JP2006054231A - Manufacturing method of substrate for group 3 nitride semiconductor element - Google Patents

Manufacturing method of substrate for group 3 nitride semiconductor element Download PDF

Info

Publication number
JP2006054231A
JP2006054231A JP2004232998A JP2004232998A JP2006054231A JP 2006054231 A JP2006054231 A JP 2006054231A JP 2004232998 A JP2004232998 A JP 2004232998A JP 2004232998 A JP2004232998 A JP 2004232998A JP 2006054231 A JP2006054231 A JP 2006054231A
Authority
JP
Japan
Prior art keywords
substrate
layer
nitride semiconductor
thermal expansion
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232998A
Other languages
Japanese (ja)
Inventor
Seiya Shimizu
誠也 清水
Akiko Nakazono
明子 中園
Yoshinobu Ono
善伸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004232998A priority Critical patent/JP2006054231A/en
Publication of JP2006054231A publication Critical patent/JP2006054231A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent stress caused by a difference in a thermal coefficient of expansion in each layer inside a substrate for a semiconductor element in an operating temperature of the semiconductor element. <P>SOLUTION: An assist layer 2 made of a silicon single crystal that is a material having a thermal coefficient of expansion K2 that is smaller than that K4 of a group 3 nitride semiconductor is formed at least at one of main surfaces 1A, 1B of a sapphire original substrate 1 in a temperature within the allowable operating temperature range of a semiconductor element, and thus a substrate having the assist layer is manufactured. Then a compound semiconductor layer 4 that is at least one group 3 nitride semiconductor layer is grown on the main surface of the sapphire original substrate 1 or on the surface of the assist layer, thus manufacturing the substrate for a group 3 nitride semiconductor element. Since the substrate having the assist layer and the compound semiconductor layer 4 have the same thermal coefficient of expansion, no stress caused by the difference in the thermal coefficient of expansion is generated between both of them. No stress caused by the difference in the thermal coefficient of expansion is generated also between the sapphire original substrate 1 and the assist layer 2 since the assist layer 2 is formed at room temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、青色、紫外域の受発光素子等の製造に用いるのに好適な3族窒化物半導体素子用基板の製造方法に関する。   The present invention relates to a method for manufacturing a substrate for a group III nitride semiconductor device suitable for use in manufacturing a blue / ultraviolet light emitting / receiving device or the like.

GaNに代表される3族窒化物半導体を含む半導体素子は、室温におけるバンドギャップが約3.4eVと大きく、化学的にも安定であることから、青色、紫外域の受発光デバイスに応用されている。   A semiconductor element including a group III nitride semiconductor typified by GaN has a large band gap of about 3.4 eV at room temperature and is chemically stable. Therefore, it is applied to blue and ultraviolet light receiving and emitting devices. Yes.

3族窒化物半導体を含む半導体素子を製造するための半導体素子用基板は、3族窒化物半導体層を元基板の上にMOCVD法あるいはMBE法によりエピタキシャル成長させて製造される。この元基板は、本来は3族窒化物半導体の単結晶板であることが望ましいが、3族窒化物半導体の単結晶板を製造することが困難なため、実際には、製造しやすいサファイア(α−Al2 3 の単結晶)からなる元基板が3族窒化物半導体の単結晶板の代わりに用いられている。 A semiconductor device substrate for manufacturing a semiconductor device including a Group 3 nitride semiconductor is manufactured by epitaxially growing a Group 3 nitride semiconductor layer on an original substrate by MOCVD or MBE. The original substrate is desirably a single crystal plate of a group 3 nitride semiconductor, but it is difficult to manufacture a single crystal plate of a group 3 nitride semiconductor. An original substrate made of a single crystal of α-Al 2 O 3 is used instead of a single crystal plate of a group 3 nitride semiconductor.

しかし、サファイアからなる元基板の上にGaN等の3族窒化物半導体をエピタキシャル成長させて半導体素子用基板を製造した場合、得られた半導体素子用基板に反りが生じることが知られている。これは、サファイアの熱膨張係数が3族窒化物半導体の熱膨張係数よりも大きいので、例えば1000℃程度の高温で3族窒化物半導体層をサファイア元基板上に成長させた後それを室温まで冷却すると、サファイア元基板が3族窒化物半導体より大きく収縮するためである。   However, it is known that when a semiconductor element substrate is manufactured by epitaxially growing a group III nitride semiconductor such as GaN on an original substrate made of sapphire, the obtained semiconductor element substrate is warped. This is because the thermal expansion coefficient of sapphire is larger than the thermal expansion coefficient of the group 3 nitride semiconductor, so that, for example, the group 3 nitride semiconductor layer is grown on the sapphire base substrate at a high temperature of about 1000 ° C. This is because the sapphire base substrate contracts more than the group 3 nitride semiconductor when cooled.

上述した反りの問題を解決するため、サファイア元基板の両面にまず接着層としてAlを蒸着し、蒸着されたAl接着層の各表面にSi単結晶の薄い板をそれぞれ800℃の加熱下で積層させて接着し、該Si単結晶板上にGaN等の化合物半導体層を成長させて半導体素子用基板を製造する方法が提案されている(例えば、特許文献1参照)。   In order to solve the warp problem described above, Al is first deposited as an adhesive layer on both surfaces of the original sapphire substrate, and a thin plate of Si single crystal is laminated on each surface of the deposited Al adhesive layer under heating at 800 ° C. A method of manufacturing a semiconductor device substrate by growing a compound semiconductor layer such as GaN on the Si single crystal plate is proposed (for example, see Patent Document 1).

このようにして基板を製造することにより、反りの少ない基板を得ることができるのは、次のような原理に基づく。Si単結晶の熱膨張係数はGaN等の3族窒化物半導体のそれよりも小さいので、サファイアと2枚のSi単結晶板とを複合して成る複合元基板は、全体としてサファイアの熱膨張係数とSi単結晶の熱膨張係数との中間の熱膨張係数を有した基板としてふるまう。一方、3族化合物半導体の熱膨張係数はサファイアとSi単結晶の中間の熱膨張係数を有しているので、3族化合物半導体と複合元基板との間の熱膨張係数の差は小さいものとなる。しかも2枚のSi単結晶板の厚さを同一とすることにより、Si単結晶とサファイアとの間の熱膨張係数の差に起因し、サファイア元基板にかかる応力はサファイア元基板の一対の面で同一となり、複合元基板自体の反りも小さくすることができる。   The reason why a substrate with less warpage can be obtained by manufacturing the substrate in this manner is based on the following principle. Since the thermal expansion coefficient of Si single crystal is smaller than that of Group III nitride semiconductors such as GaN, the composite original substrate formed by combining sapphire and two Si single crystal plates has a thermal expansion coefficient of sapphire as a whole. It behaves as a substrate having a thermal expansion coefficient intermediate between that of Si and the single crystal of Si. On the other hand, since the thermal expansion coefficient of the group 3 compound semiconductor has an intermediate thermal expansion coefficient between sapphire and Si single crystal, the difference in thermal expansion coefficient between the group 3 compound semiconductor and the composite base substrate is small. Become. Moreover, by making the thicknesses of the two Si single crystal plates the same, the stress applied to the sapphire base substrate is caused by the difference in thermal expansion coefficient between the Si single crystal and sapphire, and the stress applied to the pair of surfaces of the sapphire base substrate And the warpage of the composite original substrate itself can be reduced.

