JP2006060195A5 - - Google Patents

Download PDF

Info

Publication number
JP2006060195A5
JP2006060195A5 JP2005190841A JP2005190841A JP2006060195A5 JP 2006060195 A5 JP2006060195 A5 JP 2006060195A5 JP 2005190841 A JP2005190841 A JP 2005190841A JP 2005190841 A JP2005190841 A JP 2005190841A JP 2006060195 A5 JP2006060195 A5 JP 2006060195A5
Authority
JP
Japan
Prior art keywords
susceptor
tac
coating
sic
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005190841A
Other languages
Japanese (ja)
Other versions
JP4322846B2 (en
JP2006060195A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005190841A priority Critical patent/JP4322846B2/en
Priority claimed from JP2005190841A external-priority patent/JP4322846B2/en
Publication of JP2006060195A publication Critical patent/JP2006060195A/en
Publication of JP2006060195A5 publication Critical patent/JP2006060195A5/ja
Application granted granted Critical
Publication of JP4322846B2 publication Critical patent/JP4322846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

第2実施形態に係るサセプタは、SiCが被覆された黒鉛からなるサセプタ本体2と、ウェハを上部に載置する部分となる部材8と、部材8の上部の外周に沿って接合するように設けられるSiCからなる環状部材9とを備えてなり、これらサセプタ本体2と、部材8と、環状部材9とによりザグリ部8aが形成されるものである。 The susceptor 7 according to the second embodiment is joined along the susceptor main body 2 made of graphite coated with SiC, the member 8 serving as a portion on which the wafer is placed, and the outer periphery of the upper portion of the member 8. An annular member 9 made of SiC is provided, and a counterbore portion 8 a is formed by the susceptor body 2, the member 8, and the annular member 9.

部材8は、TaCからなる円盤状部材であり、その断面は略T字型となるように形成されていて、環状部材9とともにサセプタ本体2に嵌合されたとき、サセプタにおいてウェハを載置するのに最適な形状を有するザグリ部8aを形成できる。このザグリ部8aは、載置するウェハと同じ大きさの平面形状である必要はなく、やや大きい平面形状を有するものであってもよい。なお、この部材8も上述した部材3と同様に、図2に示すように、TaC被膜5が黒鉛6表面に被覆されているTaC被覆黒鉛材からなる部材4であってもよい。このとき、TaC被膜の厚さは10〜100μmが好ましく、さらに好ましくは30〜100μmである。 The member 8 is a disk-shaped member made of TaC, and its cross section is formed to be substantially T-shaped. When the member 8 is fitted to the susceptor body 2 together with the annular member 9, the wafer is placed on the susceptor 7 . The counterbore part 8a having an optimum shape for the formation can be formed. The counterbore 8a does not need to have a planar shape having the same size as the wafer to be placed, and may have a slightly larger planar shape. The member 8 may be a member 4 made of a TaC-coated graphite material in which a TaC coating 5 is coated on the surface of the graphite 6 as shown in FIG. At this time, the thickness of the TaC film is preferably 10 to 100 μm, and more preferably 30 to 100 μm.

次に、図8に示す測定装置の動作、及び、サセプタのガス透過率の測定方法について説明する。測定試料には、サセプタを直径30mm以上の円板状に加工し、測定前に十分乾燥したものを用いた。測定試料をセル26内に設置し、ゲートバルブ32と排気バルブ31を開けてロータリー式真空ポンプ24で粗引きする。100Pa以下まで真空引きした後、排気バルブ31を閉めて排気バルブ33、34を開けてセル一次側配管25および二次側のタンク27をロータリー式の真空ポンプ29およびターボ分子ポンプ28で一定の高真空値になるまで減圧する。次いで、電離真空計23で高真空まで到達したことを確認したら、排気バルブ33、34とゲートバルブ32を閉めた後に真空ポンプ2とターボ分子ポンプ2を停止する。ストップバルブ30を開けて一次側配管25に一次側真空計21で確認しながらN2ガスを一定の試験圧で加える。N2ガスは一次側から、セル26内の測定試料を透過して、二次側のタンク27へと移動し、二次側のタンク27の圧力が上昇し始める。その圧力上昇率を二次側圧力計22で測定する。このように測定装置を動作させた後、測定試料のガス透過率(K)を次の式(1)、(2)にしたがって算出する。
K=(QL)/(ΔPA)…(1)
Q={(p2−p1)V0}/t…(2)
ここで、Kは窒素ガス透過率、Qは通気量、ΔPは一次側タンクと二次側タンクの圧力差、Aは透過面積、Lは測定試料の厚さ、p1は二次側タンクの初期圧力、p2は二次側タンクの最終圧力、V0は二次側タンクの容積、tは測定時間である。
被膜の窒素ガス透過率(K2)を求めるには、まず、黒鉛基材上に被膜を設けたSiCおよびTaC被覆黒鉛材の窒素ガス透過率(K0)を測定し、次いで研磨により上記被膜を除去し、黒鉛基材のみの窒素ガス透過率(K1)を測定する。そして、次の関係式(3)からK2を算出する。
(L1+L2)/K0=L1/K1+L2/K2…(3)
ここで、L1は黒鉛基材の厚さ、L2はSiCおよびTaCの被膜の厚さである。
Next, the operation of the measuring apparatus shown in FIG. 8 and the method for measuring the gas permeability of the susceptor will be described. As a measurement sample, a susceptor processed into a disk shape having a diameter of 30 mm or more and sufficiently dried before measurement was used. A measurement sample is placed in the cell 26, and the gate valve 32 and the exhaust valve 31 are opened and roughed by the rotary vacuum pump 24. After evacuating to 100 Pa or less, the exhaust valve 31 is closed, the exhaust valves 33 and 34 are opened, and the cell primary side piping 25 and the secondary side tank 27 are fixed at a certain level by the rotary vacuum pump 29 and the turbo molecular pump 28. Depressurize until vacuum is reached. Then, confirm that it has reached to a high vacuum by ionization gauge 23 stops the vacuum pump 2 9 and a turbo molecular pump 2 8 after closing the exhaust valve 33 and the gate valve 32. The stop valve 30 is opened, and N 2 gas is added to the primary side pipe 25 at a constant test pressure while checking with the primary side vacuum gauge 21. The N 2 gas permeates the measurement sample in the cell 26 from the primary side and moves to the secondary side tank 27, and the pressure in the secondary side tank 27 starts to rise. The pressure increase rate is measured by the secondary pressure gauge 22. After operating the measuring apparatus in this way, the gas permeability (K) of the measurement sample is calculated according to the following equations (1) and (2).
K = (QL) / (ΔPA) (1)
Q = {(p 2 −p 1 ) V 0 } / t (2)
Here, K is the nitrogen gas permeability, Q is the air flow rate, ΔP is the pressure difference between the primary side tank and the secondary side tank, A is the permeation area, L is the thickness of the measurement sample, and p 1 is the secondary side tank. Initial pressure, p 2 is the final pressure of the secondary tank, V 0 is the volume of the secondary tank, and t is the measurement time.
In order to obtain the nitrogen gas permeability (K 2 ) of the coating, first, the nitrogen gas permeability (K 0 ) of the SiC and TaC-coated graphite material provided with the coating on the graphite substrate is measured, and then the above-mentioned coating is obtained by polishing. And the nitrogen gas permeability (K 1 ) of only the graphite substrate is measured. Then, K 2 is calculated from the following relational expression (3).
(L 1 + L 2 ) / K 0 = L 1 / K 1 + L 2 / K 2 (3)
Here, L 1 is the thickness of the graphite substrate, and L 2 is the thickness of the SiC and TaC coatings.

また、それぞれのエピタキシャル成長したSiC層の窒素とホウ素濃度を測定した。その結果を記表5に示す。測定にはSIMS分析法を用いた。実施例5のサセプタを使用した場合のSiC層の窒素濃度とホウ素濃度は、それぞれ5.2×1015と3.4×1014atoms/cm3であり、高純度なものであった。しかし、比較例5のサセプタを使用した場合のSiC層の窒素濃度とホウ素濃度は、高くなっており、SiC被膜の昇華や黒鉛基材からのガス放出が原因で不純物濃度が高くなっていた。また、比較例5と比較例6のサセプタを使用した場合のエピタキシャル成長したSiC層の窒素濃度とホウ素濃度は、5.8×1017〜5.6×1018atoms/cm3と高くなっており、TaC被膜を透過した黒鉛基材からのガス放出が原因で不純物濃度が高くなっていた。 Further, the nitrogen and boron concentrations of each epitaxially grown SiC layer were measured. The results are shown above Symbol Table 5. The SIMS analysis method was used for the measurement. When the susceptor of Example 5 was used, the nitrogen concentration and boron concentration of the SiC layer were 5.2 × 10 15 and 3.4 × 10 14 atoms / cm 3 , respectively, and were high purity. However, when the susceptor of Comparative Example 5 was used, the nitrogen concentration and boron concentration of the SiC layer were high, and the impurity concentration was high due to sublimation of the SiC coating and outgassing from the graphite substrate. Further, when the susceptor of Comparative Example 5 and Comparative Example 6 is used, the nitrogen concentration and boron concentration of the epitaxially grown SiC layer are as high as 5.8 × 10 17 to 5.6 × 10 18 atoms / cm 3. The impurity concentration was high due to outgassing from the graphite base material permeated through the TaC coating.

1、7、10 サセプタ
2 サセプタ本体
3、4、8 部材
3a、8a、11 ザグリ部
TaC被膜
12 TaC被膜又はSiC被膜
6、13 黒鉛
9 環状部材
21 一次側真空計
22 二次側真空計
23 電離真空計
24、29 ロータリーポンプ
25 一次側配管
26 透過セル
27 二次側タンク
28 ターボ分子ポンプ
30 ストップバルブ
31、33、34 排気バルブ
32 ゲートバルブ
1, 7, 10 Susceptor 2 Susceptor body 3, 4, 8 Member 3a, 8a, 11 Counterbore part 5 TaC coating
12 TaC coating or SiC coating 6, 13 Graphite 9 Annular member 21 Primary vacuum gauge 22 Secondary vacuum gauge 23 Ionization vacuum gauge 24, 29 Rotary pump 25 Primary piping 26 Permeation cell 27 Secondary tank 28 Turbo molecular pump 30 Stop valve 31, 33, 34 Exhaust valve 32 Gate valve

JP2005190841A 2004-07-22 2005-06-30 Susceptor Active JP4322846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005190841A JP4322846B2 (en) 2004-07-22 2005-06-30 Susceptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004213845 2004-07-22
JP2005190841A JP4322846B2 (en) 2004-07-22 2005-06-30 Susceptor

Publications (3)

Publication Number Publication Date
JP2006060195A JP2006060195A (en) 2006-03-02
JP2006060195A5 true JP2006060195A5 (en) 2007-12-20
JP4322846B2 JP4322846B2 (en) 2009-09-02

Family

ID=36107376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005190841A Active JP4322846B2 (en) 2004-07-22 2005-06-30 Susceptor

Country Status (1)

Country Link
JP (1) JP4322846B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4252944B2 (en) * 2004-07-29 2009-04-08 新電元工業株式会社 Susceptor and chemical vapor deposition method
JP4998307B2 (en) * 2008-02-13 2012-08-15 住友電気工業株式会社 Vapor phase growth method of SiC substrate
JP2010272550A (en) * 2009-05-19 2010-12-02 Sumitomo Electric Ind Ltd Susceptor
JP5336307B2 (en) * 2009-09-04 2013-11-06 株式会社ブリヂストン Method for producing silicon carbide single crystal
JP5880297B2 (en) 2012-06-07 2016-03-08 三菱電機株式会社 Substrate support, semiconductor manufacturing equipment
JP6196246B2 (en) * 2013-02-06 2017-09-13 東洋炭素株式会社 Silicon carbide-tantalum carbide composite and susceptor
JP2015146416A (en) * 2014-01-06 2015-08-13 住友電気工業株式会社 Silicon carbide substrate support member, member for silicon carbide growth device and silicon carbide epitaxial substrate manufacturing method
JP2015143168A (en) * 2014-01-31 2015-08-06 住友電気工業株式会社 Silicon carbide epitaxial substrate and method for manufacturing silicon carbide epitaxial substrate
JP6219238B2 (en) 2014-06-24 2017-10-25 東洋炭素株式会社 Susceptor and manufacturing method thereof
JP6444641B2 (en) 2014-07-24 2018-12-26 株式会社ニューフレアテクノロジー Film forming apparatus, susceptor, and film forming method
JP6532424B2 (en) * 2016-03-30 2019-06-19 三菱電機株式会社 Substrate mounting member, wafer plate, and method of manufacturing SiC epitaxial substrate
WO2018207942A1 (en) * 2017-05-12 2018-11-15 東洋炭素株式会社 Susceptor, method for producing epitaxial substrate, and epitaxial substrate
WO2020255698A1 (en) * 2019-06-19 2020-12-24 住友電気工業株式会社 Silicon carbide epitaxial substrate
WO2022013906A1 (en) * 2020-07-13 2022-01-20 三菱電機株式会社 SiC EPITAXIAL SUBSTRATE MANUFACTURING DEVICE AND MANUFACTURING METHOD
WO2023234159A1 (en) * 2022-05-30 2023-12-07 株式会社ニューフレアテクノロジー Holder and vapor phase growth apparatus

Similar Documents

Publication Publication Date Title
JP2006060195A5 (en)
JP4322846B2 (en) Susceptor
CN103657458B (en) Polyether block amide composite membrane, Its Preparation Method And Use
JP6345421B2 (en) Gas barrier property evaluation apparatus and evaluation method
JP6304745B2 (en) Gas barrier property evaluation apparatus and evaluation method
JP6337293B2 (en) Gas permeability measuring device
WO2018155678A1 (en) Device for evaluating gas barrier properties and method for evaluating gas barrier properties
KR101298043B1 (en) Gas permeability measurement unit for plate-type sample
JP3930871B2 (en) Moisture permeability / gas permeability measuring device and gas permeability measuring method
JPH06241978A (en) Gas transmittance measuring device for film
CN107884310B (en) Material gassing rate measuring device based on double-test-chamber gas circuit conversion
JP2016520196A5 (en)
US20150020686A1 (en) Heat Resistant Hydrogen Separation Membrane and Method for Manufacturing Same
JP2014002038A (en) Vapor permeability measuring apparatus and vapor permeability measuring method
WO1998003850A1 (en) A process for measuring the gas permeability and an apparatus that carries out this process
Welch et al. Continuous polymer films deposited on top of porous substrates using plasma-enhanced atomic layer deposition and molecular layer deposition
CN102668059B (en) Vacuum chuck
JP3951972B2 (en) Film sample fixing method, gas cell, and gas permeability measuring apparatus
Zhu et al. New leak assembly based on fluidic nanochannels
JPH10335249A (en) In situ monitoring of contaminant in semiconductor processing chamber
JP3644556B2 (en) Deposition equipment
Wang et al. New leak element based on transfer-free single-layer graphene membrane
CN112284634B (en) Standard leak based on graphene and preparation method
Steriotis et al. A novel experimental technique for the measurement of the single-phase gas relative permeability of porous solids
JP2007216106A (en) Manufacturing method of ceramic membrane for gas separation