JP2006057118A - Method for separating and recovering antimony and bismuth - Google Patents

Method for separating and recovering antimony and bismuth Download PDF

Info

Publication number
JP2006057118A
JP2006057118A JP2004237357A JP2004237357A JP2006057118A JP 2006057118 A JP2006057118 A JP 2006057118A JP 2004237357 A JP2004237357 A JP 2004237357A JP 2004237357 A JP2004237357 A JP 2004237357A JP 2006057118 A JP2006057118 A JP 2006057118A
Authority
JP
Japan
Prior art keywords
bismuth
antimony
eluent
resin
mrt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004237357A
Other languages
Japanese (ja)
Inventor
Kazunori Tajiri
和徳 田尻
Hidenori Okamoto
秀則 岡本
Yukito Tsutsumi
幸仁 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2004237357A priority Critical patent/JP2006057118A/en
Publication of JP2006057118A publication Critical patent/JP2006057118A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently carry out the separation and recovery of antimony and bismuth in a copper electrolytic solution. <P>SOLUTION: After the copper electrolytic solution is brought into contact with a chelate resin to make the chelate resin adsorb the antimony and the bismuth, an eluent is brought into contact with the chelate resin to elute the antimony and the bismuth from the chelate resin and make them flow out into the eluent. Subsequently, alkali is added to the resultant eluent containing the antimony and the bismuth to carry out neutralization treatment. The neutralization treatment is performed within the pH range of 1.5 to 3.0, and the antimony alone is removed and separated from the bismuth-containing eluent. After the bismuth-containing eluate is brought into contact with an MRT resin to make the MRT resin adsorb the bismuth, an eluent is brought into contact with the MRT resin to elute and recover the bismuth. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銅電解精錬で使用される銅電解液に不純物として含まれるアンチモン及びビスマスをキレート樹脂及びMRT樹脂を用いてそれぞれ選択的に回収する方法に関する。
MRT樹脂とは、特許第2984683号(登録日;平成11年10月1日)に開示されている樹脂であって、よりビスマスの選択性の高い米国IBC社の製品である。
MRTとは、Molecular
Recognition Technology、分子認識技術の略号である。その構造の例を以下に示す。特徴は、下式における下線部がクラウンエーテルとなり、このクラウンエーテルとカチオンが配位結合する。このクラウンエーテルの大きさ、即ち輪の大きさによりカチオンの選択性が可能となる。
マトリックス-O-SiYZ-(CH2)a(OCH2R1CHCH2b(BCHR2CH2)c
(DCHR3CH2)dE
B及びD:例えばO、OCH2、S等から選択
E:例えば低級アルキル、SH、OH等から選択
R1:例えばH、SH、OH等から選択
R2:例えばH及び低級アルキル等から選択
R3:例えばH、低級アルキル、アリール等より選択
Y及びZ:Cl、OCH3、OC2H5等から選択
a:2ないし10
b:0または1
c:1ないし2000
d:0ないし2000
マトリックス:砂、シリカゲル、ガラス、アルミナ等から選択
The present invention relates to a method of selectively recovering antimony and bismuth contained as impurities in a copper electrolyte used in copper electrolytic refining using a chelate resin and an MRT resin, respectively.
The MRT resin is a resin disclosed in Japanese Patent No. 2984683 (registration date; October 1, 1999), and is a product of IBC, Inc., which has higher bismuth selectivity.
MRT is Molecular
Recognition Technology is an abbreviation for molecular recognition technology. An example of the structure is shown below. The feature is that the underlined portion in the following formula is crown ether, and this crown ether and cation are coordinated. Depending on the size of the crown ether, that is, the size of the ring, cation selectivity can be achieved.
Matrix-O-SiYZ- (CH 2 ) a (OCH 2 R1CHCH 2 ) b (BCHR 2 CH 2 ) c
(DCHR 3 CH 2 ) dE
B and D: selected from, for example, O, OCH 2 , S, etc. E: selected from, for example, lower alkyl, SH, OH, etc. R1: selected from, for example, H, SH, OH, etc. R2: selected from, for example, H and lower alkyl, etc. R3: Selected from H, lower alkyl, aryl, etc. Y and Z: selected from Cl, OCH 3 , OC 2 H 5 etc. a: 2 to 10
b: 0 or 1
c: 1 to 2000
d: 0 to 2000
Matrix: Select from sand, silica gel, glass, alumina, etc.

