JP2006061776A - Method for treating booth circulation water - Google Patents

Method for treating booth circulation water Download PDF

Info

Publication number
JP2006061776A
JP2006061776A JP2004244873A JP2004244873A JP2006061776A JP 2006061776 A JP2006061776 A JP 2006061776A JP 2004244873 A JP2004244873 A JP 2004244873A JP 2004244873 A JP2004244873 A JP 2004244873A JP 2006061776 A JP2006061776 A JP 2006061776A
Authority
JP
Japan
Prior art keywords
circulating water
paint
booth
booth circulating
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004244873A
Other languages
Japanese (ja)
Other versions
JP4451249B2 (en
Inventor
Yukihisa Kobayashi
幸久 小林
Hitoshi Ito
仁 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2004244873A priority Critical patent/JP4451249B2/en
Publication of JP2006061776A publication Critical patent/JP2006061776A/en
Application granted granted Critical
Publication of JP4451249B2 publication Critical patent/JP4451249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating booth circulation water in which uncoated paint in the booth circulation water is sufficiently made tack-free, and flocculation/separation and recovery of the uncoated paint can be performed simply and efficiently even if both water base paint and oil paint are present in the booth circulation water in a wet coating booth. <P>SOLUTION: The method for treating the booth circulation water comprises loading a cationic coagulant and amino resin acid colloid in the booth circulation water in the wet coating booth. The loadings of the cationic coagulant is prepared so that an electric charges of the booth circulation water become -50 to +100 μeq/L. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、湿式塗装ブースのブース循環水中に水性塗料と油性塗料とが混在している場合の、ブース循環水の処理方法に関する。   The present invention relates to a booth circulating water treatment method in the case where a water-based paint and an oil-based paint are mixed in the booth circulating water of a wet coating booth.

従来、自動車や電気製品等の塗装法の一種として、塗料を被塗装物に噴霧するスプレー塗装法がある。スプレー塗装法では塗料品質の保持及び作業環境の保全のため、湿式塗装ブース内で塗料の噴霧が行われている。   2. Description of the Related Art Conventionally, there is a spray coating method in which paint is sprayed on an object to be coated as a kind of coating method for automobiles, electrical products and the like. In the spray painting method, paint is sprayed in a wet painting booth in order to maintain the quality of the paint and preserve the work environment.

この湿式塗装ブースは、被塗装物に塗料を噴霧するための塗装室と、塗装室の空気を吸引するためのファンを有するダクトと、吸引した空気とブース循環水とを接触させるための接触部と、ブース循環水を貯留可能なピットとが備えられている。   This wet painting booth has a painting chamber for spraying paint on an object to be coated, a duct having a fan for sucking air in the painting chamber, and a contact portion for bringing the sucked air and the booth circulating water into contact with each other. And a pit capable of storing booth circulating water.

この湿式塗装ブースでは、被塗装物に塗着しなかった未塗着塗料がファンによって空気とともにダクト内に吸引される。この際、未塗着塗料は接触部においてブース循環水と接触して捕集され、未塗着塗料を沈殿あるいは浮上させることにより分離される。こうして分離された未塗着塗料は回収され、廃棄処分される。   In this wet painting booth, uncoated paint that has not been applied to the object to be coated is sucked into the duct together with air by the fan. At this time, the uncoated paint is collected in contact with the booth circulating water at the contact portion, and separated by settling or floating the uncoated paint. The uncoated paint thus separated is collected and discarded.

しかし、未塗着塗料の一部は分離されることなくブース循環水中に浮遊して循環し、配管内面等に付着してブース循環水の循環水量を低下させる。さらに、その循環水量の低下が著しい場合には、塗装作業を停止しなければならないことさえある。こうした不具合を防止するため、ブース循環水にあらかじめ塗料処理剤を添加しておき、ブース循環水内に浮遊する未塗着塗料を不粘着化するとともに固液分離を容易にすることが行われている。   However, a part of the unpainted paint floats and circulates in the booth circulating water without being separated, adheres to the inner surface of the piping, etc., and reduces the circulating water volume of the booth circulating water. Furthermore, if the amount of circulating water is drastically reduced, the painting operation may even have to be stopped. In order to prevent such problems, a paint treatment agent is added to the booth circulating water in advance to detack the unpainted paint floating in the booth circulating water and facilitate solid-liquid separation. Yes.

このような塗料処理剤として、例えば苛性ソーダ等のアルカリ剤、カチオン性ポリマー、無機凝集剤、メラミン−アルデヒド樹脂酸コロイド(特許文献1)等が挙げられる。
特公平6−2259号公報
Examples of such paint treating agents include alkaline agents such as caustic soda, cationic polymers, inorganic flocculants, melamine-aldehyde resin acid colloids (Patent Document 1), and the like.
Japanese Patent Publication No. 6-2259

アルカリ剤は未塗着油性塗料の表面をケン化し、不粘着化することによって、配管への未塗着油性塗料の付着を防ぐものである。また、カチオン性ポリマー、無機凝集剤及びメラミン−アルデヒド樹脂酸コロイドは、未塗着塗料の表面に付着し、不粘着化して固液分離を容易化するものである。   The alkaline agent saponifies the surface of the uncoated oil-based paint to make it non-tacky, thereby preventing the non-coated oil-based paint from adhering to the pipe. Further, the cationic polymer, the inorganic flocculant and the melamine-aldehyde resin acid colloid adhere to the surface of the uncoated paint and become non-tacky to facilitate solid-liquid separation.

また、未塗着水性塗料に対しては、ポリエチレンイミンを成分として含む塗料処理剤(特許文献2)や、カチオン性有機化合物とアニオン性有機化合物とを含む塗料処理剤(特許文献3)等が用いられている。これらの塗料処理剤は、ブース循環水中に均一に分散あるいは溶解した未塗着水性塗料の固液分離を容易にするものである。
特開昭61−74607号公報 特開昭63−42706号公報
For uncoated water-based paints, there are paint treatment agents containing polyethyleneimine as a component (Patent Document 2), paint treatment agents containing a cationic organic compound and an anionic organic compound (Patent Document 3), and the like. It is used. These paint treatment agents facilitate solid-liquid separation of uncoated water-based paints that are uniformly dispersed or dissolved in Booth circulating water.
JP-A-61-74607 JP-A 63-42706

上記従来のブース循環水の処理方法では、ブース循環水中の未塗着塗料の種類に応じた、適切な塗料処理剤を選択することにより、未塗着塗料の固液分離を容易に行うことができる。しかし、近年においては、従来から多用されている油性塗料の他、有機溶剤の環境への影響を考慮して、水性塗料も多く用いられるようになった。このため、ブース循環水に油性塗料と水性塗料とが混在する場合も多く、このような場合、油性塗料用の塗料処理剤と、水性塗料用の塗料処理剤の併用が行われている。しかし、このように塗料処理剤を併用した場合、それらの塗料処理剤の効果が充分発揮できない場合がある。   In the above conventional booth circulating water treatment method, solid-liquid separation of uncoated paint can be easily performed by selecting an appropriate paint treatment agent according to the type of uncoated paint in the booth circulating water. it can. In recent years, however, water-based paints have been widely used in consideration of the environmental impact of organic solvents in addition to oil paints that have been frequently used. For this reason, oil paints and water-based paints often coexist in the booth circulating water. In such a case, a paint treatment agent for oil paints and a paint treatment agent for water-based paints are used in combination. However, when the paint treatment agents are used in combination, the effects of those paint treatment agents may not be sufficiently exhibited.

例えば、アルミナゾルは油性塗料の不粘着化処理に有効であり、カチオン性凝結剤は水性塗料の凝集に有効であるため、油性塗料と水性塗料を含むブース循環水にアルミナゾルとカチオン性凝結剤が併用されている。しかし、この方法ではアルミナゾルの不粘着化作用がカチオン性凝結剤により阻害され、未塗着塗料の分離・回収が不十分となる場合がある。   For example, alumina sol is effective for detackifying oil-based paints, and cationic coagulants are effective for agglomeration of water-based paints, so alumina sol and cationic coagulants are used in combination with booth circulating water containing oil-based paints and water-based paints. Has been. However, in this method, the detackifying action of the alumina sol is hindered by the cationic coagulant, and separation and recovery of the uncoated paint may be insufficient.

また、油性塗料の不粘着化を促進するポリオレフィンと、水性塗料の凝結を促進するカチオン性凝結剤を添加することも行われている。しかし、この方法においても、水性塗料又は油性塗料が単独で含まれているブース循環水を処理した場合に比べて凝結効果が低下し、水性塗料の分離・回収が不充分となる場合がある。   In addition, a polyolefin that promotes detackification of an oil-based paint and a cationic coagulant that promotes the setting of an aqueous paint are also added. However, even in this method, the coagulation effect is lowered compared with the case where booth circulating water containing an aqueous paint or oil paint alone is treated, and the separation and recovery of the aqueous paint may be insufficient.

