JP2006057561A - Fuel injection amount control device for internal combustion engine - Google Patents

Fuel injection amount control device for internal combustion engine Download PDF

Info

Publication number
JP2006057561A
JP2006057561A JP2004241391A JP2004241391A JP2006057561A JP 2006057561 A JP2006057561 A JP 2006057561A JP 2004241391 A JP2004241391 A JP 2004241391A JP 2004241391 A JP2004241391 A JP 2004241391A JP 2006057561 A JP2006057561 A JP 2006057561A
Authority
JP
Japan
Prior art keywords
correction amount
amount
secondary air
fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004241391A
Other languages
Japanese (ja)
Inventor
Takenori Sakamoto
雄紀 坂本
Tomoaki Nakano
智章 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004241391A priority Critical patent/JP2006057561A/en
Publication of JP2006057561A publication Critical patent/JP2006057561A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To actualize advantageous effects of improving exhaust emission while properly correcting a fuel amount. <P>SOLUTION: An ECU calculates an engine required correction amount feg consisting of an after-start increased amount, a warm-up increased amount and an OTP increased amount and calculates a catalyst required correction amount fcat consisting of an acceleration/deceleration correction amount based on the accelerated/decelerated condition of a vehicle and an after-fuel-cut correction amount (S201, S202). During supplying secondary air, it calculates a secondary air supplying correction amount fsai in accordance with a secondary air flow amount and a target air/fuel ratio at this time (S204). In the case of feg≤fsai, it adds the fsai and the fcat to a base fuel amount and calculates a final fuel injection amount (S206). In the case of feg>fsai, it calculates to add the feg and the fcat to the base fuel amount and calculates the final fuel injection amount (S207). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の燃料噴射量制御装置にかかり、特に二次エア供給時における燃料噴射量を好適に制御するための技術に関するものである。   The present invention relates to a fuel injection amount control device for an internal combustion engine, and more particularly to a technique for suitably controlling a fuel injection amount at the time of secondary air supply.

内燃機関の排気管には排気を浄化するための触媒装置が設けられており、この触媒装置の浄化効率を向上させるべく、内燃機関の始動時等においてエアポンプの作動により触媒装置の上流側に二次エアを供給する技術が従来から提案されている。つまり、内燃機関の始動直後には二次エア供給が実施され、その二次エア供給によって、二次エア中の酸素と内燃機関から排出される排気中の可燃成分(HC,CO)とが反応し排気温が上昇する(いわゆる後燃えが行われる)。また、触媒装置内に酸素が供給されることで触媒装置の酸化反応が促進される。これらの作用により、内燃機関の始動時において触媒装置が早期に活性化される。この場合、二次エア供給時には排気管内がリーンとなるため、二次エア流量に応じて燃料増量が行われる。   The exhaust pipe of the internal combustion engine is provided with a catalyst device for purifying exhaust gas. In order to improve the purification efficiency of the catalyst device, the air pump is operated at the upstream side of the catalyst device when the internal combustion engine is started. Techniques for supplying secondary air have been conventionally proposed. That is, immediately after starting the internal combustion engine, secondary air supply is performed, and the secondary air supply causes oxygen in the secondary air to react with combustible components (HC, CO) in the exhaust discharged from the internal combustion engine. The exhaust temperature then rises (so-called afterburning is performed). Moreover, the oxidation reaction of the catalyst device is promoted by supplying oxygen into the catalyst device. By these actions, the catalyst device is activated early when the internal combustion engine is started. In this case, since the inside of the exhaust pipe becomes lean when the secondary air is supplied, the amount of fuel is increased in accordance with the secondary air flow rate.

一方、内燃機関の始動時には内燃機関の回転の安定化を図るなどの目的で、いわゆる始動後増量や暖機増量といった燃料増量が行われる。このとき、二次エア供給時の燃料増量に合わせて更に始動後増量等が行われることにより可燃成分(HC,CO)が過剰となる。しかも内燃機関の始動直後には触媒装置が活性していないため、排気エミッションの悪化を招く。   On the other hand, at the time of starting the internal combustion engine, a fuel increase such as a so-called post-start increase or warm-up increase is performed for the purpose of stabilizing the rotation of the internal combustion engine. At this time, the combustible components (HC, CO) become excessive by further increasing the amount after starting in accordance with the amount of fuel increase at the time of supplying secondary air. Moreover, since the catalyst device is not activated immediately after the internal combustion engine is started, exhaust emission is deteriorated.

この問題を解消すべく、例えば特許文献1では、内燃機関の暖機状態に応じて燃料供給量の増量率を設定すると共に、二次エア供給時で且つアイドル運転時に、触媒入口空燃比が理論空燃比よりもリーンとなるように燃料供給量の増量率を設定している。また、これら2つの増量率のうち大きい方を選択して燃料供給量を補正するようにしている。   In order to solve this problem, for example, in Patent Document 1, an increase rate of the fuel supply amount is set according to the warm-up state of the internal combustion engine, and the catalyst inlet air-fuel ratio is theoretically determined during secondary air supply and idle operation. The increase rate of the fuel supply amount is set so as to be leaner than the air-fuel ratio. Further, the larger one of these two increase rates is selected to correct the fuel supply amount.

しかしながら、上記特許文献1による燃料量補正を行ったとしても、未だ問題が残されている。例えば、車両の加速時や減速時には、吸入空気量の変化等により空燃比がリーン側又はリッチ側に乱れ、それに起因して触媒装置の浄化効率が低下することが考えられる。この場合、上記特許文献1では加減速時等の空燃比の乱れに関する対応が何ら開示されていない。それ故、触媒装置の浄化効率の低下により、排気エミッションの悪化を招くおそれがあった。
特開平8−270484号公報
However, even if the fuel amount correction according to Patent Document 1 is performed, a problem still remains. For example, when the vehicle is accelerating or decelerating, it is conceivable that the air-fuel ratio is disturbed to the lean side or the rich side due to a change in the intake air amount or the like, and the purification efficiency of the catalyst device is thereby reduced. In this case, the above-mentioned Patent Document 1 does not disclose any measures relating to air-fuel ratio disturbance during acceleration and deceleration. Therefore, the exhaust efficiency may be deteriorated due to a decrease in the purification efficiency of the catalyst device.
JP-A-8-270484

本発明は、燃料量補正の適正化を図り、排気エミッションの改善など有利な効果を実現することができる内燃機関の燃料噴射量制御装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide a fuel injection amount control device for an internal combustion engine that can optimize fuel amount correction and achieve advantageous effects such as improvement of exhaust emission.