銅電解精錬で使用される銅電解液には、アンチモンやビスマスが不純物として含まれており、これら成分が前記液中に一定値濃度を超えると製品である電気銅の品質に悪影響を及ぼす。
このため、種々の方法で銅電解液の浄液が行われている。例えば、銅電解液からアンチモン及びビスマスを回収する手段として、キレート樹脂に銅電解液を接触させて、前記樹脂にアンチモンとビスマスを吸着し、該樹脂に溶離液を接触させてアンチモンとビスマスを溶離液中に回収し、該溶離液をアルカリで中和処理してアンチモンとビスマスを水酸化物の中和滓として回収する方法(特許文献1:特許2938285、特許文献2:特許3431456等)がある。
The copper electrolyte used in copper electrolytic refining contains antimony and bismuth as impurities. If these components exceed a certain concentration in the liquid, the quality of electrolytic copper as a product is adversely affected.
For this reason, the copper electrolyte solution is purified by various methods. For example, as a means of recovering antimony and bismuth from a copper electrolyte, contact the copper electrolyte with a chelating resin, adsorb antimony and bismuth to the resin, and contact the eluent with the resin to elute antimony and bismuth. There is a method (Patent Document 1: Patent 2938285, Patent Document 2: Patent 3431456, etc.) in which the eluate is recovered in a liquid and neutralized with an alkali to recover antimony and bismuth as a neutralized soot of hydroxide. .

また一方で、銅電解液からビスマスを回収する手段として、ビスマスを吸着し得るMRT樹脂に銅電解液を接触させてビスマスを樹脂に吸着し、該樹脂に溶離液を接触させてビスマスを溶離液に流出し、該溶離液からビスマスの化合物を析出させ回収する方法(特許文献3:特開2003−213350)等もある。 On the other hand, as means for recovering bismuth from the copper electrolyte, the copper electrolyte is brought into contact with an MRT resin capable of adsorbing bismuth to adsorb bismuth onto the resin, and the eluent is brought into contact with the resin to elute bismuth. And a method of depositing and recovering a bismuth compound from the eluent (Patent Document 3: Japanese Patent Application Laid-Open No. 2003-213350).

ところで、上述したキレート樹脂の中和滓は主にアンチモン製品の二次原料として使用されているため、さらなるアンチモン製品の品質向上を期待し、ビスマスを含まないアンチモン中和滓が望まれている。 By the way, since the neutralized soot of the above-mentioned chelate resin is mainly used as a secondary raw material of antimony products, antimony neutralized soot containing no bismuth is desired in order to further improve the quality of antimony products.

また、MRT樹脂によりビスマスを回収する方法に関しては、銅電解液中のビスマス濃度が0.1〜0.3g/Lと希薄なためMRT樹脂量に対する銅電解液の処理量が多くなり、樹脂塔及び樹脂量、貯液槽等の設備の縮小化が難しいという問題もある。
特許2938285「銅電解液のキレート樹脂浄液法」 特許3431456「キレート樹脂に吸着したSbの溶離・回収方法」 特開2003−213350「ビスマスの回収方法及び硫酸ビスマスの回収方法」
As for the method of recovering bismuth with MRT resin, the amount of copper electrolyte treated with respect to the amount of MRT resin increases because the bismuth concentration in the copper electrolyte is as low as 0.1 to 0.3 g / L. In addition, there is a problem that it is difficult to reduce the size of equipment such as a liquid storage tank.
Patent 2938285 “Chelate resin purification method for copper electrolyte” Patent 3431456 “Method for Elution and Recovery of Sb Adsorbed on Chelate Resin” JP 2003-213350 “Bismuth recovery method and bismuth sulfate recovery method”

そこで、本発明の目的は、銅電解液中のアンチモンとビスマスを選択性よく分離回収でき、且つ、設備規模の縮小化が可能な処理方法を提供する。 Accordingly, an object of the present invention is to provide a treatment method capable of separating and recovering antimony and bismuth in a copper electrolyte with high selectivity and reducing the equipment scale.