このため、油性塗料と水性塗料とが混在するブース循環水を処理することが可能なブース循環水の処理方法も提案されている(特許文献5)。
特開平5−84492号公報
For this reason, the processing method of the booth circulating water which can process the booth circulating water in which an oil-based paint and a water-based paint are mixed is also proposed (patent document 5).
JP-A-5-84492

特許文献5の記載によれば、油性塗料と水性塗料とが混在するブース循環水のアルカリ度を調整しながらメラミン−アルデヒド樹脂酸コロイドを添加し、さらに凝集剤を添加することにより、ブース循環水中に混在している油性塗料と水性塗料とを両方とも効率よく分離・回収することができる。   According to the description of Patent Document 5, the melamine-aldehyde resin acid colloid is added while adjusting the alkalinity of the booth circulating water in which the oil-based paint and the water-based paint are mixed, and further the flocculant is added, so that the booth circulating water is added. Both oil-based paints and water-based paints mixed in can be efficiently separated and recovered.

しかし、この方法ではメラミン−アルデヒド樹脂酸コロイドを多量に使用しなくてはならない。すなわち、この方法においてメラミン−アルデヒド樹脂は、アニオン性電荷を帯びている水性塗料を電荷中和して凝結させる役割を果たす。しかし、メラミン−アルデヒド樹脂のカチオン性電荷はカチオン性凝結剤として使用できるほどは高くないため、アルカリ度を調整したとしても多量に添加しないと凝結しないからである。このため、ブース循環水の処理費用が高騰化することとなる。また、水性塗料の凝集を効果的に起こさせるためには、アルカリ度の管理が必要となり、管理が難しくなるという問題もある。   However, this method has to use a large amount of melamine-aldehyde resin acid colloid. That is, in this method, the melamine-aldehyde resin plays a role of neutralizing and condensing the aqueous paint having an anionic charge. However, since the cationic charge of the melamine-aldehyde resin is not so high as to be used as a cationic coagulant, even if the alkalinity is adjusted, it does not coagulate unless added in a large amount. For this reason, the processing cost of booth circulating water will rise. In addition, in order to effectively cause aggregation of the water-based paint, it is necessary to manage the alkalinity, which makes it difficult to manage.

本発明は、上記従来の実情に鑑みてなされたものであり、湿式塗装ブースにおいてブース循環水中に水性塗料と油性塗料とが両方存在する場合であっても、ブース循環水中の未塗着塗料の不粘着化が充分になされ、未塗着塗料の分離及び回収を容易かつ効率的に行うことが可能であり、管理が容易で処理費用が低廉なブース循環水の処理方法を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and even when both a water-based paint and an oil-based paint are present in the booth circulating water in the wet painting booth, the uncoated paint in the booth circulating water is present. Solved the problem of providing a booth circulating water treatment method that is sufficiently tack-free, allows easy and efficient separation and recovery of unpainted paint, is easy to manage and has low treatment costs It is an issue that should be done.

発明者らは、上記課題を解決すべく、水性塗料と油性塗料とが混在するブース循環水に対して、多くの塗料処理剤及びそれらの組み合わせについて試験を行った。そして、塗料処理剤として、カチオン性凝結剤とアミノ樹脂酸コロイドとを組み合わせてブース循環水中に添加すれば、上記課題を解決することができることを発見し、本発明をなすに至った。   In order to solve the above-mentioned problems, the inventors conducted tests on many paint treatment agents and combinations thereof against booth circulating water in which a water-based paint and an oil-based paint are mixed. And it discovered that if the combination of a cationic coagulant and an amino resin acid colloid was added to the booth circulating water as a paint treating agent, the above problems could be solved, and the present invention was made.

すなわち、本発明のブース循環水の処理方法は、湿式塗装ブースのブース循環水中に水性塗料と油性塗料とが混在している場合のブース循環水の処理方法であって、前記ブース循環水中にカチオン性凝結剤とアミノ樹脂酸コロイドの両方を添加することを特徴とする。   That is, the booth circulating water treatment method of the present invention is a booth circulating water treatment method in the case where a water-based paint and an oil-based paint are mixed in the booth circulating water of the wet coating booth. It is characterized by adding both a coagulant and an amino resin acid colloid.

本発明のブース循環水の処理方法において、ブース循環水に添加されるカチオン性凝結剤は、ブース循環水中に均一に分散あるいは溶解した水性塗料を凝結させて、固液分離を容易にする効果を奏する。このカチオン性凝結剤は、カチオン性凝集剤とは異なり、水性塗料の分子に絡み付いて凝集を起こさせるのではなく、水性塗料の表面電荷を中和し、凝結させるものである。すなわち、このカチオン性凝結剤は、ブース循環水中においてカチオン性の表面電荷を有しており、ブース循環水中でマイナスに帯電して安定な状態で浮遊している水性塗料の表面電荷を中和することができる。このため、ブース循環水中の水性塗料はカチオン性凝結剤の添加によって凝結させることができ、カチオン性凝集剤とアミノ樹脂酸コロイドとの組み合わせによって電荷中和する場合に比べて、アミノ樹脂酸コロイドの添加量を少なくすることができる。さらには、アルカリ度を注意深く管理しなくても、凝結の効果を奏することができる。   In the booth circulating water treatment method of the present invention, the cationic coagulant added to the booth circulating water has the effect of facilitating solid-liquid separation by coagulating an aqueous paint uniformly dispersed or dissolved in the booth circulating water. Play. Unlike the cationic flocculant, the cationic coagulant does not entangle the water-based paint molecules to cause aggregation, but neutralizes and condenses the surface charge of the water-based paint. That is, this cationic coagulant has a cationic surface charge in the booth circulating water, and is negatively charged in the booth circulating water to neutralize the surface charge of the aqueous paint floating in a stable state. be able to. For this reason, the water-based paint in the booth circulating water can be coagulated by adding a cationic coagulant. Compared with the case where charge neutralization is performed by a combination of a cationic coagulant and an amino resin acid colloid, the amino resin acid colloid The amount added can be reduced. Furthermore, the coagulation effect can be achieved without carefully controlling the alkalinity.

一方、ブース循環水に添加されるアミノ樹脂酸コロイドは、ブース循環水中に浮遊する油性塗料の表面に付着して不粘着化させる効果を奏する。さらに、アミノ樹脂酸コロイドは、カチオン性凝結剤では十分に凝結できなかった水性塗料の表面に付着して凝集を促進させるとともに不粘着化効果を発揮し、水性塗料が配管壁等に付着することを防止する効果も奏する。発明者らの試験結果によれば、アミノ樹脂酸コロイドは、カチオン性凝結剤の凝結作用を阻害することはない。このため、上記カチオン性凝結剤とアミノ樹脂酸コロイドは相乗的にそれらの効果を発揮することができ、その結果、ブース循環水中の塗料の凝集・分離・回収を容易に行うことができる。 On the other hand, the amino resin acid colloid added to the booth circulating water has the effect of adhering to the surface of the oil-based paint floating in the booth circulating water and making it non-tacky. Furthermore, the amino resin acid colloid adheres to the surface of the water-based paint that could not be sufficiently set by the cationic coagulant, promotes aggregation and exhibits a tack-free effect, and the water-based paint adheres to the piping wall and the like. There is also an effect of preventing the above. According to the test results of the inventors, the amino resin acid colloid does not inhibit the setting action of the cationic setting agent. Therefore, the cationic coagulant and the amino resin acid colloid can synergistically exert their effects, and as a result, the paint in the booth circulating water can be easily aggregated, separated and recovered.

したがって、本発明のブース循環水の処理方法によれば、湿式塗装ブースのブース循環水中に水性塗料と油性塗料とが混在する場合であっても、水性塗料と油性塗料の不粘着化が充分になされ、それらの分離及び回収を容易かつ効率的に行うことができ、管理が容易で処理費用も低廉となる。   Therefore, according to the booth circulating water treatment method of the present invention, even when the water-based paint and the oil-based paint are mixed in the booth circulating water of the wet-painting booth, the water-based paint and the oil-based paint are sufficiently non-tacky. Therefore, the separation and recovery can be easily and efficiently performed, the management is easy, and the processing cost is low.

本発明のブース循環水の処理方法において、処理の対象となる水性塗料としては特に限定はなく、例えば水性アルキッド樹脂塗料、水性ポリエステル樹脂塗料、水性アクリル樹脂塗料、水性ポリウレタン樹脂塗料等が挙げられる。   In the booth circulating water treatment method of the present invention, the aqueous paint to be treated is not particularly limited, and examples thereof include an aqueous alkyd resin paint, an aqueous polyester resin paint, an aqueous acrylic resin paint, and an aqueous polyurethane resin paint.

また、本発明のブース循環水の処理方法において、処理の対象となる油性塗料としては特に限定はなく、例えばエポキシ樹脂塗料、ポリエステル樹脂塗料、ウレタン樹脂塗料、アルキド樹脂塗料、アミノ樹脂塗料、ビニル樹脂塗料、アクリル樹脂塗料、フェノール樹脂塗料、セルロース誘導体塗料、酒精塗料等が挙げられる。   In the booth circulating water treatment method of the present invention, the oil-based paint to be treated is not particularly limited. For example, epoxy resin paint, polyester resin paint, urethane resin paint, alkyd resin paint, amino resin paint, vinyl resin Examples thereof include paints, acrylic resin paints, phenol resin paints, cellulose derivative paints and alcoholic paints.