さらに詳細には、次のように説明することができる。サファイアの熱膨張係数をα1 、Si単結晶の熱膨張係数をα2 、複合元基板の熱膨張係数をα3 、サファイアの弾性率をE1 、Si単結晶の弾性率をE2 、サファイア元基板の厚さをt1 、Si単結晶板2枚の合計の厚さをt2 とし、簡単化のため、サファイアと2枚のSi単結晶板とが複合された板の形状は長方形で、その幅がd、長さがLであるとする。サファイア元基板とSi単結晶板を貼り合わせたときの温度からT℃だけ異なる温度においてサファイア元基板の長さ方向にかかる応力は、長さ変化がL(α3 −α1 )Tで単位長さ当りの応力が弾性率と断面積との積E1 dt1 (dの微小な変化は無視)であるから、L(α3 −α1 )TE1 dt1 となる。一方、2枚のSi単結晶板にかかる応力は、同様にしてL(α2 −α3 )TE2 dt2 となる。この2つの応力は等しいので、次式(1)が成り立つ。
L(α3 −α1 )TE1 dt1 =L(α2 −α3 )TE2 dt2 (1)
ここで、両辺をLTdで除して
(α3 −α1 )E1 1 =(α2 −α3 )E2 2 (2)
を得て、α3 を求めると、
α3 =(α1 1 1 +α2 2 2 )/(E1 1 +E2 2 ) (3)
となる。
Further details can be explained as follows. The thermal expansion coefficient of sapphire is α 1 , the thermal expansion coefficient of Si single crystal is α 2 , the thermal expansion coefficient of composite substrate is α 3 , the elastic modulus of sapphire is E 1 , the elastic modulus of Si single crystal is E 2 , and sapphire The thickness of the original substrate is t 1 , and the total thickness of the two Si single crystal plates is t 2. For simplicity, the shape of the plate in which sapphire and two Si single crystal plates are combined is rectangular. Suppose that the width is d and the length is L. The stress applied in the length direction of the sapphire base substrate at a temperature different from the temperature at which the sapphire base substrate and the Si single crystal plate are bonded by T ° C. is a unit length with a length change of L (α 3 −α 1 ) T. Since the stress per strike is the product E 1 dt 1 of the elastic modulus and the cross-sectional area (ignoring minute changes in d), it becomes L (α 3 −α 1 ) TE 1 dt 1 . On the other hand, the stress applied to the two Si single crystal plates is similarly L (α 2 −α 3 ) TE 2 dt 2 . Since these two stresses are equal, the following equation (1) is established.
L (α 3 −α 1 ) TE 1 dt 1 = L (α 2 −α 3 ) TE 2 dt 2 (1)
Here, by dividing both sides by LTd, (α 3 −α 1 ) E 1 t 1 = (α 2 −α 3 ) E 2 t 2 (2)
And obtaining α 3 ,
α 3 = (α 1 E 1 t 1 + α 2 E 2 t 2 ) / (E 1 t 1 + E 2 t 2 ) (3)
It becomes.

物質をサファイアとSi単結晶に固定した場合、例えばt1 を大きくt2 を小さくするとα3 はα1 に近づき、t1 を小さくt2 を大きくするとα3 はα2 に近づく。したがって、t1 とt2 とを調整することにより、複合元基板の熱膨張係数α3 を、α1 とα2 の間にあるGaN等の3族化合物半導体の熱膨張係数に合わせることができる。このようにして熱膨張係数を合わせることにより、サファイア元基板と3族化合物半導体との間の熱膨張差に起因する反りが殆ど生じない半導体素子用基板を得ることができる。
特開2002−124473号公報
When the material is fixed to sapphire and Si single crystal, for example, when t 1 is increased and t 2 is decreased, α 3 approaches α 1, and when t 1 is decreased and t 2 is increased, α 3 approaches α 2 . Therefore, by adjusting t 1 and t 2 , the thermal expansion coefficient α 3 of the composite base substrate can be matched with the thermal expansion coefficient of the group III compound semiconductor such as GaN between α 1 and α 2. . By combining the thermal expansion coefficients in this manner, a semiconductor element substrate in which warpage due to the difference in thermal expansion between the sapphire base substrate and the group 3 compound semiconductor hardly occurs can be obtained.
JP 2002-124473 A

以上説明した従来技術における複合元基板を用いて3族化合物半導体素子用基板を製作すれば、サファイア元基板を用いた場合に比べ、半導体素子用基板の反りを大幅に低減することができる。しかしながら、従来の複合元基板は600℃の加熱下でサファイア元基板とSi単結晶板とを貼り合わせて作製するものであるから、この複合元基板を用いた半導体素子用基板を用いて半導体素子を製造した場合、以下のような問題を生じる。すなわち、半導体素子が通常使用される−20〜120℃の温度範囲においては、半導体素子の一構成要素となっている基板内部が600℃より充分に低い温度状態となるため、サファイアとSi単結晶との間の熱膨張差に起因する応力が基板内部にかかった状態となる。この結果、半導体素子の経時劣化が激しく、半導体素子に内部亀裂が発生する等の原因により不良品が生成されやすいという問題を生じていた。   If the group 3 compound semiconductor device substrate is manufactured using the composite base substrate in the prior art described above, the warp of the semiconductor device substrate can be greatly reduced as compared with the case where the sapphire base substrate is used. However, since the conventional composite original substrate is produced by bonding a sapphire base substrate and a Si single crystal plate under heating at 600 ° C., a semiconductor element using a substrate for a semiconductor element using this composite original substrate When this is manufactured, the following problems occur. That is, in the temperature range of −20 to 120 ° C. in which a semiconductor element is normally used, the inside of the substrate, which is a constituent element of the semiconductor element, is in a temperature state sufficiently lower than 600 ° C. Therefore, sapphire and Si single crystal Stress caused by the difference in thermal expansion between the substrate and the inside of the substrate is applied. As a result, there has been a problem that the semiconductor element is rapidly deteriorated with time, and defective products are easily generated due to internal cracks in the semiconductor element.