請求項1に係る発明において、第1の補正量算出手段は、内燃機関の始動時などにおいて内燃機関の運転性能を確保すべく燃料噴射量の増量補正量を算出し、第2の補正量算出手段は、二次エア供給時において二次エア流量に基づいて燃料噴射量の増量補正量を算出する。また、第3の補正量算出手段は、排気浄化装置の浄化性能を維持すべく空燃比の変動要因に基づいて燃料噴射量の補正量を算出する。更に、燃料量補正手段は、二次エア供給時において前記第1,第2の補正量算出手段による各増量補正量のうち大きい方を選択すると共に、該選択した増量補正量と前記第3の補正量算出手段による補正量とを加算してその都度の燃料噴射量を補正する。   In the first aspect of the invention, the first correction amount calculation means calculates an increase correction amount of the fuel injection amount so as to ensure the operation performance of the internal combustion engine at the time of starting the internal combustion engine, etc., and calculates a second correction amount. The means calculates an increase correction amount of the fuel injection amount based on the secondary air flow rate when supplying the secondary air. The third correction amount calculation means calculates the fuel injection amount correction amount based on the air-fuel ratio fluctuation factor so as to maintain the purification performance of the exhaust purification device. Further, the fuel amount correction means selects the larger one of the increase correction amounts by the first and second correction amount calculation means at the time of supplying the secondary air, and the selected increase correction amount and the third correction amount. The correction amount by the correction amount calculation means is added to correct the fuel injection amount each time.

本発明によれば、内燃機関の始動直後などにおいて、第1,第2の補正量算出手段により重複して増量補正量が算出される場合にも、過剰に燃料増量が行われることが抑制できる。また逆に、本来必要な燃料増量が確保できず、内燃機関の始動性や触媒等の早期暖機に支障が生じることも抑制できる。更に、例えば二次エア供給中に加速等が行われる場合に、空燃比の乱れを抑え排気浄化装置の浄化性能を維持することができる。以上により、燃料量補正が適正化でき、排気エミッションの改善など有利な効果を実現することができる。   According to the present invention, even when the increase correction amount is calculated redundantly by the first and second correction amount calculation means immediately after the start of the internal combustion engine, it is possible to suppress excessive fuel increase. . On the contrary, it is possible to prevent the originally required fuel increase from being secured and to prevent the startability of the internal combustion engine and early warm-up of the catalyst and the like from being hindered. Further, for example, when acceleration or the like is performed during the supply of secondary air, it is possible to suppress the disturbance of the air-fuel ratio and maintain the purification performance of the exhaust purification device. As described above, fuel amount correction can be optimized and advantageous effects such as improvement of exhaust emission can be realized.

一方、燃料の種類に関係なく加速性能等を維持するには、気化率の小さい燃料(例えば重質ガソリン)を基準に加速時増量(第3の補正量算出手段による補正量に相当)を設定することが考えられる。かかる場合、通常時の燃料(気化率が通常レベルの燃料)では空燃比がリッチ側に制御されるため、仮に二次エア供給に応じた燃料増量と加速時増量とが同時に行われると、過度に燃料増量が行われる可能性がある。そこで、請求項2に係る発明では、二次エア供給時において前記第1,第3の補正量算出手段による各補正量の加算値又は前記第3の補正量算出手段による補正量の何れかと、前記第2の補正量算出手段による増量補正量とのうち大きい補正量を用いてその都度の燃料噴射量を補正する。   On the other hand, in order to maintain acceleration performance regardless of the type of fuel, an increase during acceleration (equivalent to the correction amount by the third correction amount calculation means) is set based on fuel with a low vaporization rate (for example, heavy gasoline). It is possible to do. In such a case, since the air-fuel ratio is controlled to the rich side in normal fuel (fuel with a normal vaporization rate), if the fuel increase corresponding to the secondary air supply and the increase during acceleration are performed simultaneously, There is a possibility that fuel will be increased. Therefore, in the invention according to claim 2, at the time of secondary air supply, either the addition value of each correction amount by the first and third correction amount calculation means or the correction amount by the third correction amount calculation means, The fuel injection amount at each time is corrected using a larger correction amount of the increase correction amount by the second correction amount calculation means.

これにより、上記のとおり重質ガソリンを基準に燃料量補正が行われる場合にも、過度に燃料増量が行われることが抑制できる。従って、燃料量補正が適正化でき、排気エミッションの改善など有利な効果を実現することができる。   Thereby, even when fuel amount correction is performed based on heavy gasoline as described above, excessive fuel increase can be suppressed. Therefore, fuel amount correction can be optimized and advantageous effects such as improvement of exhaust emission can be realized.

ここで、前記第3の補正量算出手段による補正量は、車両の加減速時に空燃比の乱れを抑えるべく実施される加減速補正量を含むものであると良い。   Here, the correction amount by the third correction amount calculating means may include an acceleration / deceleration correction amount that is implemented to suppress disturbance of the air-fuel ratio when the vehicle is accelerated / decelerated.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、内燃機関である車載多気筒ガソリンエンジンを対象にエンジン制御システムを構築するものとしており、当該制御システムにおいては電子制御ユニット(以下、ECUという)を中枢として燃料噴射量の制御や点火時期の制御等を実施することとしている。先ずは、図1を用いてエンジン制御システムの全体概略構成図を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS An embodiment of the invention will be described below with reference to the drawings. In the present embodiment, an engine control system is constructed for an in-vehicle multi-cylinder gasoline engine that is an internal combustion engine. In the control system, an electronic control unit (hereinafter referred to as ECU) is used as a center to control the fuel injection amount. And control of ignition timing. First, an overall schematic configuration diagram of the engine control system will be described with reference to FIG.

図1に示すエンジン10において、吸気管11にはDCモータ等のアクチュエータによって開度調節されるスロットルバルブ14と、スロットル開度を検出するためのスロットル開度センサ15とが設けられている。スロットルバルブ14の下流側にはサージタンク16が設けられ、このサージタンク16には吸気管圧力を検出するための吸気管圧力センサ17が設けられている。また、サージタンク16には、エンジン10の各気筒に空気を導入する吸気マニホールド18が接続されており、吸気マニホールド18において各気筒の吸気ポート近傍には燃料を噴射供給する電磁駆動式の燃料噴射弁19が取り付けられている。   In the engine 10 shown in FIG. 1, the intake pipe 11 is provided with a throttle valve 14 whose opening degree is adjusted by an actuator such as a DC motor, and a throttle opening degree sensor 15 for detecting the throttle opening degree. A surge tank 16 is provided downstream of the throttle valve 14, and an intake pipe pressure sensor 17 for detecting the intake pipe pressure is provided in the surge tank 16. The surge tank 16 is connected to an intake manifold 18 that introduces air into each cylinder of the engine 10. In the intake manifold 18, an electromagnetically driven fuel injection that injects fuel near the intake port of each cylinder. A valve 19 is attached.

エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気バルブ21及び排気バルブ22が設けられており、吸気バルブ21の開動作により空気と燃料との混合気が燃焼室23内に導入され、排気バルブ22の開動作により燃焼後の排気が排気管24に排出される。エンジン10のシリンダヘッドには各気筒毎に点火プラグ25が取り付けられており、点火プラグ25には、点火コイル等よりなる図示しない点火装置を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグ25の対向電極間に火花放電が発生し、燃焼室23内に導入した混合気が着火され燃焼に供される。   An intake valve 21 and an exhaust valve 22 are respectively provided in the intake port and the exhaust port of the engine 10, and an air / fuel mixture is introduced into the combustion chamber 23 by the opening operation of the intake valve 21, and the exhaust valve 22. The exhaust after combustion is discharged to the exhaust pipe 24 by the opening operation. A spark plug 25 is attached to the cylinder head of the engine 10 for each cylinder, and a high voltage is applied to the spark plug 25 at a desired ignition timing through an ignition device (not shown) including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 25, and the air-fuel mixture introduced into the combustion chamber 23 is ignited and used for combustion.

排気管24には、排出ガス中のCO,HC,NOx等を浄化するための三元触媒等の触媒31が設けられ、この触媒31の上流側には排気を検出対象として混合気の空燃比を検出するためのA/Fセンサ32が設けられている。このA/Fセンサ32は、例えば固体電解質をセンサ素子として有し、排気中の酸素濃度をリニアに検出し得るリニア式センサにて構成されている。また、エンジン10のシリンダブロックには、冷却水温を検出する冷却水温センサ33や、エンジンの所定クランク角毎に(例えば30°CA周期で)矩形状のクランク角信号を出力するクランク角度センサ34が取り付けられている。   The exhaust pipe 24 is provided with a catalyst 31 such as a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas, and the air-fuel ratio of the air-fuel mixture is detected on the upstream side of the catalyst 31 with exhaust as a detection target. An A / F sensor 32 is provided for detecting. The A / F sensor 32 includes, for example, a solid electrolyte as a sensor element, and is configured by a linear sensor that can linearly detect the oxygen concentration in the exhaust gas. Further, the cylinder block of the engine 10 includes a coolant temperature sensor 33 that detects the coolant temperature, and a crank angle sensor 34 that outputs a rectangular crank angle signal for each predetermined crank angle of the engine (for example, at a cycle of 30 ° CA). It is attached.

また、二次エア供給システムとして、排気管24において触媒31よりも上流側には二次エア配管35が接続され、その二次エア配管35の上流部には二次エア供給手段としての二次エアポンプ36が設けられている。二次エアポンプ36は例えばDCモータ等より構成され、図示しない車載バッテリからの給電を受けて作動する。また、二次エアポンプ36よりも下流側には、二次エア配管35を開放又は閉鎖する開閉弁37が設けられている。二次エアポンプ36と開閉弁37との間には、二次エア配管35内の圧力を検出する圧力センサ38が設けられている。   As a secondary air supply system, a secondary air pipe 35 is connected upstream of the catalyst 31 in the exhaust pipe 24, and a secondary air supply means is provided upstream of the secondary air pipe 35. An air pump 36 is provided. The secondary air pump 36 is composed of, for example, a DC motor or the like, and operates by receiving power from a vehicle battery (not shown). An on-off valve 37 that opens or closes the secondary air pipe 35 is provided downstream of the secondary air pump 36. A pressure sensor 38 that detects the pressure in the secondary air pipe 35 is provided between the secondary air pump 36 and the on-off valve 37.

上述した各種センサの出力は、エンジン制御を司るECU40に入力される。ECU40は、CPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成され、ROMに記憶された各種の制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁19の燃料噴射量や点火プラグ25による点火時期を制御する。また、ECU40は、エンジン始動時の触媒31の早期活性化などを図るべく、二次エアポンプ36を作動させることにより二次エア供給を実施する。   The outputs of the various sensors described above are input to the ECU 40 that controls the engine. The ECU 40 is configured mainly by a microcomputer including a CPU, a ROM, a RAM, and the like, and executes various control programs stored in the ROM, so that the fuel injection amount and ignition of the fuel injection valve 19 according to the engine operating state. The ignition timing by the plug 25 is controlled. In addition, the ECU 40 supplies the secondary air by operating the secondary air pump 36 in order to activate the catalyst 31 at the time of starting the engine early.

次に、二次エア供給時に実施される燃料噴射量制御について説明する。二次エア供給時には、排気管24に対して二次エアが供給され、その二次エア流量に応じて燃料増量が行われる。この場合、基本的には開閉弁37=開、二次エアポンプ36=ON(作動)としたときの圧力センサ38の検出値(二次エア供給圧Ps)に基づいて二次エア流量が算出されればよいが、二次エアポンプ36や圧力センサ38が有する製品公差等に起因する算出精度の低下を防ぐため、本実施の形態では、二次エア供給圧Psと基準圧との差圧に基づいて二次エア流量を算出する。例えば、開閉弁37=閉、二次エアポンプ36=ONの状態で基準圧としての締め切り圧P0を検出しておき、次の(1)式により二次エア流量Qaを算出する。   Next, the fuel injection amount control performed when the secondary air is supplied will be described. At the time of supplying secondary air, secondary air is supplied to the exhaust pipe 24, and fuel increase is performed according to the flow rate of the secondary air. In this case, basically, the secondary air flow rate is calculated based on the detected value (secondary air supply pressure Ps) of the pressure sensor 38 when the on-off valve 37 = open and the secondary air pump 36 = ON (actuated). However, in order to prevent a decrease in calculation accuracy due to product tolerances of the secondary air pump 36 and the pressure sensor 38, the present embodiment is based on the differential pressure between the secondary air supply pressure Ps and the reference pressure. To calculate the secondary air flow rate. For example, the closing pressure P0 as the reference pressure is detected in the state where the on-off valve 37 = closed and the secondary air pump 36 = ON, and the secondary air flow rate Qa is calculated by the following equation (1).