本発明は、以上の課題を解決するため、
(1)キレート樹脂に銅電解液を接触させてアンチモン及びビスマスをキレート樹脂に吸着し、該キレート樹脂に塩酸系の溶離液を接触させてアンチモン及びビスマスを溶離して得られるアンチモン及びビスマスを含む溶離液において、
該溶離液にアルカリを加えて中和処理し、ビスマスを溶離液に残したままアンチモンのみを除去するアンチモンとビスマスの分離方法。
In order to solve the above problems, the present invention
(1) Containing antimony and bismuth obtained by contacting antimony and bismuth with a chelate resin by contacting the chelate resin with antimony and bismuth, and then eluting antimony and bismuth by bringing the chelate resin into contact with a hydrochloric acid-based eluent. In the eluent,
A method for separating antimony and bismuth, wherein alkali is added to the eluent and neutralized to remove only antimony while leaving bismuth in the eluent.

(2)上記(1)記載の溶離液の中和処理をpH1.5〜3.0の範囲内で行うアンチモンとビスマスの分離方法。
(3)上記(1)記載のアンチモン及びビスマスを含む塩酸系溶離液を中和処理し、アンチモンのみを分離した該溶離液とMRT樹脂を接触させ、ビスマスを選択的にMRT樹脂に吸着するアンチモンとビスマスの分離回収方法。
を提供する。
(2) A method for separating antimony and bismuth, wherein the neutralization treatment of the eluent described in (1) is performed within a range of pH 1.5 to 3.0.
(3) Antimony that selectively adsorbs bismuth to the MRT resin by neutralizing the hydrochloric acid-based eluent containing antimony and bismuth described in (1) above, bringing the eluent from which only antimony has been separated into contact with the MRT resin And recovery of bismuth and bismuth.
I will provide a.

本発明を実施することにより以下の効果を得ることができる。
(1)キレート樹脂とMRT樹脂を使った一連の処理フローにより、銅電解液中のアンチモンとビスマスを効率よく分離し回収することができる。
(2)アンチモン、ビスマスをそれぞれ選択的に高純度で、回収することができる。
By implementing the present invention, the following effects can be obtained.
(1) Antimony and bismuth in the copper electrolyte can be efficiently separated and recovered by a series of processing flows using chelate resin and MRT resin.
(2) Antimony and bismuth can be selectively recovered with high purity.

本発明の処理フローを図1により説明する。
キレート樹脂に銅電解液を接触させ、アンチモン及びビスマスをキレート樹脂に吸着させる(吸着(1))。
このキレート樹脂としては、エポラスMX-2(ミヨシ油脂社製)、Purolite
S950(PUROLITE社製)等が用いられる。
The processing flow of the present invention will be described with reference to FIG.
A copper electrolyte solution is brought into contact with the chelate resin, and antimony and bismuth are adsorbed on the chelate resin (adsorption (1)).
As this chelating resin, Epolus MX-2 (manufactured by Miyoshi Yushi Co., Ltd.), Purolite
S950 (manufactured by PUROLITE) or the like is used.

アンチモン及びビスマスを吸着したキレート樹脂に塩酸系の溶離液を接触させ、アンチモンとビスマスをキレート樹脂から溶離し溶離液に流出させる(溶離(1))。この時、4〜6Nに濃度調製した塩酸を溶離液として使用する。   A hydrochloric acid-based eluent is brought into contact with the chelate resin adsorbing antimony and bismuth, and antimony and bismuth are eluted from the chelate resin and flowed out into the eluent (elution (1)). At this time, hydrochloric acid adjusted to a concentration of 4 to 6N is used as an eluent.

