JP2006057604A - Cylinder direct injection internal combustion engine - Google Patents

Cylinder direct injection internal combustion engine Download PDF

Info

Publication number
JP2006057604A
JP2006057604A JP2004243215A JP2004243215A JP2006057604A JP 2006057604 A JP2006057604 A JP 2006057604A JP 2004243215 A JP2004243215 A JP 2004243215A JP 2004243215 A JP2004243215 A JP 2004243215A JP 2006057604 A JP2006057604 A JP 2006057604A
Authority
JP
Japan
Prior art keywords
injection
internal combustion
combustion engine
fuel
direct injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004243215A
Other languages
Japanese (ja)
Inventor
Isamu Hotta
勇 堀田
Yoshimi Uchida
芳美 内田
Taisuke Shiraishi
泰介 白石
Daisuke Tanaka
大輔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004243215A priority Critical patent/JP2006057604A/en
Publication of JP2006057604A publication Critical patent/JP2006057604A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To secure igniting stability while preventing deposition on ignition plugs. <P>SOLUTION: A spray axial line which is formed by the mutual collision of fuel sprays from two nozzle holes of a fuel injection valve 12 is changed with a change in the flow rate of fuel from each nozzle hole in response to a needle (valve element) lift amount. In the maximum needle lift (a main injection period), the deposition on the plug is prevented by avoiding the fuel sprays from being directed to a plug gap between the adjacent ignition plugs 10. In a reduction of needle lift (an injection finishing period), igniting stability is secured by allowing the fuel sprays to be directed to the plug gap. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料噴射弁の噴孔と、点火プラグのプラグギャップとを近接して配置した筒内直噴式内燃機関に関し、特に、良好な点火性能を維持できるようにした技術に関する。   The present invention relates to an in-cylinder direct injection internal combustion engine in which an injection hole of a fuel injection valve and a plug gap of an ignition plug are arranged close to each other, and more particularly to a technique capable of maintaining good ignition performance.

火花点火燃焼に際し、燃料噴射弁から筒内に燃料を直接噴射し、筒内に成層化した混合気を形成することで、大幅に希薄化した燃焼を行う内燃機関は、特に低・中負荷において、燃料消費を大きく低減できることが知られている。
このような筒内直接噴射式火花点火機関において、特許文献1では、燃料噴射弁の噴孔近傍に点火プラグのプラグギャップを配置し、燃料噴射弁から噴射された燃料噴霧に直接火花点火を行い燃焼せしめている。
特開平6−42352号公報
In spark ignition combustion, an internal combustion engine that performs highly diluted combustion by directly injecting fuel into the cylinder from the fuel injection valve and forming a stratified mixture in the cylinder is especially at low and medium loads It is known that fuel consumption can be greatly reduced.
In such an in-cylinder direct injection type spark ignition engine, in Patent Document 1, a plug gap of an ignition plug is disposed in the vicinity of the injection hole of the fuel injection valve, and direct spark ignition is performed on the fuel spray injected from the fuel injection valve. It is burning.
JP-A-6-42352

しかしながら、燃料噴射弁から噴射された燃料噴霧に直接火花点火を行い燃焼せしめる手法において、燃料噴霧と点火プラグのプラグギャップとが近接するように配置すると、着火の安定性は向上するものの、燃料噴霧がプラグギャップを直撃することによる点火プラグのかぶりが問題となる。
一方、点火プラグのかぶりを回避するために、燃料噴霧から点火プラグのプラグギャップを遠ざけると燃焼安定性が悪化する。つまり両者はトレードオフの関係となっている。本燃焼手法に関する先行技術において、上記問題点に関する方策が示されたものは存在しない。
However, in the method in which the fuel spray injected from the fuel injection valve is directly ignited and burned, if the fuel spray and the plug gap of the spark plug are arranged close to each other, the stability of ignition is improved, but the fuel spray is improved. The problem is fogging of the spark plug due to the direct hit of the plug gap.
On the other hand, if the plug gap of the spark plug is moved away from the fuel spray in order to avoid the cover of the spark plug, the combustion stability is deteriorated. In other words, both are in a trade-off relationship. In the prior art related to this combustion technique, there is no one showing a measure for the above problem.

