JP2006057779A - Valve device and refrigeration cycle device - Google Patents

Valve device and refrigeration cycle device Download PDF

Info

Publication number
JP2006057779A
JP2006057779A JP2004242094A JP2004242094A JP2006057779A JP 2006057779 A JP2006057779 A JP 2006057779A JP 2004242094 A JP2004242094 A JP 2004242094A JP 2004242094 A JP2004242094 A JP 2004242094A JP 2006057779 A JP2006057779 A JP 2006057779A
Authority
JP
Japan
Prior art keywords
valve
seat member
valve seat
valve body
plastic deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004242094A
Other languages
Japanese (ja)
Other versions
JP4395422B2 (en
Inventor
Tadaaki Ikeda
忠顕 池田
Morio Kaneko
守男 金子
Kaori Yokota
香織 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2004242094A priority Critical patent/JP4395422B2/en
Publication of JP2006057779A publication Critical patent/JP2006057779A/en
Application granted granted Critical
Publication of JP4395422B2 publication Critical patent/JP4395422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely install a ceramic valve seal member and a valve element with high reliability and durability without causing breakage such as cracking, and deterioration with age such as rattling of a valve housing and a valve stem member. <P>SOLUTION: In this valve device, a valve seat member receiving hole 41 having a bottomed structure is formed on the metallic valve housing 11 for receiving the ceramics valve seat member 21. The valve seat member 21 is inserted into the valve seat member receiving hole 41 to fix the valve seat member 21 to the valve housing 11 by caulking a caulking piece 43 formed on an opening edge part of the valve seat member receiving hole 41. Further a plastic deformation ring member 45 composed of a material of hardness lower than that of a material of the valve housing 11, is held between the caulking piece 43 and the valve seat member 21. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、弁装置に関し、特に、セラミックス製の弁座部材、弁体を使用した弁装置のそれらセラミックス製部品の組付構造に関するものである。   The present invention relates to a valve device, and more particularly, to a ceramic valve seat member and a structure for assembling these ceramic parts in a valve device using a valve body.

アンモニア冷媒を用いた冷凍サイクル装置では、冷媒回路に組み込まれる膨張弁等の弁体、弁座部が、ステンレス鋼、鉄等の導電性の金属製であると、局部電池作用が生じ、電気化学的腐食やキャビテーションエロージョンによる壊食が発生するため、この対策として、弁体、弁座部をセラミックスで構成したり、弁体、弁座部の表面を蒸着等によってセラミックス被覆することが、すでに提案されている(例えば、特許文献1)。   In the refrigeration cycle apparatus using ammonia refrigerant, if the valve body such as an expansion valve and the valve seat part incorporated in the refrigerant circuit are made of a conductive metal such as stainless steel or iron, local battery action occurs, and electrochemical As a countermeasure against this, erosion due to mechanical corrosion and cavitation erosion has occurred, and it has already been proposed that the valve body and valve seat be made of ceramics, or that the surface of the valve body and valve seat be coated with ceramics by vapor deposition, etc. (For example, Patent Document 1).

セラミックス製の弁座部材や弁体の場合、これらは、焼成部品として、金属製の弁ハウジングや弁棒部材(弁軸部材)に組み付けられる。   In the case of a ceramic valve seat member or valve body, these are assembled as a fired part to a metal valve housing or valve stem member (valve shaft member).

セラミックス部品は、金属部品に比して、割れやすく、脆いため、セラミックス製の弁座部材や弁体を、割れ等の破損を生じることなく、弁ハウジングや弁棒部材に、がた付き等を生じることなく強固に組み付けることについて、難しさがある。   Ceramic parts are more fragile and more brittle than metal parts, so ceramic valve seat members and valve bodies can be rattled against valve housings and valve stem members without causing damage such as cracks. There is difficulty in assembling firmly without occurring.

このことに対して、セラミックス製の弁体を金属製の弁体保持部材(連結部材)により保持し、弁体保持部材と弁棒部材(バルブステム)とをねじ結合によって相互に締結し、弁体の背面と弁棒部材の先端面との間に、弾性変形可能なクッション部材を挟み込むことが提案されている(例えば、特許文献2)。   On the other hand, the ceramic valve body is held by a metal valve body holding member (connecting member), and the valve body holding member and the valve stem member (valve stem) are fastened to each other by screw connection. It has been proposed to sandwich an elastically deformable cushion member between the back surface of the body and the tip surface of the valve stem member (for example, Patent Document 2).

しかし、弁体が弁座に当接する弁閉時に生じる繰返し衝撃や経時変化、温度サイクルの繰返しにより、ねじ結合が緩む可能性が高く、弁体が外れるという懸念がある。   However, there is a concern that the screw connection is likely to be loosened due to repeated impacts, changes with time, and repeated temperature cycles that occur when the valve body is in contact with the valve seat, and the valve body comes off.

クッション部材が、膨張黒鉛製シート等による弾性変形可能なシート状のものであると、シール効果も期待できるが、衝撃の繰返しや経時変化、温度サイクルの繰返しにより、クッション部材がへたってしまい、クッション性、シール性が維持できなくなることが考えられる。   If the cushion member is a sheet that can be elastically deformed by an expanded graphite sheet or the like, a sealing effect can also be expected. However, the cushion member sags due to repeated impacts, changes with time, and repeated temperature cycles. It is conceivable that the properties and sealing properties cannot be maintained.

各部品の寸法ばらつきやクッション部材の圧縮方向の寸法ばらつきにより、また、クッション部材がシート状の薄いものであるため、必要なクッション効果を出すために、ねじ込みトルクを厳重に管理しなくてはならない。具体的には、あらゆるばらつきや使用環境の要因変化があっても、クッション効果、シール性を損なうことのない締め付けトルクであり、且つ、締め過ぎによるセラミックス部品の割れ発生しない締付けトルクである必要がある。
特開2003−307370号公報 特開平8−338550号公報
Due to the dimensional variation of each part and the dimensional variation of the cushion member in the compression direction, and because the cushion member is a thin sheet, the screwing torque must be strictly controlled to produce the necessary cushion effect. . Specifically, it should be a tightening torque that does not impair the cushioning effect and sealing performance even if there are any variations or changes in the environment of use, and a tightening torque that does not cause cracking of ceramic parts due to overtightening. is there.
JP 2003-307370 A JP-A-8-338550

この発明が解決しようとする課題は、セラミックス製の弁座部材、弁体が、割れ等の破損を生じることなく、弁ハウジングや弁棒部材に、がた付き等の経時変化を生じることなく、信頼性、耐久性よく、確実に組み付けられたものにすることである。   The problem to be solved by the present invention is that the ceramic valve seat member and the valve body do not cause breakage such as cracking, and the valve housing and valve stem member do not change with time such as rattling, Reliable, durable, and securely assembled.

この発明による弁装置は、弁ハウジングに取り付けられたセラミックス製の弁座部材を弁室内に有する弁装置において、前記弁ハウジングに前記弁座部材を受け入れる有底構造の弁座部材受入孔が形成され、当該弁座部材受入孔に前記弁座部材が挿入され、前記弁座部材受入孔の底部側とは反対の側にある開口縁部に形成されたかしめ片のかしめにより前記弁座部材の前記弁ハウジングに対する固定が行われ、前記かしめ片と前記弁座部材との間に、前記弁ハウジングを構成する材料の硬度より低硬度の材料による塑性変形リング部材が挟まれている。   The valve device according to the present invention has a valve seat member receiving hole having a bottomed structure for receiving the valve seat member in the valve housing in a valve device having a ceramic valve seat member attached to the valve housing in the valve chamber. The valve seat member is inserted into the valve seat member receiving hole, and the valve seat member is squeezed by caulking pieces formed on the opening edge portion on the side opposite to the bottom side of the valve seat member receiving hole. The valve housing is fixed, and a plastic deformation ring member made of a material having a hardness lower than that of the material constituting the valve housing is sandwiched between the caulking piece and the valve seat member.

この発明による弁装置は、好ましくは、前記弁ハウジングは鉄系金属により構成され、前記塑性変形リング部材はアルミニウム系金属により構成されている。   In the valve device according to the present invention, preferably, the valve housing is made of an iron-based metal, and the plastic deformation ring member is made of an aluminum-based metal.

この発明による弁装置は、好ましくは、前記弁座部材受入孔内に、前記弁座部材と前記弁ハウジングとの間を気密シールするシール構造が設けられている。シール構造は、前記弁座部材受入孔の底部と前記弁座部材との間に挟まれた弾性シール部材、その他、接着剤により構成することができる。   The valve device according to the present invention is preferably provided with a seal structure for hermetically sealing between the valve seat member and the valve housing in the valve seat member receiving hole. The seal structure can be constituted by an elastic seal member sandwiched between the bottom portion of the valve seat member receiving hole and the valve seat member, or other adhesive.

また、この発明による弁装置は、弁棒部材に取り付けられたセラミックス製の弁体を弁室内に有する弁装置において、前記弁棒部材に前記弁体を受け入れる有底構造の弁体受入孔が形成され、当該弁体受入孔に前記弁体が挿入され、前記弁体受入孔の底部側とは反対の側にある開口縁部に形成されたかしめ片のかしめにより前記弁体の前記弁棒部材に対する固定が行われ、前記かしめ片と前記弁体との間に、前記弁棒部材を構成する材料の硬度より低硬度の材料による塑性変形リング部材が挟まれている。   In the valve device according to the present invention, a valve body receiving hole having a bottom structure for receiving the valve body is formed in the valve stem member in a valve device having a ceramic valve body attached to the valve stem member in the valve chamber. The valve body member is inserted into the valve body receiving hole, and the valve rod member of the valve body is caulked by a caulking piece formed on an opening edge on the side opposite to the bottom side of the valve body receiving hole. The plastic deformation ring member made of a material having a hardness lower than the hardness of the material constituting the valve stem member is sandwiched between the caulking piece and the valve body.

また、この発明による弁装置は、弁棒部材に取り付けられたセラミックス製の弁体を弁室内に有する弁装置において、内側に前記弁体を収容した弁体装着用筒体を有し、前記弁体装着用筒体が前記弁棒部材に固定され、前記弁体は前記弁体装着用筒体内において当該弁体装着用筒体の端部のリップ片と前記弁棒部材の端部端面との間にあり、前記弁棒部材の前記端部端面とこれに対向する前記弁体の端面の間に、前記弁棒部材を構成する材料の硬度より低硬度の材料による塑性変形リング部材が挟まれている。   The valve device according to the present invention is a valve device having a valve body made of ceramics attached to a valve stem member in a valve chamber, and has a valve body mounting cylinder that accommodates the valve body inside the valve device. A body mounting cylinder is fixed to the valve stem member, and the valve body includes a lip piece at an end of the valve body mounting cylinder and an end face of the valve stem member in the valve body mounting cylinder. A plastic deformation ring member made of a material having a hardness lower than that of the material constituting the valve stem member is sandwiched between the end face of the valve stem member and the end face of the valve body opposite to the end face of the valve stem member. ing.

この発明による弁装置は、好ましくは、前記弁棒部材は鉄系金属により構成され、前記塑性変形リング部材はアルミニウム系金属により構成されている。   In the valve device according to the present invention, preferably, the valve stem member is made of an iron-based metal, and the plastic deformation ring member is made of an aluminum-based metal.

この発明による弁装置は、好ましくは、前記弁棒部材と前記弁体との間に、該両者を互いに軸線方向に離れる方向に付勢するばね部材が設けられている。   In the valve device according to the present invention, preferably, a spring member is provided between the valve rod member and the valve body to urge both of them in a direction away from each other in the axial direction.

この発明による弁装置は、セラミックス製の弁座部材、弁体が、弁ハウジング、弁棒部材にかしめによって固定されているから、繰返し衝撃、経時変化、繰返し温度サイクルを受けても、固定部(かしめ締結部)がねじ結合部のように緩むことがなく、信頼性、耐久性がよい確実な組み付け状態を容易に得ることができる。   In the valve device according to the present invention, since the ceramic valve seat member and the valve body are fixed to the valve housing and the valve stem member by caulking, the fixed portion ( The caulking fastening portion is not loosened like the screw coupling portion, and a reliable assembled state with good reliability and durability can be easily obtained.

そして、かしめ部に、塑性変形リング部材が挟まれているから、塑性変形リング部材の弾性限度以上のかしめ荷重は塑性変形リング部材の塑性変形により吸収され、塑性変形リング部材の弾性限度以上の荷重がセラミックス製の弁座部材あるいは弁体に作用することがないから、セラミックス製の弁座部材や弁体を、割れが生じることなく、弁ハウジングや弁棒部材に、確実にかしめ装着することができる。   Since the plastic deformation ring member is sandwiched between the caulking portions, the caulking load exceeding the elastic limit of the plastic deformation ring member is absorbed by the plastic deformation of the plastic deformation ring member, and the load exceeding the elastic limit of the plastic deformation ring member. Does not act on the ceramic valve seat member or valve body, so that the ceramic valve seat member or valve body can be securely caulked to the valve housing or valve stem member without cracking. it can.

また、塑性変形リング部材は、弾性変形部材とは異なり、塑性変形部材であるなら、繰返し衝撃、経時変化、繰返し温度サイクルを受けてもへたるような経時劣化を生じることがなく、長期間に亘って安定した性能を得ることができる。   Further, unlike an elastically deformable member, a plastically deformable ring member, if it is a plastically deformable member, does not cause deterioration over time even when subjected to repeated impacts, changes with time, and repeated temperature cycles. A stable performance can be obtained.