なお、本発明のブース循環水の処理方法において、カチオン性凝結剤とアミノ樹脂酸コロイドとを添加する場所について、特に限定はないが、循環ポンプの手前等、これらの塗料処理剤がブース循環水中に混合され易い箇所で添加することが好ましい。また、添加方法についても特に限定はないが、定量ポンプで連続的に添加したり、間歇的に添加したりするなど適宜選択することができる。   In the booth circulating water treatment method of the present invention, the place where the cationic coagulant and the amino resin acid colloid are added is not particularly limited, but these paint treating agents are placed in the booth circulating water before the circulation pump. It is preferable to add at a place where it is easily mixed. The addition method is not particularly limited, and can be selected as appropriate, such as continuous addition with a metering pump or intermittent addition.

本発明において用いられるカチオン性凝結剤とは、水中でカチオン性を帯び、ブース循環水中の水溶性塗料の表面電化を中和し、少量の添加で凝結を促す物質を意味する。このようなカチオン性凝結剤としては、例えば水溶性の合成系カチオン性凝結剤や、水溶性の天然系カチオン凝結剤等が挙げられる。   The cationic coagulant used in the present invention means a substance that is cationic in water, neutralizes the surface charge of the water-soluble paint in booth circulating water, and promotes coagulation with a small amount of addition. Examples of such a cationic coagulant include a water-soluble synthetic cationic coagulant and a water-soluble natural cationic coagulant.

水溶性の合成系カチオン性凝結剤としては、例えば(メタ)アクリル酸エステル(炭素数1〜4のアルコールのエステル)・(メタ)アクリルアミノエチルトリメチルアンモニウム共重合体、(メタ)アクリルアミド・(メタ)アクリルアミノエチルトリメチルアンモニウム共重合体、(メタ)アクリルアミノジアルキル(炭素数1〜4のアルキル基)・(メタ)アクリルアミノエチルトリメチルアンモニウム共重合体、ポリ(メタ)アクリルアミノエチルトリメチルアンモニウム等の(メタ)アクリルアミノエチルトリメチルアンモニウム共重合体;ジシアンジアミド重合体、ジシアンジアミド−ホルムアルデヒド共重合体等のジシアンジアミド共重合体;ジメチルアミン−エピクロロヒドリン共重合体、ジエチルアミン−エピクロロヒドリン共重合体、ジメチルアミン−エピクロルヒドリン−アンモニア共重合体、ジエチルアミン−エピクロルヒドリン−アンモニア共重合体等のジアルキルアミン−エピハロヒドリン共重合体;ポリジアリルジメチルアンモニウムクロライド、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジアリルジメチルアンモニウムクロライド−(メタ)アクリルアミド共重合体、ジアリルジメチルアンモニウムクロライド−(メタ)アクリル酸共重合体、ジアリルジメチルアンモニウムクロライド−(メタ)アクリル酸−(メタ)アクリルアミド共重合体等のジアリルジメチルアンモニウムクロライド(以下、DADMACとする。)共重合体;ポリエチレンイミン、ポリアリルアミン等のポリアルキルアミンが挙げられる。   Examples of the water-soluble synthetic cationic coagulant include (meth) acrylic acid ester (ester of alcohol having 1 to 4 carbon atoms) / (meth) acrylaminoethyltrimethylammonium copolymer, (meth) acrylamide / (meta ) Acrylaminoethyltrimethylammonium copolymer, (meth) acrylaminodialkyl (alkyl group having 1 to 4 carbon atoms) / (meth) acrylaminoethyltrimethylammonium copolymer, poly (meth) acrylaminoethyltrimethylammonium (Meth) acrylaminoethyltrimethylammonium copolymer; dicyandiamide polymer, dicyandiamide-formaldehyde copolymer and other dicyandiamide copolymers; dimethylamine-epichlorohydrin copolymer, diethylamine-epichlorohydride Copolymer, dimethylamine-epichlorohydrin-ammonia copolymer, dialkylamine-epihalohydrin copolymer such as diethylamine-epichlorohydrin-ammonia copolymer; polydiallyldimethylammonium chloride, diallyldimethylammonium chloride-sulfur dioxide copolymer, Diallyldimethylammonium chloride- (meth) acrylamide copolymer, diallyldimethylammonium chloride- (meth) acrylic acid copolymer, diallyldimethylammonium chloride- (meth) acrylic acid- (meth) acrylamide copolymer, etc. Chloride (hereinafter referred to as DADMAC) copolymer; and polyalkylamines such as polyethyleneimine and polyallylamine.

これらの中でも、ポリアクリルアミノエチルトリメチルアンモニウムクロライド、アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体、ジシアンジアミド−ホルムアルデヒド共重合体、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジメチルアミン−エピクロルヒドリン共重合体及びジメチルアミン−エピクロルヒドリン−アンモニア共重合体、ポリDADMAC、DADMAC−アクリルアミド共重合体及びポリエチレンイミンは、カチオン強度が高いために好適である。   Among these, polyacrylaminoethyltrimethylammonium chloride, acrylamide-acrylaminoethyltrimethylammonium chloride copolymer, dicyandiamide-formaldehyde copolymer, diallyldimethylammonium chloride-sulfur dioxide copolymer, dimethylamine-epichlorohydrin copolymer and Dimethylamine-epichlorohydrin-ammonia copolymer, polyDADMAC, DADMAC-acrylamide copolymer and polyethyleneimine are preferred because of their high cation strength.

一方、天然系カチオン凝結剤の例としては、水溶性キトサン、カチオン化デンプン等が挙げられる。   On the other hand, examples of natural cationic coagulants include water-soluble chitosan and cationized starch.

上記カチオン性凝結剤として使用可能な化合物において、分子量は2,000〜500,000の範囲が好ましい。分子量がこの範囲であれば、特に水性塗料の凝結効果に優れているからである。   In the compound usable as the cationic coagulant, the molecular weight is preferably in the range of 2,000 to 500,000. This is because if the molecular weight is within this range, the setting effect of the aqueous paint is particularly excellent.

また、本発明においてアミノ樹脂酸コロイドとしては、メラミン及び/又は尿素とアルデヒドの付加物であるメチロール化物の酸コロイドを用いることができる。また、このメチロール化物をメタノール、エタノール、プロパノール等の低級アルコールでエーテル化したアルキルエーテル化メチロールメラミンの酸コロイド、アルキルエーテル化メチロールメラミン・尿素の酸コロイド、アルキルエーテル化メチロール尿素の酸コロイド等も本発明におけるアミノ樹脂酸コロイドとして用いることができる。   In the present invention, as the amino resin acid colloid, an acid colloid of methylolated product, which is an adduct of melamine and / or urea and an aldehyde, can be used. Also, alkyl etherified methylol melamine acid colloid, alkyl etherified methylol melamine / urea acid colloid, alkyl etherified methylol urea acid colloid, etc. obtained by etherification of this methylolated product with lower alcohol such as methanol, ethanol, propanol, etc. It can be used as an amino resin acid colloid in the invention.

さらに具体的なアミノ樹脂酸コロイドの例としては、メラミン樹脂酸コロイド、メラミン・尿素樹脂酸コロイド等がある。メラミン・尿素樹脂酸コロイドにおいては、メラミン・尿素樹脂中のメラミンの比率が10モル%以上が好ましく、さらに好ましくは50モル%以上、最も好ましくは75モル%以上である。また、アミノ樹脂酸コロイドにおいては、アミノ樹脂中のメラミンと尿素との総和とアミノ樹脂中のアルデヒドの比率は、モル比で1:1〜1:10であることが好ましく、さらに好ましくは1:2.5〜1:5である。アルデヒドとしては、炭素数1〜3のアルデヒドが好ましく、具体的にはホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒドおよびホルムアルデヒドの3量体であるパラホルムアルデヒドがあり、好ましくはホルムアルデヒド、パラホルムアルデヒドである。   More specific examples of amino resin acid colloids include melamine resin acid colloids and melamine / urea resin acid colloids. In the melamine / urea resin acid colloid, the ratio of melamine in the melamine / urea resin is preferably 10 mol% or more, more preferably 50 mol% or more, and most preferably 75 mol% or more. Further, in the amino resin acid colloid, the ratio of the sum of melamine and urea in the amino resin to the aldehyde in the amino resin is preferably 1: 1 to 1:10, more preferably 1: 2.5 to 1: 5. The aldehyde is preferably an aldehyde having 1 to 3 carbon atoms, specifically, paraformaldehyde which is a trimer of formaldehyde, acetaldehyde, propionaldehyde and formaldehyde, preferably formaldehyde and paraformaldehyde.