本発明は、かかる問題点に鑑みてなされたもので、燃料噴射弁から噴射された燃料噴霧に直接火花点火を行い燃焼せしめる手法において、点火プラグのかぶり防止と燃焼安定性との両立を可能とする手段を提供することを目的とする。   The present invention has been made in view of such a problem, and in a technique of directly igniting and burning a fuel spray injected from a fuel injection valve, it is possible to achieve both prevention of fogging of the spark plug and combustion stability. It aims at providing the means to do.

このため、本発明は、燃料噴射弁の噴孔から噴射される燃料が、前記点火プラグのプラグギャップ近傍を通過するよう燃料噴射方向を設定するとともに、
前記燃料噴射弁の弁体リフト量が低下して着座にいたる噴射期間末期の燃料通過位置を、弁体リフト量が最大となる主噴射期間の燃料通過位置よりも前記プラグギャップの位置に近づける構成とした。
For this reason, the present invention sets the fuel injection direction so that the fuel injected from the injection hole of the fuel injection valve passes through the vicinity of the plug gap of the spark plug,
A configuration in which the fuel passage position at the end of the injection period in which the valve body lift amount of the fuel injection valve is lowered and seated is closer to the plug gap position than the fuel passage position in the main injection period in which the valve body lift amount is maximum. It was.

かかる構成によると、弁体リフト量が最大となる主噴射期間中は燃料噴霧がプラグギャップ位置近傍を指向せず、燃料噴射終了時には該ニードルリフト量の低下に応じて燃料噴霧が該プラグギャップ位置近傍を指向することにより、主噴射期間中に噴射された燃料噴霧はプラグギャップを避けることで点火プラグのかぶりを回避し、燃料噴射終了時の火花点火を行う時期において、燃料噴霧がプラグギャップを指向するために確実に着火を行うことが可能となる。   According to this configuration, during the main injection period in which the valve body lift amount is maximum, the fuel spray is not directed to the vicinity of the plug gap position, and at the end of the fuel injection, the fuel spray is changed to the plug gap position according to the decrease in the needle lift amount. By directing in the vicinity, the fuel spray injected during the main injection period avoids the plug gap to avoid fogging of the spark plug, and at the timing of spark ignition at the end of the fuel injection, the fuel spray passes through the plug gap. It becomes possible to ignite surely to be oriented.

以下、図面に基づき、本発明の実施形態について説明する。
図1において、内燃機関は、シリンダヘッド1、シリンダブロック2及びピストン3により構成される燃焼室4を有し、吸気バルブ5を介して吸気ポート6から新気を導入し、排気バルブ7を介して排気ポート8から排気を排出する。前記シリンダヘッド1の中央部に燃料噴射弁9と点火プラグ10とが装着され、燃料噴射弁9先端部に設けられた噴孔91と、点火プラグ10先端部に設けられたプラグギャップ10aとを近接させて燃焼室4内に臨ませるように配置してある。プラグギャップ10aは、噴射された燃料噴霧に直接点火可能であるが、燃料噴霧直撃によるプラグかぶり等の問題を回避するために噴霧中心軸上からはオフセットさせて配置している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, the internal combustion engine has a combustion chamber 4 composed of a cylinder head 1, a cylinder block 2 and a piston 3, introduces fresh air from an intake port 6 via an intake valve 5, and passes through an exhaust valve 7. The exhaust is discharged from the exhaust port 8. A fuel injection valve 9 and a spark plug 10 are mounted at the center of the cylinder head 1, and a nozzle hole 91 provided at the tip of the fuel injection valve 9 and a plug gap 10 a provided at the tip of the spark plug 10 are provided. It arrange | positions so that it may adjoin and may face in the combustion chamber 4. FIG. The plug gap 10a can be directly ignited by the injected fuel spray, but is offset from the spray center axis in order to avoid problems such as plug fog caused by direct fuel spray hit.