この発明による弁装置の一つの実施形態を、図1〜図4を参照して説明する。この実施形態の弁装置はアンモニア冷媒用の温度式膨張弁である。   One embodiment of a valve device according to the present invention will be described with reference to FIGS. The valve device of this embodiment is a temperature type expansion valve for ammonia refrigerant.

温度式膨張弁は、図1に示されているように、ステンレス鋼、軟鋼等の鉄系金属により構成された弁ハウジング11を有する。弁ハウジング11には、弁室12、入口ポート13、出口ポート14が形成されている。弁ハウジング11には、プラグ部材15、フランジ継手部材16、17等が取り付けられている。   As shown in FIG. 1, the thermal expansion valve has a valve housing 11 made of a ferrous metal such as stainless steel or mild steel. In the valve housing 11, a valve chamber 12, an inlet port 13, and an outlet port 14 are formed. A plug member 15, flange joint members 16, 17, etc. are attached to the valve housing 11.

弁ハウジング11には、弁室12の天井部に対応する部位に、セラミックス製の弁座部材21がかしめによって固定されている。なお、この弁座部材21のかしめ構造については、全体構成の説明後に、図2〜図4を参照して詳細に説明する。   A ceramic valve seat member 21 is fixed to the valve housing 11 by caulking at a portion corresponding to the ceiling of the valve chamber 12. The caulking structure of the valve seat member 21 will be described in detail with reference to FIGS.

弁座部材21は、円筒形状であり、弁ポート22を画定している。弁ポート22は、一方において、弁ハウジング11に形成された内部通路18、19によって入口ポート13に連通している。また、弁ポート22は、他方において、弁室12に開放され、弁室12を経て出口ポート14に連通している。   The valve seat member 21 is cylindrical and defines a valve port 22. On the one hand, the valve port 22 communicates with the inlet port 13 by internal passages 18, 19 formed in the valve housing 11. On the other hand, the valve port 22 is opened to the valve chamber 12 and communicates with the outlet port 14 via the valve chamber 12.

弁室12には、こま形状のセラミックス製の弁体25が配置されている。弁体25はセラミックスの焼成部品であり、弁体25を構成するセラミックスとしては、セラミックスのなかでも靱性が高く、高強度で、割れ難い部分安定化ジルコニアが好適である。   In the valve chamber 12, a top-shaped ceramic valve body 25 is arranged. The valve body 25 is a fired ceramic part, and as the ceramic constituting the valve body 25, partially stabilized zirconia having high toughness, high strength, and difficulty in cracking is preferable.

弁室12には、弁体25に係合したばねリテーナ26と、プラグ部材15にねじ部27によってねじ係合したアジャストねじ部材28との間に挟まれた態様で、圧縮コイルばね(弁閉ばね)29が設けられている。   The valve chamber 12 has a compression coil spring (valve closed) in a state of being sandwiched between a spring retainer 26 engaged with the valve body 25 and an adjustment screw member 28 screw-engaged with the plug member 15 by a screw portion 27. Spring) 29 is provided.

弁ハウジング11には感温ダイヤフラム装置31が取り付けられている。感温ダイヤフラム装置31は、ダイヤフラム32によって区切られた上側ダイヤフラム室33Aと下側ダイヤフラム室33Bを有する。弁ハウジング11には、ダイヤフラム32の変位を弁体25に伝達する連結棒35が取り付けられている。   A temperature sensitive diaphragm device 31 is attached to the valve housing 11. The temperature-sensitive diaphragm device 31 includes an upper diaphragm chamber 33A and a lower diaphragm chamber 33B that are separated by a diaphragm 32. A connecting rod 35 for transmitting the displacement of the diaphragm 32 to the valve body 25 is attached to the valve housing 11.

上側ダイヤフラム室33Aは、感温筒34と接続され、感温筒34による感知温度によって内圧を変化する。下側ダイヤフラム室33Bは、弁ハウジング11に形成された均圧通路36によって弁室12に連通し、弁室12の内圧に均圧され、出口ポート14の側の圧力(2次側圧力)を及ぼされる。   The upper diaphragm chamber 33 </ b> A is connected to the temperature sensing cylinder 34 and changes the internal pressure depending on the temperature sensed by the temperature sensing cylinder 34. The lower diaphragm chamber 33B communicates with the valve chamber 12 by a pressure equalizing passage 36 formed in the valve housing 11, is equalized to the internal pressure of the valve chamber 12, and the pressure on the outlet port 14 side (secondary pressure) is reduced. Affected.

これにより、弁体25は、ダイヤフラム32の下側が受ける2次側圧力による弁閉方向の力および圧縮コイルばね29による弁閉方向の力の合力と、感温筒34による感知温度に応じて変位するダイヤフラム32による弁開方向の力との平衡関係により、図1で見て上下方向に移動し、弁ポート22の開閉ならびに実効開口面積を増減する。   As a result, the valve body 25 is displaced according to the resultant force of the valve closing direction force due to the secondary pressure received by the lower side of the diaphragm 32 and the valve closing direction force due to the compression coil spring 29 and the temperature sensed by the temperature sensing cylinder 34. Due to the balanced relationship with the force in the valve opening direction by the diaphragm 32, the valve 32 moves up and down as seen in FIG. 1 to open and close the valve port 22 and increase or decrease the effective opening area.

つぎに、弁座部材21のかしめ構造を、図2〜図4を参照して詳細に説明する。   Next, the caulking structure of the valve seat member 21 will be described in detail with reference to FIGS.

弁ハウジング11には、図2に示されているように、弁座部材21を受け入れる有底構造の円形横断面の弁座部材受入孔41が形成されている。弁座部材受入孔41は、底部42の側で内部通路18に連通し、底部42とは反対の側で弁室12に開口し、その開口縁部に円環リップ状のかしめ片43が設けられている。このかしめ片43は、弁ハウジング11の一部であり、弁ハウジング11と一体形成されている。   As shown in FIG. 2, the valve housing 11 is formed with a valve seat member receiving hole 41 having a circular cross section having a bottomed structure for receiving the valve seat member 21. The valve seat member receiving hole 41 communicates with the internal passage 18 on the bottom 42 side, opens to the valve chamber 12 on the side opposite to the bottom 42, and an annular lip-shaped caulking piece 43 is provided on the opening edge. It has been. The caulking piece 43 is a part of the valve housing 11 and is integrally formed with the valve housing 11.

弁座部材21は、弁座部材受入孔41の内径より少し小さい外径で、先端がテーパ状外径部21Aになっている大径部21Bと、大径部21Bより少し小径の小径部21Cを有し、全体をセラミックスの焼成部品として構成されている。弁座部材21を構成するセラミックスとしては、弁体25と同様に、セラミックスのなかでも靱性が高く、高強度で、割れ難い部分安定化ジルコニアが好適である。   The valve seat member 21 has an outer diameter slightly smaller than the inner diameter of the valve seat receiving hole 41, a large diameter portion 21B having a tapered outer diameter portion 21A at the tip, and a small diameter portion 21C slightly smaller in diameter than the large diameter portion 21B. The whole is configured as a ceramic fired part. As the ceramic constituting the valve seat member 21, like the valve body 25, partially stabilized zirconia having high toughness, high strength, and hardly cracking is preferable among ceramics.

弁座部材21は、テーパ状外径部21Aの側を先にして、テーパ状外径部21Aと弁座部材受入孔41の底部42との間に、気密シール部材として弾性シール部材であるゴム状弾性材製のOリング44を挟み、小径部21Cの外周に円筒状の塑性変形リング(スリーブ)部材45を装着された状態で、弁座部材受入孔41内に挿入されている。   The valve seat member 21 is a rubber which is an elastic seal member as an airtight seal member between the tapered outer diameter portion 21A and the bottom portion 42 of the valve seat member receiving hole 41 with the tapered outer diameter portion 21A first. A cylindrical plastic deformation ring (sleeve) member 45 is mounted on the outer periphery of the small-diameter portion 21 </ b> C with an O-ring 44 made of a cylindrical elastic material interposed therebetween, and is inserted into the valve seat member receiving hole 41.

塑性変形リング部材45は、弁ハウジング11を構成する材料の硬度より低硬度の塑性(Plasticity)材料によって構成されている。この塑性変形リング部材45を構成する塑性材料としては、軟質の金属材料、発泡金属等の多孔質金属、金網積層材、その他、塑性樹脂材が挙げられる。   The plastic deformation ring member 45 is made of a plasticity material whose hardness is lower than the hardness of the material constituting the valve housing 11. Examples of the plastic material constituting the plastic deformation ring member 45 include a soft metal material, a porous metal such as foam metal, a wire mesh laminate, and other plastic resin materials.

弁ハウジング11がステンレス鋼、軟鋼等の鉄系金属製である場合、塑性変形リング部材45は、弾性限度が鉄系金属の約1/10程度である純アルミニウム材あるいはアルミニウム合金等のアルミニウム系金属であることが好ましい。   When the valve housing 11 is made of an iron-based metal such as stainless steel or mild steel, the plastic deformation ring member 45 is an aluminum-based metal such as a pure aluminum material or an aluminum alloy whose elastic limit is about 1/10 of that of the iron-based metal. It is preferable that

かしめ片43を、図3(a)および図4(a)に示されている初期状態より、図3(b)および図4(b)に示されているように、内径側にかしめ変形させることにより、弁座部材21が塑性変形リング部材45を介して弁ハウジング11に対してかしめ結合される。なお、図2においては、かしめ片43は、左側はかしめ前の初期状態を、右側はかしめ後の状態を各々示している。   The caulking piece 43 is caulked and deformed from the initial state shown in FIGS. 3 (a) and 4 (a) to the inner diameter side as shown in FIGS. 3 (b) and 4 (b). As a result, the valve seat member 21 is caulked and coupled to the valve housing 11 via the plastic deformation ring member 45. In FIG. 2, the caulking piece 43 shows the initial state before caulking on the left side, and the state after caulking on the right side.

このかしめは、図4(b)に示されているような全周かしめ、図5に示されているような部分かしめの何れでもよい。   This caulking may be any one of caulking all around as shown in FIG. 4B and partial caulking as shown in FIG.

このかしめ結合状態では、図2に示されているように、弁座部材21のテーパ状外径部21Aの先端面が弁座部材受入孔41の底部42に突き当たり接触し、Oリング44は、押しつぶされた弾性変形状態で、弁座部材21のテーパ状外径部21Aと弁座部材受入孔41の底部42と弁座部材受入孔41の内周面との間に挟まれ、弁ハウジング11と弁座部材21との間の気密シールを行う。   In this caulking and coupling state, as shown in FIG. 2, the tip end surface of the tapered outer diameter portion 21A of the valve seat member 21 abuts against the bottom portion 42 of the valve seat member receiving hole 41, and the O-ring 44 is In the crushed elastic deformation state, the valve housing 11 is sandwiched between the tapered outer diameter portion 21 </ b> A of the valve seat member 21, the bottom 42 of the valve seat member receiving hole 41, and the inner peripheral surface of the valve seat member receiving hole 41. The valve seat member 21 is hermetically sealed.

塑性変形リング部材45は、弁座部材21の大径部21Bと小径部21Cとの間の段差端面21Dとかしめ変形したかしめ片43との間に挟まれ、かしめ荷重を軸力荷重として受け止める。これにより、かしめ荷重は、この塑性変形リング部材45を介して弁座部材21に作用する。   The plastic deformation ring member 45 is sandwiched between the step end surface 21D between the large diameter portion 21B and the small diameter portion 21C of the valve seat member 21 and the caulking deformed caulking piece 43, and receives the caulking load as an axial load. Thereby, the caulking load acts on the valve seat member 21 via the plastic deformation ring member 45.

上述したように、弁座部材21と弁ハウジング11のかしめ片43との間に、これらより軟らかい塑性変形リング部材45を挟み込んでかしめるため、塑性変形リング部材45の弾性限度以上のかしめ荷重は、塑性変形リング部材45の塑性変形により吸収され、塑性変形リング部材45の弾性限度以上の荷重がセラミックス製の弁座部材21に作用することが未然に回避される。これにより、弁座部材21に割れが生じることなく、弁座部材21を弁ハウジング11に確実にかしめ装着することができる。   As described above, since the plastic deformation ring member 45 softer than these is clamped between the valve seat member 21 and the caulking piece 43 of the valve housing 11, the caulking load exceeding the elastic limit of the plastic deformation ring member 45 is Therefore, it is avoided that a load that is absorbed by the plastic deformation of the plastic deformation ring member 45 and exceeds the elastic limit of the plastic deformation ring member 45 acts on the ceramic valve seat member 21 in advance. Accordingly, the valve seat member 21 can be securely caulked and attached to the valve housing 11 without causing the valve seat member 21 to crack.