アミノ樹脂酸コロイドに用いる酸としては、塩酸、硫酸、硝酸等の鉱酸;蟻酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、グリコール酸、リンゴ酸、乳酸、クエン酸等の有機酸などがある。中でも一塩基酸が好ましく、具体的には塩酸、乳酸があげられる。アミノ樹脂酸コロイド中のアミノ樹脂と酸の比率は、(アミノ樹脂中のメラミンと尿素との総モル数:酸のモル数)が1:0.3〜1:1.5とされていることが好ましく、さらに好ましいのは1:0.5〜1:1.3である。アミノ樹脂中のメラミンと尿素との総和モル数に対する酸のモル数の比率がこの範囲よりも低い場合、水性塗料と油性塗料の凝集・分離の効率が低下する場合がある。また、その比率がこの範囲よりも高い場合には、アミノ樹脂酸コロイドの安定性が低下する。また、アミノ樹脂の分子量は、特に限定されるものではないが、通常、400〜50,000であり、好ましくは500〜5,000である。   Acids used for the amino resin acid colloid include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid; formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, glycolic acid, malic acid, lactic acid, citric acid, etc. There are organic acids. Of these, monobasic acids are preferred, and specific examples include hydrochloric acid and lactic acid. The ratio of amino resin to acid in the amino resin acid colloid is such that (total number of moles of melamine and urea in amino resin: number of moles of acid) is 1: 0.3 to 1: 1.5. Is more preferable, and 1: 0.5 to 1: 1.3 is more preferable. When the ratio of the number of moles of acid to the total number of moles of melamine and urea in the amino resin is lower than this range, the efficiency of aggregation / separation of the water-based paint and the oil-based paint may be reduced. Moreover, when the ratio is higher than this range, the stability of the amino resin acid colloid is lowered. The molecular weight of the amino resin is not particularly limited, but is usually 400 to 50,000, preferably 500 to 5,000.

また、メラミン樹脂酸コロイドやメラミン−尿素樹脂酸コロイドは、一般に行われているメラミン樹脂酸コロイドやメラミン−尿素樹脂酸コロイドの調製方法によって得ることができる。例えば、メラミン樹脂酸コロイドの製造方法を具体的に説明すれば以下のようである。すなわち、反応容器に所定量のメラミン、パラホルムアルデヒド及び水を入れ、水酸化ナトリウムでpHを10に調整し、70℃に加温して約80分、撹拌して反応させてメチロールメラミンの懸濁液を得る。得られたメチロールメラミン懸濁液に所定量の塩酸を撹拌下、徐々に加え、半透明〜透明なメラミン樹脂酸コロイド液を得、常温下、2日静置して熟成し、メラミン酸コロイド液が得られる。また、アルキルエーテル化メチロールメラミンは水溶性であるため、これを所定量水に溶かし、撹拌下、所定量の塩酸を徐々に添加すれば、加水分解が起こりアルキルエーテル化メチロールメラミンはメチロールメラミンになり、さらにメチロールメラミン懸濁液を生じると同時に徐々に半透明〜透明なメラミン酸コロイド液が得られる。本発明においてブース循環水中に添加されるメラミン−尿素樹脂酸コロイド原液における、メラミン−尿素樹脂含有量は、通常、0.1〜20%であり、好ましくは1〜15%、より好ましくは4〜10%である。また、製造されたメラミン−尿素樹脂酸コロイドの熟成期間は、メラミン−尿素樹脂酸コロイド液の固形分濃度、メラミン−尿素樹脂の組成、使用した酸の種類により異なり一律に決定できないが、通常、常温下であれば2日〜30日、50℃であれば2〜5時間が目安となる。また、メラミン・尿素樹脂酸コロイドの調製方法は、前記メラミン樹脂酸コロイドの調整方法におけるメラミンに代えてメラミンと尿素の混合物を用い、同様に行うことができる。   Moreover, the melamine resin acid colloid and the melamine-urea resin acid colloid can be obtained by a commonly used method for preparing a melamine resin acid colloid or a melamine-urea resin acid colloid. For example, a method for producing a melamine resin acid colloid will be specifically described as follows. That is, a predetermined amount of melamine, paraformaldehyde and water are put into a reaction vessel, pH is adjusted to 10 with sodium hydroxide, heated to 70 ° C., stirred for about 80 minutes, and reacted to be suspended in methylolmelamine. Obtain a liquid. A predetermined amount of hydrochloric acid is gradually added to the obtained methylol melamine suspension with stirring to obtain a translucent to transparent melamine resin acid colloid solution, which is left to stand for 2 days at room temperature for aging, and then a melamine acid colloid solution. Is obtained. Also, since alkyl etherified methylol melamine is water-soluble, if it is dissolved in a predetermined amount of water and a predetermined amount of hydrochloric acid is gradually added with stirring, hydrolysis occurs and the alkyl etherified methylol melamine becomes methylol melamine. Further, a methylol melamine suspension is formed, and at the same time, a semitransparent to transparent melamic acid colloidal solution is obtained. In the melamine-urea resin acid colloid stock solution added to the booth circulating water in the present invention, the melamine-urea resin content is usually 0.1 to 20%, preferably 1 to 15%, more preferably 4 to 10%. Further, the aging period of the produced melamine-urea resin acid colloid varies depending on the solid content concentration of the melamine-urea resin acid colloid liquid, the composition of the melamine-urea resin, and the type of acid used, but cannot be determined uniformly. If it is normal temperature, it will become a standard for 2 to 5 hours if it is 2-30 days, and 50 degreeC. The melamine / urea resin acid colloid can be prepared in the same manner by using a mixture of melamine and urea instead of melamine in the method for preparing a melamine resin acid colloid.

本発明のブース循環水の処理方法において、カチオン性凝結剤の添加量は、水性塗料の電荷を考慮して適宜決定されれば良く、特に限定されるものではないが、通常、水性塗料の塗料樹脂固形分に対して0.05〜100重量%であり、好ましくは0.5〜30重量%である。また、アミノ樹脂酸コロイドの添加量は、通常、油性塗料の使用状況や油性塗料に要求される不粘着化の程度に応じて考慮し、適宜決定されれば良く、特に限定されるものではないが、通常、油性塗料の塗料樹脂固形分に対して0.05〜100重量%であり、好ましくは0.5〜30重量%である。   In the booth circulating water treatment method of the present invention, the addition amount of the cationic coagulant may be appropriately determined in consideration of the charge of the aqueous paint, and is not particularly limited. It is 0.05-100 weight% with respect to resin solid content, Preferably it is 0.5-30 weight%. The amount of the amino resin acid colloid added is not particularly limited as long as it is appropriately determined in consideration of the use state of the oil paint and the degree of tackiness required for the oil paint. However, it is usually 0.05 to 100% by weight, preferably 0.5 to 30% by weight, based on the solid content of the paint resin of the oil-based paint.

また、カチオン性凝結剤の添加量をブース循環水中の電荷量によって管理することも好ましい。発明者らの試験結果によれば、ブース循環水中の電荷量はカチオン性凝結剤の添加量によって大きく変化し、アミノ樹脂酸コロイドの添加によるブース循環水の電荷量の変化は極僅かである。そして、カチオン性凝結剤をブース循環水中の電荷量が−50〜+100μeq/Lとなるように添加すれば、水溶性塗料の凝結効果が高くなり、その分離・回収が極めて容易となる。ブース循環水中の電荷量は、コロイド滴定法、粒子電荷測定法(PCD法)、電気泳動法等の既に公知の方法で測定することができる。   It is also preferable to control the amount of cationic coagulant added based on the amount of charge in the booth circulating water. According to the test results of the inventors, the amount of charge in the booth circulating water varies greatly depending on the amount of cationic coagulant added, and the amount of charge in the booth circulating water due to the addition of the amino resin acid colloid is negligible. If the cationic coagulant is added so that the charge amount in the booth circulating water is −50 to +100 μeq / L, the coagulation effect of the water-soluble paint is enhanced, and the separation and recovery thereof becomes extremely easy. The amount of charge in the booth circulating water can be measured by a known method such as a colloid titration method, a particle charge measurement method (PCD method), or an electrophoresis method.

コロイド滴定法〔「コロイド滴定試験法」千手諒一著、3〜6頁、南江堂、1969年刊参照〕は、水中の電解質、コロイド粒子、懸濁物質等の電荷量をアニオン性及びカチオン性水溶性高分子電解質で電荷の中和を行ない、指示薬の色の変化で定量する方法である。例えば、アニオン電荷の測定には、指示薬としてトルイジンブルー(TB)を数滴加えて、カチオン性水溶性電解質水溶液であるメチルグリコールキトサン水溶液(以下、「MGK」と略す)を過剰となる既知量加え、残存したMGKをアニオン性水溶性電解質のポリビニル硫酸カリウム(以下、「PVSK」と略す)水溶液で滴定し、カチオン電荷量を測定する。当初加えたMGK量からカチオン電荷測定値を引き、アニオン電荷を求める。一方、カチオン電荷量の測定は、PVSKで直接、測定して求められる。手分析でも数分の短時間で測定され、市販の自動化分析装置を使用すれば更に短時間で分析される。 Colloid titration method ["Colloid titration test method" by Seiichi Chite, 3-6, Nankodo, published in 1969] is used to measure the charge amount of electrolytes, colloidal particles, suspended substances, etc. in water with anionic and cationic water This is a method in which the charge is neutralized with a conductive polymer electrolyte and quantified by a change in the color of the indicator. For example, to measure anion charge, add a few drops of toluidine blue (TB) as an indicator, and add an excessive amount of an aqueous methyl glycol chitosan aqueous solution (hereinafter abbreviated as “MGK”), which is a cationic aqueous electrolyte solution. The remaining MGK is titrated with an aqueous polyvinyl potassium sulfate (hereinafter abbreviated as “PVSK”) aqueous solution of an anionic water-soluble electrolyte, and the amount of cationic charge is measured. The anion charge is obtained by subtracting the measured cation charge from the amount of MGK added initially. On the other hand, the measurement of the cation charge amount is obtained by directly measuring with PVSK. Even in manual analysis, it is measured in a few minutes, and if a commercially available automated analyzer is used, the analysis is further shortened.