前記吸気バルブ5を駆動するカム軸端には、燃料ポンプ11が配置されている。該燃料ポンプ11により加圧された燃料は、燃料配管12を介して燃料噴射弁9より燃焼室4へ噴射される。
内燃機関は、エンジンコントロールユニット(ECU)13にて統合的に制御される。このためECU13にはクランク角センサ信号、冷却水温、アクセル開度信号が入力され、これらの信号を基に、燃料噴射,点火制御を行う。また、本内燃機関では、燃焼形態として主に、圧縮行程中(特に、圧縮行程後半)に燃料噴射を行うことでリーン運転を実現し燃費を向上させる成層燃焼モードと、吸気行程中(特に吸気行程前半)に燃料噴射を行いストイキ運転(理論空燃比運転)を実現する均質燃焼モードとが設けられており、運転状態に応じて選択されるようになっている。
A fuel pump 11 is disposed at the end of the cam shaft that drives the intake valve 5. The fuel pressurized by the fuel pump 11 is injected into the combustion chamber 4 from the fuel injection valve 9 through the fuel pipe 12.
The internal combustion engine is integrally controlled by an engine control unit (ECU) 13. Therefore, the ECU 13 receives a crank angle sensor signal, a coolant temperature, and an accelerator opening signal, and performs fuel injection and ignition control based on these signals. In the internal combustion engine, the combustion mode mainly includes a stratified combustion mode in which a lean operation is realized by performing fuel injection during the compression stroke (particularly in the latter half of the compression stroke) to improve fuel consumption, and during the intake stroke (particularly the intake stroke). A homogeneous combustion mode in which fuel injection is performed in the first half of the stroke and a stoichiometric operation (theoretical air-fuel ratio operation) is realized, and is selected according to the operating state.

前記燃料噴射弁9の先端構造を図2に、主噴射期間および噴射終了時期における燃料噴霧特性を図3に示す。
該燃料噴射弁9は、ノズルボデー14内でニードル(弁体)15が、軸方向に往復動することで燃料の噴射を行い、ニードル15が着座時において、燃料噴射弁9の軸方向に対して周方向の点火プラグ10側に、2つの噴孔91a,91bを有している。なお、ニードル15をリフトさせる手段として電磁コイルを用いることにより、比較的安価に燃料噴射弁を作成可能となる。
The tip structure of the fuel injection valve 9 is shown in FIG. 2, and the fuel spray characteristics in the main injection period and the injection end timing are shown in FIG.
The fuel injection valve 9 injects fuel by a needle (valve element) 15 reciprocating in the axial direction in the nozzle body 14, and the needle 15 is seated with respect to the axial direction of the fuel injection valve 9. Two injection holes 91a and 91b are provided on the spark plug 10 side in the circumferential direction. Note that by using an electromagnetic coil as a means for lifting the needle 15, a fuel injection valve can be created at a relatively low cost.

前記噴孔91a,91bは、入口側開口部のカーテン面積(噴孔断面形状を、噴孔軸方向へ弁体に衝突するまで延長させた際に形成される形状の側面の面積)91A,91Bが異なり、カーテン面積91Aより、カーテン面積91Bの方が大きく形成されている。なお、点火プラグ10側でない側には燃料噴射弁9の軸方向に対して1個の噴孔91cが設けられる。   The nozzle holes 91a and 91b are the curtain area of the inlet side opening (the area of the side surface formed when the nozzle hole cross-sectional shape is extended until it collides with the valve body in the nozzle hole axis direction) 91A and 91B. However, the curtain area 91B is formed larger than the curtain area 91A. Note that one injection hole 91 c is provided in the axial direction of the fuel injection valve 9 on the side other than the spark plug 10 side.

