104089A1 (en) Biaxially stretched polypropylene film
JP2007126644A (en) Polypropylene film for mold release
JP2005280125A (en) Polypropylene film for mold release
WO2014024970A1 (en) Polypropylene film
JP6992929B1 (en) Polypropylene film, metal film laminated film using it, and film capacitor
JP5224568B2 (en) Polypropylene film for capacitors
JP6476844B2 (en) Biaxially oriented polypropylene film
CN115135703A (en) Polypropylene film, metal film laminate film, and film capacitor
JP6414378B2 (en) Polypropylene film for in-mold labels
JP2008231305A (en) Ultrathin roughened film and master sheet for manufacturing it and its manufacturing method
TWI379854B (en)
JP2023095425A (en) Release biaxially oriented polypropylene film and release film
JP2021134352A (en) Polypropylene film, and metal film laminated film and film capacitor using the same
JP2021134353A (en) Polypropylene film, metal film laminated film, and film capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221