また、かしめ前は、弁座部材21の段差端面21Dの平滑度が悪く、2点位でしか弁座部材21と塑性変形リング部材45とが当たっていなくても、かしめることにより、弁ハウジング11や弁座部材21より軟らかい塑性変形リング部材45がかしめ荷重によって塑性変形し、弁座部材21と塑性変形リング部材45とが全周均一当接関係で、その全周に均一にかしめ荷重が掛かった状態で固定できる。   Further, before the caulking, the smoothness of the step end face 21D of the valve seat member 21 is poor, and even if the valve seat member 21 and the plastic deformation ring member 45 are in contact only at two points, the valve housing is obtained by caulking. 11 and the plastic seat ring member 45, which is softer than the valve seat member 21, are plastically deformed by the caulking load, and the valve seat member 21 and the plastic deforming ring member 45 are uniformly contacted around the entire circumference, and the caulking load is uniformly applied to the entire circumference. Can be fixed in the hanging state.

このことにより、弁座部材21をセラミックスの焼成のままの状態で、塑性変形リング部材45が当接する段差端面21Dが多少歪んでいる状態でも使用できるようになり、セラミックス製の弁座部材21の焼成後の2次研磨加工が不要となり、部品コストを大幅削減できる。   Thus, the valve seat member 21 can be used even in a state where the stepped end surface 21D with which the plastic deformation ring member 45 abuts is somewhat distorted while the ceramic seat member 21 is still fired. Secondary polishing after firing is not necessary, and component costs can be greatly reduced.

また、セラミックス製の弁座部材21を弁ハウジング11に全周均一に荷重が掛かった状態で固定できるため、弁座部材21の装着時および使用時に、弁座部材21に応力集中が起きず、過大な荷重がかからないため、弁座部材21に割れ、クラックが生じることがなく、取付構造の信頼性も向上する。   Further, since the ceramic valve seat member 21 can be fixed to the valve housing 11 with a load uniformly applied to the entire circumference, stress concentration does not occur in the valve seat member 21 when the valve seat member 21 is mounted and used. Since an excessive load is not applied, the valve seat member 21 is not cracked and cracked, and the reliability of the mounting structure is improved.

具体的には、塑性変形リング部材45を用いずに、直接、鉄鋼製のかしめ片43をかしめると、かしめ荷重のすべてが弁座部材21に加わることとなり、弁座部材21を部分的にしか押さえられないため、応力集中により、セラミックスが割れ易くなる。これに対し、弁ハウジング11が鉄鋼材料で、塑性変形リング部材45が純アルミニウム材の場合、純アルミニウムの弾性限度は、鉄鋼材料の弾性限度の約1/10であり、純アルミニウム製の塑性変形リング部材45を挟み込んで、純アルミニウムの弾性限度以上の荷重でかしめると、塑性変形リング部材45が塑性変形し、純アルミニウムの弾性限度以上の荷重が弁座部材21に作用することがない。これにより、弁座部材21に割れが生じることなく、弁座部材21を弁ハウジング11に確実にかしめ装着することができる。   Specifically, when the caulking piece 43 made of steel is directly caulked without using the plastic deformation ring member 45, all of the caulking load is applied to the valve seat member 21, and the valve seat member 21 is partially Since it can only be pressed, the ceramics are easily cracked by stress concentration. On the other hand, when the valve housing 11 is a steel material and the plastic deformation ring member 45 is a pure aluminum material, the elastic limit of pure aluminum is about 1/10 of the elastic limit of the steel material, and the plastic deformation made of pure aluminum. When the ring member 45 is sandwiched and caulked with a load exceeding the elastic limit of pure aluminum, the plastic deformation ring member 45 is plastically deformed, and a load exceeding the elastic limit of pure aluminum does not act on the valve seat member 21. Accordingly, the valve seat member 21 can be securely caulked and attached to the valve housing 11 without causing the valve seat member 21 to crack.

セラミックス製の弁座部材21の固定にかしめを採用したことで、繰返し温度サイクルを受けても、かしめ締結部が、ねじ結合部のように緩むことがなく、信頼性、耐久性がよい確実な組み付け状態を、ねじ込みトルクの厳重な管理等を必要とすることなく、容易に得ることができる。   The use of caulking for fixing the ceramic valve seat member 21 ensures that the caulking fastening portion does not loosen like the screw coupling portion even when subjected to repeated temperature cycles, and is reliable and durable. The assembled state can be easily obtained without requiring strict management of the screwing torque.

しかも、塑性変形リング部材45は、弾性変形部材とは異なり、純アルミニウム等による塑性変形部材であるなら、繰返し衝撃、経時変化、繰返し温度サイクルを受けてもへたるような経時劣化を生じることがなく、長期間に亘って安定した性能を得ることができる。   Moreover, if the plastic deformation ring member 45 is a plastic deformation member made of pure aluminum or the like, unlike the elastic deformation member, it may deteriorate over time even when subjected to repeated impacts, changes over time, and repeated temperature cycles. And stable performance can be obtained over a long period of time.

この固定方法で、がた付きができる要因として、弁座部材21と弁ハウジング11と塑性変形リング部材45の温度変化による熱膨張率の差があげられる。アンモニア冷媒を用いた冷凍サイクル装置の温度式膨張弁としての使用では、実使用温度差は、100℃以下で、十分小さい温度差であり、がた付きとしては、ほとんどゼロに近い所であるから、問題を生じることがない。また、実使用温度差が100℃以下と小さいため、温度差がついても、熱膨張率差による発生応力は微小であり、弁座部材21に割れ、クラックが生じることはない。   A factor that can cause rattling by this fixing method is a difference in thermal expansion coefficient due to temperature changes among the valve seat member 21, the valve housing 11, and the plastic deformation ring member 45. In use as a temperature-type expansion valve of a refrigeration cycle apparatus using ammonia refrigerant, the actual use temperature difference is 100 ° C. or less, which is a sufficiently small temperature difference, and the backlash is almost zero. No problem. Further, since the actual use temperature difference is as small as 100 ° C. or less, the generated stress due to the difference in coefficient of thermal expansion is very small even if there is a temperature difference.

熱膨張率は、具体的には、軟鋼製の弁ハウジング11と部分安定化ジルコニアセラミックス製の弁座部材21とで、ほぼ同等の熱膨張率で、純アルミニウム製の塑性変形リング部材45が部分安定化ジルコニアセラミックスのほぼ2倍の熱膨張率である。   Specifically, the coefficient of thermal expansion of the valve housing 11 made of mild steel and the valve seat member 21 made of partially stabilized zirconia ceramics is approximately equal to that of the plastic deformation ring member 45 made of pure aluminum. The thermal expansion coefficient is almost twice that of the stabilized zirconia ceramics.

従って、温度差により、軟鋼製の弁ハウジング11と部分安定化ジルコニアセラミックス製の弁座部材21とに挟まれた純アルミニウム製の塑性変形リング部材45によって、低温時には、がた付きになり、高温時には応力が発生する。   Therefore, due to the temperature difference, the plastic deformation ring member 45 made of pure aluminum sandwiched between the valve housing 11 made of mild steel and the valve seat member 21 made of partially stabilized zirconia ceramics becomes rattled at a low temperature. Sometimes stress occurs.

しかし、純アルミニウムは、軟鋼やセラミックスよりも、約1/10柔らかいため、高温時の熱応力は純アルミニウムをさらに変形させることになる。そして、実際には、実使用温度差が100℃以下の温度差であるから、がた付きや変形量は数ミクロン程度であり、ほとんど性能に影響しないレベルである。   However, since pure aluminum is about 1/10 softer than mild steel and ceramics, the thermal stress at high temperature further deforms pure aluminum. Actually, since the actual use temperature difference is a temperature difference of 100 ° C. or less, the backlash and deformation are about several microns, which is a level that hardly affects the performance.

また、がた付きができたとしても、弾性材の0リング44が挟まれているから、弁座部材21のがた付きやシール性の劣化はない。   Even if rattling is possible, since the 0 ring 44 of elastic material is sandwiched, there is no rattling of the valve seat member 21 or deterioration of the sealing performance.

弁ハウジング11をステンレス鋼製にした場合、ステンレス鋼の熱膨張率は部分安定化ジルコニアセラミックスと純アルミニウムとのほぼ中間の値のため、弁ハウジング11が軟鋼製である場合と逆に、温度差により、低温時には応力が発生し、高温時にはがた付きとなる。   When the valve housing 11 is made of stainless steel, the coefficient of thermal expansion of the stainless steel is almost the intermediate value between the partially stabilized zirconia ceramics and pure aluminum. Therefore, the temperature difference differs from the case where the valve housing 11 is made of mild steel. As a result, stress is generated at low temperatures and rattling occurs at high temperatures.

しかし、この場合も、純アルミニウムは、軟鋼やセラミックスよりも、約1/10柔らかいため、高温時の熱応力は純アルミニウムをさらに変形させることになる。そして、実際には、実使用温度差が100℃以下の温度差であるから、がた付きや変形量は数ミクロン程度であり、ほとんど性能に影響しないレベルである。   However, in this case as well, pure aluminum is about 1/10 softer than mild steel and ceramics, so that the thermal stress at high temperature further deforms pure aluminum. Actually, since the actual use temperature difference is a temperature difference of 100 ° C. or less, the backlash and deformation are about several microns, which is a level that hardly affects the performance.

また、この場合も、がた付きができたとしても、弾性材の0リング44が挟まれているから、弁座部材21のがた付きやシール性の劣化はない。   Also in this case, even if rattling can be achieved, since the elastic 0 ring 44 is sandwiched, there is no rattling of the valve seat member 21 or deterioration of the sealing performance.

このような熱膨張差によるがた付き、応力発生は、弁ハウジング11がステンレス鋼製である場合には、図1〜図5に示されているように、塑性変形リング部材45の軸長が長いほうが少なくなる。これに対し、弁ハウジング11が軟鋼製であれば、図6、図7(a)、(b)に示されているように、塑性変形リング部材45の軸長が短いほうが、熱膨張差によるがた付き、応力発生が少なくなる。   As shown in FIGS. 1 to 5, when the valve housing 11 is made of stainless steel, the axial deformation of the plastic deformation ring member 45 is caused by rattling due to such a difference in thermal expansion. Longer is less. On the other hand, if the valve housing 11 is made of mild steel, the shorter the axial length of the plastic deformation ring member 45 is due to the difference in thermal expansion, as shown in FIGS. 6, 7 (a) and 7 (b). Rugged and less stress is generated.

なお、図6においても、かしめ片43は、左側はかしめ前の初期状態を、右側はかしめ後の状態を各々示している。また、図7(a)は、かしめ片43のかしめ前の初期状態を、図7(b)は、かしめ後の状態を各々示している。   In FIG. 6, the caulking piece 43 shows the initial state before caulking on the left side and the state after caulking on the right side. 7A shows an initial state before caulking of the caulking piece 43, and FIG. 7B shows a state after caulking.

また、図8、図9(a)、(b)に示されているように、弁座部材21の塑性変形リング部材45との当接面を、段差端面21Dに代えてテーパ面21Eとすることができる。この場合、かしめ時に塑性変形リング部材45が弁座部材21の小外径を内側へ圧縮する荷重が減り、より一層、弁座部材21が割れにくくなる。   Further, as shown in FIGS. 8, 9A and 9B, the contact surface of the valve seat member 21 with the plastic deformation ring member 45 is a tapered surface 21E instead of the step end surface 21D. be able to. In this case, the load by which the plastic deformation ring member 45 compresses the small outer diameter of the valve seat member 21 inward during caulking is reduced, and the valve seat member 21 is further hardly broken.

なお、図8においても、かしめ片43は、左側はかしめ前の初期状態を、右側はかしめ後の状態を各々示している。また、図9(a)は、かしめ片43のかしめ前の初期状態を、図9(b)は、かしめ後の状態を各々示している。   Also in FIG. 8, the caulking piece 43 shows the initial state before caulking on the left side and the state after caulking on the right side. 9A shows an initial state before caulking of the caulking piece 43, and FIG. 9B shows a state after caulking.

弁ハウジング11と弁座部材21との間の気密シールは、図10に示されているように、Oリング44に代えて、弁座部材21の大径部21Bの外周面と弁座部材受入孔41の内周面との間に層状に塗布された耐冷媒性金属用接着剤等の接着剤46により行うこともできる。   As shown in FIG. 10, the airtight seal between the valve housing 11 and the valve seat member 21 replaces the O-ring 44 and the outer peripheral surface of the large-diameter portion 21 </ b> B of the valve seat member 21 and the valve seat member reception. It can also be performed with an adhesive 46 such as a refrigerant-resistant metal adhesive applied in a layer between the inner peripheral surface of the hole 41.

つぎに、この発明による弁装置をアンモニア冷媒用の電動式膨張弁として適用した一つの実施形態を、図11、図12を参照して説明する。   Next, an embodiment in which the valve device according to the present invention is applied as an electric expansion valve for ammonia refrigerant will be described with reference to FIGS.

電動式膨張弁は、図11に示されているように、外側弁ハウジング51と、外側弁ハウジング51内に設けられた内側弁ハウジング52とを有する。外側弁ハウジング51と内側弁ハウジング52は、ともに、ステンレス鋼、軟鋼等の鉄系金属により構成されている。外側弁ハウジング51には、入口ポート53、出口ポート54が形成されている。内側弁ハウジング52には弁室56が形成されている。   As shown in FIG. 11, the electric expansion valve includes an outer valve housing 51 and an inner valve housing 52 provided in the outer valve housing 51. Both the outer valve housing 51 and the inner valve housing 52 are made of a ferrous metal such as stainless steel or mild steel. In the outer valve housing 51, an inlet port 53 and an outlet port 54 are formed. A valve chamber 56 is formed in the inner valve housing 52.