前記カーテン面積が大きい方の噴孔9bの軸線(噴霧軸線)20は、点火プラグ10のプラグギャップ10a位置近傍を指向しており、カーテン面積が小さい方の噴孔9aの軸線(噴霧軸線)22は、プラグギャップ位置12a近傍を指向していない。また、噴孔軸線20および22は空間に交点を有しており、それぞれの噴孔から噴射された燃料噴霧は衝突し、衝突噴霧軸線21の方向へと進行する。   The axis (spray axis) 20 of the nozzle hole 9b having the larger curtain area is oriented near the position of the plug gap 10a of the spark plug 10, and the axis (spray axis) 22 of the nozzle hole 9a having the smaller curtain area is directed. Is not directed near the plug gap position 12a. Further, the nozzle hole axes 20 and 22 have intersections in the space, and the fuel sprays injected from the respective nozzle holes collide and proceed in the direction of the collision spray axis 21.

ここで、図3(a)に示すように、ニードル15の最大リフト時において噴霧軸線21はプラグギャップ10a位置近傍を指向しないように設定されている。これにより、ニードル15が最大リフト時の主噴射期間中において、燃料噴霧はプラグギャップ10aを直撃することがなく、点火プラグ10のかぶりも防止できる。
一方、図3(b)に示すように、ニードル15のリフト量が低下すると、前記カーテン面積91A,91Bの相違が大きくなり、カーテン面積91Aが大きく減少する噴孔9aから噴射される燃料流量のカーテン面積91Bが比較的大きく保たれる噴孔9bから噴射される燃料流量に対する割合が相対的に低下するため、噴霧軸線21は噴霧軸線20へと近づいていく。
Here, as shown in FIG. 3A, the spray axis 21 is set so as not to be directed near the position of the plug gap 10a when the needle 15 is fully lifted. As a result, during the main injection period when the needle 15 is at the maximum lift, the fuel spray does not directly hit the plug gap 10a, and fogging of the spark plug 10 can be prevented.
On the other hand, as shown in FIG. 3B, when the lift amount of the needle 15 decreases, the difference between the curtain areas 91A and 91B increases, and the flow rate of fuel injected from the nozzle hole 9a where the curtain area 91A decreases greatly is shown. Since the ratio with respect to the fuel flow rate injected from the nozzle hole 9b in which the curtain area 91B is kept relatively large is relatively lowered, the spray axis 21 approaches the spray axis 20.

これにより、燃料噴射終了時において燃料噴霧はプラグギャップ位置近傍を指向することとなり、着火の安定性を確保することが可能となる。
尚、図2(a)に示すように、燃料噴射弁9が下端部にサック部(容積部)23を有するタイプのものでは、上側の噴孔9aはサック部23より上側のノズルボディ14壁に設け、下側の噴孔9bを該サック部23に設けることで、前記2つのカーテン面積91A,91Bの相違をより大きくすることができ、容易に燃料噴霧特性が変化可能となる。また、サック部23を設けることにより噴射終了時期における燃料噴射量が多くなり、着火の安定性が向上する。
As a result, the fuel spray is directed near the plug gap position at the end of fuel injection, and it is possible to ensure the stability of ignition.
As shown in FIG. 2A, when the fuel injection valve 9 has a sac part (volume part) 23 at the lower end, the upper injection hole 9a is formed on the wall of the nozzle body 14 above the sack part 23. By providing the lower injection hole 9b in the sack portion 23, the difference between the two curtain areas 91A and 91B can be further increased, and the fuel spray characteristics can be easily changed. Further, the provision of the sack portion 23 increases the fuel injection amount at the injection end timing, and improves the stability of ignition.