本発明の目的は、従来技術における上述の問題点を解決することができる3族窒化物半導体素子用基板の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a substrate for a group III nitride semiconductor device that can solve the above-described problems in the prior art.

本発明の目的は、基板における反りの問題を解決することができる3族窒化物半導体素子用基板の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a substrate for a group III nitride semiconductor device that can solve the problem of warpage in the substrate.

本発明の目的は、半導体素子の許容動作温度範囲内において、基板内部にかかる応力が小さい半導体素子用基板を得ることができる3族窒化物半導体素子用基板の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a group III nitride semiconductor device substrate capable of obtaining a semiconductor device substrate with a low stress applied to the inside of the substrate within an allowable operating temperature range of the semiconductor device.

本発明者らは、上記課題を解決するため、内部にかかる応力が小さい化合物半導体素子用基板を得るための製造方法について鋭意検討した。その結果、サファイア元基板の少なくとも一方の主面に、3族窒化物半導体の熱膨張係数より小さい熱膨張係数を有する材料からなる補助層を当該半導体素子の許容動作温度範囲内の温度下で形成することにより、形成後にサファイア元基板の主面又は補助層の表面に3族窒化物半導体層を成長させて半導体素子用基板とした場合に、該半導体素子用基板は、反りが少なく、しかも半導体素子の使用時に基板内部にかかる応力を小さく抑えることができることを見出し、本発明をなすに至ったものである。   In order to solve the above-mentioned problems, the present inventors diligently studied a manufacturing method for obtaining a compound semiconductor element substrate having a low internal stress. As a result, an auxiliary layer made of a material having a thermal expansion coefficient smaller than that of the group 3 nitride semiconductor is formed on at least one main surface of the sapphire base substrate at a temperature within the allowable operating temperature range of the semiconductor element. Thus, when a group III nitride semiconductor layer is grown on the main surface of the sapphire base substrate or the surface of the auxiliary layer to form a semiconductor device substrate after the formation, the semiconductor device substrate has less warpage and the semiconductor It has been found that the stress applied to the inside of the substrate during use of the element can be kept small, and has led to the present invention.

請求項1の発明によれば、半導体素子を製造するために用いられる3族窒化物半導体素子用基板の製造方法において、サファイア元基板の少なくとも一方の主面に3族窒化物半導体の熱膨張係数より小さい熱膨張係数を有する材料からなる補助層を前記半導体素子の許容動作温度範囲内の温度下で形成した後、前記サファイア元基板の主面又は前記補助層の表面に少なくとも1つの3族窒化物半導体層を成長させることを特徴とする3族窒化物半導体素子用基板の製造方法が提案される。   According to invention of Claim 1, in the manufacturing method of the board | substrate for group 3 nitride semiconductor elements used in order to manufacture a semiconductor element, the thermal expansion coefficient of the group 3 nitride semiconductor is provided on at least one main surface of the sapphire base substrate. After forming an auxiliary layer made of a material having a smaller coefficient of thermal expansion at a temperature within the allowable operating temperature range of the semiconductor element, at least one group III nitride is formed on the main surface of the sapphire base substrate or the surface of the auxiliary layer. A method for manufacturing a substrate for a group III nitride semiconductor device is proposed, characterized in that an oxide semiconductor layer is grown.

請求項2の発明によれば、請求項1の発明において、前記補助層がシリコン単結晶層である3族窒化物半導体素子用基板の製造方法が提案される。   According to the second aspect of the present invention, there is proposed a method for manufacturing a substrate for a group III nitride semiconductor device, wherein the auxiliary layer is a silicon single crystal layer.

請求項3の発明によれば、請求項1又は2の発明において、前記3族窒化物半導体層の少なくとも1つがGaN層である3族窒化物半導体素子用基板の製造方法が提案される。   According to the invention of claim 3, in the invention of claim 1 or 2, there is proposed a method for manufacturing a substrate for a group III nitride semiconductor device, wherein at least one of the group III nitride semiconductor layers is a GaN layer.

本発明によれば、半導体素子に対して許容された動作温度範囲内において、材料の熱膨張係数差に起因する応力が内部に発生せず、クラック、ピットなどのマクロな欠陥がサファイア元基板や化合物半導体層等に生じるのを有効に抑えることができる。   According to the present invention, within the operating temperature range allowed for the semiconductor element, stress caused by the difference in the thermal expansion coefficient of the material does not occur inside, and macro defects such as cracks and pits are generated on the sapphire base substrate and Occurrence in the compound semiconductor layer can be effectively suppressed.

以下、図面を参照して本発明の実施の形態の一例につき詳細に説明する。   Hereinafter, an exemplary embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明による3族窒化物半導体素子用基板の製造方法の一実施形態を示すものである。ここでは、サファイア元基板1を基板結晶とし、サファイア元基板1上に3族窒化物半導体層を気相成長により形成する場合の実施の形態を説明する。   FIG. 1 shows an embodiment of a method for manufacturing a substrate for a group III nitride semiconductor device according to the present invention. Here, an embodiment in which the sapphire base substrate 1 is a substrate crystal and a group III nitride semiconductor layer is formed on the sapphire base substrate 1 by vapor phase growth will be described.

まず、サファイア元基板1を用意する(図1(a))。サファイア元基板1は、300〜500μm程度の所要の厚みを有するサファイア板で、その面方位は(0001)面とするが、等価な面で置き換えを行ってもよい。サファイア元基板1の両表面である主面1A、1Bは鏡面であることが好ましく、サファイア元基板1の厚さはできるだけ均一のものとすることが好ましい。   First, a sapphire base substrate 1 is prepared (FIG. 1A). The sapphire base substrate 1 is a sapphire plate having a required thickness of about 300 to 500 μm, and its plane orientation is the (0001) plane, but it may be replaced with an equivalent plane. The main surfaces 1A and 1B that are both surfaces of the sapphire base substrate 1 are preferably mirror surfaces, and the thickness of the sapphire base substrate 1 is preferably as uniform as possible.