内側弁ハウジング52には、弁室56の底部に対応する部位に、セラミックス製の弁座部材57がかしめによって固定されている。なお、この弁座部材57のかしめ構造については、全体構成の説明後に、図12を参照して詳細に説明する。   A ceramic valve seat member 57 is fixed to the inner valve housing 52 by caulking at a portion corresponding to the bottom of the valve chamber 56. The caulking structure of the valve seat member 57 will be described in detail with reference to FIG.

弁座部材57は、円筒形状であり、弁ポート58を画定している。弁ポート58は、一方において、弁室56、外側弁ハウジング51と内側弁ハウジング52との間の環状空間59、外側弁ハウジング51に形成された連通孔60を経て入口ポート53に連通している。また、弁ポート58は、他方において、内側弁ハウジング52に形成された孔62、63、64を経て出口ポート54に連通している。   The valve seat member 57 is cylindrical and defines a valve port 58. On the one hand, the valve port 58 communicates with the inlet port 53 via a valve chamber 56, an annular space 59 between the outer valve housing 51 and the inner valve housing 52, and a communication hole 60 formed in the outer valve housing 51. . On the other hand, the valve port 58 communicates with the outlet port 54 through holes 62, 63, 64 formed in the inner valve housing 52.

外側弁ハウジング51の上部にはプラグ部材65がねじ止め固定されている。プラグ部材65はガイド孔66によって金属製の弁棒部材67の上部軸部67Aを軸線方向に移動可能に支持している。   A plug member 65 is fixed to the upper portion of the outer valve housing 51 with screws. The plug member 65 supports the upper shaft portion 67A of the metal valve rod member 67 by the guide hole 66 so as to be movable in the axial direction.

弁棒部材67の下部はばね収容部を兼ねて大径部67Bになっている。大径部67Bの外周部には、内側にセラミックス製の弁体68を収容した金属製の弁体装着用筒体69が圧入され、溶接によって固着されている。この溶接部は、図12に符号70によって示されている。   The lower part of the valve stem member 67 is a large diameter portion 67B that also serves as a spring accommodating portion. A metal valve body mounting cylinder 69 containing a ceramic valve body 68 inside is press-fitted into the outer peripheral portion of the large diameter portion 67B, and is fixed by welding. This weld is indicated by reference numeral 70 in FIG.

弁体68を構成するセラミックスとしては、この実施形態でも、セラミックスのなかでも靱性が高く、高強度で、割れ難い部分安定化ジルコニアが好適である。弁体68は、弁体装着用筒体69内において、弁体装着用筒体69の下端部に形成されているリップ片69Aと肩部68Aにて対向し、上端部68Bにて弁棒部材67の下端部67Cと対向している。   As the ceramic constituting the valve body 68, also in this embodiment, partially stabilized zirconia having high toughness, high strength and hardly cracking is preferable among ceramics. The valve body 68 is opposed to the lip piece 69A formed at the lower end of the valve body mounting cylinder 69 in the valve body mounting cylinder 69 at the shoulder 68A, and the valve rod member at the upper end 68B. It faces the lower end 67C of 67.

弁棒部材67の大径部67Bと弁体68には、ばね収容孔67D、68Cが形成されている。ばね収容孔67D、68Cには圧縮コイルばね71が所定の予荷重を与えられた状態で設けられており、圧縮コイルばね71は、弁体68を下方へ付勢している。これにより、定常状態では、弁体68の肩部68Aがリップ片69Aに当接し、弁体68の上端部68Bと弁棒部材67の下端部67Cとの間に間隙72(図12参照)が生じる。   Spring accommodating holes 67D and 68C are formed in the large diameter portion 67B and the valve body 68 of the valve stem member 67. A compression coil spring 71 is provided in the spring accommodating holes 67D and 68C in a state where a predetermined preload is applied, and the compression coil spring 71 urges the valve body 68 downward. Thus, in a steady state, the shoulder 68A of the valve body 68 contacts the lip piece 69A, and a gap 72 (see FIG. 12) is formed between the upper end 68B of the valve body 68 and the lower end 67C of the valve rod member 67. Arise.

プラグ部材65にはステッピングモータ75が取り付けられている。ステッピングモータ75は、プラグ部材65に溶接等によって固定されて内側に密閉構造のロータ室76を画定するキャン形状のロータケース77と、ロータ室76内に回転且つ軸線方向に移動可能に設けられ、外周部に多極着磁のマグネット78を取り付けられたロータ79と、ロータケース77の外周部に装着されたステータコイル組立体80とを有する。   A stepping motor 75 is attached to the plug member 65. The stepping motor 75 is fixed to the plug member 65 by welding or the like, and is provided with a can-shaped rotor case 77 that delimits a rotor chamber 76 having a sealed structure inside, and is rotatably provided in the rotor chamber 76 and movable in the axial direction. The rotor 79 has a multi-pole magnetized magnet 78 attached to the outer periphery thereof, and the stator coil assembly 80 attached to the outer periphery of the rotor case 77.

ステータコイル組立体80は、上下2段のステータコイル81、複数個の磁極歯82、電気コネクタ部83等を有し、封止樹脂84によって液密封止されている。ステッピングモータ75は、ステータコイル81に対する通電制御(パルス制御)により、ロータ79を分割回転駆動する。   The stator coil assembly 80 includes upper and lower two-stage stator coils 81, a plurality of magnetic pole teeth 82, an electrical connector portion 83, and the like, and is hermetically sealed with a sealing resin 84. The stepping motor 75 drives the rotor 79 to be divided and rotated by energization control (pulse control) to the stator coil 81.

プラグ部材65には円筒状の雄ねじ部材86が固定されている。ロータ79には雄ねじ部材86とねじ係合している円筒状の雌ねじ部材85が固定されている。ロータ79には圧縮コイルばね87によって連結金具89が係合しており、連結金具89には弁棒部材67の上端部67Eに固定された連結金具90が係合している。   A cylindrical male screw member 86 is fixed to the plug member 65. A cylindrical female screw member 85 that is screw-engaged with the male screw member 86 is fixed to the rotor 79. A connecting fitting 89 is engaged with the rotor 79 by a compression coil spring 87, and a connecting fitting 90 fixed to the upper end portion 67 </ b> E of the valve rod member 67 is engaged with the connecting fitting 89.

この構造により、ロータ79は、回転に伴い軸線方向に移動し、軸線方向移動が弁棒部材67に伝達され、弁体68が軸線方向(上下方向)移動する。これにより、弁体68は、図11で見て上下方向に移動し、弁ポート58の開閉ならびに実効開口面積を増減する。   With this structure, the rotor 79 moves in the axial direction with rotation, the axial movement is transmitted to the valve rod member 67, and the valve body 68 moves in the axial direction (vertical direction). As a result, the valve body 68 moves in the vertical direction as seen in FIG. 11 to open / close the valve port 58 and increase / decrease the effective opening area.

また、内側弁ハウジング52の孔63には、ボール弁73、圧縮コイルばね74によるリリーフ弁が組み込まれている。   In addition, a relief valve by a ball valve 73 and a compression coil spring 74 is incorporated in the hole 63 of the inner valve housing 52.

つぎに、弁座部材57のかしめ構造を、図12を参照して詳細に説明する。   Next, the caulking structure of the valve seat member 57 will be described in detail with reference to FIG.

内側弁ハウジング52には、図12に示されているように、弁座部材57を受け入れる有底構造の円形横断面の弁座部材受入孔91が形成されている。弁座部材受入孔91は、底部92の側で、内側弁ハウジング52に形成された孔62に連通し、底部92とは反対の側で弁室56に開口し、その開口縁部に円環リップ状のかしめ片93が設けられている。このかしめ片93は、内側弁ハウジング52の一部であり、内側弁ハウジング52と一体形成されている。   As shown in FIG. 12, the inner valve housing 52 is formed with a valve seat member receiving hole 91 having a bottomed structure and a circular cross section for receiving the valve seat member 57. The valve seat member receiving hole 91 communicates with a hole 62 formed in the inner valve housing 52 on the side of the bottom 92, opens to the valve chamber 56 on the side opposite to the bottom 92, and has an annular ring at the opening edge. A lip-shaped caulking piece 93 is provided. The caulking piece 93 is a part of the inner valve housing 52 and is integrally formed with the inner valve housing 52.

弁座部材57は、弁座部材受入孔91の内径より少し小さい外径で、先端がテーパ状外径部57Aになっている大径部57Bと、大径部57Bより少し小径の小径部57Cを有し、全体をセラミックスの焼成部品として構成されている。弁座部材57を構成するセラミックスとしては、弁体68と同様に、セラミックスのなかでも靱性が高く、高強度で、割れ難い部分安定化ジルコニアが好適である。   The valve seat member 57 has an outer diameter slightly smaller than the inner diameter of the valve seat member receiving hole 91, a large diameter portion 57B whose tip is a tapered outer diameter portion 57A, and a small diameter portion 57C slightly smaller in diameter than the large diameter portion 57B. The whole is configured as a ceramic fired part. As the ceramic constituting the valve seat member 57, similarly to the valve body 68, partially stabilized zirconia having high toughness, high strength, and hardly cracking is preferable among ceramics.

弁座部材57は、テーパ状外径部57Aの側を先にして、テーパ状外径部57Aと弁座部材受入孔91の底部92との間に、気密シール部材として弾性シール部材であるゴム状弾性材製のOリング94を挟み、小径部57Cの外周に円筒状の塑性変形リング部材95を装着された状態で、弁座部材受入孔91内に挿入されている。   The valve seat member 57 is a rubber which is an elastic seal member as an airtight seal member between the tapered outer diameter portion 57A and the bottom portion 92 of the valve seat member receiving hole 91 with the tapered outer diameter portion 57A side first. The cylindrical plastic deformation ring member 95 is mounted on the outer periphery of the small-diameter portion 57C with the O-ring 94 made of a cylindrical elastic material in between, and is inserted into the valve seat member receiving hole 91.

塑性変形リング部材95は、内側弁ハウジング52を構成する材料の硬度より低硬度の塑性材料によって構成されている。この塑性変形リング部材95を構成する塑性材料としては、軟質の金属材料、発泡金属等の多孔質金属、金網積層材、その他、塑性樹脂材が挙げられる。   The plastic deformation ring member 95 is made of a plastic material whose hardness is lower than the hardness of the material constituting the inner valve housing 52. Examples of the plastic material constituting the plastic deformation ring member 95 include a soft metal material, a porous metal such as a foam metal, a wire mesh laminate, and other plastic resin materials.

内側弁ハウジング52がステンレス鋼、軟鋼等の鉄系金属製である場合、塑性変形リング部材95は、弾性限度が鉄系金属の約1/10程度である純アルミニウム材あるいはアルミニウム合金等のアルミニウム系金属であることが好ましい。   When the inner valve housing 52 is made of an iron-based metal such as stainless steel or mild steel, the plastic deformation ring member 95 is an aluminum-based material such as a pure aluminum material or an aluminum alloy whose elastic limit is about 1/10 of that of an iron-based metal. A metal is preferred.

かしめ片93を、図12の右側に示されている初期状態より、図12の左側に示されているように、内径側にかしめ変形させることにより、弁座部材57が塑性変形リング部材95を介して内側弁ハウジング52に対してかしめ結合される。   The valve seat member 57 causes the plastic deformation ring member 95 to be deformed by caulking and deforming the caulking piece 93 from the initial state shown on the right side of FIG. 12 to the inner diameter side as shown on the left side of FIG. To the inner valve housing 52.

このかしめ結合状態では、弁座部材57のテーパ状外径部57Aの先端面が弁座部材受入孔91の底部92に突き当たり接触し、Oリング94は、押しつぶされた弾性変形状態で、弁座部材57のテーパ状外径部57Aと弁座部材受入孔91の底部92と弁座部材受入孔91の内周面との間に挟まれ、内側弁ハウジング52と弁座部材57との間の気密シールを行う。   In this caulking connection state, the tip end surface of the tapered outer diameter portion 57A of the valve seat member 57 abuts against and contacts the bottom portion 92 of the valve seat member receiving hole 91, and the O-ring 94 is crushed and elastically deformed. It is sandwiched between the tapered outer diameter portion 57 </ b> A of the member 57, the bottom portion 92 of the valve seat member receiving hole 91, and the inner peripheral surface of the valve seat member receiving hole 91, and between the inner valve housing 52 and the valve seat member 57. Perform an airtight seal.

塑性変形リング部材95は、弁座部材57の大径部57Bと小径部57Cとの間の段差端面57Dとかしめ変形したかしめ片93との間に挟まれ、かしめ荷重を軸力荷重として受け止める。これにより、かしめ荷重は、この塑性変形リング部材95を介して弁座部材57に作用する。   The plastic deformation ring member 95 is sandwiched between the step end surface 57D between the large diameter portion 57B and the small diameter portion 57C of the valve seat member 57 and the caulking deformed caulking piece 93, and receives the caulking load as an axial load. As a result, the caulking load acts on the valve seat member 57 via the plastic deformation ring member 95.