一方、図2(b)に示すように、サック部を備えないサックレスタイプの燃料噴射弁9であっても、ノズルボデー14壁に設けた2つの噴孔9a,9bのカーテン面積91A,91Bを相違させることができ、カーテン面積91A,91Bが異なっていればこれらに限定するものではない。
また、ニードル着座時において、カーテン面積が大きい方の噴孔9bの断面積を、カーテン面積が小さい方の噴孔9aの断面積より小さく形成すれば、点火プラグのかぶり抑制機能が強化され、逆に、カーテン面積が大きい方の噴孔9bの断面積を、カーテン面積が小さい方の噴孔9aの断面積より大きく形成すれば、着火の安定性機能が強化されるので、燃料噴射特性、点火性能などに応じて両機能を最もバランスよく得られるように設定すればよい。
On the other hand, as shown in FIG. 2B, even in a sacless type fuel injection valve 9 that does not include a sack portion, the curtain areas 91A and 91B of the two injection holes 9a and 9b provided on the wall of the nozzle body 14 are provided. The curtain areas 91 </ b> A and 91 </ b> B are different from each other as long as the curtain areas 91 </ b> A and 91 </ b> B are different.
In addition, when the needle is seated, if the cross-sectional area of the nozzle hole 9b with the larger curtain area is made smaller than the cross-sectional area of the nozzle hole 9a with the smaller curtain area, the fogging suppression function of the spark plug will be strengthened. In addition, if the cross-sectional area of the nozzle hole 9b having the larger curtain area is made larger than the cross-sectional area of the nozzle hole 9a having the smaller curtain area, the ignition stability function is enhanced. What is necessary is just to set so that both functions can be obtained with the best balance according to performance etc.

このように、本実施形態によれば、主噴射期間中は少なくとも異なる2つの噴孔から噴射される燃料噴霧を衝突させる構成としたことにより、燃料噴霧の進行方向が弁体リフト量に応じて自動的に制御することができる。
特に、ニードル着座時において、少なくとも2つの噴孔9a,9bの入口側開口部カーテン面積91A,91Bが異なる構成としたことにより、噴射終了時期付近において、カーテン面積の小さい噴孔から噴射される燃料流量が、カーテン面積の大きな噴孔から噴射される燃料流量よりも相対的に小さくなるため、衝突させた燃料噴霧の進行方向を容易に変更できる。
As described above, according to the present embodiment, during the main injection period, the fuel sprays injected from at least two different nozzle holes are caused to collide, so that the traveling direction of the fuel sprays depends on the valve lift amount. Can be controlled automatically.
In particular, when the needle is seated, at least two injection holes 9a and 9b have different entrance side opening curtain areas 91A and 91B, so that the fuel injected from the injection holes having a small curtain area near the injection end timing. Since the flow rate is relatively smaller than the fuel flow rate injected from the nozzle hole having a large curtain area, the traveling direction of the collided fuel spray can be easily changed.

但し、ニードルが最大リフト時には燃料噴霧はプラグギャップ位置近傍を指向せずに、ニードルリフト量の低下に従ってプラグギャップ位置近傍を指向するものであれば本方式に限定するものではない。
図4は、前記点火プラグ10における電極形状の各種の例を示す。燃料噴射弁9の噴孔9aから点火プラグ10のプラグギャップ10aまでの距離が短く燃料噴霧の混合気形成が十分でないことから、可燃混合気の領域が十分に大きくないため、同図(a)に示されるセミ沿面電極タイプのものが、空間的に広い点火領域を確保できるのでより好ましい。しかし、同図(b)に示されるような平行電極タイプでも良いし、また、同図(c)に示されるような平行電極と沿面電極とを併せ持つハイブリッドタイプでも良く、点火を行うものであればこれらに限定するものではない。
However, the present invention is not limited to this method as long as the fuel spray is not directed to the vicinity of the plug gap position when the needle is at the maximum lift, but is directed to the vicinity of the plug gap position as the needle lift amount decreases.
FIG. 4 shows various examples of electrode shapes in the spark plug 10. Since the distance from the injection hole 9a of the fuel injection valve 9 to the plug gap 10a of the spark plug 10 is short and the mixture formation of fuel spray is not sufficient, the region of the combustible mixture is not sufficiently large. The semi-creeping electrode type shown in Fig. 5 is more preferable because a wide ignition region can be secured. However, it may be a parallel electrode type as shown in FIG. 5B or a hybrid type having both parallel electrodes and creeping electrodes as shown in FIG. However, it is not limited to these.

また、同図(a)〜(c)のいずれの電極もプラグギャップにおける点火時の飛火方向が、点火プラグ軸線に対して垂直方向であるので、空間的に広範囲に可燃混合気への着火が可能となるため着火の安定性を向上することが可能となる。   In any of the electrodes (a) to (c), the ignition direction in the plug gap at the time of ignition is perpendicular to the spark plug axis, so that the ignition of the combustible mixture is spatially wide. This makes it possible to improve the stability of ignition.