PCDによる電荷測定は、例えばPCD装置(Muteck社製)と自動滴定装置を組み合わせた市販の測定装置を用いて容易に測定できる。このPCD装置は、円筒状容器の上下に電極を備えたセルとセルの中にセル内径よりわずかに小さい棒状のピストンを入れたものである。セルの中に所定量の試料水を入れ、セルの内径よりわずかに小さい棒状のピストンを浸せきさせ、上下に動かすことで、電荷を持った電解質の移動により電流が発生し、これを電位差として検出し、電位差を0とするまでカチオン性高分子電解質あるいはアニオン性高分子電解質を添加して試料水の電荷量を測定する。この時に使用されるカチオン性高分子電解質としては、一般的にポリジアリルジメチルアンモニウムクロライド水溶液が使われ、アニオン性高分子電解質としては、一般的にポリスチレンスルフォン酸ナトリウム水溶液が使用されている。 The charge measurement by the PCD can be easily performed by using a commercially available measuring device that combines, for example, a PCD device (manufactured by Muteck) and an automatic titration device. In this PCD device, a cell having electrodes on the upper and lower sides of a cylindrical container and a rod-like piston slightly smaller than the inner diameter of the cell are placed in the cell. Put a predetermined amount of sample water in the cell, immerse a rod-shaped piston slightly smaller than the inner diameter of the cell, and move it up and down to generate an electric current due to the movement of the charged electrolyte and detect this as a potential difference Then, a cationic polymer electrolyte or an anionic polymer electrolyte is added until the potential difference becomes 0, and the charge amount of the sample water is measured. As the cationic polymer electrolyte used at this time, a polydiallyldimethylammonium chloride aqueous solution is generally used, and as the anionic polymer electrolyte, a sodium polystyrene sulfonate aqueous solution is generally used.

電気泳動法による測定は、少量の試料水を採取して、ガラス製の円筒状セルに入れ、セル両端に電圧をかけながら、セル内を顕微鏡で観察して電極間を移動する粒子の速度を測定して、電荷量を求める方法である。 In the measurement by electrophoresis, a small amount of sample water is collected and placed in a glass cylindrical cell, and the voltage of particles moving between the electrodes is observed by observing the inside of the cell with a microscope while applying voltage to both ends of the cell. This is a method of obtaining the charge amount by measuring.

以下、本発明を具体化した実施例1〜8及び比較例1〜12を図面とともに説明する。   Hereinafter, Examples 1 to 8 and Comparative Examples 1 to 12 embodying the present invention will be described with reference to the drawings.

(実施例1)
実施例1では、カチオン性凝結剤としてジメチルアミン−エピクロルヒドリン縮合物(平均分子量5000、固形分50%:長瀬産業(株)製「ワイステックスT−101−50」)を用い、これを塗装ブースで噴霧された塗料に対して0.7質量%の割合で添加した。また、アミノ樹脂酸コロイドとして、メラミン:ホルムアルデヒド=1:2.19(重量比)のメチロール化メラミン100gを1.35%の塩酸水溶液1リットル中に添加、攪拌して調製したものを用い、これを塗装ブースで噴霧された塗料に対して18質量%の割合で添加した。
Example 1
In Example 1, dimethylamine-epichlorohydrin condensate (average molecular weight 5000, solid content 50%: “Wastex T-101-50” manufactured by Nagase Sangyo Co., Ltd.) was used as a cationic coagulant at a coating booth. It added in the ratio of 0.7 mass% with respect to the sprayed coating material. Further, as amino resin acid colloid, 100 g of methylolated melamine of melamine: formaldehyde = 1: 2.19 (weight ratio) was added to 1 liter of 1.35% hydrochloric acid aqueous solution and stirred, and this was used. Was added at a ratio of 18% by mass with respect to the paint sprayed in the painting booth.

(実施例2)
実施例2では、実施例1と同じカチオン性凝結剤を同じ量だけ添加し、実施例1と同じアミノ樹脂酸コロイドを実施例1の半分の量となるように添加した。
(Example 2)
In Example 2, the same cationic coagulant as in Example 1 was added in the same amount, and the same amino resin acid colloid as in Example 1 was added so as to be half the amount in Example 1.

(実施例3)
実施例3では、実施例1と同じカチオン性凝結剤を同じ量だけ添加した。また、アミノ樹脂酸コロイドとして、尿素−メラミン−ホルムアルデヒド樹脂(固形分80%、昭和高分子(株)製「ミルベンレジンSM−615」)62.5gを3.8%の乳酸水溶液1リットル中に添加、攪拌して調製したものを用い、これを塗装ブースで噴霧された塗料に対して27質量%の割合で添加した。
(Example 3)
In Example 3, the same amount of the same cationic coagulant as in Example 1 was added. Also, 62.5 g of urea-melamine-formaldehyde resin (solid content 80%, “Milben Resin SM-615” manufactured by Showa Polymer Co., Ltd.) was added as an amino resin acid colloid to 1 liter of a 3.8% lactic acid aqueous solution. The mixture prepared by stirring was added at a ratio of 27% by mass with respect to the paint sprayed in the coating booth.

(実施例4)
実施例4では、実施例3と同じカチオン性凝結剤を同じ量だけ添加し、実施例3と同じアミノ樹脂酸コロイドを実施例3の半分の量となるように添加した。
Example 4
In Example 4, the same cationic coagulant as in Example 3 was added in the same amount, and the same amino resin acid colloid as in Example 3 was added in half the amount of Example 3.

(実施例5)
実施例5では、カチオン性凝結剤としてジアリルジメチルアンモニウムクロライド(DADMAC)重合体(平均分子量20万、固形分40%、SNF社製「PRP4440」)]を使用し、これを塗装ブースで噴霧された塗料に対して1.0質量%の割合で添加した。また、アミノ樹脂酸コロイドとして、実施例3と同じアミノ樹脂酸コロイドを塗装ブースで噴霧された塗料に対して13.5質量%の割合で添加した。
(Example 5)
In Example 5, diallyldimethylammonium chloride (DADMAC) polymer (average molecular weight 200,000, solid content 40%, “SRP” “PRP4440”)) was used as the cationic coagulant, and this was sprayed at the coating booth. It added in the ratio of 1.0 mass% with respect to the coating material. Moreover, the same amino resin acid colloid as Example 3 was added as an amino resin acid colloid in the ratio of 13.5 mass% with respect to the coating material sprayed by the coating booth.

(実施例6)
実施例6では、実施例5と同じカチオン性凝結剤を同じ量だけ添加し、実施例3と同じアミノ樹脂酸コロイドを塗装ブースで噴霧された塗料に対して18.0質量%の割合で添加した。
(Example 6)
In Example 6, the same cationic coagulant as in Example 5 was added in the same amount, and the same amino resin acid colloid as in Example 3 was added at a ratio of 18.0% by mass with respect to the paint sprayed in the coating booth. did.

(実施例7)
実施例7では、カチオン性凝結剤としてポリエチレンイミン(平均分子量7万、固形分30%、日本触媒(株)製「エポミンP−1000」)を用い、これを塗装ブースで噴霧された塗料に対して1.0質量%の割合で添加した。また、アミノ樹脂酸コロイドとして、実施例1と同じアミノ樹脂酸コロイドを塗装ブースで噴霧された塗料に対して18.0質量%の割合で添加した。
(Example 7)
In Example 7, polyethyleneimine (average molecular weight 70,000, solid content 30%, “Epomin P-1000” manufactured by Nippon Shokubai Co., Ltd.) was used as the cationic coagulant, and this was applied to the paint sprayed at the coating booth. 1.0% by mass. Moreover, the same amino resin acid colloid as Example 1 was added as an amino resin acid colloid in the ratio of 18.0 mass% with respect to the coating material sprayed by the coating booth.

(実施例8)
実施例8では、実施例7と同じカチオン性凝結剤を同じ量だけ添加し、実施例3と同じアミノ樹脂酸コロイドを塗装ブースで噴霧された塗料に対して27.0質量%の割合で添加した。
(Example 8)
In Example 8, the same cationic coagulant as in Example 7 was added in the same amount, and the same amino resin acid colloid as in Example 3 was added at a ratio of 27.0% by mass with respect to the paint sprayed in the coating booth. did.