Figure 2006057561
なお、上記(1)式において、ρは流体密度、Cは係数、Aは管路断面積である。流体密度ρは温度特性を持つため、吸気温により流体密度ρを補正する構成とすることも可能である。
Figure 2006057561
In the above equation (1), ρ is a fluid density, C is a coefficient, and A is a pipe cross-sectional area. Since the fluid density ρ has temperature characteristics, a configuration in which the fluid density ρ is corrected by the intake air temperature may be employed.

そして、二次エア供給時においては、二次エア流量に応じて二次エア供給時補正量fsaiが算出され、該fsaiにより燃料噴射量の増量補正が実施される。二次エア供給時補正量fsaiは以下の通り算出される。この場合、空燃比を空気過剰率λで表し、エンジン燃焼室で燃焼に供される燃焼ガスの空燃比(燃焼空燃比)をλ1、触媒入口の空燃比をλ2とすると共に、エンジンに吸入される吸入空気量をga、二次エア流量をgsaiとすると、λ1,λ2は次の(2)式の関係となる。ga,gsaiは共に質量流量であり、特にgsaiは、上述した二次エア流量Qaを質量換算したものである。   Then, at the time of secondary air supply, a correction amount fsai at the time of secondary air supply is calculated according to the secondary air flow rate, and an increase correction of the fuel injection amount is performed by the fsai. The secondary air supply correction amount fsai is calculated as follows. In this case, the air-fuel ratio is represented by the excess air ratio λ, the air-fuel ratio (combustion air-fuel ratio) of the combustion gas used for combustion in the engine combustion chamber is λ1, the air-fuel ratio at the catalyst inlet is λ2, and the air is taken into the engine. Assuming that the intake air amount is ga and the secondary air flow rate is gsai, λ1 and λ2 have the relationship of the following equation (2). Both ga and gsai are mass flow rates. In particular, gsai is the mass-converted secondary air flow rate Qa described above.

Figure 2006057561
空燃比λ1(空気過剰率)の逆数は燃料過剰率であり、この燃料過剰率(1/λ1)に基づいて二次エア供給時補正量fsaiが算出される。つまり、触媒入口の空燃比λ2を目標空燃比λtgとする場合、前記(2)式より次の(3)式が得られる。
Figure 2006057561
The reciprocal of the air-fuel ratio λ1 (excess air ratio) is the excess fuel ratio, and the secondary air supply correction amount fsai is calculated based on the excess fuel ratio (1 / λ1). That is, when the air-fuel ratio λ2 at the catalyst inlet is the target air-fuel ratio λtg, the following equation (3) is obtained from the equation (2).

Figure 2006057561
上記(3)式によれば、二次エア供給時における二次エア流量gsai、吸入空気量ga及び目標空燃比λtgから二次エア供給時補正量fsaiが算出できる。
Figure 2006057561
According to the above equation (3), the secondary air supply correction amount fsai can be calculated from the secondary air flow rate gsai, the intake air amount ga, and the target air-fuel ratio λtg when the secondary air is supplied.

なお、二次エア供給時には、通常時(二次エア非供給時)とは別の二次エア供給時用の目標空燃比が設定され、例えば弱リーン空燃比を目標空燃比として燃料噴射量制御が実施されるようになっている。但し、二次エア供給時の目標空燃比はストイキであっても良い。   When the secondary air is supplied, a target air-fuel ratio for secondary air supply that is different from the normal time (when secondary air is not supplied) is set. For example, the fuel injection amount control is performed using a weak lean air-fuel ratio as the target air-fuel ratio. Is to be implemented. However, the target air-fuel ratio at the time of secondary air supply may be stoichiometric.

一方、例えばエンジン10の冷間始動時には、始動直後のエンジン回転の安定化等を目的として始動後増量や暖機増量等が行われる。具体的には、テーブル又は数式等を用いて始動時水温や始動後の水温変化等に基づいて始動後補正量や暖機補正量が算出される。その他に、高負荷・高速回転時であって触媒等の排気系部品の過熱のおそれがある場合に、出力トルク増大と過熱防止を共に図るべく燃料増量が行われる(これは一般にOTP増量と称される)。この際、OTP補正量が算出される。これらの各補正量はエンジン性能を確保する目的で要求される燃料補正量であり、本実施の形態ではこれを「エンジン要求補正量feg」と言う。   On the other hand, for example, when the engine 10 is cold-started, an increase after start, an increase in warm-up, or the like is performed for the purpose of stabilizing the engine rotation immediately after the start. Specifically, the post-startup correction amount and the warm-up correction amount are calculated based on the water temperature at start-up, the water temperature change after start-up, and the like using a table or a mathematical expression. In addition, when there is a risk of overheating of exhaust system parts such as a catalyst during high load and high speed rotation, fuel increase is performed to increase both output torque and prevent overheating (this is generally referred to as OTP increase). ) At this time, the OTP correction amount is calculated. Each of these correction amounts is a fuel correction amount required for the purpose of ensuring engine performance. In the present embodiment, this correction amount is referred to as an “engine required correction amount feg”.

また、車両の加減速時にはスロットル開度が増加又は減少し、それに伴い吸入空気量が変動するために空燃比の乱れが生じる。この場合、空燃比の乱れを抑えるべく空燃比変動要因としての負荷変化率(吸入空気量や吸気管圧力の単位時間当たりの変化量)等に基づいて加減速補正量が算出される。また、燃料カット後の燃料噴射再開時には空燃比をいち早く安定させるために燃料カット後補正が行われる。これらの補正量は触媒31の浄化性能を維持する目的で要求される補正量であり、本実施の形態ではこれを「触媒要求補正量fcat」と言う。   Further, when the vehicle is accelerated or decelerated, the throttle opening increases or decreases, and the intake air amount fluctuates accordingly. In this case, the acceleration / deceleration correction amount is calculated based on a load change rate (a change amount of intake air amount or intake pipe pressure per unit time) as an air-fuel ratio fluctuation factor to suppress disturbance of the air-fuel ratio. Further, when fuel injection is resumed after fuel cut, correction after fuel cut is performed in order to quickly stabilize the air-fuel ratio. These correction amounts are correction amounts required for the purpose of maintaining the purification performance of the catalyst 31, and are referred to as “catalyst request correction amount fcat” in the present embodiment.

次に、ECU40により実施される二次エア供給処理について説明する。図2は二次エア供給処理を示すフローチャートであり、本処理は所定時間毎(例えば8ms毎)にECU40により実行される。   Next, the secondary air supply process performed by the ECU 40 will be described. FIG. 2 is a flowchart showing the secondary air supply process. This process is executed by the ECU 40 at predetermined time intervals (for example, every 8 ms).