実施形態における内燃機関の構成図Configuration diagram of an internal combustion engine in an embodiment 同上実施形態に用いる燃料噴射弁の先端部構造を示す断面図Sectional drawing which shows the front-end | tip part structure of the fuel injection valve used for embodiment same as the above 同上燃料噴射弁の主噴射期間および噴射終了時期における燃料噴霧特性Fuel spray characteristics of the fuel injection valve in the main injection period and injection end timing 同上実施形態に用いる点火プラグの電極の各種形状を示す図The figure which shows the various shapes of the electrode of the spark plug used for embodiment same as the above

符号の説明Explanation of symbols

3 ピストン
3a ボウル部
4 燃焼室
9 燃料噴射弁
10 点火プラグ
10a プラグギャップ
13 エンジンコントロールユニット(ECU)
14 ノズルボデー
15 ニードル
20 噴孔軸線(噴霧軸線)
21 衝突噴霧軸線
22 噴孔軸線(噴霧軸線)
91a 噴孔
91b 噴孔
91A 噴孔カーテン面積
91B 噴孔カーテン面積
DESCRIPTION OF SYMBOLS 3 Piston 3a Bowl part 4 Combustion chamber 9 Fuel injection valve 10 Spark plug 10a Plug gap 13 Engine control unit (ECU)
14 Nozzle body 15 Needle 20 Aperture axis (spray axis)
21 Collision spray axis 22 Injection hole axis (spray axis)
91a nozzle hole 91b nozzle hole 91A nozzle hole curtain area 91B nozzle hole curtain area

Claims (15)