次に、図1(b)に示すように、サファイア元基板1の2つの主面1A、1Bのうち一方の主面1A上に補助層2を室温において250〜410μmの厚さに蒸着する。補助層の材質は、その熱膨張係数K2が、サファイア元基板1の熱膨張係数K1より小さいものが選ばれている。ここでは、補助層2の材料としてシリコン単結晶が選ばれている。補助層2はサファイア元基板1の主面1A上に室温において蒸着されるので、サファイア元基板1に補助層2が形成された状態においても、サファイア元基板1は室温においては補助層2との間に熱膨張差に起因する応力はかかっておらず、図1(b)に示す状態のサファイア元基板1は実質的に反りのない状態を保ったままである。   Next, as shown in FIG.1 (b), the auxiliary | assistant layer 2 is vapor-deposited by the thickness of 250-410 micrometers at room temperature on one main surface 1A among the two main surfaces 1A and 1B of the sapphire base substrate 1. As the material of the auxiliary layer, a material whose thermal expansion coefficient K2 is smaller than the thermal expansion coefficient K1 of the sapphire base substrate 1 is selected. Here, a silicon single crystal is selected as the material of the auxiliary layer 2. Since the auxiliary layer 2 is deposited on the main surface 1A of the sapphire base substrate 1 at room temperature, even when the auxiliary layer 2 is formed on the sapphire base substrate 1, the sapphire base substrate 1 is in contact with the auxiliary layer 2 at room temperature. No stress due to the difference in thermal expansion is applied between them, and the sapphire base substrate 1 in the state shown in FIG. 1 (b) remains substantially free of warpage.

なお、基板の反りに関しては、曲率が0.05/m以下の場合については半導体製造上特に問題を生じないので、反りがこの範囲に入っている場合には実質的に反りがないということがある。   As for the warpage of the substrate, when the curvature is 0.05 / m or less, there is no particular problem in semiconductor manufacturing. Therefore, when the warpage is within this range, there is substantially no warpage. is there.

次に、図1(b)に示す状態のサファイア元基板1を図示しない気相成長装置の反応炉内にセットし、所要の成長温度の下で、先ず補助層2の上にAlN高温バッファ層3を成長させ、厚さ0.1μmの薄膜層として形成する(図1(c))。ここで、サファイア元基板1を主体として得られた基板は室温よりかなり高い成長温度まで温度上昇するため、図1(c)に示す工程においては、サファイア元基板1の熱膨張係数K1と補助層2の熱膨張係数K2との差により反りが生じることになる。K1>K2であるから、この反りの方向は、補助層2が引っ張られる方向である。   Next, the sapphire base substrate 1 in the state shown in FIG. 1B is set in a reaction furnace of a vapor phase growth apparatus (not shown), and an AlN high-temperature buffer layer is first formed on the auxiliary layer 2 under a required growth temperature. 3 is grown and formed as a thin film layer having a thickness of 0.1 μm (FIG. 1C). Here, since the substrate obtained mainly from the sapphire base substrate 1 rises in temperature to a growth temperature considerably higher than room temperature, the thermal expansion coefficient K1 and the auxiliary layer of the sapphire base substrate 1 are used in the process shown in FIG. Warpage occurs due to the difference between the thermal expansion coefficient K2 of 2. Since K1> K2, the warping direction is the direction in which the auxiliary layer 2 is pulled.

そして、さらに、図1(d)に示すように、AlN高温バッファ層3の上に、所要の3族窒化物半導体から成る化合物半導体層4を同じく気相成長法により薄膜層として所望の厚みに形成するも、所要の3族窒化物半導体素子用基板が得られる。化合物半導体層4は、AlN高温バッファ層3の上に形成されるので、両者間で格子整合が図られ、良好な結晶性及び表面の鏡面性をもって化合物半導体層4を形成することができる。   Further, as shown in FIG. 1D, a compound semiconductor layer 4 made of a required group 3 nitride semiconductor is formed on the AlN high-temperature buffer layer 3 as a thin film layer to a desired thickness by the vapor phase growth method. Even if it is formed, the required substrate for a group III nitride semiconductor device can be obtained. Since the compound semiconductor layer 4 is formed on the AlN high-temperature buffer layer 3, lattice matching is achieved between them, and the compound semiconductor layer 4 can be formed with good crystallinity and surface specularity.

ここで、AlN高温バッファ層3は、化合物半導体層4の成長温度とほぼ同一の1000℃程度の高い成長温度を用いて形成される。したがって、AlN高温バッファ層3及び化合物半導体層4の各成長はほぼ同一の高い温度の下で行われるので、温度の切り替えが不要であり、原料ガスの切り替えだけで済むので製造工程の簡略化を図ることができる。ここでAlN高温バッファ層3の膜厚は通常は0.1μm程度、化合物半導体層4の膜厚は通常は3μm程度である。   Here, the AlN high-temperature buffer layer 3 is formed using a high growth temperature of about 1000 ° C. which is substantially the same as the growth temperature of the compound semiconductor layer 4. Therefore, each growth of the AlN high-temperature buffer layer 3 and the compound semiconductor layer 4 is performed at substantially the same high temperature, so that switching of the temperature is unnecessary and only the switching of the source gas is required, thereby simplifying the manufacturing process. Can be planned. Here, the film thickness of the AlN high-temperature buffer layer 3 is usually about 0.1 μm, and the film thickness of the compound semiconductor layer 4 is usually about 3 μm.

化合物半導体層4を形成する材料である3族窒化物半導体の熱膨張係数をK4とすると、K2<K4<K1の関係が成立している。ここで、補助層2を形成したサファイア元基板1(以下、単に補助層付基板と称することがある)の熱膨張係数はK1とK2の間の値になっており、サファイア元基板1の厚さ、補助層2の厚さを適宜調整することにより、補助層付基板の熱膨張係数をK4と一致させることができる。そして、化合物半導体層4を成長させた後、サファイア元基板1の温度が成長温度から低下し室温に戻った場合、補助層付基板と化合物半導体層4とは同じ熱膨張係数を有するので熱膨張差に起因する応力はこの2者の間には発生せず、しかも、補助層2は室温で形成されているので、サファイア元基板1と補助層2の間にも熱膨張差に起因する応力は発生していないのである。   When the thermal expansion coefficient of the group 3 nitride semiconductor that is a material forming the compound semiconductor layer 4 is K4, the relationship of K2 <K4 <K1 is established. Here, the thermal expansion coefficient of the sapphire base substrate 1 on which the auxiliary layer 2 is formed (hereinafter sometimes simply referred to as a substrate with an auxiliary layer) has a value between K1 and K2, and the thickness of the sapphire base substrate 1 By adjusting the thickness of the auxiliary layer 2 as appropriate, the coefficient of thermal expansion of the substrate with the auxiliary layer can be made to coincide with K4. Then, after the compound semiconductor layer 4 is grown, when the temperature of the sapphire base substrate 1 is lowered from the growth temperature and returned to room temperature, the substrate with an auxiliary layer and the compound semiconductor layer 4 have the same thermal expansion coefficient, and thus the thermal expansion. Stress due to the difference does not occur between the two, and the auxiliary layer 2 is formed at room temperature, so the stress due to the difference in thermal expansion is also present between the sapphire base substrate 1 and the auxiliary layer 2. Does not occur.

なお、AlN高温バッファ層3、化合物半導体層4の成膜は、MOVPE成長炉またはハイドライド気相成長炉を用いて公知の工程を含んで行うことができる。すなわち、アンモニアを供給すると共に、水素ガスで希釈した所要の金属原料を導入してこれを行うことができる。例えば、AlN高温バッファ層3は、アンモニアとトリメチルアルミニウムを反応炉内に導入することでAlN層を成長させて形成し、化合物半導体層4はアンモニアとトリメチルガリウムを反応炉内に導入することでGaN層を成長させて形成することができる。それらの成長工程自体及び膜厚制御には公知の技術を用いることができる。   The AlN high-temperature buffer layer 3 and the compound semiconductor layer 4 can be formed using a MOVPE growth furnace or a hydride vapor phase growth furnace including known processes. That is, it can be performed by supplying ammonia and introducing a required metal raw material diluted with hydrogen gas. For example, the AlN high-temperature buffer layer 3 is formed by growing an AlN layer by introducing ammonia and trimethylaluminum into the reaction furnace, and the compound semiconductor layer 4 is formed by introducing ammonia and trimethylgallium into the reaction furnace. Layers can be grown and formed. A known technique can be used for the growth process itself and the film thickness control.

補助層2はサファイア元基板1の主面2Aに室温で形成させているので、サファイア元基板1と補助層2の熱膨張差に起因しサファイア元基板1と補助層2に働く応力は、常温においてはほぼ0である。厳密には、補助層2をサファイア元基板1に成形したときの温度において0となる。なお、上記実施の形態においては、補助層2をサファイア元基板1の主面2Aに室温で形成した場合について説明した。しかし、この形成温度はこの室温に限定されるものではなく、半導体素子の許容動作温度範囲、例えば−20〜120℃程度の温度範囲内の温度であればよく、好ましくは20〜60℃の温度範囲内の温度である。   Since the auxiliary layer 2 is formed on the main surface 2A of the sapphire base substrate 1 at room temperature, the stress acting on the sapphire base substrate 1 and the auxiliary layer 2 due to the difference in thermal expansion between the sapphire base substrate 1 and the auxiliary layer 2 is normal temperature. Is almost zero. Strictly speaking, the temperature becomes 0 at the temperature when the auxiliary layer 2 is formed on the sapphire base substrate 1. In the above embodiment, the case where the auxiliary layer 2 is formed on the main surface 2A of the sapphire base substrate 1 at room temperature has been described. However, the formation temperature is not limited to this room temperature, and may be a temperature within an allowable operating temperature range of the semiconductor element, for example, a temperature range of about −20 to 120 ° C., preferably a temperature of 20 to 60 ° C. The temperature is within the range.

以上の説明から判るように、本発明による3族窒化物半導体素子用基板の製造方法は、サファイア元基板1の少なくとも一方の主面2Aに、3族窒化物半導体の熱膨張係数より小さい熱膨張係数を有する材料からなる補助層2を、半導体素子の許容動作温度範囲内の温度下で形成させて補助層付基板とするところに特徴を有する。   As can be seen from the above description, the method for manufacturing a substrate for a group 3 nitride semiconductor device according to the present invention has a thermal expansion smaller than the thermal expansion coefficient of the group 3 nitride semiconductor on at least one main surface 2A of the sapphire base substrate 1. The auxiliary layer 2 made of a material having a coefficient is formed at a temperature within the allowable operating temperature range of the semiconductor element to form a substrate with an auxiliary layer.

なお、3族窒化物半導体の熱膨張係数より小さい熱膨張係数を有する材料としては、Si単結晶、AlN単結晶、Si3 4 単結晶を挙げることができ、Si単結晶が工業的に製造しやすいので好ましい。 Examples of the material having a thermal expansion coefficient smaller than that of the group 3 nitride semiconductor include Si single crystal, AlN single crystal, and Si 3 N 4 single crystal. It is preferable because it is easy to do.

そして、補助層2を室温又はそれに近い温度下、あるいは半導体素子の許容動作温度範囲内の温度下で形成するには、蒸着法を用いることができる。蒸着は通常工業的に使用されている装置を用いて通常行われている条件で行うことができる。ただし、補助層2を形成中のサファイア元基板1の温度は、室温等の所要の温度状態に保たれなければならない。   In order to form the auxiliary layer 2 at room temperature or a temperature close thereto, or at a temperature within the allowable operating temperature range of the semiconductor element, a vapor deposition method can be used. Vapor deposition can be performed on the conditions normally performed using the apparatus normally used industrially. However, the temperature of the sapphire base substrate 1 during the formation of the auxiliary layer 2 must be maintained at a required temperature state such as room temperature.

補助層2を形成した後、サファイア元基板1の補助層の形成されていない主面1B又は補助層2の表面のいずれかに、3族窒化物半導体素子用基板の製造に必要な化合物半導体層4を成長させて、3族窒化物半導体素子用基板が得られるのであるが、この化合物半導体層4の成長は、通常は500℃以上1200℃以下の温度に加熱して行われる。このときには、サファイア元基板1と補助層2の熱膨張差に起因した応力が補助層付基板に働くが、化合物半導体層4の成長が終わり、全体を常温に冷却した段階で、サファイア元基板1と補助層2との熱膨張差に起因した応力は解消する。   After forming the auxiliary layer 2, the compound semiconductor layer necessary for manufacturing the substrate for the group III nitride semiconductor device is formed on either the main surface 1B of the sapphire base substrate 1 where the auxiliary layer is not formed or the surface of the auxiliary layer 2. 4 is grown to obtain a substrate for a group 3 nitride semiconductor device. The growth of the compound semiconductor layer 4 is usually performed by heating to a temperature of 500 ° C. or more and 1200 ° C. or less. At this time, stress due to the difference in thermal expansion between the sapphire base substrate 1 and the auxiliary layer 2 acts on the substrate with the auxiliary layer, but when the growth of the compound semiconductor layer 4 is finished and the whole is cooled to room temperature, the sapphire base substrate 1 And the stress caused by the difference in thermal expansion between the auxiliary layer 2 are eliminated.

補助層を形成したサファイア元基板と3族窒化物半導体層との熱膨張差について検討すると次の通りである。一般に、サファイア元基板の少なくとも一方の主面に、3族窒化物半導体の熱膨張係数より小さい熱膨張係数を有する材料からなる補助層を形成した補助層付基板全体の熱膨張係数をαK とし、3族窒化物半導体の熱膨張係数より小さい熱膨張係数を有する材料からなる補助層の熱膨張係数をαA 、補助層の厚さをtA 、弾性率をEA とし、サファイア元基板の熱膨張係数、厚さ、弾性率をそれぞれα1 、t1 、E1 とすると、従来技術における上記と同様の推論により、
αK =(α1 1 1 +αA A A )/(E1 1 +EA A ) (4)
が成り立つ。
The difference in thermal expansion between the sapphire base substrate on which the auxiliary layer is formed and the group 3 nitride semiconductor layer is examined as follows. In general, the thermal expansion coefficient of the entire substrate with an auxiliary layer in which an auxiliary layer made of a material having a thermal expansion coefficient smaller than that of the group 3 nitride semiconductor is formed on at least one main surface of the sapphire base substrate is α K. The auxiliary layer made of a material having a thermal expansion coefficient smaller than that of the group 3 nitride semiconductor is α A , the auxiliary layer thickness is t A , and the elastic modulus is E A. Assuming that the thermal expansion coefficient, thickness, and elastic modulus are α 1 , t 1 , and E 1 , respectively,
α K = (α 1 E 1 t 1 + α A E A t A ) / (E 1 t 1 + E A t A ) (4)
Holds.

すなわち、3族窒化物半導体の熱膨張係数より小さい熱膨張係数を有する材料および補助層の厚さを変化させることにより、αK を調整することができ、3族窒化物半導体素子用基板の製造に用いる3族窒化物半導体の熱膨張係数αN (ここで、αA <αN <α1 )に近づけることができる。 That is, α K can be adjusted by changing the thickness of the material having a thermal expansion coefficient smaller than that of the group 3 nitride semiconductor and the thickness of the auxiliary layer, and manufacture of the substrate for the group 3 nitride semiconductor element. The thermal expansion coefficient α N (here, α AN1 ) of the group 3 nitride semiconductor used in the above can be approached.

以上の如く、本発明による製造方法においては、補助層を半導体素子の許容動作温度範囲内の温度下で形成することにより、半導体素子基板内部に発生し、サファイア元基板と補助層の熱膨張係数差に起因する応力を、半導体素子の通常の使用温度において実質的に無くすことができる。補助層の材料と補助層の厚さとサファイア元基板の厚さを調整することにより、3族窒化物半導体素子基板内部に発生し、補助層付基板と3族窒化物半導体層の熱膨張係数差に起因する応力を、半導体素子の通常の使用温度において実質的に無くすことができるので、本発明の製造方法により製造された3族窒化物半導体素子用基板は、これを用いて製作された半導体素子が通常使用される温度においては、内部に実質的に応力を有さず、したがって反りも無い半導体素子用基板となるのである。   As described above, in the manufacturing method according to the present invention, by forming the auxiliary layer at a temperature within the allowable operating temperature range of the semiconductor element, the thermal expansion coefficient of the sapphire base substrate and the auxiliary layer is generated inside the semiconductor element substrate. The stress due to the difference can be substantially eliminated at the normal use temperature of the semiconductor element. By adjusting the material of the auxiliary layer, the thickness of the auxiliary layer, and the thickness of the sapphire base substrate, the thermal expansion coefficient difference between the substrate with the auxiliary layer and the group 3 nitride semiconductor layer is generated inside the group 3 nitride semiconductor device substrate. Since the stress caused by the above can be substantially eliminated at the normal operating temperature of the semiconductor element, the substrate for a group III nitride semiconductor element manufactured by the manufacturing method of the present invention is a semiconductor manufactured using the same. At a temperature at which the element is normally used, there is substantially no stress inside, and thus there is no warpage of the semiconductor element substrate.

図2は、本発明の他の実施の形態を説明するための工程図である。この実施の形態では、先ず、図1に示した実施の形態の場合と同じく、サファイア元基板11を用意し(図2(a))、サファイア元基板11の一方の主面11B上にシリコンから成る補助層12を室温にて所要の厚さに蒸着しておく(図2(b))。しかる後、サファイア元基板11上に補助層12が形成された基板を反応炉(図示せず)内に入れて、サファイア元基板11の温度を所要の成長温度まで上昇させ、サファイア元基板11の主面11A上にGaN低温バッファ層13を形成した後、GaN低温バッファ層13の上にGaNを成長させ、化合物半導体層14を形成する。GaN低温バッファ層13及び化合物半導体層14の成膜工程それ自体は図1に示した実施の形態の場合と同じである。   FIG. 2 is a process diagram for explaining another embodiment of the present invention. In this embodiment, first, as in the embodiment shown in FIG. 1, a sapphire base substrate 11 is prepared (FIG. 2A), and silicon is formed on one main surface 11B of the sapphire base substrate 11 from silicon. The auxiliary layer 12 is deposited to a required thickness at room temperature (FIG. 2B). Thereafter, the substrate on which the auxiliary layer 12 is formed on the sapphire base substrate 11 is put in a reaction furnace (not shown), and the temperature of the sapphire base substrate 11 is raised to a required growth temperature. After forming the GaN low-temperature buffer layer 13 on the main surface 11A, GaN is grown on the GaN low-temperature buffer layer 13 to form the compound semiconductor layer 14. The film forming process itself of the GaN low-temperature buffer layer 13 and the compound semiconductor layer 14 is the same as that in the embodiment shown in FIG.

ここでも、サファイア元基板11の熱膨張係数K11、補助層12の熱膨張係数K12及び化合物半導体層14の熱膨張係数K14との間にはK12<K14<K11の関係が成立するように各層の材料が選ばれている。したがって、図1に示した実施の形態の場合と同様に、サファイア元基板11の上に補助層12を形成した補助層付基板を成長温度まで高めるのと同様の理由でサファイア元基板と補助層の間に2者の熱膨張差に起因する応力が生じ、反りを生じることとなる。   Here again, the relationship of K12 <K14 <K11 is established among the thermal expansion coefficient K11 of the sapphire base substrate 11, the thermal expansion coefficient K12 of the auxiliary layer 12, and the thermal expansion coefficient K14 of the compound semiconductor layer 14. The material is chosen. Therefore, as in the case of the embodiment shown in FIG. 1, the sapphire base substrate and the auxiliary layer for the same reason as raising the substrate with the auxiliary layer 12 having the auxiliary layer 12 formed on the sapphire base substrate 11 to the growth temperature. During this period, stress is generated due to the difference in thermal expansion between the two, and warpage occurs.

この状態において、化合物半導体層14をGaN低温バッファ層13を介して成長させる。ここで、図1に示した実施の形態の場合と同様に、サファイア元基板の厚さ、補助層の厚さを適宜調整することにより、補助層付基板の熱膨張係数をK14と一致させることができる。そして、化合物半導体層14を成長させた後、サファイア元基板11の温度が成長温度から低下し室温に戻った場合(図2(d))、補助層付基板と化合物半導体層は同じ熱膨張係数を有するので熱膨張差に起因する応力はこの2者の間には発生せず、しかも、補助層は室温で形成されているので、サファイア元基板11と補助層12の間にも熱膨張差に起因する応力は発生していないのである。   In this state, the compound semiconductor layer 14 is grown via the GaN low temperature buffer layer 13. Here, as in the case of the embodiment shown in FIG. 1, the coefficient of thermal expansion of the substrate with the auxiliary layer is made to coincide with K14 by appropriately adjusting the thickness of the sapphire base substrate and the thickness of the auxiliary layer. Can do. Then, after the compound semiconductor layer 14 is grown, when the temperature of the sapphire base substrate 11 falls from the growth temperature and returns to room temperature (FIG. 2D), the substrate with auxiliary layer and the compound semiconductor layer have the same thermal expansion coefficient. Therefore, stress due to the difference in thermal expansion does not occur between the two, and the auxiliary layer is formed at room temperature, so that the difference in thermal expansion is also present between the sapphire base substrate 11 and the auxiliary layer 12. There is no stress caused by this.

図3は、本発明のさらに他の実施の形態を説明するための工程図である。この実施の形態の場合には、サファイア元基板21を用意し(図3(a))、用意したサファイア元基板21の一対の主面21A、21Bにそれぞれシリコン単結晶から成る補助層22A、22Bを室温で蒸着して形成しておく(図3(b))。補助層22A、22Bの各材料はシリコン単結晶で、各層厚が等しくなるよう、図1について説明したのと同一の方法で所要の厚みに形成する。そして、補助層22Aの上にAlN高温バッファ層23を形成し(図3(c))、さらに、AlN高温バッファ層23の上に所要の3族窒化物半導体であるGaNを成長し、化合物半導体層24を形成する(図3(d))。図3(c)、(d)に示した工程は、図1(c)、(d)の工程と同じであり、各層の熱膨張係数の大小関係も図1の実施の形態の場合と同じである。   FIG. 3 is a process diagram for explaining still another embodiment of the present invention. In the case of this embodiment, a sapphire base substrate 21 is prepared (FIG. 3A), and auxiliary layers 22A and 22B made of silicon single crystal are respectively formed on a pair of main surfaces 21A and 21B of the prepared sapphire base substrate 21. Is deposited at room temperature (FIG. 3B). Each material of the auxiliary layers 22A and 22B is a silicon single crystal, and is formed to a required thickness by the same method as described with reference to FIG. Then, an AlN high-temperature buffer layer 23 is formed on the auxiliary layer 22A (FIG. 3C), and further, GaN, which is a required group III nitride semiconductor, is grown on the AlN high-temperature buffer layer 23 to obtain a compound semiconductor. The layer 24 is formed (FIG. 3D). The processes shown in FIGS. 3C and 3D are the same as the processes in FIGS. 1C and 1D, and the magnitude relationship of the thermal expansion coefficient of each layer is the same as that in the embodiment of FIG. It is.

図3に示した例では、サファイア元基板21の主面21Bにも補助層22Bが設けられている点で図1に示した実施の形態の場合と異なっている。図3に示した実施の形態では、サファイア元基板21の主面21A、21Bにそれぞれ設けられた補助層22A、22Bを同一の厚みに形成したので、化合物半導体層24の形成のためにサファイア元基板21を1000℃以上の高温にしても、両者における伸びが相殺され、サファイア元基板21と補助層22A、22Bとの間には2者の熱膨張差に起因する応力は発生するが、サファイア元基板21に反りを生じさせることはなく、サファイア元基板21が反りのない状態でAlN高温バッファ層23及び化合物半導体層24を形成することができる。   The example shown in FIG. 3 differs from the embodiment shown in FIG. 1 in that an auxiliary layer 22B is also provided on the main surface 21B of the sapphire base substrate 21. In the embodiment shown in FIG. 3, the auxiliary layers 22A and 22B provided on the principal surfaces 21A and 21B of the sapphire base substrate 21 are formed to have the same thickness, so that the sapphire base is formed to form the compound semiconductor layer 24. Even if the substrate 21 is heated to a high temperature of 1000 ° C. or higher, the elongation in both is offset, and stress due to the thermal expansion difference between the two is generated between the sapphire base substrate 21 and the auxiliary layers 22A and 22B. The AlN high temperature buffer layer 23 and the compound semiconductor layer 24 can be formed in a state where the original substrate 21 does not warp and the sapphire original substrate 21 is not warped.

図3に示した実施の形態の場合においても、図1に示した実施の形態の場合と同様に、サファイア元基板21の厚さ、補助層22A、22Bの厚さを適宜調整することにより、補助層付基板の熱膨張係数を化合物半導体層24の熱膨張係数と一致させることができる。そして、化合物半導体層24を成長させた後、サファイア元基板21の温度が成長温度から低下し室温に戻った場合、補助層付基板と化合物半導体層24は同じ熱膨張係数を有するので熱膨張差に起因する応力はこの2者の間には発生せず、しかも、補助層22A、22Bは室温で形成されているので、サファイア元基板21と補助層22A、22Bとの間にも熱膨張差に起因する応力は、やはり発生していないのである。   In the case of the embodiment shown in FIG. 3, as in the case of the embodiment shown in FIG. 1, by appropriately adjusting the thickness of the sapphire base substrate 21 and the thickness of the auxiliary layers 22A and 22B, The coefficient of thermal expansion of the substrate with an auxiliary layer can be matched with the coefficient of thermal expansion of the compound semiconductor layer 24. Then, after the compound semiconductor layer 24 is grown, when the temperature of the sapphire base substrate 21 is lowered from the growth temperature and returned to room temperature, the auxiliary layer-attached substrate and the compound semiconductor layer 24 have the same thermal expansion coefficient. In addition, since the stress caused by the two is not generated between the two, and the auxiliary layers 22A and 22B are formed at room temperature, the thermal expansion difference is also generated between the sapphire base substrate 21 and the auxiliary layers 22A and 22B. The stress resulting from this is still not generated.

本発明の実施の形態を説明するための半導体素子用基板の製造工程図。The manufacturing process figure of the board | substrate for semiconductor elements for describing embodiment of this invention. 本発明の他の実施の形態を説明するための半導体素子用基板の製造工程図。The manufacturing process figure of the board | substrate for semiconductor elements for demonstrating other embodiment of this invention. 本発明のさらに他の実施の形態を説明するための半導体素子用基板の製造工程図。The manufacturing process figure of the board | substrate for semiconductor elements for demonstrating other embodiment of this invention.

符号の説明Explanation of symbols

1、11、21 サファイア元基板
1A、11A、21A、1B、11B、21B 主面
2、12、22A、22B 補助層
3、23 AlN高温バッファ層
13 GaN低温バッファ層
4、14、24 化合物半導体層
1, 11, 21 Sapphire base substrate 1A, 11A, 21A, 1B, 11B, 21B Main surface 2, 12, 22A, 22B Auxiliary layer 3, 23 AlN high temperature buffer layer 13 GaN low temperature buffer layer 4, 14, 24 Compound semiconductor layer

Claims (3)

半導体素子を製造するために用いられる3族窒化物半導体素子用基板の製造方法において、サファイア元基板の少なくとも一方の主面に3族窒化物半導体の熱膨張係数より小さい熱膨張係数を有する材料からなる補助層を前記半導体素子の許容動作温度範囲内の温度下で形成した後、前記サファイア元基板の主面又は前記補助層の表面に少なくとも1つの3族窒化物半導体層を成長させることを特徴とする3族窒化物半導体素子用基板の製造方法。   In a method for manufacturing a substrate for a group III nitride semiconductor device used for manufacturing a semiconductor device, at least one main surface of a sapphire base substrate is made of a material having a thermal expansion coefficient smaller than that of the group III nitride semiconductor. And forming an auxiliary layer at a temperature within an allowable operating temperature range of the semiconductor element, and then growing at least one group III nitride semiconductor layer on the main surface of the sapphire base substrate or the surface of the auxiliary layer. The manufacturing method of the board | substrate for 3 group nitride semiconductor elements made into. 前記補助層がシリコン単結晶層である請求項1記載の3族窒化物半導体素子用基板の製造方法。   2. The method for manufacturing a substrate for a group III nitride semiconductor device according to claim 1, wherein the auxiliary layer is a silicon single crystal layer. 前記3族窒化物半導体層の少なくとも1つがGaN層である請求項1又は2記載の3族窒化物半導体素子用基板の製造方法。   The method for manufacturing a substrate for a group III nitride semiconductor device according to claim 1 or 2, wherein at least one of the group III nitride semiconductor layers is a GaN layer.
JP2004232998A 2004-08-10 2004-08-10 Manufacturing method of substrate for group 3 nitride semiconductor element Pending JP2006054231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232998A JP2006054231A (en) 2004-08-10 2004-08-10 Manufacturing method of substrate for group 3 nitride semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232998A JP2006054231A (en) 2004-08-10 2004-08-10 Manufacturing method of substrate for group 3 nitride semiconductor element

Publications (1)

Publication Number Publication Date
JP2006054231A true JP2006054231A (en) 2006-02-23

Family

ID=36031528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232998A Pending JP2006054231A (en) 2004-08-10 2004-08-10 Manufacturing method of substrate for group 3 nitride semiconductor element

Country Status (1)

Country Link
JP (1) JP2006054231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908902B1 (en) * 2007-03-09 2009-07-23 우 옵트로닉스 코포레이션 Manufacturing Method of Substrate Module and Flexible Array Substrate
WO2011031907A2 (en) * 2009-09-10 2011-03-17 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
WO2015093447A1 (en) * 2013-12-18 2015-06-25 日本碍子株式会社 Composite substrate and functional device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908902B1 (en) * 2007-03-09 2009-07-23 우 옵트로닉스 코포레이션 Manufacturing Method of Substrate Module and Flexible Array Substrate
WO2011031907A2 (en) * 2009-09-10 2011-03-17 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
WO2011031907A3 (en) * 2009-09-10 2011-06-23 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
US8580593B2 (en) 2009-09-10 2013-11-12 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
US10868212B2 (en) 2009-09-10 2020-12-15 Micron Technology, Inc. Epitaxial formation structures and associated methods of manufacturing solid state lighting devices
WO2015093447A1 (en) * 2013-12-18 2015-06-25 日本碍子株式会社 Composite substrate and functional device
JP5828993B1 (en) * 2013-12-18 2015-12-09 日本碍子株式会社 Composite substrate and functional element
US9287453B2 (en) 2013-12-18 2016-03-15 Ngk Insulators, Ltd. Composite substrates and functional device

Similar Documents

Publication Publication Date Title
JP4809887B2 (en) Method for manufacturing gallium nitride substrate
JP5732684B2 (en) Single crystal substrate, method for manufacturing single crystal substrate, method for manufacturing single crystal substrate with multilayer film, and device manufacturing method
JP2018087128A (en) Method for growing nitride semiconductor layer
JP5631034B2 (en) Nitride semiconductor epitaxial substrate
JP5133927B2 (en) Compound semiconductor substrate
JP2008034834A (en) Growing method of nitride single crystal on silicon substrate, nitride-semiconductor light-emitting element using the same and manufacturing method of the same
KR102570935B1 (en) Manufacturing method of GaN laminated board
CN105280770A (en) Nitride semiconductor structure
JP6138974B2 (en) Semiconductor substrate
JP5238924B2 (en) Single crystal substrate and method for producing nitride semiconductor single crystal
US20050241571A1 (en) Method of growing nitride single crystal on silicon substrate, nitride semiconductor light emitting device using the same, method of manufacturing the same
JP2013247362A (en) Method for manufacturing thin film bonded substrate for semiconductor element
JP2006054231A (en) Manufacturing method of substrate for group 3 nitride semiconductor element
JP2002075871A (en) Manufacturing method of semiconductor substrate
KR101142567B1 (en) Substrate for producing semiconductor device and Method for producing semiconductor device
JP2019052057A (en) Composite substrate, composite substrate with group iii nitride crystal, and production method of group iii nitride crystal
JP2013256440A (en) Method of manufacturing gallium nitride substrate, and gallium nitride substrate manufactured by method of manufacturing the same
KR20090015611A (en) Fabricating method for gallium nitride wafer
KR100450785B1 (en) Method of manufacturing GaN thick film
KR101539073B1 (en) METHOD FOR MANUFACTURING SEMI-POLAR GaN TEMPLATE
TWI816428B (en) Laminated body and method of manufacturing the laminated body
TWI804035B (en) Iii-n semiconductor structure and method of manufacturing same
US20220149802A1 (en) High purity piezoelectric thin film and method of manufacturing element using same thin film
JP7228240B2 (en) Manufacturing method of AlN domain-inverted structure
JP2007161535A (en) Method for manufacturing semiconductor crystal substrate