図2において、ステップS101では、二次エア供給の実行条件が成立しているか否かを判別する。例えば、エンジン始動時であり、且つ水温が所定温度域にある場合に実行条件が成立したとされる。実行条件が成立していれば、後続のステップS102に進み、二次エア供給を実施する。具体的には、開閉弁37を開放すると共に二次エアポンプ36を作動させる。そしてこの二次エア供給を、例えば触媒31の暖機完了まで継続して実施する。   In FIG. 2, in step S <b> 101, it is determined whether secondary air supply execution conditions are satisfied. For example, the execution condition is established when the engine is started and the water temperature is in a predetermined temperature range. If the execution condition is satisfied, the process proceeds to the subsequent step S102, and the secondary air supply is performed. Specifically, the on-off valve 37 is opened and the secondary air pump 36 is operated. Then, this secondary air supply is continued until, for example, the warm-up of the catalyst 31 is completed.

また、二次エア供給の実行条件が成立していなければ、ステップS103に進み、二次エア供給を停止する。   If the secondary air supply execution condition is not satisfied, the process proceeds to step S103, and the secondary air supply is stopped.

図3は燃料噴射量制御処理を示すフローチャートであり、本処理はエンジン10の燃料噴射毎(4気筒エンジンであれば180°CA毎)にECU40により実行される。   FIG. 3 is a flowchart showing the fuel injection amount control process, and this process is executed by the ECU 40 for each fuel injection of the engine 10 (every 180 ° CA for a four-cylinder engine).

図3において、ステップS201では、始動後増量、暖機増量、OTP増量などからなるエンジン要求補正量fegを算出する。続くステップS202では、車両の加減速状態に基づく加減速補正量や燃料カット後補正量などからなる触媒要求補正量fcatを算出する。   In FIG. 3, in step S201, an engine required correction amount feg including an increase after start, a warm-up increase, an OTP increase, and the like is calculated. In the subsequent step S202, a required catalyst correction amount fcat including an acceleration / deceleration correction amount based on the vehicle acceleration / deceleration state, a correction amount after fuel cut, and the like is calculated.

その後、ステップS203では、今現在二次エア供給中であるか否かを判別する。二次エア供給中でない場合、ステップS207に進み、その都度のエンジン回転数や負荷状態(例えば吸気管圧力)を基に算出したベース燃料量にエンジン要求補正量fegと触媒要求補正量fcatとを加算して最終の燃料噴射量を算出する(燃料噴射量=ベース燃料量+feg+fcat)。   Thereafter, in step S203, it is determined whether or not secondary air is currently being supplied. If the secondary air is not being supplied, the process proceeds to step S207, and the engine required correction amount feg and the catalyst required correction amount fcat are added to the base fuel amount calculated based on the engine speed and load state (for example, intake pipe pressure) each time. The final fuel injection amount is calculated by addition (fuel injection amount = base fuel amount + feg + fcat).

また、二次エア供給中である場合、ステップS204に進み、その時の二次エア流量や目標空燃比に基づいて二次エア供給時補正量fsaiを算出する。更に、ステップS205では、エンジン要求補正量fegと二次エア供給時補正量fsaiとを比較する。そして、feg≦fsaiであれば、ステップS206に進み、ベース燃料量に二次エア供給時補正量fsaiと触媒要求補正量fcatとを加算して最終の燃料噴射量を算出する(燃料噴射量=ベース燃料量+fsai+fcat)。また、feg>fsaiであれば、ステップS207に進み、ベース燃料量にエンジン要求補正量fegと触媒要求補正量fcatとを加算して最終の燃料噴射量を算出する(燃料噴射量=ベース燃料量+feg+fcat)。   If the secondary air is being supplied, the process proceeds to step S204, and the correction amount fsai at the time of secondary air supply is calculated based on the secondary air flow rate and the target air-fuel ratio at that time. Further, in step S205, the engine required correction amount feg and the secondary air supply correction amount fsai are compared. If feg ≦ fsai, the process proceeds to step S206, and the final fuel injection amount is calculated by adding the secondary air supply correction amount fsai and the required catalyst correction amount fcat to the base fuel amount (fuel injection amount = Base fuel amount + fsai + fcat). If feg> fsai, the process proceeds to step S207, and the final fuel injection amount is calculated by adding the engine required correction amount feg and the catalyst required correction amount fcat to the base fuel amount (fuel injection amount = base fuel amount). + Feg + fcat).

図4は、エンジン始動後における燃料量補正処理の流れを示すタイムチャートである。図4において、(a)は二次エア供給の状態を、(b)はエンジン要求補正量feg及び二次エア供給時補正量fsaiを、(c)は触媒要求補正量fcatを、(d)はfeg,fsai,fcatから算出される総補正量を、(e),(f)は空燃比の変化を、それぞれ示している。なお、(f)は、比較のために二次エア供給を実施していない場合の空燃比の挙動を示している。図4では、図示する全期間を通じて二次エア供給が実施されており、便宜上二次エア流量が一定であるとしている。   FIG. 4 is a time chart showing the flow of fuel amount correction processing after engine startup. 4, (a) shows the state of secondary air supply, (b) shows the engine required correction amount feg and secondary air supply correction amount fsai, (c) shows the catalyst required correction amount fcat, and (d). Indicates the total correction amount calculated from feg, fsai, and fcat, and (e) and (f) indicate changes in the air-fuel ratio, respectively. For comparison, (f) shows the behavior of the air-fuel ratio when the secondary air supply is not performed. In FIG. 4, the secondary air supply is performed throughout the entire period shown in the figure, and the secondary air flow rate is assumed to be constant for convenience.

さて、エンジン10の始動に伴い始動後増量や暖機増量が行われ、(b)に示すように、エンジン要求補正量fegはエンジン始動直後に一旦比較的大きな補正量として設定された後、暖機の進行に伴い次第に減じられる。また、t6〜t7の期間では、OTP増量によりエンジン要求補正量fegが一時的に上昇している。二次エア供給時補正量fsaiは一定値とされている(二次エア流量一定のため)。この場合、エンジン要求補正量fegと二次エア供給時補正量fsaiとを比較すると、タイミングt1以前とt6〜t7の期間でfeg>fsaiとなり、他の期間でfeg≦fsaiとなっている。   As the engine 10 is started, an increase after start and an increase in warm-up are performed. As shown in (b), the engine required correction amount feg is once set as a relatively large correction amount immediately after the engine is started, and then warmed up. It is gradually reduced as the machine progresses. Further, during the period from t6 to t7, the engine request correction amount feg is temporarily increased due to the OTP increase. The correction amount fsai at the time of secondary air supply is a constant value (because the secondary air flow rate is constant). In this case, when the engine required correction amount feg and the secondary air supply correction amount fsai are compared, feg> fsai before the timing t1 and the period from t6 to t7, and feg ≦ fsai in the other periods.