燃料噴射弁の先端部に設けられた噴孔と、点火プラグの先端部に設けられたプラグギャップとを近接して配置した筒内直噴式内燃機関において、
前記燃料噴射弁の噴孔から噴射される燃料が、前記点火プラグのプラグギャップ近傍を通過するよう燃料噴射方向を設定するとともに、
前記燃料噴射弁の弁体リフト量が低下して着座にいたる噴射期間末期の燃料通過位置を、弁体リフト量が最大となる主噴射期間の燃料通過位置よりも前記プラグギャップの位置に近づけることを特徴とする筒内直噴式内燃機関。
In the cylinder direct injection internal combustion engine in which the nozzle hole provided at the tip of the fuel injection valve and the plug gap provided at the tip of the spark plug are arranged close to each other,
While setting the fuel injection direction so that the fuel injected from the injection hole of the fuel injection valve passes through the vicinity of the plug gap of the spark plug,
The fuel passage position at the end of the injection period in which the valve body lift amount of the fuel injection valve decreases and becomes seated is made closer to the plug gap position than the fuel passage position in the main injection period where the valve body lift amount is maximum. An in-cylinder direct injection internal combustion engine.
前記弁体リフト量が低下するほど、燃料通過位置を前記プラグギャップの位置に近づけることを特徴とする請求項1記載の筒内直噴式内燃機関。   The in-cylinder direct injection internal combustion engine according to claim 1, wherein the fuel passage position is brought closer to the position of the plug gap as the valve body lift amount decreases. 前記噴射期間末期に噴射された燃料が、前記プラグギャップ近傍を通過するときに前記火花点火プラグによる点火を実行することを特徴とする請求項1または請求項2に記載の筒内直噴式内燃機関。   3. The direct injection type internal combustion engine according to claim 1, wherein the fuel injected at the end of the injection period is ignited by the spark ignition plug when passing through the vicinity of the plug gap. 4. . 2つの吸気弁と2つの排気弁とで囲まれる燃焼室中央部に、前記燃料噴射弁の噴孔と前記点火プラグのプラグギャップとを近接させて配置することを特徴とする請求項1〜請求項3のいずれか1つに記載の筒内直噴式内燃機関。   The fuel injection valve injection hole and the spark plug plug gap are arranged close to each other in the center of the combustion chamber surrounded by two intake valves and two exhaust valves. Item 5. The direct injection type internal combustion engine according to any one of items 3 to 4. 前記燃料噴射弁の先端部に少なくとも2つの噴孔を形成し、これら2つ噴孔から噴射される燃料を衝突させることを特徴とする請求項1〜請求項4のいずれか1つに記載記載の筒内直噴式内燃機関。   5. The fuel injection valve according to claim 1, wherein at least two injection holes are formed at a front end portion of the fuel injection valve, and fuel injected from the two injection holes is caused to collide. In-cylinder direct injection internal combustion engine. 前記2つの噴孔から噴射される燃料の流量比が、弁体リフト量に応じて変化するように前記2つの噴孔の入口側開口部形成位置を設定する
ことを特徴とする請求項2記載の筒内内直噴式内燃機関。
The inlet side opening formation position of the two injection holes is set so that the flow rate ratio of the fuel injected from the two injection holes changes according to the valve lift amount. In-cylinder direct injection internal combustion engine.
弁体着座時において、少なくとも2つの噴孔の入口側開口部カーテン面積(噴孔断面形状を、噴孔軸方向へ弁体に衝突するまで延長させた際に形成される形状の側面の面積)が異なっていることを特徴とする請求項5または請求項6に記載の筒内直噴式内燃機関。   At the time of seating of the valve body, at least two injection hole entrance side opening curtain areas (area of the side surface formed when the injection hole cross-sectional shape is extended until it collides with the valve element in the injection hole axial direction) The in-cylinder direct injection internal combustion engine according to claim 5 or 6, characterized in that are different from each other. 前記カーテン面積が小さい方の噴孔において、噴孔断面積より該カーテン面積が小さいことを特徴とする、請求項7に記載の燃料噴射弁およびそれを用いた筒内直噴式内燃機関。   The fuel injection valve according to claim 7 and a direct injection type internal combustion engine using the same according to claim 7, wherein the curtain area is smaller than the sectional area of the nozzle hole in the nozzle hole having the smaller curtain area. 2つの噴孔の入口側開口部が、弁体着座時における弁体先端円錐面側方のノズルボデーと、弁体先端近傍に設けられた容積部の側壁と、に設けられたことを特徴とする請求項5〜請求項8のいずれか1つに記載の筒内直噴式内燃機関。   The inlet-side openings of the two nozzle holes are provided in the nozzle body on the side of the conical surface of the valve body tip when seated on the valve body, and on the side wall of the volume provided near the valve body tip. The direct injection type internal combustion engine according to any one of claims 5 to 8. 前記カーテン面積が大きい方の噴孔の軸線が、プラグギャップ位置近傍を指向することを特徴とする請求項5〜請求項9のいずれか1つに記載の筒内直噴式内燃機関。   The in-cylinder direct injection internal combustion engine according to any one of claims 5 to 9, wherein an axis of the injection hole having the larger curtain area is directed near a plug gap position. 前記カーテン面積が小さい方の噴孔の軸線が、プラグギャップ位置近傍を指向しないことを特徴とする請求項5〜請求項10のいずれか1つに記載の筒内直噴式内燃機関。   The direct injection type internal combustion engine according to any one of claims 5 to 10, wherein the axis of the injection hole having the smaller curtain area does not point near the plug gap position. 前記カーテン面積が大きい方の噴孔の断面積が、該カーテン面積が小さい方の噴孔の断面積より小さいことを特徴とする請求項5〜請求項11のいずれか1つに記載の筒内直噴式内燃機関。   The in-cylinder according to any one of claims 5 to 11, wherein a cross-sectional area of the nozzle hole having the larger curtain area is smaller than a cross-sectional area of the nozzle hole having the smaller curtain area. Direct injection internal combustion engine. 前記カーテン面積が大きい方の噴孔の断面積が、該カーテン面積が小さい方の噴孔の断面積より大きいことを特徴とする請求項5〜請求項12のいずれか1つに記載の筒内直噴式内燃機関。   The in-cylinder according to any one of claims 5 to 12, wherein a cross-sectional area of the nozzle hole having the larger curtain area is larger than a cross-sectional area of the nozzle hole having the smaller curtain area. Direct injection internal combustion engine. 前記弁体をリフトさせる手段として電磁コイルを用いることを特徴とする請求項5〜請求項13のいずれか1つに記載の筒内直噴式内燃機関。   The direct injection type internal combustion engine according to any one of claims 5 to 13, wherein an electromagnetic coil is used as means for lifting the valve body. 前記点火プラグのプラグギャップにおける点火時の飛火方向が、点火プラグ軸線に対して垂直方向であることを特徴とする請求項5〜請求項14のいずれか1つに記載の筒内直噴式内燃機関。   The in-cylinder direct injection internal combustion engine according to any one of claims 5 to 14, wherein a spark direction at the time of ignition in the plug gap of the spark plug is a direction perpendicular to the spark plug axis. .
JP2004243215A 2004-08-24 2004-08-24 Cylinder direct injection internal combustion engine Pending JP2006057604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243215A JP2006057604A (en) 2004-08-24 2004-08-24 Cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243215A JP2006057604A (en) 2004-08-24 2004-08-24 Cylinder direct injection internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006057604A true JP2006057604A (en) 2006-03-02