アンチモンとビスマスを含む溶離液にアルカリを加えてpH調整し、アンチモンのみを水酸化物としアンチモンを高濃度に含む殿物(アンチモン中和滓)を得る(中和)。この時加えるアルカリは、前記殿物の減容を図る目的から苛性ソーダを使用することが好ましい。
また、中和処理のpHを図2に示す如く1.5〜3.0の範囲内で行うことによりビスマスを溶離液に残したままアンチモンのみを除去して分離することができる。
The pH is adjusted by adding alkali to the eluent containing antimony and bismuth to obtain a precipitate (antimony neutralized soot) containing only antimony as a hydroxide and high concentration of antimony (neutralization). The alkali added at this time is preferably caustic soda for the purpose of reducing the volume of the residue.
Further, by carrying out the neutralization treatment within the range of 1.5 to 3.0 as shown in FIG. 2, it is possible to remove only antimony while leaving bismuth in the eluent.

pH=1.5より低い場合は、アンチモンが殿物中に回収されず好ましくなく、pH=3.0より高いとビスマスも殿物中に回収されてしまうからである。
上記中和処理により生じた水酸化アンチモンを高濃度に含む殿物は、濾過等の固液分離を施し固形物として回収する。
このときの水酸化アンチモンの不純物品位は、砒素≒6mass%、ビスマス≒4.5mass%、銅≒0.1mass%である。
If the pH is lower than 1.5, it is not preferable because antimony is not recovered in the temple. If the pH is higher than 3.0, bismuth is also recovered in the temple.
The residue containing high concentration of antimony hydroxide generated by the neutralization is subjected to solid-liquid separation such as filtration and recovered as a solid.
The impurity grades of antimony hydroxide at this time are arsenic ≈ 6 mass%, bismuth ≈ 4.5 mass%, and copper ≈ 0.1 mass%.

ビスマスを吸着し得るMRT樹脂にビスマスを残した溶離液を接触させ、ビスマスをMRT樹脂に吸着させる(吸着(2))。このMRT樹脂としては、SuperLig 83(IBC社製)等が用いられる。
ビスマスを吸着したMRT樹脂に溶離液を接触させ、ビスマスをMRT樹脂から溶離し溶離液に流出させる(溶離(2))。
An eluent with bismuth remaining is brought into contact with an MRT resin capable of adsorbing bismuth, and bismuth is adsorbed onto the MRT resin (adsorption (2)). As this MRT resin, SuperLig 83 (IBC) or the like is used.
The eluent is brought into contact with the MRT resin adsorbing bismuth, and bismuth is eluted from the MRT resin and flows out into the eluent (elution (2)).

この時、8〜9mol/Lに濃度調製した硫酸を60〜65℃に加温し溶離液として使用する。ビスマスを含む溶離液は65℃から常温付近まで冷却し硫酸ビスマスの粗結晶を析出させる(析出)。析出した粗結晶は濾過等の固液分離を施し固形物として回収する。
硫酸ビスマスの純度は約98mass%である。
At this time, sulfuric acid adjusted to a concentration of 8 to 9 mol / L is heated to 60 to 65 ° C. and used as an eluent. The eluent containing bismuth is cooled from 65 ° C. to near room temperature to precipitate crude crystals of bismuth sulfate (precipitation). The precipitated crude crystal is subjected to solid-liquid separation such as filtration and collected as a solid.
The purity of bismuth sulfate is about 98 mass%.

以下、本発明の効果を検証するため、銅電解液キレート浄液設備より採取した溶離液を処理した時の結果を示す。 銅電解液キレート浄液設備は、キレート樹脂(銘柄;Purolite S950)を充填したカラムに銅電解液を通液してアンチモン及びビスマスをキレート樹脂に吸着させ(吸着(1))、水でキレート樹脂を予洗浄した後、6N濃度の塩酸を用いてアンチモンとビスマスをキレート樹脂から溶離している(溶離(1))。この時の溶離液はアンチモンを3.0g/L、ビスマスを1.2g/L含んでいた。  Hereinafter, in order to verify the effect of this invention, the result when processing the eluent extract | collected from the copper electrolyte solution chelate liquid purification equipment is shown. The copper electrolyte chelate cleaning equipment is made to pass a copper electrolyte through a column packed with a chelate resin (brand name: Purolite S950) to adsorb antimony and bismuth to the chelate resin (adsorption (1)), and then chelate the resin with water. After pre-washing, antimony and bismuth were eluted from the chelate resin using 6N hydrochloric acid (elution (1)). The eluent at this time contained 3.0 g / L of antimony and 1.2 g / L of bismuth.