また、(c)に示すように、t2〜t3の期間では加速要求が、t4〜t5の期間では減速要求が生じており、これらの期間では触媒要求補正量fcatが図示の如く算出される。   Further, as shown in (c), an acceleration request is generated in the period from t2 to t3, and a deceleration request is generated in the period from t4 to t5. In these periods, the required catalyst correction amount fcat is calculated as shown in the figure.

そして、(d)に示すように、総補正量は、エンジン要求補正量fegと二次エア供給時補正量fsaiとのうち大きい方の値に、触媒要求補正量fcatを加算して算出される(総補正量=max(feg,fsai)+fcat)。   As shown in (d), the total correction amount is calculated by adding the required catalyst correction amount fcat to the larger one of the engine required correction amount feg and the secondary air supply correction amount fsai. (Total correction amount = max (feg, fsai) + fcat).

(d)の総補正量で燃料量補正が行われることで、(e)に示すように燃焼空燃比が変化し、t1以前とt6〜t7の期間とを除く期間で、燃焼空燃比が概ね一定のリッチ状態となる。また、t1以前とt6〜t7の期間では、エンジン要求に合わせて一時的に更にリッチ化される。   By performing the fuel amount correction with the total correction amount of (d), the combustion air-fuel ratio changes as shown in (e), and the combustion air-fuel ratio is approximately in the period excluding t1 and the period from t6 to t7. It becomes a certain rich state. Further, during the period before t1 and the period from t6 to t7, the engine is temporarily further enriched according to the engine demand.

因みに、二次エア供給が実施されない場合には、(f)に示すように、燃焼空燃比は基本的にストイキ付近で収束し、エンジン要求補正量fegによる燃料増量が行われる際にその燃料増量に応じてリッチ化されている。   Incidentally, when the secondary air supply is not performed, as shown in (f), the combustion air-fuel ratio basically converges in the vicinity of the stoichiometry, and the fuel increase is performed when the fuel increase by the engine required correction amount feg is performed. It is enriched according to.

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

二次エア供給時においてエンジン要求補正量feg(第1の補正量算出手段による増量補正量)と二次エア供給時補正量fsai(第2の補正量算出手段による増量補正量)とのうち大きい方を選択すると共に、該選択した補正量と触媒要求補正量fcat(第3の補正量算出手段による補正量)とを加算して燃料噴射量を補正するようにしたため、エンジン始動直後などにおいて、過剰に燃料増量が行われたり、逆に本来必要な燃料増量が確保できずエンジン始動性や触媒等の早期暖機に支障が生じたりすることが抑制できる。また、二次エア供給中に加速等が行われる場合に、空燃比の乱れを抑え触媒31の浄化性能を維持することができる。以上により、燃料量補正が適正化でき、排気エミッションの改善など有利な効果を実現することができる。   The larger of the engine required correction amount feg (increase correction amount by the first correction amount calculation means) and the secondary air supply correction amount fsai (increase correction amount by the second correction amount calculation means) during the secondary air supply. And the fuel injection amount is corrected by adding the selected correction amount and the required catalyst correction amount fcat (correction amount by the third correction amount calculation means). It is possible to prevent the fuel from being increased excessively, or conversely, the originally required fuel increase cannot be ensured and the engine startability and the early warm-up of the catalyst and the like are hindered. Further, when acceleration or the like is performed during the supply of the secondary air, the purification performance of the catalyst 31 can be maintained by suppressing the disturbance of the air-fuel ratio. As described above, fuel amount correction can be optimized and advantageous effects such as improvement of exhaust emission can be realized.

(第2の実施の形態)
例えば車両の加速時におけるエンジン挙動は、使用する燃料(ガソリン)の気化率などにより変化するが、一般には比較的軽質なガソリンを使用した場合を基準に加速補正量などが設定されている。つまり、通常ガソリンを使用することを前提にして、加速補正により空燃比が目標値(例えば理論空燃比)に制御される。かかる場合において、通常よりも気化率が小さいガソリン(以下重質ガソリン)を使用すると、加速補正時において空燃比がリーンとなり、それに伴いエンジン回転数が低下してしまう。従って、ドライバビリティの悪化を招く。
(Second Embodiment)
For example, the engine behavior at the time of acceleration of the vehicle changes depending on the vaporization rate of the fuel (gasoline) to be used, but generally, the acceleration correction amount is set based on the case of using relatively light gasoline. That is, on the assumption that ordinary gasoline is used, the air-fuel ratio is controlled to a target value (for example, the theoretical air-fuel ratio) by acceleration correction. In such a case, if gasoline having a smaller vaporization rate than usual (hereinafter referred to as heavy gasoline) is used, the air-fuel ratio becomes lean at the time of acceleration correction, and the engine speed decreases accordingly. Therefore, drivability deteriorates.

そこで本実施の形態では、燃料の気化率に関係なく加速性能等を維持すべく、重質ガソリンの使用を想定して燃料補正量の設定を行い、それにより空燃比のリーン化による回転数低下を防止する。但しこの場合、軽質ガソリンを使用する通常時において空燃比がリッチ側に制御されるため、仮に二次エア供給に応じた燃料増量(二次エア供給時補正量fsaiによる燃料増量)と加速時増量(触媒要求補正量fcatによる燃料増量)とが同時に行われると、過度に燃料増量が行われる可能性がある。それ故、二次エア供給時においてエンジン要求補正量feg及び触媒要求補正量fcatの加算値と、二次エア供給時補正量fsaiとのうち大きい方を選択的に用い、燃料噴射量の補正を実施することとする。   Therefore, in this embodiment, in order to maintain the acceleration performance regardless of the fuel vaporization rate, the fuel correction amount is set on the assumption that heavy gasoline is used, thereby reducing the rotational speed due to the lean air-fuel ratio. To prevent. However, in this case, since the air-fuel ratio is controlled to the rich side during normal use of light gasoline, the fuel increase corresponding to the secondary air supply (fuel increase due to the correction amount fsai at the time of secondary air supply) and the increase during acceleration If the fuel increase by the catalyst requirement correction amount fcat is performed at the same time, the fuel increase may be excessively performed. Therefore, at the time of secondary air supply, the larger one of the addition value of the engine required correction amount feg and the catalyst required correction amount fcat and the secondary air supply correction amount fsai is selectively used to correct the fuel injection amount. It will be implemented.