(比較例1)
比較例1では、ブース循環水中に何も添加しなかった。
(Comparative Example 1)
In Comparative Example 1, nothing was added to the booth circulating water.

(比較例2)
比較例2では、ブース循環水中に添加するカチオン性凝結剤としてポリエチレンイミン(平均分子量7万、固形分30%、日本触媒(株)製「エポミンP−1000」)を用い、これを塗装ブースで噴霧された塗料に対して1.0質量%の割合で添加し、アミノ樹脂酸コロイドは添加しなかった。
(Comparative Example 2)
In Comparative Example 2, polyethylene imine (average molecular weight 70,000, solid content 30%, “Epomin P-1000” manufactured by Nippon Shokubai Co., Ltd.) was used as a cationic coagulant added to the booth circulating water, and this was applied at the paint booth. It added in the ratio of 1.0 mass% with respect to the sprayed coating material, and the amino resin acid colloid was not added.

(比較例3)
比較例3では、比較例2と同じカチオン性凝結剤を比較例2の5倍量添加し、アミノ樹脂酸コロイドは添加しなかった。
(Comparative Example 3)
In Comparative Example 3, the same cationic coagulant as in Comparative Example 2 was added in an amount 5 times that in Comparative Example 2, and the amino resin acid colloid was not added.

(比較例4)
比較例4では、ブース循環水中に添加するアミノ樹脂酸コロイドとして、尿素−メラミン−ホルムアルデヒド樹脂(固形分80%、昭和高分子(株)製「ミルベンレジンSM−615」)62.5gを3.8%の乳酸水溶液1リットル中に添加、攪拌して調製したものを用い、これを塗装ブースで噴霧された塗料に対して27質量%の割合で添加した。なお、カチオン性凝結剤は添加しなかった。
(Comparative Example 4)
In Comparative Example 4, 3.8 g of urea-melamine-formaldehyde resin (solid content 80%, “Milben Resin SM-615” manufactured by Showa Polymer Co., Ltd.) as 3.8 is added as the amino resin acid colloid added to the booth circulating water. A solution prepared by adding and stirring in 1 liter of a 1% aqueous lactic acid solution was added at a ratio of 27% by mass to the paint sprayed in the coating booth. No cationic coagulant was added.

(比較例5)
比較例5では、実施例4と同じアミノ酸樹脂コロイドを塗装ブースで噴霧された塗料に対して54.0質量%の割合で添加し、カチオン性凝結剤は添加しなかった。
(Comparative Example 5)
In Comparative Example 5, the same amino acid resin colloid as in Example 4 was added at a ratio of 54.0% by mass with respect to the paint sprayed at the coating booth, and no cationic coagulant was added.

(比較例6)
比較例6では、アルミナゾルを塗装ブースで噴霧された塗料に対して30質量%の割合で添加した。アルミナゾルの調製は、次のように行った。すなわち、容量1.5リットルの攪拌付きオートクレーブに乾燥水酸化アルミニウムゲル(協和化学工業(株)製「キョーワード200S」)134g、水820g及び硝酸(濃度67.5%)16gを入れ、密閉し、攪拌しながら130°Cまで加温する。2時間経過後冷却し、グリシン30gを加えてアルミナゾルとした。
(Comparative Example 6)
In Comparative Example 6, alumina sol was added at a ratio of 30% by mass with respect to the paint sprayed at the coating booth. Alumina sol was prepared as follows. That is, 134 g of dry aluminum hydroxide gel (“KYOWARD 200S” manufactured by Kyowa Chemical Industry Co., Ltd.), 820 g of water and 16 g of nitric acid (concentration 67.5%) are placed in an autoclave with stirring of 1.5 liter and sealed. Heat to 130 ° C. with stirring. After 2 hours, the mixture was cooled and 30 g of glycine was added to obtain an alumina sol.

(比較例7)
比較例7では、ポリエチレンワックスエマルジョンを塗装ブースで噴霧された塗料に対して30質量%の割合で添加した。ポリエチレンワックスエマルジョンの調製は、次のように行った。すなわち、容量1.5リットルの攪拌付きオートクレーブにポリエチレンワックス(長瀬産業(株)製「エポレンE−10」)90g、水363g、ヘキサメチレンジアミン(65%品)27g及びラウリン酸15gを加え、密閉し、攪拌しながら120°Cまで加温する。1時間経過後冷却し、水505gを加えてポリエチレンワックスエマルションとした。
(Comparative Example 7)
In Comparative Example 7, the polyethylene wax emulsion was added at a ratio of 30% by mass with respect to the paint sprayed at the painting booth. The polyethylene wax emulsion was prepared as follows. That is, 90 g of polyethylene wax (“Epolene E-10” manufactured by Nagase Sangyo Co., Ltd.), 363 g of water, 27 g of hexamethylenediamine (65% product) and 15 g of lauric acid were added to an autoclave with stirring of 1.5 liters in volume and sealed And warm to 120 ° C. with stirring. After 1 hour, it was cooled and 505 g of water was added to make a polyethylene wax emulsion.

(比較例8)
比較例8では、ポリ塩化アルミニウム(朝日化学工業(株)製「水道用PAC」)をブース循環水中に含まれている塗料に対して30質量%の割合で添加した。
(Comparative Example 8)
In Comparative Example 8, polyaluminum chloride (“PAC for water” manufactured by Asahi Chemical Industry Co., Ltd.) was added at a ratio of 30% by mass with respect to the paint contained in the booth circulating water.

(比較例9)
比較例9では、ブース循環水中に添加するカチオン性凝結剤として、ジメチルアミン−エピクロルヒドリン縮合物(平均分子量5000、固形分50%:長瀬産業(株)製「ワイステックスT−101−50」)を用い、これを塗装ブースで噴霧された塗料に対して0.7質量%の割合で添加した。また、さらに比較例6で用いたアルミナゾルを塗装ブースで噴霧された塗料に対して30質量%の割合で添加した。
(Comparative Example 9)
In Comparative Example 9, dimethylamine-epichlorohydrin condensate (average molecular weight 5000, solid content 50%: “Wastex T-101-50” manufactured by Nagase Sangyo Co., Ltd.) was used as a cationic coagulant added to the booth circulating water. It was used and added in a proportion of 0.7% by weight with respect to the paint sprayed in the painting booth. Further, the alumina sol used in Comparative Example 6 was added at a ratio of 30% by mass with respect to the paint sprayed at the coating booth.

(比較例10)
比較例10では、比較例9と同じカチオン性凝結剤を同じ量だけ添加し、さらに比較例7で用いたポリエチレンワックスエマルジョンを塗装ブースで噴霧された塗料に対して30質量%の割合で添加した。
(Comparative Example 10)
In Comparative Example 10, the same cationic coagulant as in Comparative Example 9 was added in the same amount, and the polyethylene wax emulsion used in Comparative Example 7 was added at a ratio of 30% by mass with respect to the paint sprayed in the coating booth. .

(比較例11)
比較例11では、アミノ樹脂酸コロイドとして、メラミン:ホルムアルデヒド=1:2.19(重量比)のメチロール化メラミン100gを1.35%の塩酸水溶液1リットル中に添加、攪拌して調製したものを用い、これを塗装ブースで噴霧された塗料に対して30質量%の割合で添加した。また、さらに比較例8と同じポリ塩化アルミニウムを塗装ブースで噴霧された塗料に対して30質量%の割合で添加した。
(Comparative Example 11)
In Comparative Example 11, 100 g of methylolated melamine of melamine: formaldehyde = 1: 2.19 (weight ratio) was added to 1 liter of a 1.35% hydrochloric acid aqueous solution as an amino resin acid colloid, and the mixture was prepared by stirring. This was added at a rate of 30% by weight based on the paint sprayed in the painting booth. Further, the same polyaluminum chloride as in Comparative Example 8 was added at a ratio of 30% by mass with respect to the paint sprayed at the coating booth.

(比較例12)
比較例12では、比較例11と同じアミノ樹脂酸コロイドを同じ量だけ添加し、さらにポリアクリルアミド(三井サイテック(株)製「スーパーフロック2300S」)を塗装ブースで噴霧された塗料に対して0.4質量%の割合で添加した。
(Comparative Example 12)
In Comparative Example 12, the same amount of the same amino resin acid colloid as in Comparative Example 11 was added, and polyacrylamide (“Super Flock 2300S” manufactured by Mitsui Cytec Co., Ltd.) was further added to the paint sprayed at the coating booth in an amount of 0.00. 4% by mass was added.