前述の溶離液をビーカーに採取し、攪拌しながらpHが1.53になるまで試薬苛性ソーダ(粒状)を加えてアンチモンを中和処理し、殿物とする(中和)。該殿物を含みスラリー状になったこの溶離液は、ヌッチェを用いて吸引濾過し、前記殿物と、ビスマスを含む溶離液とに分離した。この時の溶離液はアンチモンを0.05g/L、ビスマスを1.0g/L含んでいた。 Collect the above eluent in a beaker, add reagent caustic soda (granular) to pH 1.53 while stirring, and neutralize antimony to obtain a residue (neutralization). The eluent in a slurry form containing the residue was subjected to suction filtration using a Nutsche, and separated into the residue and an eluent containing bismuth. The eluent at this time contained 0.05 g / L of antimony and 1.0 g / L of bismuth.

MRT樹脂(銘柄;SuperLig 83)90mlを充填したカラムに、前述の溶離液を通液しビスマスをMRT樹脂に吸着した(吸着(2))。通液条件は、通液温度60℃、通液速度SV7.3、通液量BV25とした。なおここで用いるSVとは空間速度(space velocity)のことで、単位時間当たりに使用樹脂量の何倍量を通液するかという処理流速(hr−1)の意味である。またBVとはベッドボリュームのことで、使用樹脂量の何倍量を通液するかという処理液量(L/L-樹脂)の意味である。 The eluent was passed through a column packed with 90 ml of MRT resin (brand: SuperLig 83) to adsorb bismuth to the MRT resin (adsorption (2)). The flow conditions were a flow temperature of 60 ° C., a flow speed of SV7.3, and a flow volume of BV25. In addition, SV used here is a space velocity (space velocity), and means the processing flow velocity (hr −1 ) that indicates how many times the amount of resin used is passed per unit time. BV is bed volume, and means the amount of treatment liquid (L / L-resin) that is how many times the amount of resin used.

この時のMRT樹脂のビスマス吸着量は18.6g/L-Rであった。該カラムに2mol/L濃度の硫酸を通液してMRT樹脂を予洗浄した後、溶離液として9mol/L濃度の硫酸をカラムに通液しビスマスをMRT樹脂から溶離した(溶離(2))。予洗浄の通液条件は、通液温度60℃、通液速度SV7.5、通液量BV2とし、溶離の通液条件は、通液温度60℃、通液速度SV7.1、通液量BV4とした。 At this time, the bismuth adsorption amount of the MRT resin was 18.6 g / L-R. After preliminarily washing the MRT resin by passing 2 mol / L sulfuric acid through the column, 9 mol / L sulfuric acid was passed through the column as an eluent to elute bismuth from the MRT resin (elution (2)). . The pre-cleaning conditions are as follows: the flow temperature is 60 ° C, the flow rate is SV7.5, and the flow rate is BV2. The elution flow conditions are the flow temperature of 60 ° C, the flow rate is SV7.1, and the flow rate is BV2. BV4.