図5は、本実施の形態における燃料噴射量制御処理を示すフローチャートであり、本処理は前記図3に置き換えてECU40により実行される。なお、図5において、ステップS201〜S204,S207は前記図3と同じ処理であり、ステップS301,S302のみが相違する。ここでは、前記図3との違いを主に説明する。   FIG. 5 is a flowchart showing the fuel injection amount control process in the present embodiment. This process is executed by the ECU 40 in place of FIG. In FIG. 5, steps S201 to S204 and S207 are the same as those in FIG. 3, and only steps S301 and S302 are different. Here, the difference from FIG. 3 will be mainly described.

図5において、ステップS201〜S204では、エンジン要求補正量feg、触媒要求補正量fcat、二次エア供給時補正量fsaiの算出などを実施する。また、ステップS301では、(feg+fcat)と二次エア供給時補正量fsaiとを比較する。そして、feg+fcat≦fsaiであれば、ステップS302に進み、ベース燃料量に二次エア供給時補正量fsaiを加算して最終の燃料噴射量を算出する(燃料噴射量=ベース燃料量+fsai)。また、feg+fcat>fsaiであれば、ステップS207に進み、ベース燃料量にエンジン要求補正量fegと触媒要求補正量fcatとを加算して最終の燃料噴射量を算出する(燃料噴射量=ベース燃料量+feg+fcat)。   In FIG. 5, in steps S201 to S204, calculation of an engine required correction amount feg, a catalyst required correction amount fcat, a secondary air supply correction amount fsai, and the like are performed. In step S301, (feg + fcat) is compared with the secondary air supply correction amount fsai. If feg + fcat ≦ fsai, the process proceeds to step S302, and the final fuel injection amount is calculated by adding the secondary air supply correction amount fsai to the base fuel amount (fuel injection amount = base fuel amount + fsai). If feg + fcat> fsai, the process proceeds to step S207, and the final fuel injection amount is calculated by adding the engine required correction amount feg and the catalyst required correction amount fcat to the base fuel amount (fuel injection amount = base fuel amount). + Feg + fcat).

エンジン始動後の燃料量補正を図6に示す。図6に示すように、二次エア供給時において各補正量(feg,fcat,fsai)に基づく総補正量は図示の如く算出され、この総補正量により燃料噴射量が補正される。   FIG. 6 shows the fuel amount correction after the engine is started. As shown in FIG. 6, the total correction amount based on each correction amount (feg, fcat, fsai) at the time of secondary air supply is calculated as shown in the figure, and the fuel injection amount is corrected by this total correction amount.

以上第2の実施の形態によれば、二次エア供給時においてエンジン要求補正量feg及び触媒要求補正量fcatの加算値(feg+fcat)と二次エア供給時補正量fsaiとを比較し、大きい方を用いてその都度の燃料噴射量を補正するようにしたため、各燃料増量が同時に行われる場合において過度な燃料増量が抑制できる。   As described above, according to the second embodiment, when the secondary air supply is performed, the added value (feg + fcat) of the engine required correction amount feg and the catalyst required correction amount fcat is compared with the correction amount fsai at the time of secondary air supply. Since the fuel injection amount at each time is corrected by using, excessive fuel increase can be suppressed when each fuel increase is performed simultaneously.

上記実施の形態では、二次エア供給時においてエンジン要求補正量feg及び触媒要求補正量fcatの加算値(feg+fcat)と、二次エア供給時補正量fsaiとのうち大きい方を選択的に用い、燃料噴射量の補正を実施したが、これに代えて、二次エア供給時において触媒要求補正量fcatと二次エア供給時補正量fsaiとのうち大きい方を選択的に用い、燃料噴射量の補正を実施しても良い。   In the above embodiment, when the secondary air is supplied, the larger one of the added value (feg + fcat) of the engine required correction amount feg and the catalyst required correction amount fcat and the secondary air supply correction amount fsai is selectively used. Although the fuel injection amount was corrected, instead of this, the larger one of the required catalyst correction amount fcat and the secondary air supply correction amount fsai at the time of secondary air supply is selectively used to adjust the fuel injection amount. Correction may be performed.

上記実施の形態では、二次エア供給圧と締め切り圧(基準圧)との差圧に基づいて二次エア流量を算出する構成としたが、これに代えて、二次エア供給圧と排気管内の排気圧とに基づいて二次エア流量を算出する構成としても良い。例えば、二次エア供給圧と排気圧との差圧に基づいて二次エア流量を算出する。この場合、二次エア供給圧だけでなく排気圧も用いて二次エア流量が算出されるため、エンジン運転状態が変化すること等に起因して排気圧が変化しても、二次エア流量を精度良く算出することができる。   In the above embodiment, the secondary air flow rate is calculated based on the differential pressure between the secondary air supply pressure and the cutoff pressure (reference pressure), but instead, the secondary air supply pressure and the exhaust pipe interior are calculated. The secondary air flow rate may be calculated based on the exhaust pressure. For example, the secondary air flow rate is calculated based on the differential pressure between the secondary air supply pressure and the exhaust pressure. In this case, since the secondary air flow rate is calculated using not only the secondary air supply pressure but also the exhaust pressure, even if the exhaust pressure changes due to a change in the engine operating state, etc., the secondary air flow rate Can be calculated with high accuracy.

発明の実施の形態におけるエンジン制御システムの概略を示す構成図である。It is a block diagram which shows the outline of the engine control system in embodiment of invention. 二次エア供給処理を示すフローチャートである。It is a flowchart which shows a secondary air supply process. 燃料噴射量制御処理を示すフローチャートである。It is a flowchart which shows a fuel injection amount control process. エンジン始動後における燃料量補正処理の流れを示すタイムチャートである。It is a time chart which shows the flow of the fuel quantity correction process after an engine start. 第2の実施の形態における燃料噴射量制御処理を示すフローチャートである。It is a flowchart which shows the fuel injection amount control process in 2nd Embodiment. エンジン始動後における燃料量補正処理の流れを示すタイムチャートである。It is a time chart which shows the flow of the fuel quantity correction process after an engine start.