<ブース循環水の処理試験>
上記実施例1〜8及び比較例1〜12のブース循環水処理方法によって、ブース循環水の処理試験を行った。試験に用いた湿式塗装ブースは、図1に示すように、塗装を行うための塗装ブース本体1と、塗装ブース本体1において流下されるブース循環水を受ける貯留槽2と、ブース循環水中の塗料を分離するための分離槽3とを備えている。塗装ブース本体1と貯留槽2と分離槽3とは配管4で接続されており、配管4の途中に設置された循環ポンプ5によって、ブース循環水が循環可能となっている。配管4の途中にはブース循環水中へ薬品を添加するための定量ポンプ6a、6bが接続されており、それらは薬剤タンク7a、7bに接続されている。この湿式塗装ブースの保有水量は120リットルとされており、循環ポンプ5によるブース循環水の水量は50リットル/分とされている。
<Treatment test of booth circulating water>
By the booth circulating water processing method of the said Examples 1-8 and Comparative Examples 1-12, the processing test of the booth circulating water was done. As shown in FIG. 1, the wet painting booth used for the test is a painting booth main body 1 for painting, a storage tank 2 for receiving the booth circulating water flowing down in the painting booth main body 1, and a paint in the booth circulating water. And a separation tank 3 for separating the water. The painting booth main body 1, the storage tank 2, and the separation tank 3 are connected by a pipe 4, and the booth circulating water can be circulated by a circulation pump 5 installed in the middle of the pipe 4. Metering pumps 6a and 6b for adding chemicals to the booth circulating water are connected in the middle of the pipe 4, and these are connected to the chemical tanks 7a and 7b. The amount of water held in this wet painting booth is 120 liters, and the amount of booth circulating water by the circulation pump 5 is 50 liters / minute.

以上のように構成された試験用湿式塗装ブースを用い、定量ポンプ6a、6bを駆動して上記薬品の所定量を添加しつつ、塗装ブース内でブース循環水に向けて水性塗料と油性塗料とを各2g/分で連続して3時間噴霧した。水性塗料としては、自動車用水性上塗り塗料(日本ペイント(株)製)を用い、油性塗料としては、自動車用溶剤クリア塗料(日本ペイント(株)製)を用いた。また、塗料を噴霧している間、ブース循環水の電荷を測定し、電荷が−50〜+100(μeq/L−ブース循環水)になるようにカチオン性凝結剤の添加量を調節した。ブース循環水の電荷はコロイド滴定により測定した。噴霧終了後、ブース循環水を採取し、塗料の浮上又は沈降を待った後、中間層の濁度及びCODを測定した。また、浮上した塗料スラッジの不粘着化性を測定評価した。濁度はJIS K 0101の透過光濁度によって評価した。また、CODはJIS K 0101の100℃における過マンガン酸カリウムによる酸素消費量によって評価した。さらに、塗料スラッジの不粘着化性は指触判定で実施し、強く押さえても全く粘着性がないものを「◎」、強く押さえると少し粘着性があるものを「○」、軽く押さえて粘着性があるものを「△」、触れただけで強い粘着性があるものを「×」とした。結果を表1に示す。   Using the wet test booth for testing constructed as described above, the metering pumps 6a and 6b are driven to add a predetermined amount of the above chemicals, while water paint and oil paint are directed toward the booth circulating water in the paint booth. Was sprayed continuously at 2 g / min for 3 hours. As the water-based paint, a water-based top coat for automobiles (manufactured by Nippon Paint Co., Ltd.) was used, and as the oil-based paint, a solvent clear paint for automobiles (manufactured by Nippon Paint Co., Ltd.) was used. Moreover, while spraying the paint, the charge of the booth circulating water was measured, and the addition amount of the cationic coagulant was adjusted so that the charge was −50 to +100 (μeq / L-booth circulating water). The charge of the booth circulating water was measured by colloid titration. After spraying, the booth circulating water was collected, and after waiting for the paint to float or settle, the turbidity and COD of the intermediate layer were measured. In addition, the tack-free property of the floating paint sludge was measured and evaluated. Turbidity was evaluated by transmitted light turbidity according to JIS K 0101. The COD was evaluated by the oxygen consumption by potassium permanganate at 100 ° C. according to JIS K 0101. Furthermore, the non-tackiness of the paint sludge is determined by touch, and “◎” indicates that there is no stickiness even when pressed hard, “○” indicates that it is slightly sticky when pressed hard, and lightly presses to stick. “△” indicates that the material is sticky, and “×” indicates that the material has strong tackiness simply by touching. The results are shown in Table 1.

Figure 2006061776
上記表1における処理薬品の記号は以下の薬品を示す。
(カチオン性凝結剤)
A−1:ジメチルアミン−エピクロルヒドリン縮合物(カチオン電荷7.4meq/g)
A−2:ジアリルジメチルアンモニウムクロライド(DADMAC)重合体(カチオン電荷6.1meq/g)
A−3:ポリエチレンイミン(カチオン電荷18.1meq/g)
(アミノ樹脂酸コロイド)
B−1:メラミン−ホルムアルデヒド樹脂塩酸コロイド
B−2:尿素−メラミン−ホルムアルデヒド樹脂乳酸コロイド
(その他)
C−1:アルミナゾル
C−2:ポリエチレンワックスエマルション
C−3:ポリ塩化アルミニウム
C−4:ポリアクリルアミド
Figure 2006061776
The symbols for treatment chemicals in Table 1 above indicate the following chemicals.
(Cationic coagulant)
A-1: Dimethylamine-epichlorohydrin condensate (cation charge 7.4 meq / g)
A-2: diallyldimethylammonium chloride (DADMAC) polymer (cation charge 6.1 meq / g)
A-3: Polyethyleneimine (cation charge 18.1 meq / g)
(Amino resin acid colloid)
B-1: Melamine-formaldehyde resin hydrochloric acid colloid B-2: Urea-melamine-formaldehyde resin lactic acid colloid (others)
C-1: Alumina sol C-2: Polyethylene wax emulsion C-3: Polyaluminum chloride C-4: Polyacrylamide

表1に示すように、ブース循環水中にカチオン性凝結剤とアミノ樹脂酸コロイドとを添加し、ブース循環水の電荷が−50〜+100(μeq/L−ブース循環水)になるようにカチオン性凝結剤の添加量を調節した実施例1〜8では、濁度が30度以下、CODが480(mg−O2/L−ブース循環水)以下と、ともに低く、ブース循環水中の塗料の分離が効率よくなされていることが分かる。また、不粘着化性も○又は◎の評価であり、ブース循環水の配管等に塗料が付着することを充分防止できることが分かった。これに対して、各種薬品を単独添加し、ブース循環水の電荷も調節しなかった比較例2〜8では、濁度が740度以上、CODも640(mg−O2/L−ブース循環水)以上となり、ブース循環水中の塗料の分離が極めて不十分であった。また、カチオン性凝結剤とポリエチレンポリエチレンワックスエマルションを組み合わせた比較例10や、メラミン−ホルムアルデヒド樹脂塩酸コロイドとポリ塩化アルミニウムを組み合わせた比較例11や、メラミン−ホルムアルデヒド樹脂塩酸コロイドとポリアクリルアミドを組み合わせた比較例11では、濁度が100度以上、CODが610(mg−O2/L−ブース循環水)以上となり、単独薬品の添加に比べてブース循環水中の塗料の分離が向上するものの、実用上としては、いまだ不十分であることが分かる。また、カチオン性凝結剤とアルミナゾルとを組み合わせた比較例9では、濁度が37度、CODが510(mg−O2/L−ブース循環水)と、ブース循環水中の塗料を比較的良好に分離することができるが、不粘着化性に劣り、分離はされてもブース循環水の配管等に付着しやすい状態であることが分かった。   As shown in Table 1, a cationic coagulant and an amino resin acid colloid are added to the booth circulating water so that the charge of the booth circulating water becomes −50 to +100 (μeq / L-booth circulating water). In Examples 1 to 8 in which the addition amount of the coagulant was adjusted, the turbidity was 30 degrees or less and the COD was 480 (mg-O2 / L-booth circulating water) or less, both of which showed that the paint in the booth circulating water was separated. You can see that it is done efficiently. Further, the tack-free property was evaluated as “Good” or “Excellent”, and it was found that the paint could be sufficiently prevented from adhering to the booth circulating water piping. On the other hand, in Comparative Examples 2 to 8 in which various chemicals were added alone and the charge of the booth circulating water was not adjusted, the turbidity was 740 degrees or more and the COD was 640 (mg-O2 / L-booth circulating water). Thus, the separation of the paint in the booth circulating water was extremely insufficient. Further, Comparative Example 10 in which a cationic coagulant and polyethylene polyethylene wax emulsion are combined, Comparative Example 11 in which melamine-formaldehyde resin hydrochloride colloid and polyaluminum chloride are combined, and comparison in which melamine-formaldehyde resin hydrochloride colloid and polyacrylamide are combined In Example 11, although the turbidity is 100 degrees or more and the COD is 610 (mg-O2 / L-booth circulating water) or more and the separation of the paint in the booth circulating water is improved as compared with the addition of a single chemical, Is still inadequate. In Comparative Example 9 in which the cationic coagulant and alumina sol were combined, the turbidity was 37 degrees, the COD was 510 (mg-O2 / L-Booth circulating water), and the paint in the Booth circulating water was separated relatively well. However, it was found to be in a state in which it is inferior in non-tackiness and easily adheres to the booth circulating water piping even if separated.