この予洗浄と溶離時のビスマスの流出量は17.1g/L-Rであった。前述のビスマスを含む溶離液はビーカーに回収し、室温(約20℃)まで冷却して硫酸ビスマスの粗結晶を析出させた後(析出)、ヌッチェを用いて吸引濾過しこの粗結晶を回収した。
上述の実施例において、MRT樹脂のカラムに吸着(2)、予洗浄、溶離(2)を施した時に得られたカラム流出液のアンチモンとビスマスの濃度推移をグラフに示す。通液量が3〜15L/L-Rの場合、ビスマスの吸着(2)が多いため、流出液中のビスマスが、0g/Lの値に近い値となっている。25L/L-Rに成るとビスマスの吸着(2)は、低下するため、流出液中のビスマスは、1.5g/Lと上昇した。
The bismuth efflux during this pre-washing and elution was 17.1 g / LR. The eluent containing bismuth described above was collected in a beaker, cooled to room temperature (about 20 ° C.) to precipitate crude crystals of bismuth sulfate (precipitation), and suction filtered using a Nutsche to collect the crude crystals. .
In the above example, graphs show the transition of the concentration of antimony and bismuth in the column effluent obtained when adsorption (2), pre-washing, and elution (2) were performed on the MRT resin column. When the liquid flow rate is 3 to 15 L / LR, bismuth adsorption (2) is large, so the bismuth in the effluent is close to 0 g / L. Since the adsorption (2) of bismuth decreased at 25 L / LR, bismuth in the effluent rose to 1.5 g / L.

この段階で、予洗浄に移り、次いで溶離(2)に移行した。溶離(2)の段階において、ビスマスが、流出液中に10 g/Lを超える値となり、溶離(2)が効率的に行われていることが把握される。アンチモンは、予洗浄及び溶離(2)の段階で、樹脂に幾分吸着していたものが、僅かながら流出液中に表れている。 At this stage, the process shifted to pre-washing and then to elution (2). In the elution (2) stage, bismuth has a value exceeding 10 g / L in the effluent, and it is understood that the elution (2) is performed efficiently. Antimony, which was adsorbed to the resin somewhat in the pre-washing and elution (2) stages, appears in the effluent.

本発明における、アンチモンとビスマスを分離回収する処理フローを示す。The processing flow which isolate | separates and collects antimony and bismuth in this invention is shown. キレート樹脂のアンチモンとビスマスを含む溶離液にアルカリ(苛性ソーダ)を加え中和した時の中和pHと溶離液中のアンチモン及びビスマス濃度の関係をプロットしたグラフを示す。The graph which plotted the relationship between the neutralization pH at the time of neutralizing by adding an alkali (caustic soda) to the eluent containing chelate resin antimony and bismuth, and the concentration of antimony and bismuth in the eluent is shown. MRT樹脂のカラムに吸着(2)、予洗浄、溶離(2)を施した時に得られたカラム流出液のアンチモンとビスマスの濃度推移をグラフに示す。The graph shows the transition of antimony and bismuth concentrations in the column effluent obtained when adsorption (2), pre-washing, and elution (2) were performed on the MRT resin column.

Claims (3)

キレート樹脂に銅電解液を接触させてアンチモン及びビスマスをキレート樹脂に吸着し、該キレート樹脂に塩酸系の溶離液を接触させてアンチモン及びビスマスを溶離して得られるアンチモン及びビスマスを含む溶離液において、
該溶離液にアルカリを加えて中和処理し、ビスマスを溶離液に残したままアンチモンのみを除去することを特徴とするアンチモンとビスマスの分離方法。
In an eluent containing antimony and bismuth obtained by bringing a chelate resin into contact with a copper electrolyte to adsorb antimony and bismuth onto the chelate resin, and contacting the chelate resin with a hydrochloric acid-based eluent to elute antimony and bismuth. ,
A method for separating antimony and bismuth, wherein alkali is added to the eluent to neutralize it, and only antimony is removed while bismuth remains in the eluent.
請求項1記載の溶離液の中和処理をpH1.5〜3.0の範囲内で行うことを特徴とするアンチモンとビスマスの分離方法。 2. A method for separating antimony and bismuth, wherein the neutralization treatment of the eluent according to claim 1 is performed within a pH range of 1.5 to 3.0. 請求項1記載のアンチモン及びビスマスを含む塩酸系溶離液を中和処理し、アンチモンのみを分離した該溶離液とMRT樹脂を接触させ、ビスマスを選択的にMRT樹脂に吸着することを特徴とするアンチモンとビスマスの分離回収方法。


The hydrochloric acid-based eluent containing antimony and bismuth according to claim 1 is neutralized, the eluent from which only antimony has been separated is brought into contact with the MRT resin, and bismuth is selectively adsorbed on the MRT resin. Separation and recovery method of antimony and bismuth.