符号の説明Explanation of symbols

10…内燃機関としてのエンジン、24…排気管、31…排気浄化装置としての触媒、32…A/Fセンサ、36…二次エア供給手段としての二次エアポンプ、40…第1〜第3の補正量算出手段及び燃料量補正手段としてのECU。   DESCRIPTION OF SYMBOLS 10 ... Engine as internal combustion engine, 24 ... Exhaust pipe, 31 ... Catalyst as exhaust purification device, 32 ... A / F sensor, 36 ... Secondary air pump as secondary air supply means, 40 ... First to third ECU as correction amount calculation means and fuel amount correction means.

Claims (2)

二次エア供給手段を用い、内燃機関の排気通路に設けられた排気浄化装置の上流に二次エアを供給する構成とした内燃機関に適用され、
前記内燃機関の始動時などにおいて内燃機関の運転性能を確保すべく燃料噴射量の増量補正量を算出する第1の補正量算出手段と、
二次エア供給時において二次エア流量に基づいて燃料噴射量の増量補正量を算出する第2の補正量算出手段と、
前記排気浄化装置の浄化性能を維持すべく空燃比の変動要因に基づいて燃料噴射量の補正量を算出する第3の補正量算出手段と、
二次エア供給時において前記第1,第2の補正量算出手段による各増量補正量のうち大きい方を選択すると共に、該選択した増量補正量と前記第3の補正量算出手段による補正量とを加算してその都度の燃料噴射量を補正する燃料量補正手段と、
を備えたことを特徴とする内燃機関の燃料噴射量制御装置。
Applied to an internal combustion engine configured to supply secondary air upstream of an exhaust purification device provided in an exhaust passage of the internal combustion engine using secondary air supply means,
First correction amount calculating means for calculating an increase correction amount of the fuel injection amount so as to ensure the operation performance of the internal combustion engine at the time of starting the internal combustion engine, and the like;
A second correction amount calculating means for calculating an increase correction amount of the fuel injection amount based on the secondary air flow rate when supplying the secondary air;
Third correction amount calculating means for calculating a correction amount of the fuel injection amount based on a variation factor of the air-fuel ratio in order to maintain the purification performance of the exhaust purification device;
When the secondary air is supplied, the larger one of the increase correction amounts by the first and second correction amount calculation means is selected, and the selected increase correction amount and the correction amount by the third correction amount calculation means are selected. Fuel amount correction means for correcting the fuel injection amount for each time by adding
A fuel injection amount control apparatus for an internal combustion engine, comprising:
二次エア供給手段を用い、内燃機関の排気通路に設けられた排気浄化装置の上流に二次エアを供給する構成とした内燃機関に適用され、
前記内燃機関の始動時などにおいて内燃機関の運転性能を確保すべく燃料噴射量の増量補正量を算出する第1の補正量算出手段と、
二次エア供給時において二次エア流量に基づいて燃料噴射量の増量補正量を算出する第2の補正量算出手段と、
前記排気浄化装置の浄化性能を維持すべく空燃比の変動要因に基づいて燃料噴射量の補正量を算出する第3の補正量算出手段と、
二次エア供給時において前記第1,第3の補正量算出手段による各補正量の加算値又は前記第3の補正量算出手段による補正量の何れかと、前記第2の補正量算出手段による増量補正量とのうち大きい方を用いてその都度の燃料噴射量を補正する燃料量補正手段と、
を備えたことを特徴とする内燃機関の燃料噴射量制御装置。
Applied to an internal combustion engine configured to supply secondary air upstream of an exhaust purification device provided in an exhaust passage of the internal combustion engine using secondary air supply means,
First correction amount calculating means for calculating an increase correction amount of the fuel injection amount so as to ensure the operation performance of the internal combustion engine at the time of starting the internal combustion engine, and the like;
A second correction amount calculating means for calculating an increase correction amount of the fuel injection amount based on the secondary air flow rate when supplying the secondary air;
Third correction amount calculating means for calculating a correction amount of the fuel injection amount based on a variation factor of the air-fuel ratio in order to maintain the purification performance of the exhaust purification device;
At the time of secondary air supply, either the added value of each correction amount by the first or third correction amount calculation means or the correction amount by the third correction amount calculation means, and the increase by the second correction amount calculation means Fuel amount correction means for correcting the fuel injection amount in each case using the larger one of the correction amounts;
A fuel injection amount control apparatus for an internal combustion engine, comprising:
JP2004241391A 2004-08-20 2004-08-20 Fuel injection amount control device for internal combustion engine Pending JP2006057561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241391A JP2006057561A (en) 2004-08-20 2004-08-20 Fuel injection amount control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241391A JP2006057561A (en) 2004-08-20 2004-08-20 Fuel injection amount control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006057561A true JP2006057561A (en) 2006-03-02

Family

ID=36105240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241391A Pending JP2006057561A (en) 2004-08-20 2004-08-20 Fuel injection amount control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006057561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209035B1 (en) 2008-10-21 2012-12-07 에이치케이엠엔에스(주) Active fuel flux control logic for Diesel Particulate Filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209035B1 (en) 2008-10-21 2012-12-07 에이치케이엠엔에스(주) Active fuel flux control logic for Diesel Particulate Filter

Similar Documents

Publication Publication Date Title
JP2010019178A (en) Engine control device
JP2005113877A (en) Control device for internal combustion engine
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
US8463532B2 (en) Control device for engine
JP2004100503A (en) Internal combustion engine, control device of internal combustion engine and control method of internal combustion engine
JP4244824B2 (en) Fuel injection control device for internal combustion engine
JP2017115620A (en) Control device of internal combustion engine
JP2011226490A (en) Air-fuel ratio control device for internal combustion engine
JP2009144574A (en) Air-fuel ratio control device for internal combustion engine
JP2000310140A (en) Air-fuel ratio control device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP2006057561A (en) Fuel injection amount control device for internal combustion engine
JP4269279B2 (en) Control device for internal combustion engine
JP5331931B2 (en) Air-fuel ratio control device for internal combustion engine
JP5077047B2 (en) Control device for internal combustion engine
JP2009144567A (en) Control device for internal combustion engine
JP2017115615A (en) Internal combustion engine control device
JP4329610B2 (en) Fuel injection amount control device for internal combustion engine
JP2005256832A (en) Secondary air supply system for internal combustion engine, and fuel injection amount control device using the same
JP4446873B2 (en) Air-fuel ratio control device for internal combustion engine
JP4320555B2 (en) Secondary air supply control device for internal combustion engine
JP2006083795A (en) Air fuel ratio controller for internal combustion engine
JP2008223558A (en) Control device for internal combustion engine
JP2004036393A (en) Air fuel ratio control device of cylinder injection internal combustion engine
JP2006063821A (en) Fuel supply amount control device for internal combustion engine