上述したように、弁座部材57と内側弁ハウジング52のかしめ片93との間に、これらより軟らかい塑性変形リング部材95を挟み込んでかしめるため、塑性変形リング部材95の弾性限度以上のかしめ荷重は、塑性変形リング部材95の塑性変形により吸収され、塑性変形リング部材95の弾性限度以上の荷重がセラミックス製の弁座部材57に作用することが未然に回避される。これにより、弁座部材57に割れが生じることなく、弁座部材57を内側弁ハウジング52に確実にかしめ装着することができる。   As described above, since the plastic deformation ring member 95 that is softer than these is clamped between the valve seat member 57 and the caulking piece 93 of the inner valve housing 52, the caulking load exceeding the elastic limit of the plastic deformation ring member 95 is obtained. Is absorbed by the plastic deformation of the plastic deformation ring member 95, so that a load exceeding the elastic limit of the plastic deformation ring member 95 is prevented from acting on the ceramic valve seat member 57 in advance. Accordingly, the valve seat member 57 can be securely caulked and attached to the inner valve housing 52 without causing the valve seat member 57 to crack.

また、かしめ前は、弁座部材57の段差端面57Dの平滑度が悪く、2点位でしか弁座部材57と塑性変形リング部材95とが当たっていなくても、かしめることにより、内側弁ハウジング52や弁座部材57より軟らかい塑性変形リング部材95がかしめ荷重によって塑性変形し、弁座部材57と塑性変形リング部材95とが全周均一当接関係で、その全周に均一にかしめ荷重が掛かった状態で固定できる。   Further, before caulking, the smoothness of the step end surface 57D of the valve seat member 57 is poor, and even if the valve seat member 57 and the plastic deformation ring member 95 are in contact only at two points, the inner valve The plastic deformation ring member 95, which is softer than the housing 52 and the valve seat member 57, is plastically deformed by the caulking load, and the valve seat member 57 and the plastic deformation ring member 95 are evenly caulked all around the circumference because of the uniform contact relationship. Can be fixed with

このことにより、弁座部材57をセラミックスの焼成のままの状態で、塑性変形リング部材95が当接する段差端面57Dが多少歪んでいる状態でも使用できるようになり、セラミックス製の弁座部材57の焼成後の2次研磨加工が不要となり、部品コストを大幅削減できる。   This allows the valve seat member 57 to be used even when the stepped end surface 57D with which the plastic deformation ring member 95 abuts is somewhat distorted while the ceramic seat is being fired. Secondary polishing after firing is not necessary, and component costs can be greatly reduced.

また、セラミックス製の弁座部材57を内側弁ハウジング52に全周均一に荷重が掛かった状態で固定できるため、弁座部材57の装着時および使用時に、弁座部材57に応力集中が起きず、過大な荷重がかからないため、弁座部材57に割れ、クラックが生じることがなく、取付構造の信頼性も向上する。   Further, since the ceramic valve seat member 57 can be fixed to the inner valve housing 52 with a load uniformly applied to the entire circumference, stress concentration does not occur in the valve seat member 57 when the valve seat member 57 is mounted and used. Since an excessive load is not applied, the valve seat member 57 is not cracked and cracked, and the reliability of the mounting structure is improved.

具体的には、塑性変形リング部材95を用いずに、直接、鉄鋼製のかしめ片93をかしめると、かしめ荷重のすべてが弁座部材57に加わることとなり、弁座部材57を部分的にしか押さえられないため、応力集中により、セラミックスが割れ易くなる。これに対し、内側弁ハウジング52が鉄鋼材料で、塑性変形リング部材95が純アルミニウム材の場合、純アルミニウムの弾性限度は、鉄鋼材料の弾性限度の約1/10であり、純アルミニウム製の塑性変形リング部材95を挟み込んで、純アルミニウムの弾性限度以上の荷重でかしめると、塑性変形リング部材95が塑性変形し、純アルミニウムの弾性限度以上の荷重が弁座部材57に作用することがない。これにより、弁座部材57に割れが生じることなく、弁座部材57を内側弁ハウジング52に確実にかしめ装着することができる。   Specifically, when the caulking piece 93 made of steel is directly caulked without using the plastic deformation ring member 95, all of the caulking load is applied to the valve seat member 57, and the valve seat member 57 is partially Since it can only be pressed, the ceramics are easily cracked by stress concentration. On the other hand, when the inner valve housing 52 is a steel material and the plastic deformation ring member 95 is a pure aluminum material, the elastic limit of pure aluminum is about 1/10 of the elastic limit of the steel material. When the deformable ring member 95 is sandwiched and caulked with a load exceeding the elastic limit of pure aluminum, the plastic deformable ring member 95 is plastically deformed, and a load exceeding the elastic limit of pure aluminum does not act on the valve seat member 57. . Accordingly, the valve seat member 57 can be securely caulked and attached to the inner valve housing 52 without causing the valve seat member 57 to crack.

セラミックス製の弁座部材57の固定にかしめを採用したことで、繰返し温度サイクルを受けても、かしめ締結部が、ねじ結合部のように緩むことがなく、信頼性、耐久性がよい確実な組み付け状態を、ねじ込みトルクの厳重な管理等を必要とすることなく、容易に得ることができる。   The use of caulking for fixing the ceramic valve seat member 57 ensures that the caulking fastening portion does not loosen like the screw coupling portion even when subjected to repeated temperature cycles, and is reliable and durable. The assembled state can be easily obtained without requiring strict management of the screwing torque.

しかも、塑性変形リング部材95は、弾性変形部材とは異なり、純アルミニウム等による塑性変形部材であるなら、繰返し衝撃、経時変化、繰返し温度サイクルを受けてもへたるような経時劣化を生じることがなく、長期間に亘って安定した性能を得ることができる。   Moreover, unlike the elastically deformable member, the plastically deformable ring member 95 is a plastically deformable member made of pure aluminum or the like, and may deteriorate over time even when subjected to repeated impacts, changes over time, and repeated temperature cycles. And stable performance can be obtained over a long period of time.

この実施形態でも、がた付きができる要因として、内側弁ハウジング52と弁座部材57と塑性変形リング部材95の温度変化による熱膨張率の差があげられる。しかし、アンモニア冷媒を用いた冷凍サイクル装置の電動式膨張弁としての使用では、実使用温度差は、100℃以下で、十分小さい温度差であるから、問題を生じることがない。また、実使用温度差が100℃以下と小さいため、温度差がついても、熱膨張率差による発生応力は微小であり、弁座部材57に、割れ、クラックが生じることはない。   Also in this embodiment, a factor that can cause rattling is a difference in thermal expansion coefficient due to temperature changes of the inner valve housing 52, the valve seat member 57, and the plastic deformation ring member 95. However, when the refrigeration cycle apparatus using the ammonia refrigerant is used as an electric expansion valve, the actual use temperature difference is 100 ° C. or less and is a sufficiently small temperature difference, so that no problem occurs. Further, since the actual use temperature difference is as small as 100 ° C. or less, even if there is a temperature difference, the generated stress due to the difference in thermal expansion coefficient is very small, and the valve seat member 57 will not be cracked or cracked.

つぎに、この発明による弁装置をアンモニア冷媒用の電動式膨張弁として適用した他の実施形態を、図13を参照して説明する。なお、図13において、図11に対応する部分は、図11に付した符号と同一の符号を付けて、その説明を省略する。   Next, another embodiment in which the valve device according to the present invention is applied as an electric expansion valve for ammonia refrigerant will be described with reference to FIG. In FIG. 13, parts corresponding to those in FIG. 11 are denoted by the same reference numerals as those in FIG. 11, and description thereof is omitted.

この実施形態でも、セラミックス製の弁座部材57と金属製の弁ハウジング51のかしめ片93との間に、これらより軟らかい塑性変形リング部材95を挟み込んでかしめられている。これにより、塑性変形リング部材95の弾性限度以上のかしめ荷重は、塑性変形リング部材95の塑性変形により吸収され、塑性変形リング部材95の弾性限度以上の荷重がセラミックス製の弁座部材57に作用することが未然に回避される。   Also in this embodiment, a plastic deformation ring member 95 that is softer than these is clamped between the ceramic valve seat member 57 and the caulking piece 93 of the metal valve housing 51. Thus, the caulking load exceeding the elastic limit of the plastic deformation ring member 95 is absorbed by the plastic deformation of the plastic deformation ring member 95, and the load exceeding the elastic limit of the plastic deformation ring member 95 acts on the ceramic valve seat member 57. It is avoided in advance.

したがって、この実施形態でも、弁座部材57に割れが生じることなく、弁座部材57を外側弁ハウジング51に確実にかしめ装着することができ、前述の実施形態と同等の効果を得ることができる。   Therefore, also in this embodiment, the valve seat member 57 can be securely caulked and attached to the outer valve housing 51 without causing cracks in the valve seat member 57, and the same effect as the above-described embodiment can be obtained. .

つぎに、この発明による弁装置をアンモニア冷媒用の電動式膨張弁として適用したもう一つの他の実施形態を、図14〜図16を参照して説明する。なお、図14〜図16において、図11に対応する部分は、図11に付した符号と同一の符号を付けて、その説明を省略する。   Next, another embodiment in which the valve device according to the present invention is applied as an electric expansion valve for ammonia refrigerant will be described with reference to FIGS. 14-16, the part corresponding to FIG. 11 attaches | subjects the code | symbol same as the code | symbol attached | subjected to FIG. 11, and the description is abbreviate | omitted.

この実施形態では、弁棒部材67が、ステンレス鋼、軟鋼等の鉄系金属により構成され、図14に示されているように、下部に弁ホルダ部67Fを一体に形成されている。弁ホルダ部67Fには弁体を受け入れる有底構造の弁体受入孔96が形成されている。   In this embodiment, the valve stem member 67 is made of an iron-based metal such as stainless steel or mild steel, and as shown in FIG. 14, a valve holder portion 67F is integrally formed at the lower portion. A valve body receiving hole 96 having a bottomed structure for receiving the valve body is formed in the valve holder 67F.

図15によく示されているように、弁体受入孔96の底部97とは反対の側の開口縁部には、円環リップ状のかしめ片98が設けられている。このかしめ片98は、弁棒部材67の一部であり、弁棒部材67と一体形成されている。   As well shown in FIG. 15, an annular lip-shaped caulking piece 98 is provided on the opening edge of the valve element receiving hole 96 opposite to the bottom 97. The caulking piece 98 is a part of the valve stem member 67 and is integrally formed with the valve stem member 67.

弁体68は、上端部68Bの側を先にして、肩部68Aに円筒状の塑性変形リング部材99を装着された状態で、弁体受入孔96内に挿入されている。   The valve body 68 is inserted into the valve body receiving hole 96 in a state where the cylindrical plastic deformation ring member 99 is attached to the shoulder portion 68A with the upper end portion 68B side first.

塑性変形リング部材99は、弁棒部材67を構成する材料の硬度より低硬度の塑性材料によって構成されている。この塑性変形リング部材99を構成する塑性材料としては、軟質の金属材料、発泡金属等の多孔質金属、金網積層材、その他、塑性樹脂材が挙げられる。   The plastic deformation ring member 99 is made of a plastic material whose hardness is lower than the hardness of the material constituting the valve stem member 67. Examples of the plastic material constituting the plastic deformation ring member 99 include a soft metal material, a porous metal such as foam metal, a wire mesh laminate, and other plastic resin materials.

弁棒部材67がステンレス鋼、軟鋼等の鉄系金属製である場合、塑性変形リング部材99は、弾性限度が鉄系金属の約1/10程度である純アルミニウム材あるいはアルミニウム合金等のアルミニウム系金属であることが好ましい。   When the valve stem member 67 is made of an iron-based metal such as stainless steel or mild steel, the plastic deformation ring member 99 is an aluminum-based material such as a pure aluminum material or an aluminum alloy whose elastic limit is about 1/10 that of an iron-based metal. A metal is preferred.

かしめ片98を、図16に示されているように、内径側にかしめ変形させることにより、弁体68が塑性変形リング部材99を介して弁棒部材67に対してかしめ結合される。   As shown in FIG. 16, the valve element 68 is caulked and joined to the valve stem member 67 via the plastic deformation ring member 99 by deforming the caulking piece 98 toward the inner diameter side.

このかしめ結合状態では、弁体68の上端部68Bが弁体受入孔96の底部97に突き当たり接触し、塑性変形リング部材99は、弁体68の肩部68Aとかしめ変形したかしめ片98との間に挟まれ、かしめ荷重を軸力荷重として受け止める。これにより、かしめ荷重は、この塑性変形リング部材99を介して弁体68に作用する。   In this caulking and coupling state, the upper end portion 68B of the valve body 68 abuts against and contacts the bottom portion 97 of the valve body receiving hole 96, and the plastic deformation ring member 99 contacts the shoulder portion 68A of the valve body 68 and the caulking piece 98 deformed by caulking. It is sandwiched between them and the caulking load is received as an axial load. Thereby, the caulking load acts on the valve body 68 via the plastic deformation ring member 99.

上述したように、弁体68と弁棒部材67のかしめ片98との間に、これらより軟らかい塑性変形リング部材99を挟み込んでかしめるため、塑性変形リング部材99の弾性限度以上のかしめ荷重は、塑性変形リング部材99の塑性変形により吸収され、塑性変形リング部材99の弾性限度以上の荷重がセラミックス製の弁体68に作用することが未然に回避される。これにより、弁体68に割れが生じることなく、弁体68を弁棒部材67に確実にかしめ装着することができる。   As described above, since the plastic deformation ring member 99 softer than these is clamped between the valve body 68 and the caulking piece 98 of the valve stem member 67, the caulking load exceeding the elastic limit of the plastic deformation ring member 99 is Thus, it is avoided that a load exceeding the elastic limit of the plastic deformation ring member 99 is absorbed by the plastic deformation of the plastic deformation ring member 99 and acts on the ceramic valve body 68 in advance. Thereby, the valve body 68 can be securely caulked and attached to the valve rod member 67 without causing the valve body 68 to crack.