JP2004237357A 2004-08-17 2004-08-17 Method for separating and recovering antimony and bismuth Pending JP2006057118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237357A JP2006057118A (en) 2004-08-17 2004-08-17 Method for separating and recovering antimony and bismuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237357A JP2006057118A (en) 2004-08-17 2004-08-17 Method for separating and recovering antimony and bismuth

Publications (1)

Publication Number Publication Date
JP2006057118A true JP2006057118A (en) 2006-03-02

Family

ID=36104842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237357A Pending JP2006057118A (en) 2004-08-17 2004-08-17 Method for separating and recovering antimony and bismuth

Country Status (1)

Country Link
JP (1) JP2006057118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013699B1 (en) 2008-09-30 2011-02-10 엘에스니꼬동제련 주식회사 Bismuth resin column of a molecular recognition technology system
JP2013237918A (en) * 2012-05-17 2013-11-28 Sumitomo Metal Mining Co Ltd Bismuth adsorption column, bismuth recovering facility and bismuth recovering method
KR101795042B1 (en) * 2010-07-09 2017-11-07 니폰 가가쿠 고교 가부시키가이샤 Method for production of high purity elemental phosphorus and method for production of high purity phosphoric acid
CN114225924A (en) * 2021-12-23 2022-03-25 华中科技大学 Method for recovering bismuth by using plant polyphenol modified adsorption resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013699B1 (en) 2008-09-30 2011-02-10 엘에스니꼬동제련 주식회사 Bismuth resin column of a molecular recognition technology system
KR101795042B1 (en) * 2010-07-09 2017-11-07 니폰 가가쿠 고교 가부시키가이샤 Method for production of high purity elemental phosphorus and method for production of high purity phosphoric acid
JP2013237918A (en) * 2012-05-17 2013-11-28 Sumitomo Metal Mining Co Ltd Bismuth adsorption column, bismuth recovering facility and bismuth recovering method
CN114225924A (en) * 2021-12-23 2022-03-25 华中科技大学 Method for recovering bismuth by using plant polyphenol modified adsorption resin
CN114225924B (en) * 2021-12-23 2024-03-19 华中科技大学 Method for recycling bismuth by using plant polyphenol modified adsorption resin

Similar Documents

Publication Publication Date Title
US6113868A (en) Process for treating tungstate solutions to reduce molybdenum impurity and other impurity content
JP4843491B2 (en) Indium adsorbent and method for fractionating indium
US2876065A (en) Process for producing pure ammonium perrhenate and other rhenium compounds
JP5636142B2 (en) Method for producing high purity ammonium paratungstate
JP2019173063A (en) Recovery method of nickel and cobalt from solution
CN110983070B (en) Method for preparing refined nickel sulfate from copper electrolyte decoppered liquid
KR102041294B1 (en) Method for recovering covalt from solution comprising covalt, nickel and iron
JP2006057118A (en) Method for separating and recovering antimony and bismuth
WO2012143394A1 (en) Method for recovery of thallium from an aqueous solution
JP3913939B2 (en) Boron recovery method
JPH0121212B2 (en)
JP7486021B2 (en) Method for producing cadmium hydroxide
CN109055775B (en) Regeneration method of complexing precipitator for purifying copper electrolyte
JPS6389635A (en) Method for separating and recovering in
JP2002146691A (en) Method for treating collected ash in cooking chemical recovery process
JP2005314759A (en) Method for producing high purity gallium
JP6320324B2 (en) Purification method of potassium chloride
JPS6219495B2 (en)
JPH01108118A (en) Selective separation and recovery of scandium
JP5553646B2 (en) Purification method of ammonium tungstate solution
KR0119001B1 (en) Process for iron chloride utilizing the ferrite iron oxide
JP4756911B2 (en) Boron recovery method
JP2008081792A (en) Method for recovering indium
JPS6127999A (en) Method for purifying glutathione
JP2002121628A (en) Method for recovering cerium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510