Family

ID=36105275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243215A Pending JP2006057604A (en) 2004-08-24 2004-08-24 Cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006057604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177448B2 (en) * 2007-06-29 2013-04-03 三菱自動車工業株式会社 In-cylinder internal combustion engine
WO2018229933A1 (en) * 2017-06-15 2018-12-20 日産自動車株式会社 Control device and control method for direct-injection engine
WO2022269993A1 (en) * 2021-06-23 2022-12-29 日立Astemo株式会社 Fuel injection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177448B2 (en) * 2007-06-29 2013-04-03 三菱自動車工業株式会社 In-cylinder internal combustion engine
WO2018229933A1 (en) * 2017-06-15 2018-12-20 日産自動車株式会社 Control device and control method for direct-injection engine
JPWO2018229933A1 (en) * 2017-06-15 2020-05-21 日産自動車株式会社 Control device and control method for direct injection engine
US10781768B2 (en) 2017-06-15 2020-09-22 Nissan Motor Co., Ltd. Control device for direct fuel injection engine and control method thereof
WO2022269993A1 (en) * 2021-06-23 2022-12-29 日立Astemo株式会社 Fuel injection device

Similar Documents

Publication Publication Date Title
JP4542018B2 (en) Engine fuel injection control method and engine having an injector used therefor
CN1325777C (en) Incylinder direct injection spark ignition engine
JP4280928B2 (en) Direct injection spark ignition internal combustion engine
US7347181B2 (en) Direct injection spark ignition engine
JP6784214B2 (en) Internal combustion engine control device
US20020179039A1 (en) Fuel injection system
JP2002161790A (en) Combustion control device for direct injection/spark ignition type internal combustion engine
JP2018184869A (en) Control device of internal combustion engine
JP2007138779A (en) Cylinder injection internal combustion engine
US6659070B2 (en) Fuel injection system
JP4228881B2 (en) In-cylinder internal combustion engine
JP4662755B2 (en) Fuel injection system
US20180010511A1 (en) Internal combustion engine
EP1098074A3 (en) A direct-injection spark-ignited internal combustion engine
JP2007138780A (en) Auxiliary chamber type internal combustion engine
US10202928B2 (en) Control device for internal combustion engine
JP2006057604A (en) Cylinder direct injection internal combustion engine
US20040025834A1 (en) Fuel injection system
JP2006336502A (en) Cylinder injection internal combustion engine
US10378464B2 (en) Control device for internal combustion engine
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2006052665A (en) Direct-injection spark ignition type internal combustion engine
JP4026406B2 (en) Direct-injection spark ignition internal combustion engine
JP2018178891A (en) Control device of internal combustion engine
JP4310640B2 (en) In-cylinder internal combustion engine