本発明は、湿式塗装ブースのブース循環水中に水性塗料と油性塗料とが両方存在する場合におけるブース循環水の処理方法として好適に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a booth circulating water treatment method when both a water-based paint and an oil-based paint are present in the booth circulating water of a wet painting booth.

実施例及び比較例で用いた試験用塗装ブース装置の模式図である。It is a schematic diagram of the coating booth apparatus for a test used by the Example and the comparative example.

符号の説明Explanation of symbols

1…塗装ブース本体
2…貯留槽
3…分離槽
4・・ブース水循環ライン
5・・ブース水循環ポンプ
6a、6b…定量ポンプ
7a、7b…薬剤タンク
DESCRIPTION OF SYMBOLS 1 ... Paint booth body 2 ... Storage tank 3 ... Separation tank 4 ... Booth water circulation line 5 ... Booth water circulation pump 6a, 6b ... Metering pump 7a, 7b ... Chemical tank

Claims (5)

湿式塗装ブースのブース循環水中に水性塗料と油性塗料とが混在している場合のブース循環水の処理方法であって、
前記ブース循環水中にカチオン性凝結剤とアミノ樹脂酸コロイドの両方を添加することを特徴とするブース循環水の処理方法。
A booth circulating water treatment method when water-based paint and oil-based paint are mixed in the booth circulating water of the wet paint booth,
A processing method for booth circulating water, wherein both a cationic coagulant and an amino resin acid colloid are added to the booth circulating water.
カチオン性凝結剤は、ポリアクリルアミノエチルトリメチルアンモニウムクロライド、アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体、ジシアンジアミド−ホルムアルデヒド共重合体、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジメチルアミン−エピクロルヒドリン縮合物、ジメチルアミン−エピクロルヒドリン−アンモニア縮合物、ジアリルジメチルアンモニウムクロライド重合体、ジアリルジメチルアンモニウムクロライド−アクリルアミド共重合体及びポリエチレンイミンから選ばれる1種以上であることを特徴とする請求項1記載のブース循環水の処理方法。   Cationic coagulants are polyacrylaminoethyltrimethylammonium chloride, acrylamide-acrylaminoethyltrimethylammonium chloride copolymer, dicyandiamide-formaldehyde copolymer, diallyldimethylammonium chloride-sulfur dioxide copolymer, dimethylamine-epichlorohydrin condensate. The booth circulating water according to claim 1, wherein the booth circulating water is at least one selected from the group consisting of dimethylamine-epichlorohydrin-ammonia condensate, diallyldimethylammonium chloride polymer, diallyldimethylammonium chloride-acrylamide copolymer, and polyethyleneimine. Processing method. カチオン性凝結剤の分子量は2,000〜500,000とされていることを特徴とする請求項2記載のブース循環水の処理方法。 The method of treating booth circulating water according to claim 2, wherein the cationic coagulant has a molecular weight of 2,000 to 500,000. ブース循環水中の電荷量が−50〜+100μeq/Lとなるようにカチオン性凝結剤の添加量を調整することを特徴とする請求項1乃至3のいずれか1項記載のブース循環水の処理方法。 The method for treating booth circulating water according to any one of claims 1 to 3, wherein the addition amount of the cationic coagulant is adjusted so that the amount of charge in the booth circulating water is -50 to +100 µeq / L. . アミノ樹脂酸コロイドはメラミン樹脂酸コロイド又はメラミン・尿素樹脂酸コロイドであることを特徴とする請求項1乃至4のいずれか1項記載のブース循環水の処理方法。   The method for treating booth circulating water according to any one of claims 1 to 4, wherein the amino resin acid colloid is a melamine resin acid colloid or a melamine / urea resin acid colloid.
JP2004244873A 2004-08-25 2004-08-25 Booth circulating water treatment method Active JP4451249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244873A JP4451249B2 (en) 2004-08-25 2004-08-25 Booth circulating water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244873A JP4451249B2 (en) 2004-08-25 2004-08-25 Booth circulating water treatment method

Publications (2)

Publication Number Publication Date
JP2006061776A true JP2006061776A (en) 2006-03-09
JP4451249B2 JP4451249B2 (en) 2010-04-14

Family

ID=36108700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244873A Active JP4451249B2 (en) 2004-08-25 2004-08-25 Booth circulating water treatment method

Country Status (1)

Country Link
JP (1) JP4451249B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240928A (en) * 2008-03-31 2009-10-22 Hakuto Co Ltd Method of treating circulating water for the wet coating booth
JP2012531301A (en) * 2009-06-24 2012-12-10 ナルコ カンパニー Detackifying agent with high performance and low environmental impact
CN103359812A (en) * 2012-04-06 2013-10-23 成都环川科技有限公司 Efficient spray processing method for spray room
JP2014155916A (en) * 2013-02-18 2014-08-28 Kurita Water Ind Ltd Method of treating wet coating booth circulating water
US10093562B2 (en) 2009-06-24 2018-10-09 Ecolab Usa Inc. Methods and compositions for the treatment and recovery of purge solvent
US10316202B2 (en) 2016-07-01 2019-06-11 Ecolab Usa Inc. Low chloride paint detackifier
JP2020116534A (en) * 2019-01-25 2020-08-06 ハイモ株式会社 Wastewater treatment method
US10954399B2 (en) 2018-06-14 2021-03-23 Ecolab Usa Inc. Addition of caustic soda for improving detackifier stability
CN117049682A (en) * 2023-10-12 2023-11-14 杭州尚善若水环保科技有限公司 Composite flocculant and application thereof in dye wastewater treatment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240928A (en) * 2008-03-31 2009-10-22 Hakuto Co Ltd Method of treating circulating water for the wet coating booth
JP2012531301A (en) * 2009-06-24 2012-12-10 ナルコ カンパニー Detackifying agent with high performance and low environmental impact
US10093562B2 (en) 2009-06-24 2018-10-09 Ecolab Usa Inc. Methods and compositions for the treatment and recovery of purge solvent
US10308531B2 (en) 2009-06-24 2019-06-04 Ecolab Usa Inc. Composition and processfor removing impurities from a circulating water system
CN103359812A (en) * 2012-04-06 2013-10-23 成都环川科技有限公司 Efficient spray processing method for spray room
JP2014155916A (en) * 2013-02-18 2014-08-28 Kurita Water Ind Ltd Method of treating wet coating booth circulating water
US10316202B2 (en) 2016-07-01 2019-06-11 Ecolab Usa Inc. Low chloride paint detackifier
US10883004B2 (en) 2016-07-01 2021-01-05 Ecolab Usa Inc. Low chloride paint detackifier
US10954399B2 (en) 2018-06-14 2021-03-23 Ecolab Usa Inc. Addition of caustic soda for improving detackifier stability
JP2020116534A (en) * 2019-01-25 2020-08-06 ハイモ株式会社 Wastewater treatment method
JP7250270B2 (en) 2019-01-25 2023-04-03 ハイモ株式会社 Wastewater treatment method
CN117049682A (en) * 2023-10-12 2023-11-14 杭州尚善若水环保科技有限公司 Composite flocculant and application thereof in dye wastewater treatment
CN117049682B (en) * 2023-10-12 2024-01-23 杭州尚善若水环保科技有限公司 Composite flocculant and application thereof in dye wastewater treatment

Also Published As

Publication number Publication date
JP4451249B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4717837B2 (en) Booth circulating water treatment method
JP2510812B2 (en) Method for removing paint solids from water-based paint systems using aluminum salts
JP4451249B2 (en) Booth circulating water treatment method
CN101205094B (en) Wet type chamber circulating water treatment method
JP2009126948A (en) Hydrophilizing agent
EP0293129B1 (en) Process for detackification of paint spray operation wastes using melamine formaldehyde
JP2006525871A (en) Compositions and methods for paint overspray removal processes
ES2802201T3 (en) Treatment method for circulating wet type coating booth water
CA2983264C (en) Paint detackifier composition and uses thereof
CN1830829A (en) Method of processing for wet coating grooved circulating water
JP5880602B2 (en) Wet paint booth circulating water treatment agent
JP4261039B2 (en) Wet paint booth circulating water management method
JP2011020084A (en) Method of treating wet coating booth circulating water containing aqueous coating material
ES2924105T3 (en) Method for treating circulating water in a wet coating booth
JP6120470B2 (en) Wet paint booth circulating water treatment agent and treatment method
JP4069799B2 (en) Wet paint booth circulating water treatment method
US4163702A (en) Process for rendering surfaces permanently water wettable and novel product thus-produced
JP2005103361A (en) Coating material mist treatment agent and coating material mist treatment method
JP5681828B1 (en) Wet paint booth circulating water treatment method
JP2014155916A (en) Method of treating wet coating booth circulating water
JPH0665397B2 (en) Improved solids removal method from systems containing water-based paints
JP4993617B2 (en) Wet paint booth circulating water treatment method
JPH08182901A (en) Treating agent for circulating water of wet coating booth
TWI640497B (en) Wet coating room circulating water treatment agent and treatment method
JP2015221404A (en) Method for treating coating material waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250