また、かしめ前は、弁体68の肩部68Aの平滑度が悪く、2点位でしか弁体68と塑性変形リング部材99とが当たっていなくても、かしめることにより、弁棒部材67や弁体68より軟らかい塑性変形リング部材99がかしめ荷重によって塑性変形し、弁体68と塑性変形リング部材99とが全周均一当接関係で、その全周に均一にかしめ荷重が掛かった状態で固定できる。   Further, before the caulking, the smoothness of the shoulder 68A of the valve body 68 is poor, and even if the valve body 68 and the plastic deformation ring member 99 are in contact only at two points, the valve stem member 67 is caulked. The plastic deformation ring member 99, which is softer than the valve body 68, is plastically deformed by caulking load, and the valve body 68 and the plastic deformation ring member 99 are in uniform contact with the entire circumference, and the caulking load is uniformly applied to the entire circumference. It can be fixed with.

このことにより、弁体68をセラミックスの焼成のままの状態で、塑性変形リング部材99が当接する肩部68Aが多少歪んでいる状態でも使用できるようになり、セラミックス製の弁体68の焼成後の2次研磨加工が不要となり、部品コストを大幅削減できる。   As a result, the valve body 68 can be used even in a state where the shoulder 68A with which the plastic deformation ring member 99 abuts is somewhat distorted in a state where the ceramic is fired, and after the ceramic valve body 68 is fired. The secondary polishing process is not required, and the part cost can be greatly reduced.

また、セラミックス製の弁体68を弁棒部材67に全周均一に荷重が掛かった状態で固定できるため、弁体68の装着時および使用時に、弁体68に応力集中が起きず、過大な荷重がかからないため、弁体68に割れ、クラックが生じることがなく、取付構造の信頼性も向上する。   In addition, since the ceramic valve body 68 can be fixed to the valve stem member 67 with a load uniformly applied to the entire circumference, stress concentration does not occur in the valve body 68 when the valve body 68 is mounted and used, which is excessive. Since no load is applied, the valve body 68 is not cracked or cracked, and the reliability of the mounting structure is improved.

具体的には、塑性変形リング部材99を用いずに、直接、鉄鋼製のかしめ片98をかしめると、かしめ荷重のすべてが弁体68に加わることとなり、弁体68を部分的にしか押さえられないため、応力集中により、セラミックスが割れ易くなる。これに対し、弁棒部材67が鉄鋼材料で、塑性変形リング部材99が純アルミニウム材の場合、純アルミニウムの弾性限度は、鉄鋼材料の弾性限度の約1/10であり、純アルミニウム製の塑性変形リング部材99を挟み込んで、純アルミニウムの弾性限度以上の荷重でかしめると、塑性変形リング部材99が塑性変形し、純アルミニウムの弾性限度以上の荷重が弁体68に作用することがない。これにより、弁体68に割れが生じることなく、弁体68を弁棒部材67に確実にかしめ装着することができる。   Specifically, when the caulking piece 98 made of steel is directly caulked without using the plastic deformation ring member 99, all of the caulking load is applied to the valve body 68, and the valve body 68 is only partially pressed. Therefore, the ceramic is easily cracked due to stress concentration. On the other hand, when the valve stem member 67 is a steel material and the plastic deformation ring member 99 is a pure aluminum material, the elastic limit of the pure aluminum is about 1/10 of the elastic limit of the steel material. When the deformable ring member 99 is sandwiched and caulked with a load exceeding the elastic limit of pure aluminum, the plastic deformable ring member 99 is plastically deformed, and a load exceeding the elastic limit of pure aluminum does not act on the valve body 68. Thereby, the valve body 68 can be securely caulked and attached to the valve rod member 67 without causing the valve body 68 to crack.

セラミックス製の弁体68の固定にかしめを採用したことで、繰返し温度サイクルを受けても、かしめ締結部が、ねじ結合部のように緩むことがなく、信頼性、耐久性がよい確実な組み付け状態を、ねじ込みトルクの厳重な管理等を必要とすることなく、容易に得ることができる。   The use of caulking to fix the ceramic valve body 68 ensures that the caulking fastening part does not loosen like a screw joint even when subjected to repeated temperature cycles, and is reliable and durable. The state can be easily obtained without requiring strict management of the screwing torque.

しかも、塑性変形リング部材99は、弾性変形部材とは異なり、純アルミニウム等による塑性変形部材であるなら、繰返し衝撃、経時変化、繰返し温度サイクルを受けてもへたるような経時劣化を生じることがなく、長期間に亘って安定した性能を得ることができる。   In addition, unlike the elastically deformable member, the plastically deformable ring member 99 is a plastically deformed member made of pure aluminum or the like, and may deteriorate over time even when subjected to repeated impacts, changes over time, and repeated temperature cycles. And stable performance can be obtained over a long period of time.

この実施形態でも、がた付きができる要因として、温度変化による熱膨張率の差があげられる。しかし、アンモニア冷媒を用いた冷凍サイクル装置の電動式膨張弁としての使用では、実使用温度差は、100℃以下で、十分小さい温度差であり、がた付きとしては、ほとんどゼロに近い所であり問題ない。また、実使用温度差が100℃以下と小さいため、温度差がついても、熱膨張率差による発生応力は微小であり、弁体68に割れ、クラックを生じさせることはない。   Also in this embodiment, a factor that can cause rattling is a difference in coefficient of thermal expansion due to temperature change. However, when the refrigeration cycle apparatus using ammonia refrigerant is used as an electric expansion valve, the actual use temperature difference is 100 ° C. or less, which is a sufficiently small temperature difference. There is no problem. In addition, since the actual use temperature difference is as small as 100 ° C. or less, even if the temperature difference is present, the generated stress due to the difference in thermal expansion coefficient is very small, and the valve body 68 is not cracked or cracked.

また、この実施形態でも、セラミックス製の弁座部材57と金属製の内側弁ハウジング52のかしめ片93との間に、これらより軟らかい塑性変形リング部材95を挟み込んでかしめられている。これにより、塑性変形リング部材95の弾性限度以上のかしめ荷重は、塑性変形リング部材95の塑性変形により吸収され、塑性変形リング部材95の弾性限度以上の荷重がセラミックス製の弁座部材57に作用することが未然に回避される。   Also in this embodiment, the plastic deformation ring member 95, which is softer than these, is clamped between the ceramic valve seat member 57 and the caulking piece 93 of the metal inner valve housing 52. Thus, the caulking load exceeding the elastic limit of the plastic deformation ring member 95 is absorbed by the plastic deformation of the plastic deformation ring member 95, and the load exceeding the elastic limit of the plastic deformation ring member 95 acts on the ceramic valve seat member 57. It is avoided in advance.

したがって、この実施形態でも、弁座部材57に割れが生じることなく、弁座部材57を内側弁ハウジング52に確実にかしめ装着することができ、前述の実施形態と同等の効果を得ることができる。   Therefore, also in this embodiment, the valve seat member 57 can be securely caulked and attached to the inner valve housing 52 without causing cracks in the valve seat member 57, and the same effect as the above-described embodiment can be obtained. .

つぎに、この発明による弁装置をアンモニア冷媒用の電動式膨張弁として適用したさらに他の実施形態を、図17〜図19を参照して説明する。なお、図17〜図19において、図11、図12に対応する部分は、図11、図12に付した符号と同一の符号を付けて、その説明を省略する。   Next, still another embodiment in which the valve device according to the present invention is applied as an electric expansion valve for ammonia refrigerant will be described with reference to FIGS. 17 to 19, parts corresponding to those in FIGS. 11 and 12 are denoted by the same reference numerals as those in FIGS. 11 and 12, and description thereof is omitted.

この実施形態では、図11、図12に示されている実施形態と同様に、弁棒部材67の大径部67Bの外周部に、内側にセラミックス製の弁体68を収容した金属製の弁体装着用筒体69が圧入され、弁体装着用筒体69が溶接部70による溶接によって固着されている。     In this embodiment, similarly to the embodiment shown in FIGS. 11 and 12, a metal valve in which a ceramic valve element 68 is accommodated on the outer periphery of the large-diameter portion 67B of the valve stem member 67. The body mounting cylinder 69 is press-fitted, and the valve body mounting cylinder 69 is fixed by welding by the welding portion 70.

弁体68の上端部68Bと弁棒部材67の下端部67Cとの間の間隙72(図12参照)に相当する部分に、図18に示されているように、塑性変形リング部材101が挟まれている。   As shown in FIG. 18, the plastic deformation ring member 101 is sandwiched in a portion corresponding to the gap 72 (see FIG. 12) between the upper end portion 68B of the valve body 68 and the lower end portion 67C of the valve stem member 67. It is.

塑性変形リング部材101は、弁棒部材67を構成する材料の硬度より低硬度の塑性材料によって構成されている。この塑性変形リング部材101を構成する塑性材料としては、軟質の金属材料、発泡金属等の多孔質金属、金網積層材、その他、塑性樹脂材が挙げられる。   The plastic deformation ring member 101 is made of a plastic material whose hardness is lower than the hardness of the material constituting the valve stem member 67. Examples of the plastic material constituting the plastic deformation ring member 101 include a soft metal material, a porous metal such as a foam metal, a wire mesh laminate, and other plastic resin materials.

弁棒部材67がステンレス鋼、軟鋼等の鉄系金属製である場合、塑性変形リング部材101は、弾性限度が鉄系金属の約1/10程度である純アルミニウム材あるいはアルミニウム合金等のアルミニウム系金属であることが好ましい。   When the valve stem member 67 is made of an iron-based metal such as stainless steel or mild steel, the plastic deformation ring member 101 is an aluminum-based material such as a pure aluminum material or an aluminum alloy whose elastic limit is about 1/10 of that of an iron-based metal. A metal is preferred.

これにより、塑性変形リング部材101の弾性限度以上の圧入荷重は、塑性変形リング部材101の塑性変形により吸収され、塑性変形リング部材101の弾性限度以上の荷重がセラミックス製の弁体68に作用することが未然に回避される。   Thereby, the press-fit load exceeding the elastic limit of the plastic deformation ring member 101 is absorbed by the plastic deformation of the plastic deformation ring member 101, and the load exceeding the elastic limit of the plastic deformation ring member 101 acts on the ceramic valve body 68. This is avoided in advance.

したがって、弁体68に割れが生じることなく、弁体68を弁棒部材67に確実にかしめ装着することができる。   Therefore, the valve body 68 can be securely crimped to the valve rod member 67 without causing the valve body 68 to crack.

この固定方法でがた付きができる要因として、温度変化による熱膨張率の差があげられる。しかし、アンモニア冷媒を用いた冷凍サイクル装置の電動式膨張弁としての使用では、実使用温度差は、100℃以下で、十分小さい温度差であり、がた付きとしては、ほとんどゼロに近い所であり問題ない。また、実使用温度差が100℃以下と小さいため、温度差がついても、熱膨張率差による発生応力は微小であり、弁体68に割れ、クラックを生じさせることはない。また、がた付きができたとしても、圧縮コイルばね71が挟まれているから、弁体68ががた付くことがない。   A factor that can cause rattling by this fixing method is a difference in thermal expansion coefficient due to temperature change. However, when the refrigeration cycle apparatus using ammonia refrigerant is used as an electric expansion valve, the actual use temperature difference is 100 ° C. or less, which is a sufficiently small temperature difference. There is no problem. In addition, since the actual use temperature difference is as small as 100 ° C. or less, even if the temperature difference is present, the generated stress due to the difference in thermal expansion coefficient is very small, and the valve body 68 is not cracked or cracked. Even if rattling is achieved, the valve body 68 does not rattle because the compression coil spring 71 is sandwiched.

この実施形態による弁体68および弁座部材57の取付構造は、図20に示されているように、フランジ継手部材102、103を有する型式の電動式膨張弁にも、同様に適用可能である。   As shown in FIG. 20, the mounting structure of the valve body 68 and the valve seat member 57 according to this embodiment can be similarly applied to a type electric expansion valve having flange joint members 102 and 103. .

つぎに、弁ハウジング11、51、内側弁ハウジング52と、弁座部材21、57と、塑性変形リング部材45、99の熱膨張率差によるかしめ部のがた付き、応力発生について、考察する。弁ハウジング11、51、内側弁ハウジング52と、弁座部材21、57と、塑性変形リング部材45、99の各部品に材料の違いによる熱膨張率に差があるため、実使用時に温度変化した場合、隙間の発生によるがた付きが発生する場合と、各部品に応力(熱応力)が発生する場合とがある。   Next, the caulking portion due to the difference in coefficient of thermal expansion between the valve housings 11 and 51, the inner valve housing 52, the valve seat members 21 and 57, and the plastic deformation ring members 45 and 99, and the generation of stress will be considered. Since there is a difference in the coefficient of thermal expansion due to the difference in the materials of the valve housings 11 and 51, the inner valve housing 52, the valve seat members 21 and 57, and the plastic deformation ring members 45 and 99, the temperature changed during actual use. In some cases, there is a case where rattling occurs due to the generation of a gap and a case where stress (thermal stress) is generated in each component.

