JP2006061743A - Method and apparatus for treating excess sludge - Google Patents

Method and apparatus for treating excess sludge Download PDF

Info

Publication number
JP2006061743A
JP2006061743A JP2004243482A JP2004243482A JP2006061743A JP 2006061743 A JP2006061743 A JP 2006061743A JP 2004243482 A JP2004243482 A JP 2004243482A JP 2004243482 A JP2004243482 A JP 2004243482A JP 2006061743 A JP2006061743 A JP 2006061743A
Authority
JP
Japan
Prior art keywords
sludge
tank
treatment
water
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004243482A
Other languages
Japanese (ja)
Inventor
Kojiro Fujii
康二郎 藤井
Kenji Haneda
研司 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004243482A priority Critical patent/JP2006061743A/en
Publication of JP2006061743A publication Critical patent/JP2006061743A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which enables the efficient reduction of the volume of excess sludge generated by an activated sludge method with relatively simple equipment and a treatment apparatus therefor. <P>SOLUTION: In the method serving as a biological treatment method of the excess sludge generated in accompany with activated sludge treatment of raw water, the excess sludge is mixed with a part of the raw water to biologically treat the mixture water generated by the mixture at least aerobically by a contact material which carries a microbe. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、汚濁物質を含む排水等を活性汚泥法等により生物処理した際に、発生する余剰汚泥を処理する処理方法またはそのための処理装置に関する。   The present invention relates to a treatment method for treating surplus sludge generated when wastewater containing pollutants is biologically treated by an activated sludge method or the like, or a treatment apparatus therefor.

汚濁物質を含む工場排水等の原水を、活性汚泥法を用いて生物処理する方法は、広く用いられている排水の処理方法であるが、その際に発生する多量の余剰汚泥の処理が問題となっていた。余剰汚泥は含水率が高い産業廃棄物であり、通常は、多量の凝集剤を用いた凝集処理と、機械的な脱水処理と、焼却処理とが必要であり、これらの処理に一定のコストがかかる。そのため、より簡便に処理できる生物を用いた処理方法が各種提案されている。   The method of biologically treating raw water such as industrial wastewater containing pollutants using the activated sludge method is a widely used wastewater treatment method, but the treatment of a large amount of excess sludge generated at that time is a problem. It was. Excess sludge is an industrial waste with a high moisture content, and usually requires coagulation using a large amount of coagulant, mechanical dehydration, and incineration, and these treatments have a certain cost. Take it. For this reason, various treatment methods using organisms that can be more easily treated have been proposed.

まず、物理化学的方法により、余剰汚泥の細胞壁を破壊して細胞質を溶出させて溶菌することで余剰汚泥をBOD成分となし、これを活性汚泥槽へ返送して好気的に分解することで、余剰汚泥を減容化させる技術が提案されている。このような装置の例を図5に示す。原水1は貯留槽10を経由して、活性汚泥槽である曝気槽20に送られ、ここで散気管21から供給される空気と活性汚泥とにより好気的に分解処理される。続いて沈澱槽30で沈澱汚泥と処理水とが固液分離され、沈澱汚泥は、一部がそのまま活性汚泥槽20に戻されるが、他の一部は、何らかの方法を用いた可溶化装置110によって可溶化処理され、溶菌してBOD成分として活性汚泥槽20に戻される。残りの沈澱汚泥は余剰汚泥112として通常の凝集処理等がなされる。   First, the surplus sludge is made into a BOD component by destroying the cell wall of the excess sludge by using a physicochemical method, eluting the cytoplasm and lysing it, and returning it to the activated sludge tank and aerobically decomposing it. A technique for reducing the volume of excess sludge has been proposed. An example of such an apparatus is shown in FIG. The raw water 1 is sent to the aeration tank 20 which is an activated sludge tank via the storage tank 10, where it is aerobically decomposed by the air and activated sludge supplied from the air diffuser 21. Subsequently, the sedimentation sludge and the treated water are solid-liquid separated in the sedimentation tank 30, and a part of the sedimentation sludge is returned to the activated sludge tank 20 as it is, but the other part is a solubilizer 110 using some method. Solubilized and returned to the activated sludge tank 20 as a BOD component. The remaining settled sludge is subjected to a normal flocculation process or the like as the excess sludge 112.

具体的には、可溶化装置110で余剰汚泥を可溶化する物理化学的方法としてオゾン処理を用いる方法が、例えば、特許文献1または2に開示されている。しかし、この方法では、オゾン発生設備と廃オゾン設備とを必要とするし、運転コストも高い。さらには、溶菌に伴うBOD負荷の増加に対応するため、曝気槽の容量を大きくする必要がある。また、水質上は脱窒が不十分となりやすい。   Specifically, for example, Patent Document 1 or 2 discloses a method using ozone treatment as a physicochemical method for solubilizing excess sludge with the solubilizer 110. However, this method requires an ozone generation facility and a waste ozone facility, and the operation cost is high. Furthermore, it is necessary to increase the capacity of the aeration tank in order to cope with an increase in BOD load accompanying lysis. Also, denitrification tends to be insufficient in terms of water quality.

また、余剰汚泥を可溶化する物理化学的方法として、余剰汚泥を50℃に加熱し、フェントン酸化法によるヒドロキシラジカルで細胞壁を破壊して処理する方法が、例えば、特許文献3に開示されている。しかし、この方法では、フェントン酸化法による鉄酸化物が発生するし、余剰汚泥の20%程度が残存してしまって完全には消滅しない。さらには、この方法でもBOD負荷量の増加に対応して曝気槽の容量を大きくする必要がある。   Further, as a physicochemical method for solubilizing excess sludge, for example, Patent Document 3 discloses a method in which surplus sludge is heated to 50 ° C. and cell walls are destroyed with hydroxy radicals by the Fenton oxidation method. . However, in this method, iron oxide is generated by the Fenton oxidation method, and about 20% of the excess sludge remains and does not disappear completely. Furthermore, even in this method, it is necessary to increase the capacity of the aeration tank in response to an increase in the BOD load.

また、余剰汚泥を可溶化する物理化学的方法として、余剰汚泥を数ミリ径のセラミックビーズ等を用いたミルで機械的に破壊して溶菌させてから処理する方法が、例えば、特許文献4に開示されている。しかし、これも上記の方法と同様に曝気槽の容量を大きくする必要がある。また、破細・溶菌された余剰汚泥が、曝気槽での分解残による処理水質の不良化をもたらしやすいうえ、余剰汚泥の20%程度は、沈降槽から引き抜いて系外に排出する処理をしなければならない。   Further, as a physicochemical method for solubilizing excess sludge, for example, Patent Document 4 discloses a method in which excess sludge is mechanically destroyed and lysed by a mill using ceramic beads having a diameter of several millimeters. It is disclosed. However, it is necessary to increase the capacity of the aeration tank as in the above method. In addition, surplus sludge that has been broken or lysed is likely to cause poor water quality due to decomposition residue in the aeration tank, and about 20% of the excess sludge is extracted from the settling tank and discharged out of the system. There must be.

また、上記のごとき物理化学的方法に生物処理を加えて、余剰汚泥を溶菌してから好気処理する方法が、特許文献5に開示されている。この方法では、余剰汚泥を60〜70℃の高温好気反応により溶菌させる。余剰汚泥の20%程度は、沈降槽から引き抜いて従来通りの凝集、脱水、焼却処理を行うことが必要となる。   Further, Patent Document 5 discloses a method in which biological treatment is added to the physicochemical method as described above to lyse excess sludge and then aerobic treatment is performed. In this method, excess sludge is lysed by a high-temperature aerobic reaction at 60 to 70 ° C. About 20% of the excess sludge needs to be extracted from the sedimentation tank and subjected to conventional agglomeration, dehydration and incineration treatments.

また、余剰汚泥に何らかの処理を加えて再び活性汚泥装置に戻すのではなく、余剰汚泥を別途用意された汚泥処理装置に投入し、その汚泥処理装置の接触曝気槽内に設けられた多数の接触材上の高級微生物を利用して余剰汚泥を連続的に分解消化する方法が特許文献6に開示されている。しかし、この方法では、高級微生物の活性が低くて余剰汚泥の処理効率が低い。例えば、活性汚泥装置で1日で発生した余剰汚泥を、同じ大きさの汚泥処理装置で全量消滅させるには、計算上11日間にわたる生物反応時間が必要になる。つまり、発生した分を全部同じ時間内で処理しようとすると、余剰汚泥が発生した活性汚泥装置の10倍以上の容量の汚泥処理装置を必要とする。
特開平6−206088号公報 特開平7−232184号公報 特開平10−128376号公報 特開平11−300393号公報 特開平9−10791号公報 特開2002−143895号公報
In addition, instead of applying some treatment to the surplus sludge and returning it to the activated sludge device again, the surplus sludge is put into a separately prepared sludge treatment device and a number of contacts provided in the contact aeration tank of the sludge treatment device. Patent Document 6 discloses a method for continuously decomposing and digesting excess sludge using high-grade microorganisms on the material. However, in this method, the activity of high-grade microorganisms is low and the treatment efficiency of excess sludge is low. For example, in order to eliminate all the excess sludge generated in an activated sludge apparatus in one day with a sludge treatment apparatus of the same size, a biological reaction time over 11 days is required for calculation. In other words, if the generated sludge is to be treated within the same time, a sludge treatment device having a capacity 10 times or more that of the activated sludge device in which excess sludge is generated is required.
Japanese Patent Laid-Open No. 6-206088 Japanese Patent Laid-Open No. 7-232184 Japanese Patent Laid-Open No. 10-128376 JP-A-11-300393 JP-A-9-10791 JP 2002-143895 A

本発明は、活性汚泥法で発生した余剰汚泥を、比較的簡単な設備で効率的に減容化できる汚泥処理方法またはそのための処理装置を提案することを課題とする。   An object of the present invention is to propose a sludge treatment method or a treatment apparatus therefor capable of efficiently reducing the volume of excess sludge generated by the activated sludge method with relatively simple equipment.

本発明の第1は、原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理方法であって、前記余剰汚泥に前記原水の一部を混合し、前記混合により生成された混合水が、接触材に担持された微生物により、少なくとも好気的に生物処理されることを特徴とする余剰汚泥の生物処理方法である。   A first aspect of the present invention is a biological treatment method for surplus sludge generated with the activated sludge treatment of raw water, wherein a part of the raw water is mixed with the surplus sludge, and the mixed water generated by the mixing is contacted. It is a biological treatment method for surplus sludge characterized in that it is at least aerobically biologically treated with microorganisms carried on the material.

ここで、前記混合水における前記余剰汚泥と前記原水との混合比率が、1対9から7対3の範囲内であるのは好ましい。また、前記の好気的な生物処理が、微生物、原生動物、後生動物からなる微小動物捕食機構を用いたものであることは好ましい。また、さらに、通性嫌気性雰囲気における脱窒処理を含むことは好ましい。また、前記の生物処理後に、沈澱物の分離処理がなされることは好ましい。また、前記分離処理が、膜分離によりなされるものであることは好ましい。また、さらに、前記沈澱物が分離された上澄み水に、脱リン処理がなされることは好ましい。また、前記接触材が、螺旋状の芯材と、前記芯材表面に多数設けられたループ状繊維とからなることは好ましい。また、前記のループ状繊維が、塩化ビニリデン製であることは好ましい。   Here, it is preferable that the mixing ratio of the excess sludge and the raw water in the mixed water is within a range of 1: 9 to 7: 3. Moreover, it is preferable that the aerobic biological treatment uses a microanimal feeding mechanism composed of microorganisms, protozoa, and metazoans. Furthermore, it is preferable to include a denitrification treatment in a facultative anaerobic atmosphere. Moreover, it is preferable that the precipitate is separated after the biological treatment. Further, it is preferable that the separation treatment is performed by membrane separation. Furthermore, it is preferable that the supernatant water from which the precipitate has been separated is subjected to a dephosphorization treatment. Moreover, it is preferable that the said contact material consists of a helical core material and the loop-shaped fiber provided many in the said core material surface. The loop-like fiber is preferably made of vinylidene chloride.

発明の第2は、原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理装置であって、前記余剰汚泥に前記原水の一部を混合して混合水とする混合手段と、微生物を担持した接触材を備え、前記の混合水を少なくとも好気的に生物処理する処理手段とを備えることを特徴とする余剰汚泥の生物処理装置である。   A second aspect of the invention is a biological treatment apparatus for surplus sludge generated by the activated sludge treatment of raw water, wherein a mixing means for mixing a part of the raw water with the surplus sludge to obtain mixed water and a microorganism are supported. A surplus sludge biological treatment apparatus comprising a contact member and a treatment means for biologically treating the mixed water at least aerobically.

活性汚泥装置で発生した余剰汚泥を、比較的簡単で小さな設備により効率的に減容化できる。その際の運転コストも低い。また、既設の活性汚泥槽の容量を大きくする必要が無く、逆に一部の原水を汚泥処理装置で処理できるから、活性汚泥槽での処理量が減少する。余剰汚泥を全量処理することも可能となる。   The excess sludge generated in the activated sludge device can be efficiently reduced with relatively simple and small equipment. The operating cost at that time is also low. Moreover, since it is not necessary to enlarge the capacity | capacitance of the existing activated sludge tank and conversely some raw water can be processed with a sludge processing apparatus, the processing amount in an activated sludge tank reduces. It is also possible to treat all excess sludge.

本発明の実施の形態例を図面を引用しながら説明する。まず図1は、本発明の汚泥処理方法を実施できるように、従来とほぼ同じ活性汚泥装置に、本発明に係わる汚泥処理装置60が組み込まれた構成例の概念図である。活性汚泥装置は、BOD成分や窒素分、リン等を含む工場排水などの原水1を受け入れる貯留槽10と、原水1をブロア22と散気管21によりもたらされた好気雰囲気下で処理することで、BOD成分を消化して余剰汚泥を生成する活性汚泥槽20と、処理水から沈澱汚泥31を固液分離する沈澱槽30と、沈澱槽30からライン40で抜き出された沈澱汚泥31の一部を活性汚泥槽20に返送するライン41とを備える。   Embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 is a conceptual diagram of a configuration example in which a sludge treatment apparatus 60 according to the present invention is incorporated in an activated sludge apparatus that is almost the same as a conventional one so that the sludge treatment method of the present invention can be implemented. The activated sludge apparatus treats the raw water 1 in the aerobic atmosphere provided by the blower 22 and the air diffuser 21, which receives the raw water 1 such as factory effluent containing BOD components, nitrogen, phosphorus, etc. The activated sludge tank 20 that digests the BOD component to generate surplus sludge, the precipitation tank 30 that solid-liquid separates the precipitated sludge 31 from the treated water, and the precipitated sludge 31 that is extracted from the precipitation tank 30 through the line 40. And a line 41 for returning a part to the activated sludge tank 20.

生物処理の対象となる原水1は、一般の下水、農業集落排水、コミュニティプラン等の生活排水系、食品工場排水、ホテル等の厨房排水、アミノ酸工業等の発酵液排水、化学工場や水溶性塗装工場の溶剤排水等の生物処理可能な排水であればよく、特に限定されるものではない。原水1は、貯留槽10から活性汚泥槽20に送られ、続いて沈澱槽30に送られて、最後にBOD成分が減少した処理水4として放流される。   Raw water 1 subject to biological treatment is general sewage, agricultural village drainage, community drainage systems such as community plans, food factory effluents, kitchen effluents of hotels, fermented effluents of amino acid industries, chemical factories and water-soluble paints. There is no particular limitation as long as it is a wastewater that can be biologically treated, such as solvent wastewater from a factory. The raw water 1 is sent from the storage tank 10 to the activated sludge tank 20, and then sent to the sedimentation tank 30, and finally discharged as treated water 4 with a reduced BOD component.

活性汚泥槽20では、好気性の微生物が、特に担体を用いない浮遊状態で存在し、原水中のBOD成分を栄養源として、散気管から供給された酸素を消費して増殖する。これにより原水に対する生物処理がなされると共に余剰汚泥が発生する。この微生物は、0.5μmから1.0μmていどの大きさの好気性細菌類であり、自ら粘液物質を分泌して集団(フロック)を作っている。微生物集団は、散気管からの空気により攪拌・混合されると共に酸素供給される(曝気)ことで活発に活動して、原水中のBOD成分を消費する。活性汚泥の生物相は、主にこの微生物で構成されており、微生物より上位の原生動物等が共生していることもあるが、微生物からの排出物が多いため活動が抑制される傾向にある。つまり、活性汚泥は、ほぼ一様にこの微生物の塊であると言える。   In the activated sludge tank 20, aerobic microorganisms exist in a floating state that does not particularly use a carrier, and proliferate by consuming oxygen supplied from the air diffuser using the BOD component in the raw water as a nutrient source. As a result, biological treatment of raw water is performed and surplus sludge is generated. These microorganisms are aerobic bacteria having a size of 0.5 μm to 1.0 μm, and secrete mucus substances themselves to form a population (floc). The microbial population is vigorously activated by being agitated and mixed by the air from the diffuser and supplied with oxygen (aeration), and consumes the BOD component in the raw water. The biota of activated sludge is mainly composed of these microorganisms, and protozoa higher than microorganisms may coexist, but the activity tends to be suppressed because there are many emissions from microorganisms. . That is, it can be said that activated sludge is almost uniformly a mass of this microorganism.

このような活性汚泥が沈澱槽30に送られると、静置状態に置かれることで微生物が沈降し、沈澱汚泥31となる。この沈澱汚泥31は、随時、沈澱槽30から抜き出されて、一部が活性汚泥槽20に返送されて、活性汚泥槽の維持のために用いられるが、それ以外は余剰汚泥となる。この余剰汚泥は、ライン42から汚泥処理装置60に送られて処理される。   When such activated sludge is sent to the sedimentation tank 30, the microorganisms are settled by being left in a stationary state to form a sedimentation sludge 31. The sedimentation sludge 31 is extracted from the sedimentation tank 30 as needed, and a part thereof is returned to the activated sludge tank 20 to be used for maintaining the activated sludge tank, but the rest is surplus sludge. This excess sludge is sent from the line 42 to the sludge treatment apparatus 60 for processing.

汚泥処理装置60には、余剰汚泥以外に、貯留槽10に貯められた原水1の一部が、貯留槽10からライン51で送られる。この原水1と余剰汚泥とが汚泥処理装置60で合わせて生物処理されることにより、処理水7が生成される。つまり、汚泥処理装置60では、原水のBOD成分の消化という水処理と、余剰汚泥の分解処理との両方の生物処理を同時に行う。これにより、意外にも余剰汚泥の処理効率が著しく向上する。   In addition to the excess sludge, a part of the raw water 1 stored in the storage tank 10 is sent from the storage tank 10 through the line 51 to the sludge treatment apparatus 60. The raw water 1 and surplus sludge are combined and biologically treated by the sludge treatment apparatus 60, whereby treated water 7 is generated. That is, in the sludge treatment apparatus 60, the biological treatment of both the water treatment of digesting the BOD component of raw water and the decomposition treatment of surplus sludge is performed simultaneously. As a result, the surplus sludge treatment efficiency is significantly improved.

効率が向上する原因は不明であるが、汚泥処理装置60内における生物相の活性化が原因ではないかと推測している。一般に、生物処理では分解すべき対象によって生物相の生物種が変化する。例えば、余剰汚泥にはBOD成分が少なく、微生物の活動は不活発である。そのため、余剰汚泥だけを分解しようとすると、この不活発な微生物に対応した原生動物や後生動物のみが現れることになる。ところが、これだけでは必ずしも活発な生物活動がなされないのが実情であり、余剰汚泥の分解効率は低い状態に留まる。   The reason why the efficiency is improved is unknown, but it is assumed that the activation of the biota in the sludge treatment apparatus 60 is the cause. In general, in biological treatment, the species of the biota changes depending on the target to be decomposed. For example, surplus sludge has few BOD components, and the activity of microorganisms is inactive. Therefore, when only the excess sludge is decomposed, only protozoa and metazoans corresponding to this inactive microorganism appear. However, the actual situation is that active biological activities are not necessarily performed with this alone, and the decomposition efficiency of excess sludge remains low.

しかし、この余剰汚泥に対し、原水に含まれるごときBOD成分を混合すれば、余剰汚泥の微生物が活発に活動を開始し、その結果、汚泥処理装置60内における微生物、原生動物、後生動物からなる生物相が活性化して、これらの間の微小動物捕食機構が活発に働くことになる。この結果、生物分解の対象物が増加したにもかかわらず、意外にも余剰汚泥の分解効率が著しく向上するのではないかと考えられる。   However, if the surplus sludge is mixed with a BOD component such as that contained in the raw water, the surplus sludge microorganisms will start active, and as a result, the sludge treatment apparatus 60 is composed of microorganisms, protozoa, and metazoans. The biota is activated, and the micro-animal predation mechanism between them becomes active. As a result, despite the increase in the number of biodegradable objects, it is surprising that the decomposition efficiency of surplus sludge may be significantly improved.

図2は、そのような生物相を育成できる汚泥処理装置60の構成例を示した概念図である。この装置のプロセスは循環式二段脱窒法であり、好気性処理と通性嫌気性処理の両方が行われるように構成されている。これにより、炭化水素のみならず窒素化合物も分解対象としている。特に通性嫌気性処理では窒素に対する脱窒処理が行われる。   FIG. 2 is a conceptual diagram showing a configuration example of a sludge treatment apparatus 60 capable of growing such a biota. The process of this apparatus is a circulating two-stage denitrification method, and is configured to perform both aerobic treatment and facultative anaerobic treatment. As a result, not only hydrocarbons but also nitrogen compounds are targeted for decomposition. In particular, in the facultative anaerobic treatment, a denitrification treatment for nitrogen is performed.

ここで、好気性とは、水中の酸素濃度(DO)が0.3ppm以上の状態をいい、通性嫌気性とはDOが0.3ppm未満であるがゼロではない状態をいう。さらにDOがゼロの状態を偏性嫌気性という。このDOがゼロとは、生物が利用できる溶存酸素が実質的にゼロであることを意味する。何らかの原因により偏性嫌気性域が部分的にでも発生すると、予定した生物相が崩れてしまい、微生物や原生動物等からなるコロニーが、接触材からはがれ落ちたりする。また、その部分が黒化し、空気中に取り出した場合には特有の腐敗臭が感じられる。   Here, aerobic refers to a state where the oxygen concentration (DO) in water is 0.3 ppm or more, and facultative anaerobic refers to a state where DO is less than 0.3 ppm but not zero. Furthermore, the state where DO is zero is called obligate anaerobic. The DO of zero means that the dissolved oxygen available to the organism is substantially zero. If the obligate anaerobic region is partially generated for some reason, the planned biota is destroyed, and colonies composed of microorganisms and protozoa are peeled off from the contact material. Moreover, when the part is blackened and taken out into the air, a peculiar rot odor is felt.

バイオマス有機物が、(CNOなる一般式で表されていることからわかるように、余剰汚泥は、炭酸ガス、水と窒素ガスにまで分解することが望ましい。特に、微生物体内の窒素化合物の窒素原子は、NHからNOへと分解するだけではなく、窒素ガスまで分解することが望ましい。これは、特に閉鎖性水域・海域に処理水を放流する場合に、NH、NO等の全窒素が赤潮を発生させる原因物質となり、通常の規制値への上乗せ値の設定や総量規制がなされているからである。つまり、余剰汚泥を消滅させるということは、余剰汚泥を、炭酸ガス、水と窒素ガスにまで分解することを通常意味する。なお、脱窒処理が特に必要ない場合は、好気性処理だけとすることもできる。 As can be seen from the fact that the biomass organic matter is represented by the general formula (C 5 H 7 NO 2 ) n, it is desirable that the excess sludge is decomposed into carbon dioxide gas, water and nitrogen gas. In particular, it is desirable that the nitrogen atom of the nitrogen compound in the microorganism not only decomposes from NH 3 to NO 3 but also decomposes into nitrogen gas. This is because, especially when treated water is discharged into closed waters and seas, all nitrogen such as NH 3 and NO 3 becomes a causative substance that generates red tides. Because it is made. That is, eliminating excess sludge usually means decomposing the excess sludge into carbon dioxide, water, and nitrogen gas. In addition, when the denitrification process is not particularly necessary, only the aerobic process can be performed.

汚泥処理装置60における好気性処理では、微生物のみならず、微生物より食物連鎖上の上位生物である原生動物や、さらに上位である後生動物から構成される微小動物捕食機構を利用して処理がなされる。そのため、原生動物や後生動物の活動が、微生物の排出物によって抑制されないようにする必要がある。そこで、好気性処理がなされる曝気槽は2槽〜4槽の複数とし、それぞれで棲息する生物種の棲み分けができるようにするのが好ましい。このようにすることで、前段の槽で有機物(BOD成分)を分解して微生物が活性化し、後段では、より上位の原生動物や後生動物を生棲増殖して、前段の微生物を効率良く捕食できるようになる。   In the aerobic treatment in the sludge treatment apparatus 60, the treatment is performed using not only microorganisms but also a protozoan that is a higher organism on the food chain than microorganisms and a microanimal predation mechanism that is composed of higher-grade metazoans. The Therefore, it is necessary to prevent the activities of protozoa and metazoans from being suppressed by microbial emissions. Therefore, it is preferable that the number of aeration tanks to be subjected to aerobic treatment is two to four tanks so that the species that live in each can be segregated. In this way, microorganisms are activated by decomposing organic substances (BOD components) in the preceding tank, and in the latter stage, higher-order protozoa and metazoans are sacrificed and efficiently consumed by the former stage microorganisms. become able to.

また、汚泥処理装置60における脱窒処理では、微生物を構成するタンパク質が分解されて生成されたNHが、曝気槽で硝化菌により窒素の数倍量の酸素を用いて酸化され、NOやNO等のNOに転換される。なお、活性汚泥中では硝化菌の勢力は弱いため、大きい曝気槽が(つまり大きい滞留時間が)必要である。通常、余剰汚泥のMLSSはおよそ数千から2万の範囲であり、生成するNO濃度は高い。一段の脱窒処理では80%レベルの分解に留まるため、NOを10ppmレベルまで低下させるには、図2に記載したごとき循環式の二段脱窒処理を行うのが望ましい。これらNOは、脱窒素菌により還元されてNガスへ分解される。これにより脱窒が終了する。 Moreover, in the denitrification process in the sludge treatment apparatus 60, NH 3 produced by decomposing proteins constituting microorganisms is oxidized by nitrifying bacteria using oxygen several times the amount of nitrogen in an aeration tank, and NO 2 or Converted to NO X such as NO 3 In addition, since the power of nitrifying bacteria is weak in activated sludge, a large aeration tank (that is, a large residence time) is required. Usually, MLSS of excess sludge is in the range of from about a few thousand 20,000, produced NO X concentration is high. To remain in the degradation of 80% level in the denitrification one step, in order to reduce the NO X to 10ppm level, to carry out the two-stage denitrification of circulation such as described in FIG desirable. These NO X are reduced by denitrifying bacteria and decomposed into N 2 gas. This completes the denitrification.

ここで、図2の汚泥処理装置例の構成を具体的に説明する。汚泥処理装置60は、混合槽70と生物処理槽80と沈降槽100とからなる。混合槽70は、BOD成分を含む原水1と余剰汚泥とを一定比率で受け入れて貯留すると共に攪拌機71でこれらを攪拌して混合する。混合された処理水(以下、混合水という)は、越流水のライン5から続く生物処理槽80に送られる。なお、混合槽10の代わりに単に貯留槽10とし、原水と余剰汚泥の混合は、続く第1嫌気槽81において攪拌機90で行うようにしてもよい。   Here, the structure of the example of the sludge treatment apparatus of FIG. 2 is demonstrated concretely. The sludge treatment apparatus 60 includes a mixing tank 70, a biological treatment tank 80, and a sedimentation tank 100. The mixing tank 70 receives and stores the raw water 1 containing the BOD component and the excess sludge at a constant ratio and stirs and mixes them with the stirrer 71. The mixed treated water (hereinafter referred to as mixed water) is sent to the biological treatment tank 80 that continues from the overflow water line 5. In addition, instead of the mixing tank 10, the storage tank 10 may be used, and the raw water and excess sludge may be mixed by the stirrer 90 in the subsequent first anaerobic tank 81.

余剰汚泥と原水との混合比率は、1対9から7対3の範囲内とするのが良い。この範囲で、適度に生物相が活性化し、効率的に余剰汚泥を処理できる。つまり、一定量の余剰汚泥を処理する場合に必要な汚泥処理装置の生物処理槽の容量が小さくできる。好ましくは2対8から6対4の範囲内であり、より好ましくは3対7から5対5の範囲内である。   The mixing ratio of surplus sludge and raw water is preferably in the range of 1: 9 to 7: 3. Within this range, the biota is activated moderately, and excess sludge can be treated efficiently. That is, the capacity of the biological treatment tank of the sludge treatment apparatus required when a certain amount of excess sludge is treated can be reduced. Preferably it is in the range of 2 to 8 to 6 to 4, more preferably in the range of 3 to 7 to 5 to 5.

例えば、余剰汚泥1に対し原水9の場合、一定量の余剰汚泥を消滅させるのに必要な生物反応槽の大きさは、余剰汚泥量の(1+9)/1=10倍となる。また、余剰汚泥5に対し原水が5の場合は、(5+5)/5=2倍となり、余剰汚泥の2倍量程度の生物反応槽の大きさが必要となる。つまり、混合水中の余剰汚泥の比率が大きい方が、一定量の余剰汚泥を処理するために必要な生物反応槽の容量は小さくなり、設備費及び槽設置面積は大幅に小さくなる。一方で、微生物群の活性が落ち、一定量の余剰汚泥の分解に要する時間は長くなる。端的には、余剰汚泥のみ(つまり、余剰汚泥10に対し原水0)とすると、生物反応槽は1日当たりの排出余剰汚泥量のおよそ10倍もの容量が必要となってしまう。   For example, in the case of the raw water 9 with respect to the excess sludge 1, the size of the biological reaction tank necessary for eliminating a certain amount of excess sludge is (1 + 9) / 1 = 10 times the amount of excess sludge. Moreover, when raw water is 5 with respect to the excess sludge 5, it becomes (5 + 5) / 5 = 2 times, and the magnitude | size of the biological reaction tank about twice the amount of excess sludge is needed. That is, the larger the ratio of surplus sludge in the mixed water, the smaller the capacity of the biological reaction tank necessary for treating a certain amount of surplus sludge, and the facility cost and tank installation area are significantly reduced. On the other hand, the activity of the microorganism group is reduced, and the time required for decomposing a certain amount of excess sludge is increased. In short, if only surplus sludge is used (that is, raw water is 0 with respect to surplus sludge 10), the biological reaction tank needs a capacity of about 10 times the amount of surplus sludge discharged per day.

以上のように、一定の余剰汚泥を処理するために必要な生物反応槽の容量には、余剰汚泥混合比率を変化させた場合にある極小値が存在する。つまり、もっとも余剰汚泥の分解効率の良い混合比率と生物反応槽の容量が存在する。この混合比率の最適化には、原水に含まれる基質の生物易分解性の程度も影響する。生物易分解性の基質の方が生物反応槽中の微生物群の活性は高くなり反応槽は小さくできる。   As described above, there is a local minimum value when the surplus sludge mixing ratio is changed in the capacity of the biological reaction tank necessary for treating a certain excess sludge. In other words, the mixing ratio and the capacity of the biological reaction tank with the highest decomposition efficiency of surplus sludge exist. The optimization of the mixing ratio also affects the degree of biodegradability of the substrate contained in the raw water. The biodegradable substrate has a higher activity of the microorganism group in the biological reaction tank, and the reaction tank can be made smaller.

生物処理槽80は、複数の隔壁96により、内部が槽81から槽86までの6槽に分かれている。生物処理でBOD処理と脱窒処理の両方を行う場合は、生物処理槽を4段から6段とするのが好ましい。なお、図2で隔壁96は簡略化されているが、隣接する槽と隔壁上部で連通している。槽81から槽86までの6槽は、いずれも同様の隔壁により順次連通している。この隔壁96は、図面左側から右側に、上部が連通した隔壁と下部が連通した隔壁とを順次組み合わせて、越流水が1枚目の隔壁上部から越流し、2枚目の隔壁により槽下部に誘導され、隣接する槽の下部から槽内に流入するようにするのが望ましい。これにより、処理がより均一になされる。   The biological treatment tank 80 is divided into six tanks from a tank 81 to a tank 86 by a plurality of partition walls 96. When both BOD treatment and denitrification treatment are performed in biological treatment, it is preferable that the biological treatment tank has 4 to 6 stages. Although the partition 96 is simplified in FIG. 2, it communicates with an adjacent tank at the top of the partition. All of the six tanks from the tank 81 to the tank 86 are sequentially communicated by the same partition. The partition wall 96 has a combination of a partition wall connected to the upper part and a partition wall connected to the lower part in order from the left side to the right side of the drawing, and overflow water flows from the upper part of the first partition wall. It is desirable to be guided and flow into the tank from the lower part of the adjacent tank. Thereby, a process is made more uniform.

生物処理槽80の第1槽は、第1嫌気槽81であり、図示されていない接触材モジュールが内部に設置されている。この槽では、攪拌機90によって内部の液が攪拌されながら混合水中のBOD成分を利用して脱窒素が行われる。これにより硝酸化合物が窒素ガスと水に分解される。ここでは、NO成分の約80%が脱窒される。 The 1st tank of the biological treatment tank 80 is the 1st anaerobic tank 81, and the contact material module which is not illustrated is installed in the inside. In this tank, denitrification is performed using the BOD component in the mixed water while the liquid inside is stirred by the stirrer 90. As a result, the nitrate compound is decomposed into nitrogen gas and water. Here, about 80% of the NO 3 component is denitrified.

続く好気性の曝気槽82から84では、内部に接触材モジュール92〜94が設置されており、散気管91から空気が各槽の内部に供給されている。ここでは、原水由来のBOD成分の分解と、曝気槽82〜84、特に槽83や槽84により多く棲息する原生動物や後生動物が、余剰汚泥を食って排出したアンモニア態窒素(NH)の硝化とが行われる。 In the subsequent aerobic aeration tanks 82 to 84, contact material modules 92 to 94 are installed inside, and air is supplied from the air diffuser 91 to the inside of each tank. Here, decomposition of BOD components derived from raw water, and protozoa and metazoans that live more in the aeration tanks 82 to 84, particularly the tank 83 and the tank 84, consume ammonia nitrogen (NH 3 ) discharged by eating excess sludge. Nitrification is performed.

ここで、3番目の曝気槽84から、ライン97により流入量の200%〜400%程度の量を取り出し、第1嫌気槽81に循環させる。曝気槽82〜84で生じた硝酸化合物を第1嫌気槽81に送り込むことで、脱窒素効率を上げるためである。また、アンモニア態窒素もこのラインにより循環される間に硝化されることになる。   Here, an amount of about 200% to 400% of the inflow amount is taken out from the third aeration tank 84 through the line 97 and circulated in the first anaerobic tank 81. This is because the nitric acid compound generated in the aeration tanks 82 to 84 is sent to the first anaerobic tank 81 to increase the denitrification efficiency. Ammonia nitrogen is also nitrified while being circulated through this line.

このようにすることにより、原水由来のBOD成分のために好気性槽内部の生物相が活発化する。特に曝気槽82では、混合水由来の微生物も活性化され、それに伴い、曝気槽83や84の原生動物や後生動物の生息する槽でも生物活動が活性化されて、活発に余剰汚泥が食われる結果となる。   By doing so, the biota inside the aerobic tank is activated due to the BOD component derived from raw water. In particular, in the aeration tank 82, microorganisms derived from the mixed water are also activated, and accordingly, biological activities are also activated in the tanks inhabiting the protozoa and metazoans in the aeration tank 83 and 84, and surplus sludge is actively eaten. Result.

3番目の曝気槽84の処理水の残りは、次の槽である第2嫌気性槽85に移動する。この槽には、残存する20%のNOを分解させるため、メタノール等の水素供与体が外部からBOD成分としてライン99により供給されており、これを用いて残りの硝酸化合物が脱窒される。続いて、生物処理槽の最後に、やはり接触材モジュール95と散気管91を備えた好気性槽86に越流水が流入し、残ったBOD成分が分解される。 The remaining treated water in the third aeration tank 84 moves to the second anaerobic tank 85 which is the next tank. In order to decompose 20% NO 3 remaining in the tank, a hydrogen donor such as methanol is supplied from the outside as a BOD component through a line 99, and the remaining nitrate compound is denitrified using this. . Subsequently, at the end of the biological treatment tank, overflow water flows into the aerobic tank 86 also provided with the contact material module 95 and the air diffuser 91, and the remaining BOD component is decomposed.

続いて、越流水6が沈降槽100に移動し、水中に浮遊していたMLSSが沈降して沈降汚泥101を形成する。なお、第1槽から第6槽までの活性汚泥浮遊物(MLSS)は、ほぼ同じ程度の濃度である。この沈降汚泥として20%から40%も濃度が高くなった沈降汚泥101としてのMLSSを、ライン98に含まれる図示されないエアリフトポンプ等を用いて、100%〜150%の量を混合水が流入してくる第1嫌気槽81に循環液として戻す。これは、好気処理だけの場合でも、この図2による嫌気処理と好気処理を併用した処理の場合のいずれでも同じである。   Subsequently, the overflow water 6 moves to the sedimentation tank 100, and MLSS suspended in the water settles to form the sedimentation sludge 101. The activated sludge suspended matter (MLSS) from the first tank to the sixth tank has substantially the same concentration. The MLSS as the sedimentation sludge 101 whose concentration is increased by 20% to 40% as this sedimentation sludge is mixed with 100% to 150% of the mixed water using an air lift pump (not shown) included in the line 98. It returns to the 1st anaerobic tank 81 which comes as a circulating fluid. This is the same for both the aerobic process and the process using the anaerobic process and the aerobic process shown in FIG.

沈降槽100の上澄液は、炭化水素類と窒素化合物が一定基準以下まで処理されているが、プランクトンの異常発生防止には窒素に続いてリンも厳格に処理されるのが望ましい。リンは原水にも含まれるし、微生物の分解物にも含まれるからである。そのために、沈降槽100の上澄み水に凝集剤(PAC等)を加え、リン化合物を不溶性のリン酸アルミニウム等へ化学反応させて沈降除去することで脱リンを行うのが望ましい。凝集剤を投入するのではなく、ジルコニア系の陰イオン吸着交換体を使用してリン除去するのでも良い。このようにすることにより、好ましい放流水質の処理水が得られる。   In the supernatant of the sedimentation tank 100, hydrocarbons and nitrogen compounds are treated to a certain standard or less, but it is desirable to strictly treat phosphorus following nitrogen in order to prevent the occurrence of plankton abnormalities. This is because phosphorus is contained in raw water as well as microbial degradation products. For this purpose, it is desirable to perform dephosphorization by adding a flocculant (PAC or the like) to the supernatant water of the sedimentation tank 100 and causing the phosphorus compound to chemically react with insoluble aluminum phosphate or the like to precipitate and remove. Rather than using a flocculant, phosphorus removal may be performed using a zirconia-based anion adsorption exchanger. By doing in this way, the treated water of the preferable discharge | emission water quality is obtained.

ところで、混合水に由来する余剰汚泥の分解は、曝気槽82〜84に棲息する原生動物や後生動物による微生物の捕食機構により行っている。そのため、これら原生動物や後生動物を担持して、その上で多量にこれらが繁殖できる担体としての接触材を必要とする。生物接触酸化材は通常の接触材を用いても良いが、腐食防止の被覆処理がなされた単線の銅線のごとき可撓性の芯材を中心にして、その表面にループ状の多数の突起が、芯材表面から長さ1.0cm〜1.5cm突出して花びら状に拡がっているものを用いるのが、余剰汚泥の処理効率が高くなり好ましい。このような接触材の断面図を図3に示す。芯材74の回りに被覆75と基布76が巻かれており、その周囲に花びら形状になるように、ループ状の繊維からなる突起物73が突出していることがわかる。   By the way, the decomposition | disassembly of the excess sludge originating in mixed water is performed by the predation mechanism of the microorganisms by the protozoa and metazoans which live in the aeration tank 82-84. Therefore, a contact material is required as a carrier that supports these protozoa and metazoans and can reproduce them in large quantities. A normal contact material may be used as the biological contact oxidation material, but a large number of loop-shaped protrusions are formed on the surface of a flexible core material such as a single-wire copper wire that has been coated to prevent corrosion. However, it is preferable to use one that protrudes 1.0 cm to 1.5 cm in length from the core surface and expands into a petal shape because the processing efficiency of excess sludge increases. A cross-sectional view of such a contact material is shown in FIG. It can be seen that a covering 75 and a base cloth 76 are wound around the core material 74, and a protrusion 73 made of loop-like fibers protrudes around the core material 74 so as to form a petal shape.

このような接触材の芯材74は、接触材の形状をあらかじめ定めた任意の形状に保ち、重力や液流れの影響で接触材どうしが必要以上に近づいたり、または型崩れや接触を生じたりして、液流れが悪くDOが低下して偏性嫌気性域が生じることを防ぐ役割を果たす。加工の容易さおよび微生物類が担持した後でも重力などに抗する強度を有する点から、芯材には可撓性のある金属線用いるのが好ましい。金属線は複数の細線を寄り合わせたより線であってもよいが、強度と可撓性を合わせ持たせるためには、単一の金属線からなる単線を用いるのが好ましい。金属線の材質は、軟鉄、アルミニウム、銅等、比較的可撓性が大きいものを特に制限無く用いることができるが、水中における耐腐食性の観点から銅が好ましい。   Such a contact material core 74 keeps the shape of the contact material in a predetermined shape, and the contact materials are brought closer than necessary due to the influence of gravity and liquid flow, or the shape of the contact material is lost. And it plays the role which prevents that a liquid flow is bad and DO falls and an obligate anaerobic region arises. It is preferable to use a flexible metal wire for the core material because it is easy to process and has strength against gravity even after being supported by microorganisms. The metal wire may be a stranded wire obtained by bringing together a plurality of fine wires, but in order to have both strength and flexibility, it is preferable to use a single wire made of a single metal wire. As the material of the metal wire, a material having relatively large flexibility such as soft iron, aluminum, copper, etc. can be used without particular limitation, but copper is preferable from the viewpoint of corrosion resistance in water.

金属線は水中で長期に使用するから、腐食防止のための被覆75を施しておくことがよい。被覆は防水塗装等であっても良いが、取扱性および変形に対する被覆の追随性から塩化ビニールやポリエチレンやポリプロピレンのごときプラスチック類による被覆を設けておくのが好ましい。金属線の直径は、材質によって異なるが1mm以上7mm以下であることが好ましい。より好ましくは2mm以上6mm以下である。さらに好ましくは3mm以上5mm以下である。   Since the metal wire is used for a long time in water, it is preferable to provide a coating 75 for preventing corrosion. The coating may be a waterproof coating or the like, but it is preferable to provide a coating such as vinyl chloride, polyethylene or polypropylene from the viewpoint of handling and followability of the coating against deformation. Although the diameter of a metal wire changes with materials, it is preferable that they are 1 mm or more and 7 mm or less. More preferably, it is 2 mm or more and 6 mm or less. More preferably, it is 3 mm or more and 5 mm or less.

芯材には、上記の被覆に加え、さらに基布76を巻き付けてあることが好ましい。この基布に微生物を担持するためのループ状繊維73をあらかじめ織り込むことで、安定して微生物を担持でき、長期の使用に耐える接触材を得ることができる。基布の材質は、水中での強度維持と寸法安定性、微生物により分解されにくいことから、ポリアミド系繊維、ポリエステル系繊維、ポリウレタン系繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリアクリル系繊維等の合成繊維製であることが好ましい。基布も含めた芯材の直径は、3mm以上8mm以下であることが好ましい。このような直径とすることにより、ループ状繊維を植え込む基布の面積を稼ぐことも可能となる。   In addition to the above coating, a base fabric 76 is preferably wound around the core material. By previously weaving loop-like fibers 73 for supporting microorganisms on this base fabric, microorganisms can be stably supported and a contact material that can withstand long-term use can be obtained. The material of the base fabric is polyamide fiber, polyester fiber, polyurethane fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyacrylic because it maintains strength in water and has dimensional stability, and is difficult to be decomposed by microorganisms. It is preferably made of a synthetic fiber such as a base fiber. The diameter of the core material including the base fabric is preferably 3 mm or more and 8 mm or less. By setting it as such a diameter, it becomes possible to earn the area of the base fabric which implants a loop-like fiber.

芯材の表面には、微生物や後生動物等を担持するための、突起状の多数のループ状繊維73を設ける。ループ状繊維は、一定長さの繊維状物の両端だけが芯材表面に固定され、繊維状物の両端以外は、芯材表面から離れるように突出している。接触材を繊維状とすることにより、接触材の単位体積あたりの表面積を著しく大きくして、微生物等の棲息密度を上昇せしめると共に、水処理装置の単位体積あたりの処理能力を増大せしめることができる。ここで、繊維の太さは50dtex以上150dtex以下が好ましい。50dtex以上で、増殖した微生物等が重力や旋回流により接触材から脱落しにくくなり、150dtex以下で、接触材の単位体積あたりの表面積が大きくなる。また、繊維はループ状として芯材に固定する。ループ状とすることにより、繊維表面に付着して増殖した微生物や巨大微生物が、重力や酸素供給のための旋回流により、繊維から脱落する現象が生じにくくなる。   On the surface of the core material, a large number of protruding loop-like fibers 73 are provided for supporting microorganisms, metazoans and the like. The loop-like fibers are fixed to the surface of the core material only at both ends of the fiber material having a certain length, and other than the both ends of the fiber material protrude from the surface of the core material. By making the contact material fibrous, the surface area per unit volume of the contact material can be remarkably increased to increase the density of microorganisms and the like, and the treatment capacity per unit volume of the water treatment device can be increased. . Here, the thickness of the fiber is preferably 50 dtex or more and 150 dtex or less. Above 50 dtex, the grown microorganisms and the like are less likely to fall off from the contact material due to gravity and swirling flow, and at 150 dtex or less, the surface area per unit volume of the contact material increases. Further, the fiber is fixed to the core material as a loop shape. The loop shape makes it difficult for the microorganisms and giant microorganisms that have adhered to the fiber surface and proliferated to fall out of the fiber due to the swirling flow for gravity and oxygen supply.

ループ状繊維の長さ(芯材表面に固定した一方の端から、ループに沿って長さを測定して、芯材表面に固定したもう一方の端に到達するまでの長さをいう。)は、10mm以上50mm以下であることが好ましい。ループ状繊維の長さが50mm以下で、ループの根元付近が偏性嫌気性域になりにくく、偏性嫌気性域から生成される物質により、その周辺の通性嫌気性域やさらにその外周の好気性域において微生物等の活動が低下したり、または微生物等自体が死滅してしまうような事態が生じにくい。好ましくは20mm以上45mm以下であり、より好ましくは30mm以上45mm以下であり、さらに好ましくは30mm以上40mm以下である。このような長さになるようにループ状繊維をリボン状の基布に植え込み、この基布を芯材の表面上にラセン状に巻きつけることで接触材が構成される。   Length of loop-like fiber (refers to the length from one end fixed to the core material surface to the other end fixed to the core material surface by measuring the length along the loop) Is preferably 10 mm or more and 50 mm or less. The length of the loop-like fiber is 50 mm or less, and the vicinity of the base of the loop is less likely to be an anaerobic region. In the aerobic region, it is difficult to cause a situation in which the activity of microorganisms or the like is reduced or the microorganisms themselves are killed. Preferably they are 20 mm or more and 45 mm or less, More preferably, they are 30 mm or more and 45 mm or less, More preferably, they are 30 mm or more and 40 mm or less. The contact material is configured by implanting loop-like fibers in a ribbon-like base cloth so as to have such a length, and winding this base cloth on the surface of the core material in a spiral shape.

ループ状繊維は、3以上20本以下の繊維を束ねた繊維束とし、この繊維束を単位として芯材表面に設けることが好ましい。ループ状繊維1本1本が離ればなれの独立ループとなっている形状では、ループの腰が弱くなり、繊維に付着した微生物等の重量に抗しにくく、旋回流によるループの揺れが激しくなりがちである。しかし、繊維束とした形状では、微生物等の重量や旋回流に抗してループが元の形状を保ちやすく、そのため液流れが確保しやすく、偏性嫌気性域が生じにくい。また微生物等も補足しやすい。好ましくは5本以上15本以下であり、さらに好ましくは7本以上12本以下である。   The loop-like fiber is preferably a fiber bundle obtained by bundling 3 to 20 fibers, and the fiber bundle is preferably provided on the core surface as a unit. In the shape of an independent loop where each loop-like fiber is separated, the loop becomes weak, it is difficult to resist the weight of microorganisms attached to the fiber, and the swing of the loop due to swirl tends to become intense. is there. However, in the shape of the fiber bundle, the loop easily maintains its original shape against the weight of microorganisms and the swirling flow, so that it is easy to secure a liquid flow and an anaerobic region is unlikely to occur. It is also easy to supplement microorganisms. Preferably they are 5 or more and 15 or less, More preferably, they are 7 or more and 12 or less.

芯材表面に繊維束を設ける密度は、芯材表面1cmあたり25束以上81束以下となるようにするのが好ましい。81束以下で偏性嫌気性域が生じにくく、25束以上で曝気に伴う気泡とそれによる旋回硫による攪拌に抗して、汚泥をしっかり捕捉できる。また、原生動物や構成動物も脱落しにくくなるため、これらの棲息と増殖が生じやすくなる。より好ましくは36束以上64束以下である。 The density at which the fiber bundles are provided on the core material surface is preferably 25 to 81 bundles per cm 2 of the core surface. When the number of bundles is 81 or less, an obligate anaerobic region is hardly generated, and when the number is 25 or more bundles, sludge can be firmly captured against agitation caused by aeration and the resulting swirling sulfur. In addition, since protozoa and constituent animals are also difficult to drop out, they are liable to occur and proliferate. More preferably, it is 36 bundles or more and 64 bundles or less.

ループ状繊維の材質としては、溶存酸素へ耐性があって水中での強度維持と寸法安定性を確保でき、微生物等により分解されにくく、かつ繊維状に容易に成型できることから合成樹脂製であることが好ましい。中でも、繊維の製造の容易さから熱可塑性樹脂を用いることが好ましい。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデンやポリフッ化ビニリデン等が挙げられる。比重が大きく、かつ繊維がある程度の剛性を保持できループの形状を保ちやすいことからポリ塩化ビニリデンを用いることが好ましい。ループ状繊維の製法は、発明の効果が発揮する範囲で常法に従って紡糸すればよく特に制限されない。   The material of the loop-like fiber is made of synthetic resin because it is resistant to dissolved oxygen, can maintain strength and dimensional stability in water, is hardly decomposed by microorganisms, and can be easily molded into a fiber. Is preferred. Especially, it is preferable to use a thermoplastic resin from the ease of manufacture of a fiber. Examples of the thermoplastic resin include polyethylene, polypropylene, polyester, nylon, polyvinyl chloride, polyvinylidene chloride, and polyvinylidene fluoride. It is preferable to use polyvinylidene chloride because the specific gravity is large and the fiber can maintain a certain degree of rigidity and can easily maintain the shape of the loop. The method for producing the loop-shaped fiber is not particularly limited as long as it is spun according to a conventional method within the range where the effects of the invention are exhibited.

ループ状繊維表面のゼータ電位はpH5から9の範囲内で正であることが望ましく、さらにこの範囲内で安定していることが望ましい。正のゼータ電位の大きさは1mV以上30mV以下である。この範囲内で、微生物のみならず原生動物や後生生物の脱落防止の効果が発揮でき、ひいては水処理において余剰汚泥を大幅に減少できる優れた効果が発揮される。より好ましくは1mV以上24mV以下であり、さらに好ましくは1mV以上20mV以下であり、さらには2mV以上10mV以下が好ましい。このようなゼータ電位は通常の流動電位法等により測定することができる。   The zeta potential on the surface of the loop-like fiber is desirably positive within the range of pH 5 to 9, and more desirably stable within this range. The magnitude of the positive zeta potential is 1 mV or more and 30 mV or less. Within this range, not only microorganisms but also protozoa and metazoans can be prevented from falling off, and as a result, an excellent effect of greatly reducing excess sludge in water treatment is exhibited. More preferably, it is 1 mV or more and 24 mV or less, More preferably, it is 1 mV or more and 20 mV or less, Furthermore, 2 mV or more and 10 mV or less are preferable. Such a zeta potential can be measured by a normal streaming potential method or the like.

このような接触材72は、生物処理槽内で微生物等と溶存酸素との接触効率を稼ぐため、図4に記載のようなラセン形に整形するのが好ましい。図4(b)は、接触材72をラセン回転の中心軸78に対して垂直方向から見た場合の概念図であり、図4(a)は、同じ中心軸78に対して平行方向から接触材72を見た場合の概念図である。このような形状とすることで、生物密度を高く維持し、かつ曝気に伴う攪拌効果を得ることができる。ラセン形の中心軸78方向からみた回転円の外径rは、60mm以上90mm以下とするのが好ましい。また、回転円を一周するに伴い回転軸方向に進む距離であるラセンのピッチdとしては、5cm以上20cm以下であることが好ましい。この範囲で、水処理槽の空間の利用効率を高く維持しながら、偏性嫌気性域が生じにくい状態にすることができる。より好ましくは7cm以上13cm以下である。   Such a contact material 72 is preferably shaped into a spiral shape as shown in FIG. 4 in order to increase the contact efficiency between microorganisms and dissolved oxygen in the biological treatment tank. FIG. 4B is a conceptual diagram when the contact material 72 is viewed from the direction perpendicular to the central axis 78 of the helical rotation, and FIG. 4A is a contact from the parallel direction to the same central axis 78. It is a conceptual diagram at the time of seeing the material 72. FIG. By setting it as such a shape, the biological density can be maintained high and the stirring effect accompanying aeration can be acquired. The outer diameter r of the rotating circle viewed from the direction of the helical center axis 78 is preferably 60 mm or more and 90 mm or less. In addition, the spiral pitch d, which is the distance traveled in the direction of the rotation axis as it goes around the rotation circle, is preferably 5 cm or more and 20 cm or less. In this range, it is possible to make it difficult for the obligate anaerobic region to occur while maintaining high utilization efficiency of the water treatment tank space. More preferably, it is 7 cm or more and 13 cm or less.

このような接触材は、多数本が垂直方向に並列になるように、金属製の枠体に固定されて接触材モジュールを構成する。各接触材の上下端は、金属製の枠または架台に固定されている。接触材の外周間の距離は、できるだけ小さくすることが槽体積の利用効率の観点から好ましいが、一方で小さすぎると接触材の外周間の攪拌が不十分となり、外周間に汚泥が詰まりやすくなる。仮に汚泥が詰まった場合は偏性嫌気性域が生じてしまう。これを防ぐためには、接触材の外周間の距離は15mm以上となるように接触材を配列するのが好ましい。槽の内壁または枠と、接触材の外周間との距離に関しても同様である。   Such a contact material is fixed to a metal frame so that a large number of the contact materials are arranged in parallel in the vertical direction to constitute a contact material module. The upper and lower ends of each contact material are fixed to a metal frame or mount. The distance between the outer peripheries of the contact materials is preferably as small as possible from the viewpoint of the utilization efficiency of the tank volume. On the other hand, if the distance is too small, stirring between the outer peripheries of the contact materials becomes insufficient, and sludge is easily clogged between the outer peripheries. . If sludge is clogged, an obligate anaerobic zone will occur. In order to prevent this, it is preferable to arrange the contact materials so that the distance between the outer circumferences of the contact materials is 15 mm or more. The same applies to the distance between the inner wall or frame of the tank and the outer periphery of the contact material.

ところで、図2の沈降槽100の代わりに膜濾過を用いることもできる。沈降槽は比較的大きな設置面積を要するが、膜濾過ではより省スペース化できる。また、沈降槽では、生物反応の変動によって十分に汚泥が沈降しなかったり、泡がキャリーオーバーすることもあるが、膜濾過の場合はそのようなおそれがない。さらに、膜分離装置を用いると、MLSSのみならず、処理水中の微生物類やSS物質やコロイド物質も分離・除去されることから、良好な回収水が得られる利点がある。   Incidentally, membrane filtration can be used instead of the sedimentation tank 100 of FIG. Although the settling tank requires a relatively large installation area, the membrane filtration can save more space. Further, in the sedimentation tank, sludge may not be sufficiently settled or bubbles may carry over due to fluctuations in the biological reaction, but there is no such fear in the case of membrane filtration. Furthermore, when a membrane separation apparatus is used, not only MLSS but also microorganisms, SS substances and colloid substances in the treated water are separated and removed, so that there is an advantage that good recovered water can be obtained.

膜分離装置に用いることができる膜種は、UF膜またはMF膜である。膜の形状は、中空糸膜、平膜、管状膜のいずれも用いることができる。膜濾過装置は、最終段の生物処理槽内に膜モジュールを浸漬し、膜モジュール内を陰圧にすることで濾過するMBR法(膜分離活性汚泥法)とすることができる。または、最終段の生物処理槽から活性汚泥液をポンプアップして、膜分離装置に加圧送液して濾過する方法としてもよい。いずれの方式も適用可能である。生物処理槽のMLSS濃度が高い場合は、エネルギー効率の点から、浸漬型が有利である。   The membrane type that can be used in the membrane separator is a UF membrane or an MF membrane. As the shape of the membrane, any of a hollow fiber membrane, a flat membrane and a tubular membrane can be used. The membrane filtration device can be an MBR method (membrane separation activated sludge method) in which the membrane module is immersed in the biological treatment tank at the final stage and filtered by making the inside of the membrane module have a negative pressure. Or it is good also as a method of pumping up activated sludge liquid from the biological treatment tank of the last stage, carrying out pressurized liquid feeding to a membrane separator, and filtering. Either method is applicable. When the MLSS concentration in the biological treatment tank is high, the immersion type is advantageous from the viewpoint of energy efficiency.

膜分離装置から分離された濃縮液は、前段の生物処理槽の先頭の処理槽に戻す。また、膜分離装置で濾過された水は、SS=0であり上述のように回収して再利用するか、または放流する。再利用のためにより純度の高い処理水が必要な場合、例えば、工場等の生産工程用の水に使用するなどの場合は、UFまたはMFを用いた膜分離装置の後に、さらにRO膜を用いた膜分離装置を連結するのが良い。このように処理された処理水は、電気抵抗が1MΩ以上の純水とすることもでき、特に問題なく再利用することができる。以下、実施例をもって本発明を具体的に説明する。   The concentrated liquid separated from the membrane separation device is returned to the top treatment tank of the preceding biological treatment tank. Further, the water filtered by the membrane separator is SS = 0, and is recovered and reused or discharged as described above. When more purified treated water is required for reuse, for example, when used for water for production processes in factories, etc., RO membrane is further used after membrane separation equipment using UF or MF. It is preferable to connect the existing membrane separator. The treated water thus treated can be pure water having an electric resistance of 1 MΩ or more, and can be reused without any particular problem. Hereinafter, the present invention will be specifically described with reference to examples.

2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、SFグリーン、クエン酸の各々を、ポリ塩化ビニリデン樹脂に対して0.3wt%、0.5wt%、0.5wt%となるように、ポリ塩化ビニリデン樹脂と混合してから混錬し、しかるのち紡糸して太さが105dtexの繊維を得た。続いて、この繊維の表面を飽和濃度の塩化カルシウム水溶液で処理したあと水洗した。この繊維のpH9、7、5におけるゼータ電位は、各々、+2.1mV、+2.5mV、+2.6mVであった。   Each of 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, SF green, and citric acid was added in an amount of 0.3 wt% with respect to the polyvinylidene chloride resin. It was kneaded after being mixed with polyvinylidene chloride resin so as to be 0.5 wt% and 0.5 wt%, and then spun to obtain a fiber having a thickness of 105 dtex. Subsequently, the surface of the fiber was treated with a saturated calcium chloride aqueous solution and then washed with water. The zeta potentials of the fibers at pH 9, 7, and 5 were +2.1 mV, +2.5 mV, and +2.6 mV, respectively.

幅5mmで長尺のポリエステル織布のリボンを基布として用い、上で得た繊維を基布の片面でループ状となるように織り込んだパイル織物を作成した。その際、1本のリボンには、繊維10本を一束とし、長さが35mmとなるように繊維の長さが調節されたループ状繊維の束が、1cmあたり72束となるように基布に織り込んだパイル織物を作成した。 Using a long polyester woven ribbon with a width of 5 mm as a base fabric, a pile fabric was prepared in which the fibers obtained above were woven so as to form a loop on one side of the base fabric. At that time, in one ribbon, a bundle of 10 fibers is bundled, and a bundle of loop-shaped fibers whose length is adjusted to be 35 mm is 72 bundles per 1 cm 2. A pile woven fabric was woven into the base fabric.

次に、可撓性の単線である銅線にポリ塩化ビニルが被覆された直径4.3mmで所定長さの金属線に、ループ状繊維が外側に出るようにして、上記のリボンをすきまなく巻きつけ、金属線の両端部分でリボンが解けないように固定して繊維製接触材を製作した。これにより、接触材の長さ方向と円周方向のいずれについてもループ状繊維が設けられた接触材が得られた。この繊維型接触材を、外周部の外直径がおよそ85mmで内直径がおよそ21mmであり、さらにラセンの回転軸回りの一回転に伴うピッチがおよそ11cmとなるラセン形に加工した。   Next, with the copper wire, which is a flexible single wire, coated with polyvinyl chloride, a metal wire with a predetermined length of 4.3 mm in diameter is placed on the outside so that the loop-like fibers come out to the outside, and the above ribbon is not spaced A fiber contact material was manufactured by winding and fixing the ribbon so that the ribbon could not be unwound at both ends of the metal wire. Thereby, the contact material provided with the loop-like fiber was obtained in both the length direction and the circumferential direction of the contact material. This fiber-type contact material was processed into a spiral shape in which the outer diameter of the outer peripheral portion was about 85 mm and the inner diameter was about 21 mm, and the pitch accompanying one rotation around the helical rotation axis was about 11 cm.

この接触材複数を、高さ2.3m、長さ0.5m、幅1.6mのステンレス製フレームの上下に渡して上端と下端とを固定し、モジュールを製作した。その際、ラセン状繊維接触材の設置間隔が、ループ状繊維の先端間の間隔が30mmとなるように配列した。なお、モジュールの下部に、高さが0.3mの架台フレームを取り付けた。同様なモジュールをさらに3台製作した。   A plurality of the contact materials were passed up and down on a stainless steel frame having a height of 2.3 m, a length of 0.5 m, and a width of 1.6 m to fix the upper end and the lower end, and a module was manufactured. At that time, the arrangement of the helical fiber contact materials was arranged so that the distance between the tips of the loop-shaped fibers was 30 mm. A gantry frame having a height of 0.3 m was attached to the lower part of the module. Three more similar modules were made.

次に、図2に示したものに類似した汚泥処理装置を用意した。汚泥処理装置は、生物処理槽の全容量が12mで、沈降槽が3mの循環2段脱窒方式であり、混合槽→第1嫌気槽→第1曝気槽→第2曝気槽→第2嫌気槽→第3曝気槽→沈澱槽という構成をとっている。また、第2曝気槽から流入量の4倍量を第1嫌気槽へ返送させ、沈澱槽の沈澱汚泥は第1嫌気槽へ流入量の1〜2倍量を返送循環させる方式である。 Next, a sludge treatment apparatus similar to that shown in FIG. 2 was prepared. The sludge treatment apparatus is a circulating two-stage denitrification system with a biological treatment tank with a total capacity of 12 m 3 and a sedimentation tank of 3 m 3 , mixing tank → first anaerobic tank → first aeration tank → second aeration tank → second 2 Anaerobic tank → 3rd aeration tank → Precipitation tank. In addition, four times the amount of inflow from the second aeration tank is returned to the first anaerobic tank, and the sedimentation sludge in the settling tank is returned to the first anaerobic tank for 1 to 2 times the amount of inflow.

上記で得られた接触材モジュールを、第1、第2、第3曝気槽に設置した。第1曝気槽には、上で製作したモジュールが2台水流れに対して並列に沈められており、第2曝気槽と第3曝気槽には、上記のモジュールが各1台ずつ沈められている。   The contact material module obtained above was installed in the first, second, and third aeration tanks. In the first aeration tank, the two modules manufactured above are submerged in parallel with the water flow. In the second aeration tank and the third aeration tank, one of the above modules is submerged. Yes.

次に、BOD成分の濃度が平均1500ppmの大豆食品工場の排水を用意した。この工場に備えられた図1に示したごとき標準的な活性汚泥槽でこの排水の生物処理が行われており、MLSS濃度が11000ppm〜15000ppmの余剰汚泥が発生している。   Next, the wastewater of the soybean food factory whose BOD component density | concentration is 1500 ppm on average was prepared. The wastewater is biologically treated in a standard activated sludge tank as shown in FIG. 1 provided in the factory, and surplus sludge having an MLSS concentration of 11000 ppm to 15000 ppm is generated.

まず、余剰汚泥を導入せずに、上記の工場排水だけを上記で準備した汚泥処理装置の混合槽に導入して運転を開始した。約1ヶ月の馴養運転を経て、MLSSがほぼ7000ppm〜1000ppm0で安定し、安定運転に至った。5ヶ月後の水質はBOD10ppm以下、全窒素(T−N)10ppm以下、SS15ppm以下であった。また、余剰汚泥が発生しておらず、沈降槽からの沈降汚泥の引き抜きは全く実施しなかった。この状態で、第3曝気槽の生物接触材を引き上げ観察したところ、多くの糸ミミズが付着しているのが見られ、部分的には接触材が赤色に見えるほどであった。   First, without introducing excess sludge, only the above-mentioned factory wastewater was introduced into the mixing tank of the sludge treatment apparatus prepared above, and the operation was started. After about one month of acclimatization operation, MLSS was stabilized at approximately 7000 ppm to 1000 ppm 0, and stable operation was achieved. The water quality after 5 months was BOD 10 ppm or less, total nitrogen (TN) 10 ppm or less, and SS 15 ppm or less. Further, no excess sludge was generated, and no sedimentation sludge was drawn from the sedimentation tank. In this state, when the biological contact material in the third aeration tank was pulled up and observed, many yarn earthworms were found to be attached, and in part, the contact material appeared red.

続いて、上記の工場排水が10m/日、余剰汚泥が2m/日となるように両者を混合槽に導入し(余剰汚泥/原水=2/10)、続いて生物処理槽に越流させた。この状態で運転を行い、第三曝気槽のMLSSと汚泥量を随時測定した。また、処理水質は、沈降槽の上澄水を測定して評価した。工場原水と余剰汚泥の滞留時間(HRT)は24時間である。 Subsequently, both were introduced into the mixing tank so that the factory wastewater was 10 m 3 / day and surplus sludge was 2 m 3 / day (surplus sludge / raw water = 2/10), and then overflowed into the biological treatment tank. I let you. Operation was performed in this state, and MLSS and sludge amount in the third aeration tank were measured as needed. The quality of the treated water was evaluated by measuring the supernatant water of the sedimentation tank. The residence time (HRT) of factory raw water and excess sludge is 24 hours.

運転開始後5日、10日、1ヶ月及び2ヶ月後の第三曝気槽のMLSSは、各々13600ppm、11000ppm、10000ppm、8000ppm、8500ppmであった。余剰汚泥を2m/日で毎日流入させたにもかかわらず、MLSSは8000〜9000ppmの値で安定していた。また、汚泥処理装置の沈降槽の沈降汚泥は増加しなかった。つまり、余剰汚泥が新たに混合されたにもかかわらず、それらが消滅して沈降汚泥も増加しなかった。2ヶ月間で1440kgのMLSSが負荷されたことになるが、その段階での第三曝気槽中のMLSSは8500ppmであり、工場原水中のBOD成分量を加えると約2000kgの汚泥が消滅したことになる。 The MLSS of the third aeration tank after 5 days, 10 days, 1 month and 2 months after the start of operation was 13600 ppm, 11000 ppm, 10000 ppm, 8000 ppm and 8500 ppm, respectively. Despite surplus sludge flowing in daily at 2 m 3 / day, MLSS was stable at a value of 8000 to 9000 ppm. Moreover, sedimentation sludge in the sedimentation tank of the sludge treatment apparatus did not increase. That is, although the excess sludge was newly mixed, they disappeared and the sedimentation sludge did not increase. 1440 kg of MLSS was loaded in 2 months, but the MLSS in the third aeration tank at that stage was 8500 ppm, and when the amount of BOD component in the factory raw water was added, about 2000 kg of sludge disappeared. become.

なお、処理水の水質はBOD15ppm、T−N18ppm、SS18ppmであり、放流できる値であった。   The water quality of the treated water was BOD 15 ppm, TN 18 ppm, and SS 18 ppm, which were values that could be discharged.

比較例1Comparative Example 1

実施例1において、汚泥処理装置が運転開始後の馴養運転から安定運転に至った状態で、原水を混合せずに、工場の活性汚泥槽から発生する余剰汚泥12mだけを混合槽から生物処理槽に導入し、それ以降は、余剰汚泥も工場排水も導入せずに運転を続けた以外は、実施例1と同一にして試験を行った。なお、工場の活性汚泥槽からの余剰汚泥のMLSSは12500ppmであった。第三曝気槽から適宜サンプリングしてMLSSを測定し、余剰汚泥の消滅の程度を観察した。 In Example 1, in a state where the sludge treatment apparatus has reached a stable operation from the acclimatization operation after the start of operation, only surplus sludge 12m 3 generated from the activated sludge tank of the factory is biologically treated from the mixing tank without mixing raw water. The test was conducted in the same manner as in Example 1 except that the operation was continued without introducing surplus sludge and factory wastewater. The MLSS of excess sludge from the factory activated sludge tank was 12,500 ppm. The MLSS was measured by sampling appropriately from the third aeration tank, and the degree of extinction of excess sludge was observed.

余剰汚泥導入から二日後のMLSSは10300ppmであった。DOを管理しながら運転を続行した。導入から5日後のMLSSは5500ppmまで低減していた。導入から10日目で曝気槽を上から観察すると、MLSSが低減して浸漬している生物接触材が見えるほどになっていた。この段階で、第三曝気槽からサンプリングしてMLSSを測定すると100ppm以下まで余剰汚泥が減少していたので、余剰汚泥がほぼ消滅するには10日間を要した。余剰汚泥は一日当たり約10%ずつ消滅していたことになる。   Two days after the introduction of excess sludge, the MLSS was 10300 ppm. Continued operation while managing DO. The MLSS after 5 days from the introduction was reduced to 5500 ppm. When the aeration tank was observed from the top on the 10th day after the introduction, MLSS was reduced and the immersed biological contact material was visible. At this stage, when sampling from the third aeration tank and measuring MLSS, the excess sludge was reduced to 100 ppm or less, so it took 10 days for the excess sludge to almost disappear. Excess sludge disappeared about 10% per day.

余剰汚泥と工場排水との比率(余剰汚泥/工場排水)を、下記表1に記載の値に調整して混合槽に投入したこと、工場排水が汚泥処理装置に滞留する時間(HRT)を表1記載の値となるように設定したこと、比率が異なる各試験の間に馴養期間を取らずに、順次、前記の比率を切り換えて各々の比率で60日間の運転を行ったこと以外は、実施例1と同様にして処理運転を行った。それぞれの運転で、第三曝気槽からサンプリングしてMLSSを測定した。60日めの各々のMLSS及び処理水質の測定結果を表2に示す。いずれの比率でも、処理水へのMLSSの流出はなく、余剰汚泥が分解消滅していることがわかる。処理水も十分放流できるまでの水質を示している。   The ratio of surplus sludge to factory effluent (excess sludge / factory effluent) was adjusted to the values shown in Table 1 below and input to the mixing tank, and the time (HRT) that the factory sewage stays in the sludge treatment equipment is shown. 1 except that it was set to be the value described in 1 and did not take a habituation period between the tests with different ratios, and the operation was performed for 60 days at each ratio by sequentially switching the ratios. The treatment operation was performed in the same manner as in Example 1. In each operation, MLSS was measured by sampling from the third aeration tank. Table 2 shows the measurement results of each MLSS and treated water quality on the 60th day. In any ratio, it can be seen that there is no outflow of MLSS to the treated water, and that the excess sludge is decomposed and extinguished. It shows the water quality until the treated water can be discharged sufficiently.

上記の結果、及び実施例1、比較例1も含めて、各比率で処理原水を10m/日を処理するための生物処理槽の大きさを換算計算した結果を表3に示す。余剰汚泥10m/日をBOD平均1500ppmの大豆食品工場排水と混合して処理する条件で余剰汚泥の消滅をはかる場合には、余剰汚泥と排水とを1:1の組合せで混合して処理すると、生物処理槽が30mとなり、最小となる結果を得た。 Table 3 shows the results of conversion of the size of the biological treatment tank for treating 10 m 3 / day of the raw water to be treated at each ratio, including the above results and Example 1 and Comparative Example 1. When surplus sludge is to be eliminated under the conditions of mixing surplus sludge at 10 m 3 / day with soybean food factory wastewater with an average BOD of 1500 ppm, the surplus sludge and wastewater are mixed and treated in a 1: 1 combination. The biological treatment tank was 30 m 3 , and the minimum result was obtained.

Figure 2006061743
Figure 2006061743

Figure 2006061743
Figure 2006061743

Figure 2006061743
Figure 2006061743

活性汚泥装置に汚泥処理装置が組み込まれた状態を示した概略模式図である。It is the schematic diagram which showed the state by which the sludge processing apparatus was integrated in the activated sludge apparatus. 汚泥処理装置の概略構造を示した模式図である。It is the schematic diagram which showed schematic structure of the sludge processing apparatus. 接触材の芯材方向に平行方向から見た、接触材断面の概略を示した模式図である。It is the schematic diagram which showed the outline of the contact material cross section seen from the direction parallel to the core material direction of a contact material. ラセン形に加工された接触材の一部の模式図である。It is a schematic diagram of a part of the contact material processed into a spiral shape. 従来の活性汚泥の減容化装置の例を示した概略模式図である。It is the schematic diagram which showed the example of the conventional volume reduction apparatus of activated sludge.

符号の説明Explanation of symbols

1 原水
2、3 処理水ライン
4 処理水
5 混合水ライン
6 越流ライン
7 処理水
10 貯留槽
20 活性汚泥槽
21 散気管
22 ブロア
30 沈澱槽
31 沈澱汚泥
40 沈澱汚泥抜き出しライン
41 汚泥返送ライン
42 余剰汚泥移送ライン
51 原水ライン
60 汚泥処理装置
70 混合槽
71 攪拌機
72 接触材
73 ループ状繊維
74 芯材
75 被覆
76 基布
78 中心軸
80 生物処理槽
81 第1嫌気槽
82-84 曝気槽
85 第2嫌気性槽
86 曝気槽
90 攪拌機
91 散気管
92-95 接触材モジュール
96 隔壁
97 循環ライン
98 返送ライン
99 メタノール添加ライン
100 沈降槽
101 沈降汚泥
110 可溶化装置
111 返送ライン
112 排出余剰汚泥
DESCRIPTION OF SYMBOLS 1 Raw water 2, 3 Treated water line 4 Treated water 5 Mixed water line 6 Overflow line 7 Treated water 10 Storage tank 20 Activated sludge tank 21 Aeration pipe 22 Blower 30 Settling tank 31 Precipitated sludge 40 Precipitated sludge extraction line 41 Sludge return line 42 Excess sludge transfer line 51 Raw water line 60 Sludge treatment device 70 Mixing tank 71 Stirrer 72 Contact material 73 Loop fiber 74 Core material 75 Cover 76 Base cloth 78 Center shaft 80 Biological treatment tank 81 First anaerobic tank 82-84 Aeration tank 85 First 2 Anaerobic tank 86 Aeration tank 90 Stirrer 91 Aeration pipe 92-95 Contact material module 96 Bulkhead 97 Circulation line 98 Return line 99 Methanol addition line 100 Sedimentation tank 101 Sedimentation sludge 110 Solubilizer 111 Return line 112 Discharge excess sludge

Claims (10)

原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理方法であって、前記余剰汚泥に前記原水の一部を混合し、前記混合により生成された混合水が、接触材に担持された微生物により、少なくとも好気的に生物処理されることを特徴とする余剰汚泥の生物処理方法。   A method for biological treatment of surplus sludge produced by activated sludge treatment of raw water, wherein a part of the raw water is mixed with the surplus sludge, and the mixed water generated by the mixing is produced by microorganisms supported on a contact material. A surplus sludge biological treatment method, wherein the biological treatment is performed at least aerobically. 前記混合水における前記余剰汚泥と前記原水との混合比率が、1対9から7対3の範囲内であることを特徴とする請求項1に記載の余剰汚泥の生物処理方法。   The surplus sludge biological treatment method according to claim 1, wherein a mixing ratio of the excess sludge and the raw water in the mixed water is within a range of 1: 9 to 7: 3. 前記の好気的な生物処理が、微生物、原生動物、後生動物からなる微小動物捕食機構を用いたものであることを特徴とする請求項1に記載の余剰汚泥の生物処理方法。   2. The surplus sludge biological treatment method according to claim 1, wherein the aerobic biological treatment uses a micro-animal predation mechanism comprising microorganisms, protozoa, and metazoans. さらに、通性嫌気性雰囲気における脱窒処理を含むことを特徴とする請求項1に記載の余剰汚濁の処理方法。   Furthermore, the processing method of the excess pollution of Claim 1 including the denitrification process in facultative anaerobic atmosphere. 前記の生物処理後に、沈澱物の分離処理がなされることを特徴とする請求項1または4に記載の余剰汚濁の処理方法。   The method for treating excess pollution according to claim 1 or 4, wherein a precipitate is separated after the biological treatment. 前記分離処理が、膜分離によりなされるものであることを特徴とする請求項5に記載の余剰汚濁の処理方法   6. The method for treating excess pollution according to claim 5, wherein the separation treatment is performed by membrane separation. さらに、前記沈澱物が分離された上澄み水に、脱リン処理がなされることを特徴とする請求項5に記載の余剰汚濁の処理方法。   6. The method for treating excess pollution according to claim 5, wherein the supernatant water from which the precipitate has been separated is subjected to a dephosphorization treatment. 前記接触材が、螺旋状の芯材と、前記芯材表面に多数設けられたループ状繊維とからなることを特徴とする請求項1に記載の余剰汚泥の処理方法。   The method for treating excess sludge according to claim 1, wherein the contact material comprises a spiral core material and a plurality of loop-shaped fibers provided on the surface of the core material. 前記のループ状繊維が、塩化ビニリデン製であることを特徴とする請求項8に記載の余剰汚泥の処理方法。   The method for treating excess sludge according to claim 8, wherein the loop-shaped fibers are made of vinylidene chloride. 原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理装置であって、前記余剰汚泥に前記原水の一部を混合して混合水とする混合手段と、微生物を担持した接触材を備え、前記の混合水を少なくとも好気的に生物処理する処理手段とを備えることを特徴とする余剰汚泥の生物処理装置。
A biological treatment apparatus for surplus sludge generated by the activated sludge treatment of raw water, comprising a mixing means for mixing a part of the raw water with the surplus sludge to form mixed water, and a contact material supporting microorganisms, A surplus sludge biological treatment apparatus comprising a treatment means for biologically treating the mixed water at least aerobically.
JP2004243482A 2004-08-24 2004-08-24 Method and apparatus for treating excess sludge Pending JP2006061743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243482A JP2006061743A (en) 2004-08-24 2004-08-24 Method and apparatus for treating excess sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243482A JP2006061743A (en) 2004-08-24 2004-08-24 Method and apparatus for treating excess sludge

Publications (1)

Publication Number Publication Date
JP2006061743A true JP2006061743A (en) 2006-03-09

Family

ID=36108668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243482A Pending JP2006061743A (en) 2004-08-24 2004-08-24 Method and apparatus for treating excess sludge

Country Status (1)

Country Link
JP (1) JP2006061743A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326067A (en) * 2006-06-09 2007-12-20 Kurita Water Ind Ltd Biological treatment accelerator of wastewater and biological treatment method of wastewater using it
WO2008018486A1 (en) * 2006-08-09 2008-02-14 Kurita Water Industries Ltd. Method and apparatus for biological treatment of organic wastewater
EP2022763A1 (en) * 2006-04-28 2009-02-11 Kurita Water Industries Ltd. Method and apparatus for biologically treating organic discharged water
US8219665B2 (en) 2005-03-07 2012-07-10 Microsoft Corporation Method and system for discovery via tribal knowledge
WO2012124675A1 (en) * 2011-03-16 2012-09-20 栗田工業株式会社 Device and method for biological treatment of organic wastewater
JP5176542B2 (en) * 2005-04-12 2013-04-03 栗田工業株式会社 Biological treatment method and biological treatment apparatus for organic wastewater
JP2013512096A (en) * 2009-12-01 2013-04-11 リ、ジンミン Sludge treatment method using sludge biological treatment method, and sludge treatment apparatus and apparatus
CN105307984A (en) * 2013-09-27 2016-02-03 栗田工业株式会社 Organic wastewater biological treatment method
CN113277677A (en) * 2021-05-25 2021-08-20 济南光博环保科技有限公司 Treatment method and reuse water treatment process for production wastewater of disposable nitrile gloves

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192400A (en) * 1985-02-21 1986-08-26 Kubota Ltd Treatment of excessive sludge
JPS62125896A (en) * 1985-11-27 1987-06-08 Toyo Jitsugyo Kk Treatment device for waste water
JPH01274899A (en) * 1988-04-26 1989-11-02 Ebara Infilco Co Ltd Treatment of organic filthy water
JP2000229297A (en) * 1998-12-10 2000-08-22 Japan Organo Co Ltd Biological water treating device
JP2002143895A (en) * 2000-11-13 2002-05-21 Joban Kaihatsu Kk Decomposition method for excess sludge
JP2003047928A (en) * 2001-08-02 2003-02-18 Ebara Corp Method and apparatus for treating organic waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192400A (en) * 1985-02-21 1986-08-26 Kubota Ltd Treatment of excessive sludge
JPS62125896A (en) * 1985-11-27 1987-06-08 Toyo Jitsugyo Kk Treatment device for waste water
JPH01274899A (en) * 1988-04-26 1989-11-02 Ebara Infilco Co Ltd Treatment of organic filthy water
JP2000229297A (en) * 1998-12-10 2000-08-22 Japan Organo Co Ltd Biological water treating device
JP2002143895A (en) * 2000-11-13 2002-05-21 Joban Kaihatsu Kk Decomposition method for excess sludge
JP2003047928A (en) * 2001-08-02 2003-02-18 Ebara Corp Method and apparatus for treating organic waste

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219665B2 (en) 2005-03-07 2012-07-10 Microsoft Corporation Method and system for discovery via tribal knowledge
JP5176542B2 (en) * 2005-04-12 2013-04-03 栗田工業株式会社 Biological treatment method and biological treatment apparatus for organic wastewater
EP2022763A1 (en) * 2006-04-28 2009-02-11 Kurita Water Industries Ltd. Method and apparatus for biologically treating organic discharged water
EP2022763A4 (en) * 2006-04-28 2013-04-03 Kurita Water Ind Ltd Method and apparatus for biologically treating organic discharged water
JP2007326067A (en) * 2006-06-09 2007-12-20 Kurita Water Ind Ltd Biological treatment accelerator of wastewater and biological treatment method of wastewater using it
WO2008018486A1 (en) * 2006-08-09 2008-02-14 Kurita Water Industries Ltd. Method and apparatus for biological treatment of organic wastewater
JP2013512096A (en) * 2009-12-01 2013-04-11 リ、ジンミン Sludge treatment method using sludge biological treatment method, and sludge treatment apparatus and apparatus
CN103429540A (en) * 2011-03-16 2013-12-04 栗田工业株式会社 Device and method for biological treatment of organic wastewater
WO2012124675A1 (en) * 2011-03-16 2012-09-20 栗田工業株式会社 Device and method for biological treatment of organic wastewater
JPWO2012124675A1 (en) * 2011-03-16 2014-07-24 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
CN103429540B (en) * 2011-03-16 2016-03-30 栗田工业株式会社 The bioremediation of organic drainage and device
JP5915643B2 (en) * 2011-03-16 2016-05-11 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
CN105307984A (en) * 2013-09-27 2016-02-03 栗田工业株式会社 Organic wastewater biological treatment method
CN105307984B (en) * 2013-09-27 2018-05-18 栗田工业株式会社 The bioremediation of organic wastewater
CN113277677A (en) * 2021-05-25 2021-08-20 济南光博环保科技有限公司 Treatment method and reuse water treatment process for production wastewater of disposable nitrile gloves
CN113277677B (en) * 2021-05-25 2022-09-16 济南光博环保科技有限公司 Treatment method and reuse water treatment process for production wastewater of disposable nitrile gloves

Similar Documents

Publication Publication Date Title
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
WO2005095289A1 (en) Method for treating ammonia-containing wastewater
WO2011148949A1 (en) Method for biological denitrification using anaerobic ammonia oxidation reaction
US20210171375A1 (en) Pretreatment to remove ammonia from high strength wastewater with memrbane aerated biofilm sidestream
JPS633680B2 (en)
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP2008284427A (en) Apparatus and method for treating waste water
JP2005066595A (en) Fiber-made contact material, water treatment apparatus and water treating method
US10556816B2 (en) Wastewater treatment apparatus
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2006061743A (en) Method and apparatus for treating excess sludge
JP5858769B2 (en) Suspended organic matter-containing wastewater treatment system and treatment method
KR101186606B1 (en) Advanced treatment apparatus to removing nitrogen and phosphorus from wastewater
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
CN104803547A (en) Method for treating COW-DM sewage with high chemical stability and biodegradation difficulty
CN1309096A (en) Method and device for treating high concentration waste water
JPH11156392A (en) Treating method for ethanolamine-containing waste water
KR20200092028A (en) Biofilm Core-shell structured particles having biofilm and Method for treating wastewater using same
JP2673488B2 (en) Method and apparatus for treating organic wastewater
KR101236693B1 (en) Apparatus for sewage and wastewater treatment
KR19990030406A (en) Nutrient treatment method of wastewater by changing the flow path
JP2004290826A (en) System and method for treating high concentration organic liquid
JP3257943B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101013