これは、弁座固定部の3部品の熱膨張率差および3部品の縦方向の寸法比率により、温度上昇時には熱応力、温度下降時にはがた付きとなる場合と、逆に温度上昇時にはがた付き、温度下降時には熱応力となる場合とが出てくる。また、その熱応力値、がた付きの量も、3部品の熱膨張率差、部品の縦方向の寸法比率および温度変化量により変わってくる。   This is due to the difference in thermal expansion coefficient of the three parts of the valve seat fixing part and the dimensional ratio of the three parts in the vertical direction. In some cases, thermal stress occurs when the temperature drops. Further, the thermal stress value and the amount of backlash vary depending on the difference in the thermal expansion coefficients of the three components, the dimensional ratio of the components in the vertical direction, and the amount of temperature change.

図1、図2に示されているような弁座部材固定部について説明すると、温度変化による弁座部材21のかしめ固定部縦方向の寸法変化量の計算式は、弁ハウジング11に形成されている弁座部材受入孔41の長さ寸法変化量αから、塑性変形リング部材45の長さと弁座部材21の固定部長さの2部品長さの温度変化による寸法変化量の総和(β+γ)を引いた値δが、マイナスであると熱応力となり、プラスであると隙間の発生によるがた付きとなる。    The valve seat member fixing portion as shown in FIGS. 1 and 2 will be described. A calculation formula for the amount of dimensional change in the vertical direction of the caulking fixing portion of the valve seat member 21 due to temperature change is formed in the valve housing 11. The total dimensional change (β + γ) due to temperature changes of the two component lengths of the plastic deformation ring member 45 and the fixed length of the valve seat member 21 is calculated from the length dimensional change α of the valve seat member receiving hole 41. If the subtracted value δ is negative, it becomes thermal stress, and if it is positive, it becomes rattling due to the generation of a gap.

各部品の寸法変化量は、(各部品の固定部長さ)×(各部品の熱膨張率)×(温度変化量)で計算できる。したがって、
α=(弁ハウジング11の弁座部材受入孔41の長さ)×(弁ハウジング11の熱膨張率)×(温度変化量)
β=(塑性変形リング部材45の長さ)×(塑性変形リング部材45の熱膨張率)×温度変化量)
γ=(弁座部材21の固定部長さ)×(弁座部材21の熱膨張率)×(温度変化量)
となる。なお、熱膨張率は、各材料固有の値である。
The dimensional change amount of each component can be calculated by (fixed part length of each component) × (thermal expansion coefficient of each component) × (temperature change amount). Therefore,
α = (length of valve seat member receiving hole 41 of valve housing 11) × (thermal expansion coefficient of valve housing 11) × (temperature change amount)
β = (length of plastic deformation ring member 45) × (thermal expansion coefficient of plastic deformation ring member 45) × temperature variation)
γ = (fixed portion length of valve seat member 21) × (thermal expansion coefficient of valve seat member 21) × (temperature change amount)
It becomes. The coefficient of thermal expansion is a value unique to each material.

差値δは、各部品が上下方向に拘束されていない場合の計算であり、実際は、上下方向に拘束されているため、差値δがマイナスの場合、αより(β+γ)の方が大きくなるということは、弁ハウジング11の弁座部材受入孔41の長さ部は、上下への引張応力となり、塑性変形リング部材45と弁座部材21の2部品には上下方向の圧縮応力が発生することとなる。   The difference value δ is a calculation when each component is not restrained in the vertical direction, and since it is actually restrained in the vertical direction, when the difference value δ is negative, (β + γ) is larger than α. That is, the length portion of the valve seat member receiving hole 41 of the valve housing 11 becomes a tensile stress in the vertical direction, and a compressive stress in the vertical direction is generated in the two parts of the plastic deformation ring member 45 and the valve seat member 21. It will be.

差値δがプラスの場合、αより(β+γ)の方が小さくなるということは、弁ハウジング11の弁座部材受入孔41の長さ部と塑性変形リング部材45と弁座部材21の部品間に、上下方向の隙間が発生することとなり、がた付きとなる。   When the difference value δ is positive, (β + γ) is smaller than α, which means that the length of the valve seat member receiving hole 41 of the valve housing 11 and the parts of the plastic deformation ring member 45 and the valve seat member 21 are different. In addition, a gap in the vertical direction is generated and rattling occurs.

弁座部材21と塑性変形リング部材45は、弁ハウジング11に上下方向(縦方向)で挟まれているため、挟まれている塑性変形リング部材45の長さと弁座部材21の固定部長さの2部品長さの温度変化による寸法変化量の総和(β+γ)が、弁ハウジング11の弁座部材受入孔41の長さの寸法変化量αと近くなる様に、3部品の縦方向の寸法比率を変えて構成することにより、3部品の材質が異なっていることで熱膨張率が異なっていても、温度変化による熱応力、がた付きの発生を最小限に小さく設定でき、より信頼性のある固定方法となる。   Since the valve seat member 21 and the plastic deformation ring member 45 are sandwiched between the valve housing 11 in the vertical direction (vertical direction), the length of the plastic deformation ring member 45 sandwiched and the length of the fixed portion of the valve seat member 21 are determined. The dimensional ratio of the three parts in the vertical direction so that the total dimensional change amount (β + γ) due to temperature changes of the two component lengths is close to the dimensional change amount α of the length of the valve seat member receiving hole 41 of the valve housing 11. By changing the configuration, even if the coefficient of thermal expansion is different because the materials of the three parts are different, the occurrence of thermal stress and rattling due to temperature changes can be set to a minimum, making it more reliable. It becomes a certain fixing method.

例えば、図2〜図6に示されているように、弁座部材21と塑性変形リング部材45の寸法比率を変えること(弁座部材受入孔41の長さを変えずに、弁座部材21の固定部長さを長くし、塑性変形リング部材45の長さを短くする)で、応力値、隙間は軽減される。また、図6の状態から塑性変形リング部材45の長さを変えずに、弁座部材受入孔41の長さと弁座部材21の固定部長さをもっと長くすることで、更に応力値、隙間は軽減されることになる。   For example, as shown in FIGS. 2 to 6, the dimensional ratio between the valve seat member 21 and the plastic deformation ring member 45 is changed (the valve seat member 21 is not changed without changing the length of the valve seat member receiving hole 41. The stress value and the gap are reduced by increasing the length of the fixed portion and shortening the length of the plastic deformation ring member 45). Further, by changing the length of the valve seat member receiving hole 41 and the length of the fixed portion of the valve seat member 21 without changing the length of the plastic deformation ring member 45 from the state of FIG. Will be reduced.

弁ハウジング11を軟鋼材料、弁座部材21を部分安定化ジルコニアセラミックス、塑性変形リング部材45を純アルミニウムとすると、熱膨張率は、ほぼ軟鋼材料熱膨張率=部分安定化ジルコニア熱膨張率=純アルミニウム熱膨張率/2.3の関係にあるため、純アルミニウムの長さを短くするほど、また鉄鋼材料と部分安定化ジルコニア材料の長さを長くするほど、応力値、隙間は軽減される方向となる。   When the valve housing 11 is made of a mild steel material, the valve seat member 21 is made of partially stabilized zirconia ceramics, and the plastic deformation ring member 45 is made of pure aluminum, the thermal expansion coefficient is approximately the mild steel material thermal expansion coefficient = partially stabilized zirconia thermal expansion coefficient = pure. Since the thermal expansion coefficient of aluminum is 2.3, the stress value and the gap are reduced as the length of pure aluminum is shortened and the length of steel material and partially stabilized zirconia material is lengthened. It becomes.

また、弁ハウジング11をステンレス鋼材、弁座部材21を部分安定化ジルコニアセラミックス、塑性変形リング部材45を純アルミニウムとした場合、熱膨張率は、ほぼステルス鋼材熱膨張率/1.7=部分安定化ジルコニア熱膨張率=純アルミニウム熱膨張率/2.3の関係にあるため、差値δが0に近くなるような3部品の寸法の関係にもっていくことで、応力値、隙間は軽減される方向となる。   Further, when the valve housing 11 is made of stainless steel, the valve seat member 21 is made of partially stabilized zirconia ceramics, and the plastic deformation ring member 45 is made of pure aluminum, the thermal expansion coefficient is almost the stealth steel material thermal expansion coefficient / 1.7 = partially stable. Zirconia thermal expansion coefficient = pure aluminum thermal expansion coefficient / 2.3. Therefore, the stress value and the gap are reduced by taking the relationship of the dimensions of the three parts so that the difference value δ is close to zero. Direction.

弁座部材受入孔41の長さをLa、塑性変形リング部材45の長さをLbとすると、弁座部材21の固定部長さはLa一Lbとなり、温度差一定で、αと(β+γ)の差値δを0にするためには、2.3×Lb+(La一Lb)=1.7×La、Lb(2.3−1)=La(1.7−1)より、Lb/La=0.7/1.3の関係となるLa、Lbとすると、応力値、隙間はゼロとなる。   When the length of the valve seat member receiving hole 41 is La and the length of the plastic deformation ring member 45 is Lb, the length of the fixed portion of the valve seat member 21 is La 1 Lb, the temperature difference is constant, and α and (β + γ) In order to set the difference value δ to 0, 2.3 × Lb + (La 1 Lb) = 1.7 × La and Lb (2.3-1) = La (1.7-1), Lb / La When La and Lb satisfy the relationship of 0.7 / 1.3, the stress value and the gap are zero.

なお、弁座部材21の固定部長さとは、弁ハウジング11の弁座部材受入孔41の底部42から弁座部材21の段差端面21Dまでの弁座部材21の長さのことである。   The fixed portion length of the valve seat member 21 is the length of the valve seat member 21 from the bottom 42 of the valve seat member receiving hole 41 of the valve housing 11 to the step end face 21D of the valve seat member 21.

また、弁ハウジング11の弁座部材受入孔41の長さとは、弁座部材受入孔41の底部42から、かしめ片43をかしめて塑性変形リング部材45に当接した部分までの弁ハウジング11の長さのことである。   The length of the valve seat member receiving hole 41 of the valve housing 11 is the length of the valve housing 11 from the bottom portion 42 of the valve seat member receiving hole 41 to the portion where the caulking piece 43 is caulked and abuts against the plastic deformation ring member 45. It's about length.

上述したかしめ部のがた付き、応力発生は、同機に、電動弁の弁体56のかしめ固定部でも、同じことが言える。   The above-described rattling and stress generation of the caulking portion can be said to be the same in the caulking fixing portion of the valve body 56 of the electric valve.

次に、この発明による冷凍サイクル装置の一つの実施形態を、図21を参照して説明する。   Next, one embodiment of the refrigeration cycle apparatus according to the present invention will be described with reference to FIG.

この実施形態による冷凍サイクル装置は、圧縮機201と、凝縮器(室外熱交換器)202と、膨張弁203と、蒸発器(室内熱交換器)204と、これらをループ接続する冷媒通路205〜208とを有する。   The refrigeration cycle apparatus according to this embodiment includes a compressor 201, a condenser (outdoor heat exchanger) 202, an expansion valve 203, an evaporator (indoor heat exchanger) 204, and refrigerant passages 205 to 205 that connect these in a loop. 208.

この冷凍サイクル装置では、アンモニア冷媒が用いられ、空気調和装置(冷房)や冷凍・冷蔵庫等を構成する。   In this refrigeration cycle apparatus, ammonia refrigerant is used to constitute an air conditioner (cooling), a refrigeration / refrigerator, or the like.

膨張弁203としては、上述したこの発明による温度式膨張弁あるいは電動式膨張弁が用いられる。   As the expansion valve 203, the above-described temperature type expansion valve or electric expansion valve according to the present invention is used.

なお、上述したこの発明による温度式膨張弁あるいは電動式膨張弁が適用される冷凍サイクル装置は、図21に示されているような冷凍サイクル装置に限られることはなく、室内機に二つの熱交換器が直列接続され、その二つの熱交換器間に追加の膨張弁を有する空気調和装置等の冷凍サイクル装置にも適用可能である。   The refrigeration cycle apparatus to which the above-described temperature expansion valve or electric expansion valve according to the present invention is applied is not limited to the refrigeration cycle apparatus as shown in FIG. The present invention is also applicable to a refrigeration cycle apparatus such as an air conditioner in which an exchanger is connected in series and an additional expansion valve is provided between the two heat exchangers.

この発明による弁装置をアンモニア冷媒用の温度式膨張弁として実施した一つの実施形態を示す断面図である。It is sectional drawing which shows one Embodiment which implemented the valve apparatus by this invention as a temperature type expansion valve for ammonia refrigerant | coolants. この実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of this embodiment. (a)はこの実施形態の要部のかしめ前の状態を示す拡大断面図、(b)は同じくかしめ後の状態を示す拡大断面図である。(A) is an expanded sectional view which shows the state before caulking of the principal part of this embodiment, (b) is an expanded sectional view which similarly shows the state after caulking. (a)はこの実施形態の要部のかしめ前の状態を示す拡大斜視図、(b)は同じくかしめ後の状態を示す拡大斜視図である。(A) is an expansion perspective view which shows the state before caulking of the principal part of this embodiment, (b) is an enlarged perspective view which similarly shows the state after caulking. この実施形態の要部の例のかしめ後の状態を示す拡大斜視図である。It is an expansion perspective view which shows the state after caulking of the example of the principal part of this embodiment. この発明による弁装置をアンモニア冷媒用の温度式膨張弁として実施した他の実施形態の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of other embodiment which implemented the valve apparatus by this invention as a temperature type expansion valve for ammonia refrigerant | coolants. (a)はこの実施形態の要部のかしめ前の状態を示す拡大断面図、(b)は同じくかしめ後の状態を示す拡大断面図である。(A) is an expanded sectional view which shows the state before caulking of the principal part of this embodiment, (b) is an expanded sectional view which similarly shows the state after caulking. この発明による弁装置をアンモニア冷媒用の温度式膨張弁として実施した他の実施形態の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of other embodiment which implemented the valve apparatus by this invention as a temperature type expansion valve for ammonia refrigerant | coolants. (a)はこの実施形態の要部のかしめ前の状態を示す拡大断面図、(b)は同じくかしめ後の状態を示す拡大断面図である。(A) is an expanded sectional view which shows the state before caulking of the principal part of this embodiment, (b) is an expanded sectional view which similarly shows the state after caulking. この発明による弁装置をアンモニア冷媒用の温度式膨張弁として実施した他の実施形態の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of other embodiment which implemented the valve apparatus by this invention as a temperature type expansion valve for ammonia refrigerant | coolants. この発明による弁装置をアンモニア冷媒用の電動式膨張弁として実施した一つの実施形態を示す断面図である。It is sectional drawing which shows one Embodiment which implemented the valve apparatus by this invention as an electrically driven expansion valve for ammonia refrigerant. この実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of this embodiment. この発明による弁装置をアンモニア冷媒用の電動式膨張弁として実施した他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment which implemented the valve apparatus by this invention as an electrically driven expansion valve for ammonia refrigerant. この発明による弁装置をアンモニア冷媒用の電動式膨張弁として実施したもう一つの他の実施形態を示す断面図である。It is sectional drawing which shows another other embodiment which implemented the valve apparatus by this invention as an electrically driven expansion valve for ammonia refrigerant. この実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of this embodiment. この実施形態のかしめ部を示す拡大断面図である。It is an expanded sectional view showing a caulking part of this embodiment. この発明による弁装置をアンモニア冷媒用の電動式膨張弁として実施したさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment which implemented the valve apparatus by this invention as an electrically driven expansion valve for ammonia refrigerant. この実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of this embodiment. この実施形態の塑性変形リング部材の配置部の拡大断面図である。It is an expanded sectional view of the arrangement part of the plastic deformation ring member of this embodiment. この発明による弁装置をアンモニア冷媒用の電動式膨張弁として実施した他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment which implemented the valve apparatus by this invention as an electrically driven expansion valve for ammonia refrigerant. この発明による冷凍サイクル装置の一つの実施形態を示す冷媒回路図である。It is a refrigerant circuit figure showing one embodiment of the refrigerating cycle device by this invention.

符号の説明Explanation of symbols

11 弁ハウジング
12 弁室
21 弁座部材
22 弁ポート
25 弁体
29 圧縮コイルばね
31 感温ダイヤフラム装置
34 感温筒
35 連結棒
41 弁座部材受入孔
43 かしめ片
44 Oリング
45 塑性変形リング部材
51 外側弁ハウジング(弁ハウジング)
52 内側弁ハウジング
56 弁室
57 弁座部材
67 弁棒部材
68 弁体
75 ステッピングモータ
77 ロータケース
79 ロータ
80 ステータコイル組立体
91 弁座部材受入孔
93 かしめ片
94 Oリング
95 塑性変形リング部材
96 弁体受入孔
98 かしめ片
99、101 塑性変形リング部材
201 圧縮機
202 凝縮器
203 膨張弁
204 蒸発器
DESCRIPTION OF SYMBOLS 11 Valve housing 12 Valve chamber 21 Valve seat member 22 Valve port 25 Valve body 29 Compression coil spring 31 Temperature sensing diaphragm device 34 Temperature sensing cylinder 35 Connecting rod 41 Valve seat member receiving hole 43 Caulking piece 44 O ring 45 Plastic deformation ring member 51 Outer valve housing (valve housing)
52 Inner valve housing 56 Valve chamber 57 Valve seat member 67 Valve rod member 68 Valve body 75 Stepping motor 77 Rotor case 79 Rotor 80 Stator coil assembly 91 Valve seat member receiving hole 93 Caulking piece 94 O-ring 95 Plastic deformation ring member 96 Valve Body receiving hole 98 Caulking piece 99, 101 Plastic deformation ring member 201 Compressor 202 Condenser 203 Expansion valve 204 Evaporator

Claims (9)

弁ハウジングに取り付けられたセラミックス製の弁座部材を弁室内に有する弁装置において、
前記弁ハウジングに前記弁座部材を受け入れる有底構造の弁座部材受入孔が形成され、当該弁座部材受入孔に前記弁座部材が挿入され、前記弁座部材受入孔の底部側とは反対の側にある開口縁部に形成されたかしめ片のかしめにより前記弁座部材の前記弁ハウジングに対する固定が行われ、前記かしめ片と前記弁座部材との間に、前記弁ハウジングを構成する材料の硬度より低硬度の材料による塑性変形リング部材が挟まれていることを特徴とする弁装置。
In the valve device having a valve seat member made of ceramics attached to the valve housing in the valve chamber,
A valve seat member receiving hole having a bottomed structure for receiving the valve seat member is formed in the valve housing, the valve seat member is inserted into the valve seat member receiving hole, and is opposite to the bottom side of the valve seat member receiving hole. The valve seat member is fixed to the valve housing by caulking of the caulking piece formed on the opening edge on the side of the opening, and the material constituting the valve housing is between the caulking piece and the valve seat member. A valve device characterized in that a plastically deformed ring member made of a material having a hardness lower than the hardness of is sandwiched.
前記弁ハウジングは鉄系金属により構成され、前記塑性変形リング部材はアルミニウム系金属により構成されている請求項1記載の弁装置   The valve device according to claim 1, wherein the valve housing is made of an iron-based metal, and the plastic deformation ring member is made of an aluminum-based metal. 前記弁座部材受入孔内に、前記弁座部材と前記弁ハウジングとの間を気密シールするシール構造が設けられている請求項1または2記載の弁装置。   The valve device according to claim 1 or 2, wherein a seal structure that hermetically seals between the valve seat member and the valve housing is provided in the valve seat member receiving hole. 前記シール構造は、前記弁座部材受入孔の底部と前記弁座部材との間に挟まれた弾性シール部材を含んでいる請求項3記載の弁装置。   The valve device according to claim 3, wherein the seal structure includes an elastic seal member sandwiched between a bottom portion of the valve seat member receiving hole and the valve seat member. 弁棒部材に取り付けられたセラミックス製の弁体を弁室内に有する弁装置において、
前記弁棒部材に前記弁体を受け入れる有底構造の弁体受入孔が形成され、当該弁体受入孔に前記弁体が挿入され、前記弁体受入孔の底部側とは反対の側にある開口縁部に形成されたかしめ片のかしめにより前記弁体の前記弁棒部材に対する固定が行われ、前記かし片と前記弁体との間に、前記弁棒部材を構成する材料の硬度より低硬度の材料による塑性変形リング部材が挟まれていることを特徴とする弁装置。
In the valve device having a ceramic valve body attached to the valve stem member in the valve chamber,
A valve body receiving hole having a bottomed structure for receiving the valve body is formed in the valve stem member, the valve body is inserted into the valve body receiving hole, and is on a side opposite to the bottom side of the valve body receiving hole. The valve body is fixed to the valve stem member by caulking pieces formed on the edge of the opening, and the hardness of the material constituting the valve stem member is determined between the caulking piece and the valve body. A valve device characterized in that a plastic deformation ring member made of a low-hardness material is sandwiched.
弁棒部材に取り付けられたセラミックス製の弁体を弁室内に有する弁装置において、
内側に前記弁体を収容した弁体装着用筒体を有し、前記弁体装着用筒体が前記弁棒部材に固定され、前記弁体は前記弁体装着用筒体内において当該弁体装着用筒体の端部のリップ片と前記弁棒部材の端部端面との間にあり、前記弁棒部材の前記端部端面とこれに対向する前記弁体の端面の間に、前記弁棒部材を構成する材料の硬度より低硬度の材料による塑性変形リング部材が挟まれていることを特徴とする弁装置。
In the valve device having a ceramic valve body attached to the valve stem member in the valve chamber,
A valve body mounting cylinder containing the valve body inside; the valve body mounting cylinder is fixed to the valve rod member; and the valve body is mounted in the valve body mounting cylinder The valve stem is between the lip piece at the end of the cylinder and the end face of the valve stem member, and between the end face of the valve stem member and the end face of the valve body facing the end face. A valve device characterized in that a plastic deformation ring member made of a material having a hardness lower than that of a material constituting the member is sandwiched.
前記弁棒部材は鉄系金属により構成され、前記塑性変形リング部材はアルミニウム系金属により構成されている請求項5または6記載の弁装置。   The valve device according to claim 5 or 6, wherein the valve stem member is made of an iron-based metal, and the plastic deformation ring member is made of an aluminum-based metal. 前記弁棒部材と前記弁体との間に、該両者を互いに軸線方向に離れる方向に付勢するばね部材が設けられている請求項5〜7の何れか1項記載の弁装置。   The valve device according to any one of claims 5 to 7, wherein a spring member is provided between the valve stem member and the valve body to urge both of them in a direction away from each other in the axial direction. 請求項1〜8の何れか1項記載の弁装置を冷媒回路中に有する冷凍サイクル装置。   A refrigerating cycle device having the valve device according to any one of claims 1 to 8 in a refrigerant circuit.
JP2004242094A 2004-08-23 2004-08-23 Valve device and refrigeration cycle device Expired - Fee Related JP4395422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242094A JP4395422B2 (en) 2004-08-23 2004-08-23 Valve device and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242094A JP4395422B2 (en) 2004-08-23 2004-08-23 Valve device and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP2006057779A true JP2006057779A (en) 2006-03-02
JP4395422B2 JP4395422B2 (en) 2010-01-06

Family

ID=36105414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242094A Expired - Fee Related JP4395422B2 (en) 2004-08-23 2004-08-23 Valve device and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP4395422B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229885A (en) * 2011-04-27 2012-11-22 Saginomiya Seisakusho Inc Temperature expansion valve
JP2019143732A (en) * 2018-02-21 2019-08-29 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
CN110822109A (en) * 2018-08-08 2020-02-21 浙江三花智能控制股份有限公司 Valve device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189672U (en) * 1984-05-28 1985-12-16 株式会社山武 valve
JPH0292171U (en) * 1989-01-06 1990-07-23
JPH08338550A (en) * 1995-06-12 1996-12-24 Tohoku Electric Power Co Inc Valve device
JPH09100920A (en) * 1995-05-19 1997-04-15 Emerson Electric Gmbh & Co Valve device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189672U (en) * 1984-05-28 1985-12-16 株式会社山武 valve
JPH0292171U (en) * 1989-01-06 1990-07-23
JPH09100920A (en) * 1995-05-19 1997-04-15 Emerson Electric Gmbh & Co Valve device
JPH08338550A (en) * 1995-06-12 1996-12-24 Tohoku Electric Power Co Inc Valve device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229885A (en) * 2011-04-27 2012-11-22 Saginomiya Seisakusho Inc Temperature expansion valve
JP2019143732A (en) * 2018-02-21 2019-08-29 株式会社鷺宮製作所 Motor valve and refrigeration cycle system
CN110822109A (en) * 2018-08-08 2020-02-21 浙江三花智能控制股份有限公司 Valve device
CN110822109B (en) * 2018-08-08 2023-05-23 浙江三花智能控制股份有限公司 Valve device

Also Published As

Publication number Publication date
JP4395422B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
US7114396B2 (en) Pressure sensor
US8237343B2 (en) Spark plug having a metal fitting portion for holding an insulator at a portion opposite a tip end
WO2006009095A1 (en) Solenoid-controlled valve
JP2006010306A (en) Glow plug
JP2001296198A (en) Pressure sensor
JP4395422B2 (en) Valve device and refrigeration cycle device
JP4062263B2 (en) Temperature sensor
JP4753389B2 (en) Sheath type glow plug with combustion chamber pressure sensor and seal element
US6742397B2 (en) High pressure sensor with separate pressure port and housing and method for making the same
US8405007B2 (en) Device for producing a temperature gradient
JP4720451B2 (en) Pressure sensor
JP2007187609A (en) Structure of mounting pressure sensor
EP1101951B1 (en) Diaphragm actuator
JP4207070B2 (en) Glow plug with combustion sensor
WO2003044438A1 (en) Defrosting heater, and manufacturing method thereof
JP2007078330A (en) Glow plug with combustion pressure sensor
JP2011149857A (en) Mounting structure of pressure sensor
JP2010032239A (en) Pressure sensor
CN104976834B (en) Expansion valve
JP2008286204A (en) Pressure control valve
JP2001187978A (en) Shutoff valve
CN109386643A (en) Motor-driven valve stator and motor-driven valve
JP4685549B2 (en) Spark plug
JP2013140044A (en) Pressure detector and internal combustion engine having pressure detector
WO2022228361A1 (en) Valve assembly and sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141023

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees