JP2006053102A - 脳画像データ処理プログラム、記録媒体および脳画像データ処理方法 - Google Patents

脳画像データ処理プログラム、記録媒体および脳画像データ処理方法 Download PDF

Info

Publication number
JP2006053102A
JP2006053102A JP2004236244A JP2004236244A JP2006053102A JP 2006053102 A JP2006053102 A JP 2006053102A JP 2004236244 A JP2004236244 A JP 2004236244A JP 2004236244 A JP2004236244 A JP 2004236244A JP 2006053102 A JP2006053102 A JP 2006053102A
Authority
JP
Japan
Prior art keywords
image data
brain
data processing
predetermined
anatomical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004236244A
Other languages
English (en)
Inventor
Naoharu Takemura
直治 竹村
Tsutomu Soma
努 相馬
Tetsuo Hosoya
徹夫 細谷
Hiroshi Matsuda
博史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm RI Pharma Co Ltd
Original Assignee
Fujifilm RI Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm RI Pharma Co Ltd filed Critical Fujifilm RI Pharma Co Ltd
Priority to JP2004236244A priority Critical patent/JP2006053102A/ja
Publication of JP2006053102A publication Critical patent/JP2006053102A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】脳の機能面に現れた症状を脳内の明確な位置的情報と共に表示することができる脳画像データ処理プログラム等を提供する。
【解決手段】DICOMフォーマットによるMRI画像データとDICOMフォーマット又は医療機器メーカ独自のフォーマットによるSPECT画像データとを入力させる。DICOMフォーマット等はアナライズ・フォーマットへ変換する。アナライズ・フォーマットへ変換させたMRI画像データを1つ、SPECT画像データを2つ選択させる。MRI画像データは適宜修正を行なう。選択させた2つのSPECT画像データの差分画像データを求める。修正したMRI画像データと選択させた2つのSPECT画像データの各々とを重ね合わせた融合画像データ、および修正したMRI画像データと差分画像データとを重ね合わせた融合画像データを求める。求めた融合画像データを所定の形式およびまたは所定の条件で表示する。
【選択図】 図1

Description

本発明は、脳画像データの処理をコンピュータに実行させるための脳画像データ処理プログラム等に関する。
近年、医学の進歩と共に画像診断はめざましく進歩している。患者等に大きな負担をかけずに、身体内の様子を画像として捕らえ正確な診断を行なうための画像診断機、例えば、X線断層写真撮影機(Computer Tomography : CT)、磁気共鳴映像機(Magnetic Resonance Imaging : MRI)、超音波診断機および放射線診断機等は、現在の医療の現場において必須のものとなっている(非特許文献1参照)。上述の画像診断機を用いた画像診断は、患者の病気の早期診断、治療法の選択、治療効果の予測および判定などの機能情報を提供するものとして広く用いられている。MRIによる画像(MRI画像)およびCTによる画像(CT画像)は脳の形態を表した解剖学的画像であり、一般的に分解能は高く、脳内の位置的情報が明確な画像である。
核医学の臨床の場においては、患者体内に放射性同位元素(ラジオアイソトープ、Radio Isotope : RI)を導入し、そこから発せられるγ線を利用する単光子放出コンピュータ断層撮影(Single Photon Emission Computed Tomography : SPECT)および陽電子放出断層撮影(Positron Emission Tomography : PET)がそれぞれの装置を用いることで利用されている(非特許文献2参照)。上述の様な医用画像処理装置においては、収集したデータから画像再構成および画像解析等の様々な画像処理ができるように各種のコンピュータ・プログラムが用意されている。SPECTによる画像(SPECT画像)およびPETによる画像(PET画像)は、薬剤または検査薬等の注射前後における血流等の機能を表した機能画像である。
"画像診断とは MRI"、[online]、株式会社第一ラジオアイソトープ研究所、[平成16年7月23日検索]、インターネット<URL:http://www.drl.co.jp/html/naruhodo.htm> "画像診断とは SPECT etc."、[online]、株式会社第一ラジオアイソトープ研究所、[平成16年7月23日検索]、インターネット<URL:http://www.drl.co.jp/html/naruhodo.htm>
上述のように、MRI画像等は解剖学的画像であり、脳内の位置的情報が明確な画像であるが、SPECT画像等のように機能を表した画像ではない。このため、例えば血流等の機能面に症状が現れていても、脳の形態に変化がない場合、MRI画像等では何ら所見が得られないことがあるという問題があった。一方、SPECT画像等は機能画像であるが、全体的にぼやけた状態の画像であるため、脳内の位置的情報に乏しいという問題があった。
そこで、本発明の目的は、上記問題を解決するためになされたものであり、脳の機能面に現れた症状を脳内の明確な位置的情報と共に表示することができる脳画像データ処理プログラム等を提供することにある。
この発明の脳画像データ処理プログラムは、脳画像データの処理をコンピュータに実行させるための脳画像データ処理プログラムであって、コンピュータに、(好適には予め記録部217に記録された)所定のフォーマットの解剖学的画像データを1つ選択させる解剖学的画像データ選択ステップ、(好適には予め記録部217に記録された)前記所定のフォーマットの機能画像データを2つ選択させる機能画像データ選択ステップ、前記解剖学的画像データ選択ステップで選択させた解剖学的画像データの修正を行なう解剖学的画像データ修正ステップ、前記機能画像データ選択ステップで選択させた2つの機能画像データの差分画像データを求める機能画像データ差分ステップ、前記解剖学的画像データ修正ステップで修正した解剖学的画像データと前記機能画像データ選択ステップで選択させた2つの機能画像データの各々とを重ね合わせた融合画像データ、及び前記解剖学的画像データ修正ステップで修正した解剖学的画像データと前記機能画像データ差分ステップで求めた差分画像データとを重ね合わせた融合画像データを求める融合ステップ、前記融合ステップで求めた融合画像データを所定の形式及び/又は所定の条件で表示する表示ステップを実行させるための脳画像データ処理プログラムである。
ここで、この発明の脳画像データ処理プログラムにおいて、前記解剖学的画像データ選択ステップ及び前記機能画像データ選択ステップにおける前記所定のフォーマットは、入力された脳領域における第1のフォーマットによる解剖学的画像データを変換し(た後、好適には記録部217に記録され)たフォーマットであり、且つ入力された脳領域における第2のフォーマットによる機能画像データを変換し(た後、好適には記録部217に記録され)たフォーマットであるものとすることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記解剖学的画像データ修正ステップにおける修正は、頭皮部及び/又は頸部の解剖学的画像データを除去することができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定量画像データの場合、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量及び/又は変化率をとることにより求めることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定性画像データの場合、該2つの機能画像データを所定の基準値に基づく機能画像データへ変換した後、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量及び/又は変化率をとることにより求めることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定性画像データの場合、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量をとることにより求めるものであり、前記表示ステップにおける前記所定の条件は、該所定の単位毎の変化量が該所定の単位毎の変化量の標準偏差より大きい場合を表示する対象とすることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記表示ステップの前記所定の形式は、前記融合ステップで求めた融合画像データが所定の断面軸方向にスライスされた複数の融合画像データを同時に表示する形式であるものとすることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記所定の断面軸方向は、横断面、矢状断面又は冠状断面の方向のいずれか1つ又は複数の方向であるものとすることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記表示ステップで同時に表示された前記複数の融合画像データの内、選択させた1つの融合画像データを拡大して表示する拡大表示ステップをさらに備えることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記拡大表示ステップで表示された融合画像データ上に所定の数及び所定の形状の関心領域を設定する関心領域設定ステップと、前記関心領域設定ステップで設定された関心領域に所定の操作を行なう関心領域操作ステップと、前記関心領域設定ステップで設定された関心領域及び/又は前記関心領域操作ステップで操作後の関心領域を記録部に記録する記録ステップとをさらに備えることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記所定の断面軸方向が横断面の方向と矢状断面又は冠状断面の方向とである場合、前記表示ステップで表示された横断面の方向の融合画像データを所定の角度範囲で回転させる回転ステップと、前記表示ステップで表示された矢状断面又は冠状断面の方向の融合画像データを前記回転ステップで回転させた角度に合わせて表示する修正表示ステップとをさらに備えることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記解剖学的画像データはMRI画像データ又はCT画像データであるものとすることができる。
ここで、この発明の脳画像データ処理プログラムにおいて、前記機能画像データはSPECT画像データ又はPET画像データであるものとすることができる。
この発明の記録媒体は本発明のいずれかの脳画像データ処理プログラムを記録したコンピュータ読取り可能な記録媒体である。
この発明の脳画像データ処理方法は、脳画像データの処理をコンピュータに行わせる脳画像データ処理方法であって、(好適には予め記録部217に記録された)所定のフォーマットの解剖学的画像データを1つ選択させる解剖学的画像データ選択ステップと、(好適には予め記録部217に記録された)前記所定のフォーマットの機能画像データを2つ選択させる機能画像データ選択ステップと、前記解剖学的画像データ選択ステップで選択させた解剖学的画像データの修正を行なう解剖学的画像データ修正ステップと、前記機能画像データ選択ステップで選択させた2つの機能画像データの差分画像データを求める機能画像データ差分ステップと、前記解剖学的画像データ修正ステップで修正した解剖学的画像データと前記機能画像データ選択ステップで選択させた2つの機能画像データの各々とを重ね合わせた融合画像データ、及び前記解剖学的画像データ修正ステップで修正した解剖学的画像データと前記機能画像データ差分ステップで求めた差分画像データとを重ね合わせた融合画像データを求める融合ステップと、前記融合ステップで求めた融合画像データを所定の形式及び/又は所定の条件で表示する表示ステップとを備えたことを特徴とする。
ここで、この発明の脳画像データ処理方法において、前記解剖学的画像データ選択ステップ及び前記機能画像データ選択ステップにおける前記所定のフォーマットは、入力された脳領域における第1のフォーマットによる解剖学的画像データを変換し(た後、好適には記録部217に記録され)たフォーマットであり、且つ入力された脳領域における第2のフォーマットによる機能画像データを変換し(た後、好適には記録部217に記録され)たフォーマットであるものとすることができる。
ここで、この発明の脳画像データ処理方法において、前記解剖学的画像データ修正ステップにおける修正は、頭皮部及び/又は頸部の解剖学的画像データを除去することができる。
ここで、この発明の脳画像データ処理方法において、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定量画像データの場合、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量及び/又は変化率をとることにより求めることができる。
ここで、この発明の脳画像データ処理方法において、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定性画像データの場合、該2つの機能画像データを所定の基準値に基づく機能画像データへ変換した後、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量及び/又は変化率をとることにより求めることができる。
ここで、この発明の脳画像データ処理方法において、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定性画像データの場合、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量をとることにより求めるものであり、前記表示ステップにおける前記所定の条件は、該所定の単位毎の変化量が該所定の単位毎の変化量の標準偏差より大きい場合を表示する対象とすることができる。
ここで、この発明の脳画像データ処理方法において、前記表示ステップは、前記融合ステップで求めた融合画像データを所定の断面軸方向にスライスした複数の融合画像データを同時に表示することができる。
ここで、この発明の脳画像データ処理方法において、前記所定の断面軸方向は、横断面、矢状断面又は冠状断面の方向のいずれか1つ又は複数の方向であるものとすることができる。
ここで、この発明の脳画像データ処理方法において、前記表示ステップで同時に表示された前記複数の融合画像データの内、選択させた1つの融合画像データを拡大して表示する拡大表示ステップをさらに備えることができる。
ここで、この発明の脳画像データ処理方法において、前記拡大表示ステップで表示された融合画像データ上に所定の数及び所定の形状の関心領域を設定する関心領域設定ステップと、前記関心領域設定ステップで設定された関心領域に所定の操作を行なう関心領域操作ステップと、前記関心領域設定ステップで設定された関心領域及び/又は前記関心領域操作ステップで操作後の関心領域を記録部に記録する記録ステップとをさらに備えることができる。
ここで、この発明の脳画像データ処理方法において、前記所定の断面軸方向が横断面の方向と矢状断面又は冠状断面の方向とである場合、前記表示ステップで表示された横断面の方向の融合画像データを所定の角度範囲で回転させる回転ステップと、前記表示ステップで表示された矢状断面又は冠状断面の方向の融合画像データを前記回転ステップで回転させた角度に合わせて表示する修正表示ステップとをさらに備えることができる。
ここで、この発明の脳画像データ処理方法において、前記解剖学的画像データはMRI画像データ又はCT画像データであるものとすることができる。
ここで、この発明の脳画像データ処理方法において、前記機能画像データはSPECT画像データ又はPET画像データであるものとすることができる。
本発明の脳画像データ処理プログラム等によれば、脳領域におけるDICOMフォーマットによるMRI画像データを入力させ、脳領域におけるDICOMフォーマットまたは医療機器メーカ独自のフォーマットによるSPECT画像データを入力させる。MRI画像データのDICOMフォーマットとSPECT画像データのDICOMフォーマット等を同じアナライズ・フォーマットへ変換する。アナライズ・フォーマットへ変換させたMRI画像データを1つ選択させる。アナライズ・フォーマットへ変換させたSPECT画像データを2つ選択させる。MRI画像データは適宜修正を行なっておく。選択させた2つのSPECT画像データの差分画像データを求める。修正したMRI画像データと選択させた2つのSPECT画像データの各々とを重ね合わせた融合画像データ、および修正したMRI画像データと差分画像データとを重ね合わせた融合画像データを求める。求めた融合画像データを所定の形式およびまたは所定の条件で表示する。以上により、脳の機能面に現れた症状を脳内の明確な位置的情報と共に表示することができる脳画像データ処理プログラム等を提供することができるという効果がある。
以下、本発明の実施例について図面を参照して詳細に説明する。
図1は、本発明の脳画像データ処理プログラムおよび方法の機能の流れをフローチャートで示す。図1ではまず全体の流れを説明し、細部については後述する。図1に示されるように、脳領域における第1のフォーマット(後述)による解剖学的画像データを入力させる(解剖学的画像データ入力ステップ。ステップS10)。脳領域における第2のフォーマット(後述)による機能画像データを入力させる(機能画像データ入力ステップ。ステップS12)。解剖学的画像データ入力ステップ(ステップS10)で入力させた解剖学的画像データの第1のフォーマットを所定のフォーマット(後述)へ変換する(第1フォーマット変換ステップ。ステップS14)。機能画像データ入力ステップ(ステップS12)で入力させた機能画像データの第2のフォーマットを上記所定のフォーマットへ変換する(第2フォーマット変換ステップ。ステップS16)。第1フォーマット変換ステップ(ステップS14)で上記所定のフォーマットへ変換させた解剖学的画像データを1つ選択させる(解剖学的画像データ選択ステップ。ステップS18)。第2フォーマット変換ステップ(ステップS16)で上記所定のフォーマットへ変換させた機能画像データを2つ選択させる(機能画像データ選択ステップ。ステップS20)。解剖学的画像データ選択ステップ(ステップS20)で選択させた解剖学的画像データの修正を行なう(解剖学的画像データ修正ステップ。ステップS22)。機能画像データ選択ステップ(ステップS20)で選択させた2つの機能画像データの差分画像データを求める(機能画像データ差分ステップ。ステップS24)。解剖学的画像データ修正ステップ(ステップS22)で修正した解剖学的画像データと機能画像データ選択ステップ(ステップS20)で選択させた2つの機能画像データの各々とを重ね合わせた融合画像データ、及び解剖学的画像データ修正ステップ(ステップS22)で修正した解剖学的画像データと機能画像データ差分ステップ(ステップS24)で求めた差分画像データとを重ね合わせた融合画像データを求める(融合ステップ。ステップS26)。融合ステップ(ステップS26)で求めた融合画像データを所定の形式及び/又は所定の条件で表示する(表示ステップ。ステップS28)。
上述の各ステップの内、解剖学的画像データ入力ステップ(ステップS10)から第2フォーマット変換ステップ(ステップS16)までは、予め所定のフォーマットへ各々変換され記録部217(後述)に記録された状態の解剖学的画像データと機能画像データとを用いることもできる。すなわち、本発明の脳画像処理データ処理プログラム等は、予め第1のフォーマットによる解剖学的画像データを入力した後、所定のフォーマットへ変換し記録部217に記録された状態の解剖学的画像データを解剖学的画像データ選択ステップ(ステップS18)で選択させ、予め第2のフォーマットによる機能画像データを入力した後、所定のフォーマットへ変換し記録部217に記録された状態の機能画像データを機能画像データ選択ステップ(ステップS20)で選択させることもできる。上述の各ステップの内、解剖学的画像データ入力ステップ(ステップS10)と機能画像データ入力ステップ(ステップS12)とは逆の順または並列に実行しても良い。同様にして、第1フォーマット変換ステップ(ステップS14)と第2フォーマット変換ステップ(ステップS16)とは逆の順または並列に実行しても良い。解剖学的画像データとしてはMRI画像データまたはCT画像データを用いることができ、機能画像データとしてはSPECT画像データまたはPET画像データを用いることができる。以下では、解剖学的画像データとしてMRI画像データを取り上げ、機能画像データとしてSPECT画像データを取り上げて説明するが、各々MRI画像データ、SPECT画像データに限定されるものではない。
次に、本発明の脳画像データ処理プログラム等におけるファイル・コンバータについて説明する。上述のように、MRI画像データは第1のフォーマットにより構成され、SPECT画像データは第2のフォーマットで構成されているため、上記ファイル・コンバータが両者を同一のフォーマット(所定のフォーマット)へ変換する。ここで、第1のフォーマットとしては例えば医用画像における標準と言われているDICOMフォーマットを用いることができる。第2のフォーマットとしてはDICOMフォーマットまたは医療機メーカ毎のフォーマットを用いることができる。
図2は、DICOMフォーマット形式10を示す。図2に示されるように、各レコード1等は、2バイトのグループ(Group)番号11、2バイトのエレメント(Elelment)番号12、2バイトのデータタイプ13、2バイトのデータ長14、データ長14で定義されたサイズのデータ15から構成されている。図2に例示されているように、グループ番号11とエレメント番号12との組が(0x0028、0x0010)の場合、データタイプ13はRows、つまりy軸方向のマトリックスサイズを示す。グループ番号11とエレメント番号12との組が(0x0028、0x0011)の場合、データタイプ13はColumns、つまりx軸方向のマトリックスサイズを示す。グループ番号11とエレメント番号12との組が(0x7FE0、0x0010)の場合、データタイプ13はPixel Data、つまり画像データを示す。画像データの構造は後述するアナライズ・フォーマット(所定のフォーマット)と同じである。
図3(A)はSPECT画像データのファイル形式を示し、図3(B)はMRI画像データのファイル形式を示す。図3(A)に示されるように、SPECT画像データでは各スライス(Slice)画像分のデータ25aないし25d等が1つのファイル26aないし26d等に記録されている。一方、図3(B)に示されるように、MRI画像データでは複数のスライス画像分のデータ20が1つのファイル21に記録されている。ファイル・コンバータはMRI画像データのファイル26aないし26d等を1つのファイルにすることができる。
次に、上記所定のフォーマットについて説明する。上記所定のフォーマットとしてはアナライズ(Analyze)・フォーマットを用いることができる。図4はアナライズ・フォーマットを説明するための3次元空間30を示す。図4に示されるような方向のx軸、y軸およびz軸で構成される3次元空間に、対象31が存在しているものとする。
図5はアナライズ・フォーマットを定義するプログラム40を例示する。プログラム40はc言語により記述されているが、他のプログラミング言語で記述してもよいことは勿論である。図5に示されるように、プログラム40は画像データファイル(*.img)41とヘッダーファイル(*.hdr)42とを定義しており、図4に示される各軸の定義は定義43に記述され、データ型dataはプログラム44により記述されている。
図6は画像データファイル41の構成を示す。図6に示されるように、x軸方向のデータ43xは図6上、左から右へ記録されている。これらx軸方向のデータ43xが図6上、上から下へ矢印のように繋がってy軸方向のデータ43y、すなわち1スライス分のデータを構成する。これら1スライス分のデータ43yが図6上、上から下へ記録されてz軸方向のデータ43z、すなわち全スライス分のデータを構成する。
図7はヘッダーファイル42の構成を示す。図7に示されるように、ヘッダーファイル42のデータアドレスの第0バイトからの2バイトはヘッダーファイル42のサイズ45を記録し、第42バイトからの6バイトは画像データのマトリックスサイズ46をx軸方向のマトリックスサイズ、y軸方向のマトリックスサイズ、z軸方向のマトリックスサイズの順に各々2バイトずつ記録し、第70バイトからの2バイトは画像データの型47を記録し、第78バイトからの6バイトは画像データのピクセルサイズ48をx軸方向のピクセルサイズ、y軸方向のピクセルサイズ、z軸方向のピクセルサイズの順に各々2バイトずつ記録し、第347バイトからの2バイトはファイルの終わり(EOF)49を記録している。以上のように、ヘッダーファイル42は348バイトで構成されている。
図8はMRI画像データにおける注意点を示す。図8に示されるように、MRI画像データでは、データ量削減等のためスライス1(51)、スライス2(52)およびスライス3(53)のようにギャップ(Gap)をあけて収集することがある。本発明の脳画像データ処理プログラム等においては、図8に示されるようにスライス厚54とギャップ厚55とを合わせた値をz軸方向のピクセルサイズ56として使用する。
以上、各ファイル形式について説明した。次に、DICOM形式(第1のフォーマット)により構成されたMRI画像データと、DICOM形式等(第2のフォーマット)により構成されたSPECT画像データをアナライズ・フォーマット(所定のフォーマット)へ変換するファイル・コンバータの操作面について説明する。図9は本発明の脳画像データ処理プログラムにおけるファイル・コンバータの操作画面60を示す。図9において、符号61は対象となるデータを指定する入力ファイル(Input File)欄であり、ドライブfが選択され、フォルダF:¥/Temp/Analyze/SE2が選択されている状態を示す。符号62は入力ファイル内のフォルダの下に示されるデータ選択BOX75内の全データを処理対象として指定するSelect Allボタンであり、指定された全データが反転されて示されている。符号63はデータ選択BOX75内に表示されたデータを絞り込むためのInput Fileボックスであり、例えば「*.dcm」と入力した場合、拡張子がdcmのデータのみ表示する。符号64はInput File欄61で選択したデータをSelected File65(後述)に追加する選択ボタンである。符号65は現在選択されているファイルの一覧を表示するSelected File欄である。符号66はSelected File欄65に表示されているデータを一覧からすべて消去するAll Clearボタンと、Selected File欄65で選択されている(反転している)データを一覧から消去するClearボタンである。符号67はSelected File欄65に表示されているデータに対してconvert処理(上述のフォーマット変換)を実行するためのConvertボタンである。符号68はフォーマット変換後のデータの保存先を指定するOutput File欄である。Output File欄68はInput File欄61と連動しているため、初期設定ではInput File欄61と同様に表示されているが、任意に変更することができる。符号69はOutput File欄68で開いているフォルダ内に新しいフォルダを作成するためのNew Folder欄である。符号70はOutput File欄68で選択したファイルをテキストボックス(右側)に入力した名称に変更するためのRename欄である。符号71はOutput File欄68に表示するファイルを絞り込むためのOutput Filterボックスである。デフォルトでは拡張子が「*.img」のファイルをすべて表示するように設定してある。符号76はSelected File欄65に表示されているデータのヘッダー情報を自動的に読み込み、各パラメータをパラメータ欄80等(後述)に表示するAuto Modeを示すMode欄である。符号77は対象データのモダリティ(SPECTまたはMRI)またはモード(上述のAuto ModeまたはManual Mode)を選択するためのOption欄である。図9で点線で囲まれたExportボタン72、パラメータ欄80、パラメータ欄90およびDirection欄100については以下で説明する。
図10は操作画面60のExportボタン72について示す。図10に示されるように、Exportボタン72をクリックするとPatient Info欄73が現れる。ここでPatient Info欄73にチェックを付けると、患者名、患者ID、検査日、年齢、性別等の情報が記載されているTextファイルを作成することができる。
図11は操作画面60のパラメータ欄80を示す。図11に示されるように、パラメータ欄80は患者情報を入力するための欄であり、病院名(Hp name)欄81、患者名(Pat Name)欄82、患者ID(Pat ID)欄83、性別(Sex)欄84、年齢(Age)欄85および検査日時(Study Date)欄86から構成されている。
図12は操作画面60のパラメータ欄90を示す。図12に示されるように、符号92はAuto Modeの場合に対象データのフォーマットを確認するためのData欄である。符号93は対象データのヘッダーサイズ、各画像についているヘッダーサイズおよびフッターサイズをバイト単位で設定するためのFile Header/Inage Header/Image Footer欄である。符号94は対象データのマトリックスサイズを指定するMatrix SizeX/Y欄である。符号95は処理する枚数分を指定するためのSlices欄、96は画像処理装置がパーソナルコンピュータであるどうか等に応じて対象データのバイト順を選択するByte Sequence欄、97は対象データの1ピクセルにおける値の持ち方を選択するためのData Type欄、98は対象データの各ピクセルサイズを指定するPixel Size X/Y/Z欄、99はリファレンス画像が最後に入っている場合、その部分を削除するためのDelete last slide欄である。
図13は操作画面60のDirection欄100を示す。Direction欄100はOption欄77でモダリティがMRIを選択した場合に表示される。図13に示されるように、対象データがAxial、SagittalまたはCoronalかどうかに応じて、各々上段101、中段102、下段103をチェックする。これにより、スライス方向の変更(データ向きの切りなおし)を行なうことができる。例えば、MRI画像がSagittalまたはCoronalの場合、Direction欄100でAxialへ変更することができる。
次に、本発明の脳画像データ処理プログラム等におけるMRI画像およびSPECT画像の選択について説明する。図14は本発明の脳画像データ処理プログラムにおけるデータ選択顔面110を示す。データ選択画面110ではMRI画像とSPECT画像1つとを選択することができる。図14において、符号112はバックグランドとなるMRI画像データを選択する場合にチェックするチェック欄、113は選択するMRI画像データが存在する画像データファイル41を入力する入力欄、114はSPECT画像を選択するための選択ボタン、115は選択ボタン114により選択するSPECT画像データが存在する画像データファイル41を入力する入力欄、118は画像データファイル41が定量画像であるか定性画像(後述)を選択するための画像ボタン、111はMRI画像とSPECT画像1つとが選択された場合に可能な融合(Fusion)処理(後述)を示すFusion欄である。
図15は本発明の脳画像データ処理プログラムにおけるデータ選択顔面120を示す。データ選択画面120ではSPECT画像2つを選択することができる。図15で図14と同じ符号を付した箇所は同じ要素を示すため、説明は省略する。図15において、符号116はSPECT画像(選択ボタン114で選択された画像Bより前に撮像された画像A)を選択するための選択ボタン、117は選択ボタン116により選択するSPECT画像データが存在する画像データファイル41を入力する入力欄、119はバックグランドに画像Aまた画像BのいずれのSPECT画像を表示するかを選択するバックグランドボタン、122は2つのSPECT画像が選択された場合に可能な差分(Subtraction)処理(後述)を示すSubtraction欄、121は変化率(%)または変化量(SUB)のいずれの結果を表示するかを選択するRESULTボタンである。
図16は本発明の脳画像データ処理プログラムにおけるデータ選択顔面130を示す。データ選択画面130ではすべての選択、すなわちMRI画像とSPECT画像2つとを選択することができる。図16で図14および15と同じ符号を付した箇所は同じ要素を示すため、説明は省略する。図16に示されるように、RESULTボタン121にはSPECT画像Aとの融合処理またはSPECT画像Bとの融合処理を表示するボタンが追加されている。データ選択顔面130ではバックグランドとして入力欄113で示されるMRI画像が使用される。
次に、本発明の脳画像データ処理プログラム等におけるMRI画像の修正について説明する。一般に、MRI画像とSPECT画像とは別々の撮像装置により撮像されている。従って、両画像の位置がずれてしまうことが多い。このため、従来より両画像の位置あわせが行なわれている。本発明の脳画像データ処理プログラムにおいては、従来技術より精度の高い位置合わせを行なっている。例えば、MRI画像では頭皮が表示されているのに対し、SPECT画像では薬剤が頭皮には入っていかないため、頭皮は表示されていない。そこで、本発明の脳画像データ処理プログラムにおいては、従来技術である灰白質、白質および水(脳脊髄液)を見分けるセグメンテーション法を用いることにより、解剖学的画像データ修正ステップ(ステップs22)において、頭皮部の解剖学的画像データを除去している。この結果、MRI画像にはSPECT画像と合った部分が残るため、精度の高い位置合わせを行なうことができる。さらに、一般にスライス画像は頸部まで撮像されることが多いが、SPECT画像では頸部は表示されていない。そこで、本発明の脳画像データ処理プログラムにおいては、頭頂部から約18cmまで残しておき、18cm以上のデータは頸部のデータであるものとして除去している。この結果、MRI画像にはSPECT画像と合った部分が残るため、精度の高い位置合わせを行なうことができる。以上のように、不要な部分を除去することによりデータ量を減らすこともできる。
次に、本発明の脳画像データ処理プログラム等における差分画像データを求める処理について説明する。差分画像データを求める処理の対象となるSPECT画像には定性画像および定量画像がある。定性画像では画素(ピクセル)値は実際にカウントされたカウント値等を示しているため、投与された薬剤等が多ければそれに応じて画素値も大きくなる。さらに、対象を撮像した時間が長いほどそれに応じて画素値も大きくなる。従って、画素値自体にはあまり意味はない。一方、定量画像では画素値は実際にカウントされたカウント値等を所望の単位、例えば流量(ml/100g/min)に変換した値を示している。従って、画素値には例えば流量として意味があることになる。
そこで、上述のデータ選択画面120または130で選択された2つのSPECT画像データが定量画像データの場合、機能画像データ差分ステップ(ステップS24)における差分画像データは、後に撮像されたSPECT画像データBと前に撮像されたSPECT画像データBとの間の所定の単位(ピクセルまたはボクセル)毎の変化量および/または変化率をとることにより求めることができる。ここで、変化量はピクセル毎にSPECT画像データB−SPECT画像データAを用いることができる。変化率は、ピクセル毎に、(SPECT画像データB−SPECT画像データA)/SPECT画像データAを用いることができる。差分画像データの色付けは、例えば流量の正常値がピクセル単位で50ないし80カウントの場合、正常値より流量が多い場合には赤色、正常値より流量が少ない場合には青色、流量がない場合は黒色等のようにすることができる。
一方、上述のデータ選択画面120または130で選択された2つのSPECT画像データが定性画像データの場合、機能画像データ差分ステップ(ステップS24)における差分画像データは、2つのSPECT画像データを所定の基準値(対象データの脳内における平均値等)に基づくSPECT画像データへ変換した後、後に撮像されたSPECT画像データBと前に撮像されたSPECT画像データBとの間の所定の単位毎の変化量および/または変化率をとることにより求めることができる。変化量、変化率は上述と同様にして求めることができる。定性画像データの場合、上述のように画素値は投与された薬剤等または対象の撮像時間に応じて大きくなる。そこで、実際の画素値を所定の基準値(対象データの脳内における平均値等)に合わせる。例えば、実際の画素値の平均値が120であり、対象データの脳内における平均値が50である場合、実際の画素値から70(=120−50)引く。これをSPECT画像データAおよびBの両者に対して予め行なっておく。この後、SPECT画像データBとSPECT画像データBとの間の所定の単位毎の変化量および/または変化率をとる。色付けは対象データの脳内における平均値を基準として、基準値より流量が多い場合には赤色、基準値より流量が少ない場合には青色、流量がない場合は黒色等のようにすることができる。従来の定性画像における色付けは、最大画素値がどれだけの値になるのか予め予測することができなかったため、最大画素値を基準とし、その何%である場合には何色というように行なわれていた。しかし、上述のような本発明の差分画像データ処理を用いれば、定性画像であっても定量画像と同様の色付けを行なうことができる。
次に、本発明の脳画像データ処理プログラム等における融合処理について説明する。融合ステップ(ステップS26)では、解剖学的画像データ修正ステップ(ステップS22)で修正したMRI画像データと機能画像データ選択ステップ(ステップS20)で選択させた2つのSPECT画像データAおよびBの各々とを重ね合わせた(スーパーインポーズ:superimpose)融合画像データを求める。すなわち、データ選択画面130で選択した修正したMRI画像とSPECT画像Aとを重ね合わせた融合画像と、データ選択画面130で選択した修正したMRI画像とSPECT画像Bとを重ね合わせた融合画像とを各々求めることができる。さらに、修正したMRI解剖学的画像データと機能画像データ差分ステップ(ステップS24)で求めた差分画像データとを重ね合わせた融合画像データを求めることができる。
図17は本発明の脳画像データ処理プログラム等における融合処理の実例(脳室拡大)を示す。図17では3行×3列の脳画像が示されており、第1行(上段の行)がMRI画像、第2行(中段の行)が第1行のMRI画像に対応するSPECT画像、第3行(下段の行)が第1行のMRI画像と第2行のSPECT画像とを融合した融合画像である。第1ないし第3列は脳のスライス位置が異なっている。図17に示されるように、MRI画像とSEPCT画像とは精度良く重ね合わさっていることがわかる。
図18は本発明の脳画像データ処理プログラム等における融合処理の実例(半球萎縮)を示す。図18でも3行×3列の脳画像が示されており、第1行がMRI画像、第2行が第1行のMRI画像に対応するSPECT画像、第3行が第1行のMRI画像と第2行のSPECT画像とを融合した融合画像である。第1ないし第3列は脳のスライス位置が異なっている。図18に示されるように、MRI画像とSEPCT画像とは精度良く重ね合わさっていることがわかる。
図19は本発明の脳画像データ処理プログラム等における融合処理の実例(脳血管障害)を示す。図19(A)および(B)では各々2行×2列の脳画像(融合画像)が示されており、図19(C)では左右2つの脳画像(融合画像)が示されている。図19(A)は治療前の状態を示し、第1行は安静時、第2行はDIAMOX負荷時の融合画像を示す。第1と第2列とは脳のスライス位置が異なっている。図19(B)は左STA−MCA吻合合術後の状態を示し、第1行は安静時、第2行はDIAMOX負荷時の融合画像を示す。図19(B)の第1列および第2列のスライス位置は図19(A)の第1列および第2列と対応するスライス位置である。図19(C)は図19(A)と(B)との差分処理(治療後の変化量)を行った結果の融合画像を示す。図19(C)の左右のスライス位置は図19(A)の第1列および第2列と対応するスライス位置である。図19に示されるように、MRI画像とSEPCT画像とは精度良く重ね合わさっていることがわかる。
図20(A)ないし(C)は本発明の脳画像データ処理プログラム等における融合処理の実例を示す。図20(A)は定性画像を示し、2行×3列のSPECT画像が示されている。第1行と第2行とでは撮像した日時が異なっており、第1行が第2行より前となっている。第1列ないし第3列は撮像された脳の断面位置が異なっている。図20(B)は定量画像を示し、2行×3列のSPECT画像が示されている。画素値は血流量(ml/100g/min)を示す。第1行および第2行の撮像日時は図20(A)の第1行および第2行の撮像日時と同じである。第1列ないし第3列は図20(A)の第1列ないし第3列の脳の断面位置と同じである。図20(C)は上記2つの撮像日時で示される治療前後の差分処理を行った結果の融合画像を示す。第1列ないし第3列は図20(A)の第1列ないし第3列の脳の断面位置と同じである。図20(A)ないし(C)に示されるように、脳全体での血流量が増加したこと、特に前頭葉における血流量が増加したことが定量画像によりよくわかる。
本発明の脳画像データ処理プログラム等では、差分処理を行う前に、2つのSPECT画像を揃えるためのいわゆるレジストレーション(Registration)処理を行っている。図21は、レジストレーション処理で用いられる6つのパラメータについ説明する図である。図21において、脳141はX軸、Y軸およびZ軸で示される3次元空間にある。この脳141の画像を揃えるために、X方向の平行移動dx、Y方向の平行移動dy、Z方向の平行移動dzの3方向のベクトルに加えて、X軸の周りの回転dθx、Y軸の周りの回転dθy、Z軸の周りの回転dθという3つの回転成分を有する6つのパラメータを用いている。
図22はレジストレーション処理の流れを示す。図22に示されるように、SPECT画像(B)151に上述の6つのパラメータを用いて回転/平行移動を行なう(ステップS30)。この結果を、ターゲット画像(target image)のSPECT画像(A)153および参照画像(reference imag)のMRI画像152を用いて評価する(ステップS32)。評価の結果、所定の収束条件を満たしているかどうか判定し(ステップS34)、収束していると判定された場合は照合した融合画像(Matched Image)154を得て、レジストレーションは終了する。一方、収束していると判定されなかった場合は6つのパラメータの更新を行なって(ステップS36)、ステップS30から繰返す(ステップS38)。
上述の評価(ステップS32)では所望の評価基準を用いて行なうことができる。ここでは、評価関数としてRIU(Ratio Image Uniformity)を用いた場合について説明する。これは、MRI画像上のある画素値を持つすべての画素は同じ組織(partition)であり、それに対応するSPECT、PET等の画素は、ほぼ同じ画素値を持つであろうという考え方に依拠するものである。すなわち、MRI画像の各組織に対応するSPECT、PET等の画素値の均一性を最大にする、つまり標準偏差の重み付け平均を最小にするというものである。図23はRIUの処理の流れを示す。図23に示されるように、MRI画像161上で画素値jの画素に対応するSPECT、PET画像162上の画素値をaijとする(ステップS40)。次に、aijのすべての画素iについての平均aj’を求める(ステップS42)。aijのすべての画素iについての標準偏差σjを求める(ステップS44)。σj’としてσj/aj’を求める(ステップS46)。以下の式(1)で求められるσj’’を最小化する(ステップS48)。
σj’’= Σjσj’× nj/N (1)
njはMRI画像161上での画素値jの画素数。N=Σjnj。
好適には、MRI画像161を8ビット画像にして、上記jの範囲を0から255等にする。
次に、本発明の脳画像データ処理プログラム等における表示処理について説明する。表示ステップ(ステップS28)の所定の形式は、融合ステップ(ステップS26)で求めた融合画像データが所定の断面軸方向にスライスされた複数の融合画像データを同時に表示する形式とすることができる。所定の断面軸方向としては、横断面(axial)、矢状断面(sagittal)または冠状断面(coronal)の方向のいずれか1つまたは複数の方向とすることができる。図24(A)ないし(C)は表示ステップ(ステップS28)における実際の表示例を示す。図24(A)は、融合画像データが横断面の方向にスライスされた複数の融合画像データとして同時に表示された例(マルチスライス)を示す。図24(A)では5行×6列のマルチスライスが表示されており、第5行第6列(右下)が頭頂部のスライスであって左列、上行へ進むに従って頸部へ近づいていくように表示されている。この並び方の順は任意に設定することができる。1つの画面上に横断面、矢状断面または冠状断面の方向のいずれか1つまたは複数の方向でスライスした画像を複数のウィンドウで重ねて表示することもできる。図24(B)は差分処理(変化量)を行った結果の実際の表示例を示し、図24(C)差分処理(変化率)を行った結果の実際の表示例を示す。図24(B)および(C)の上段の左側から、各々脳の下面(Inferior)、右側面(R-lateral)、後面(Posterior)、左内側面(L-medial)の表示を示し、図24(B)の下段の左側から、各々脳の上面(Superior)、左側面(L-lateral)、前面(Anterior)、右内側面(R-medial)の表示を示す。
上述の表示ステップ(ステップS28)では融合画像の画素をすべて表示することを暗黙の前提としたが、例えば差分処理を行った結果、差が元の画素値と比較して所望の割合以下である場合は表示しないようにしてもよい。この結果、所望の割合以上の変化があった箇所のみ見ることができる。あるいは、所望の大きさ(広がり)を有する画素を表示するようにしてもよい。この結果、いわゆるノイズを表示させないようにすることもできる。
図25は本発明の脳画像データ処理プログラムにおける操作画面170を示す図である。細部についての説明は省略するが、従来技術にない新規な特徴として患者IDの入力欄171を設けた点があげられる。
本発明の脳画像データ処理プログラムでは、表示ステップ(ステップS28)で同時に表示された複数の融合画像データの内、選択させた1つの融合画像データを拡大して表示する拡大表示ステップをさらに備えることができる。例えば、図24(A)のマルチスライス表示された融合画像の内、所望の融合画像をダブルクリックすることにより、当該画像を拡大表示することができる。図26は1つの融合画像データを拡大して表示する実際の例を示す。この結果、見たいスライスのみを拡大してより詳細に見ることができる。
本発明の脳画像データ処理プログラムでは、上述の拡大表示ステップで表示された融合画像データ上に所定の数および所定の形状の関心領域(Region of Interest : ROI)を設定することができる(関心領域設定ステップ)。関心領域設定ステップで設定されたROIに所定の操作を行なうことができる(関心領域操作ステップ)。さらに、関心領域設定ステップで設定されたROIおよび/または関心領域操作ステップで操作後のROIを記録部217(後述)に記録することもできる(記録ステップ)。図27はROIが設定された操作画面190を示す。図27において、符号191ないし196は設定されたROIであり、1つのスライスについて左右3つずつ、計6つのROIを設定した例を示す。ROI191および192は四角形、ROI193および194は円形、ROI195および196は任意形状である。設定されるROIの数は6つに限定されるものではなく、その形状は任意の形状である。関心領域操作ステップにおける操作としては、移動、ミラー(反転)、削除等があげられるが、これらの操作に限定されるものではない。設定したROIの保存は自動的に行なわれるが、保存するROIを指定することもできる。
本発明の脳画像データ処理プログラムでは、上述した所定の断面軸方向が横断面の方向と矢状断面または冠状断面の方向とである場合、表示ステップ(ステップS28)で表示された横断面の方向の融合画像データを所定の角度範囲で回転させることができる(回転ステップ)。さらに、表示ステップ(ステップS28)で表示された矢状断面または冠状断面の方向の融合画像データを回転ステップで回転させた角度に合わせて表示することもできる(修正表示ステップ)。図28は修正表示ステップにおける操作画面200を示す。図28における融合画像201は直線210で示されるように傾いている。修正表示ステップにより、融合画像201を回転させて融合画像202のように修正することができる。この横断面のスライスの回転に合わせて、矢状断面または冠状断面の方向の融合画像203を回転ステップで回転させた角度に合わせて融合画像204として表示することもできる。回転後の融合画像の保存も行なうことができる。
以上説明したように、本発明の実施例1によれば、脳領域におけるDICOMフォーマットによるMRI画像データを入力させ、脳領域におけるDICOMフォーマットまたは医療機器メーカ独自のフォーマットによるSPECT画像データを入力させる。MRI画像データのDICOMフォーマットとSPECT画像データのDICOMフォーマット等を同じアナライズ・フォーマットへ変換する。アナライズ・フォーマットへ変換させたMRI画像データを1つ選択させる。アナライズ・フォーマットへ変換させたSPECT画像データを2つ選択させる。MRI画像データは適宜修正を行なっておく。選択させた2つのSPECT画像データの差分画像データを求める。修正したMRI画像データと選択させた2つのSPECT画像データの各々とを重ね合わせた融合画像データ、および修正したMRI画像データと差分画像データとを重ね合わせた融合画像データを求める。求めた融合画像データを所定の形式およびまたは所定の条件で表示する。以上により、脳の機能面に現れた症状を脳内の明確な位置的情報と共に表示することができる脳画像データ処理プログラム等を提供することができる。
本発明の脳画像データ処理プログラム等において、2つのSPECT画像データが定性画像データの場合、実施例1における機能画像データ差分ステップ(ステップS24)における差分画像データは、実施例1と同様に後に撮像されたSPECT画像データBと前に撮像されたSPECT画像データAとの間の画素毎の変化量をとることにより求めておく。しかし、表示ステップ(ステップ28)における所定の条件は、画素毎の変化量が画素毎の変化量の標準偏差より大きい場合を表示する対象とすることができる。すなわち、標準偏差より大きい画素のみを表示し、小さい画素は表示させないようにすることもできる。この結果、特定の症状(例えば癲癇)に特化した場合に、特定の症状に合わせて効率よく表示することができる。
図29は、本発明のコンピュータ・プログラムを実行するコンピュータの内部回路210を示すブロック図である。図29に示されるように、CPU211、ROM212、RAM213、画像制御部216、コントローラ218、入力制御部220および外部インタフェース(Interface : I/F)部221はバス222に接続されている。図29において、上述の本発明のコンピュータ・プログラムは、ROM212、ディスク216aまたはCD−ROM216n等の記録媒体(脱着可能な記録媒体を含む)に記録されている。このコンピュータ・プログラムは、ROM212からバス222を介し、またはディスク216a若しくはCD−ROM216n等の記録媒体からコントローラ218を経由してバス222を介しRAM213へロードされる。画像制御部216は脳画像データをVRAM215へ送出し、表示部214はVRAM215から送出された脳画像データに基づいて脳画像を表示するディスプレイ等の表示装置である。VRAM215は表示部214の一画面分のデータ容量に相当する容量を有している画像メモリである。入力操作部219はコンピュータに入力を行うためのマウス、テンキー等の入力装置であり、入力制御部220は入力操作部219と接続され入力制御等を行う。外部I/F部221は、例えばインターネット等の外部の通信網(不図示)と接続する際のインタフェース機能を有している。
上述のようにCPU211が本発明のコンピュータ・プログラムを実行することにより、本発明の目的を達成することができる。当該コンピュータ・プログラムは上述のようにCD−ROM216n等の記録媒体の形態でコンピュータCPU211に供給することができ、当該コンピュータ・プログラムを記録したCD−ROM216n等の記録媒体も同様に本発明を構成することになる。当該コンピュータ・プログラムを記録した記録媒体としては上述された記録媒体の他に、例えばメモリ・カード、メモリ・スティック、DVD、光ディスク、FD等を用いることができる。
本発明の活用例として、脳血流定量値の変化の表示等に適用することができる。
本発明の脳画像データ処理プログラムおよび方法の機能の流れを示すフローチャートである。 DICOMフォーマット形式を示す図である。 SPECT画像データのファイル形式を示す図である。 MRI画像データのファイル形式を示す図である。 アナライズ・フォーマットを説明するための3次元空間を示す図である。 アナライズ・フォーマットを定義するプログラム40を例示する図である。 画像データファイル41の構成を示す図である。 ヘッダーファイル42の構成を示す図である。 MRI画像データにおける注意点を示す図である。 本発明の脳画像データ処理プログラムにおけるファイル・コンバータの操作画面60を示す図である。 操作画面60のExport72について示す図である。 操作画面60のパラメータ欄80を示す図である。 操作画面60のパラメータ欄90を示す図である。 操作画面60のDirection欄100を示す図である。 本発明の脳画像データ処理プログラムにおけるデータ選択顔面を示す図である。 本発明の脳画像データ処理プログラムにおけるデータ選択顔面120を示す図である。 本発明の脳画像データ処理プログラムにおけるデータ選択顔面130を示す図である。 本発明の脳画像データ処理プログラム等における融合処理の実例(脳室拡大)を示す図である。 本発明の脳画像データ処理プログラム等における融合処理の実例(半球萎縮)を示す図である。 本発明の脳画像データ処理プログラム等における融合処理の実例(脳血管障害)を示す図である。 本発明の脳画像データ処理プログラム等における融合処理の実例を示す図である。 本発明の脳画像データ処理プログラム等における融合処理の実例を示す図である。 本発明の脳画像データ処理プログラム等における融合処理の実例を示す図である。 レジストレーション処理で用いられる6つのパラメータについ説明する図である。 レジストレーション処理の流れを示す図である。 RIUの処理の流れを示す図である。 表示ステップ(ステップS28)における実際の表示例を示す図である。 表示ステップ(ステップS28)における実際の表示例を示す図である。 表示ステップ(ステップS28)における実際の表示例を示す図である。 本発明の脳画像データ処理プログラムにおける操作画面170を示す図である。 1つの融合画像データを拡大して表示する実際の例を示す図である。 ROIが設定された操作画面190を示す図である。 修正表示ステップにおける操作画面200を示す図である。 本発明のコンピュータ・プログラムを実行するコンピュータの内部回路210を示すブロック図である。
符号の説明
10 DICOMフォーマット形式、 11 グループ番号、 12 エレメント番号、 13 データタイプ、 14 データ長、 15 データ、 20 複数のスライス画像分のデータ、 21、26a、26d ファイル、 25a、25d 1枚のスライス画像分のデータ、 30 3次元空間、 31 対象、 40、44 プログラム、 41 画像データファイル、 42 ヘッダーファイル、 43 定義、 43x x軸方向のデータ、 43y y軸方向のデータ、 43z z軸方向のデータ、 45 ヘッダーファイルのサイズ、 46 画像データのマトリクスサイズ、 47 画像データの型、 48 画像データのピクセルサイズ、 49 EOF、 51、52、53 スライス、 54 スライス厚、 55 ギャップ厚、 60 操作画面、 61、65、68、69、70、73、76、77、80、81、82、83、84、85、86、90、92、93、94、95、96、97、98、99、100、111、112、113、115、117、122、171 欄、 62、64、66、67、72、114、116、118、119、121 ボタン、 63、71 ボックス、 101、102,103 段、 110、120 データ選択画面、 141
脳、 151、153、162 SPECT画像、 152、161 MRI画像、 154、201、202、203、204 融合画像、 170、190 操作画面、 191、192、193、194、195、196 ROI、 210 直線、 210 内部回路、 211 CPU、 212 ROM、 213 RAM、 215 VRAM、 216 画像制御部、 216a ディスク、 216n CD−ROM、 217 記録部、 218 コントローラ、 219 入力操作部、 220 入力制御部、 221 外部I/F部、 222 バス。

Claims (27)

  1. 脳画像データの処理をコンピュータに実行させるための脳画像データ処理プログラムであって、コンピュータに、
    所定のフォーマットの解剖学的画像データを1つ選択させる解剖学的画像データ選択ステップ、
    前記所定のフォーマットの機能画像データを2つ選択させる機能画像データ選択ステップ、
    前記解剖学的画像データ選択ステップで選択させた解剖学的画像データの修正を行なう解剖学的画像データ修正ステップ、
    前記機能画像データ選択ステップで選択させた2つの機能画像データの差分画像データを求める機能画像データ差分ステップ、
    前記解剖学的画像データ修正ステップで修正した解剖学的画像データと前記機能画像データ選択ステップで選択させた2つの機能画像データの各々とを重ね合わせた融合画像データ、及び前記解剖学的画像データ修正ステップで修正した解剖学的画像データと前記機能画像データ差分ステップで求めた差分画像データとを重ね合わせた融合画像データを求める融合ステップ、
    前記融合ステップで求めた融合画像データを所定の形式及び/又は所定の条件で表示する表示ステップを実行させるための脳画像データ処理プログラム。
  2. 請求項1記載の脳画像データ処理プログラムにおいて、
    前記解剖学的画像データ選択ステップ及び前記機能画像データ選択ステップにおける前記所定のフォーマットは、入力された脳領域における第1のフォーマットによる解剖学的画像データを変換したフォーマットであり、且つ入力された脳領域における第2のフォーマットによる機能画像データを変換したフォーマットであることを特徴とする脳画像データ処理プログラム。
  3. 請求項1又は2記載の脳画像データ処理プログラムにおいて、前記解剖学的画像データ修正ステップにおける修正は、頭皮部及び/又は頸部の解剖学的画像データを除去することを特徴とする脳画像データ処理プログラム。
  4. 請求項1ないし3のいずれかに記載の脳画像データ処理プログラムにおいて、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定量画像データの場合、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量及び/又は変化率をとることにより求めることを特徴とする脳画像データ処理プログラム。
  5. 請求項1ないし3のいずれかに記載の脳画像データ処理プログラムにおいて、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定性画像データの場合、該2つの機能画像データを所定の基準値に基づく機能画像データへ変換した後、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量及び/又は変化率をとることにより求めることを特徴とする脳画像データ処理プログラム。
  6. 請求項1ないし3のいずれかに記載の脳画像データ処理プログラムにおいて、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定性画像データの場合、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量をとることにより求めるものであり、前記表示ステップにおける前記所定の条件は、該所定の単位毎の変化量が該所定の単位毎の変化量の標準偏差より大きい場合を表示する対象とすることを特徴とする脳画像データ処理プログラム。
  7. 請求項1ないし6のいずれかに記載の脳画像データ処理プログラムにおいて、前記表示ステップの前記所定の形式は、前記融合ステップで求めた融合画像データが所定の断面軸方向にスライスされた複数の融合画像データを同時に表示する形式であることを特徴とする脳画像データ処理プログラム。
  8. 請求項7記載の脳画像データ処理プログラムにおいて、前記所定の断面軸方向は、横断面、矢状断面又は冠状断面の方向のいずれか1つ又は複数の方向であることを特徴とする脳画像データ処理プログラム。
  9. 請求項7又は8記載の脳画像データ処理プログラムにおいて、前記表示ステップで同時に表示された前記複数の融合画像データの内、選択させた1つの融合画像データを拡大して表示する拡大表示ステップをさらに備えたことを特徴とする脳画像データ処理プログラム。
  10. 請求項9記載の脳画像データ処理プログラムにおいて、
    前記拡大表示ステップで表示された融合画像データ上に所定の数及び所定の形状の関心領域を設定する関心領域設定ステップと、
    前記関心領域設定ステップで設定された関心領域に所定の操作を行なう関心領域操作ステップと、
    前記関心領域設定ステップで設定された関心領域及び/又は前記関心領域操作ステップで操作後の関心領域を記録部に記録する記録ステップとをさらに備えたことを特徴とする脳画像データ処理プログラム。
  11. 請求項8記載の脳画像データ処理プログラムにおいて、前記所定の断面軸方向が横断面の方向と矢状断面又は冠状断面の方向とである場合、
    前記表示ステップで表示された横断面の方向の融合画像データを所定の角度範囲で回転させる回転ステップと、
    前記表示ステップで表示された矢状断面又は冠状断面の方向の融合画像データを前記回転ステップで回転させた角度に合わせて表示する修正表示ステップとをさらに備えたことを特徴とする脳画像データ処理プログラム。
  12. 請求項1ないし11のいずれかに記載の脳画像データ処理プログラムにおいて、前記解剖学的画像データはMRI画像データ又はCT画像データであることを特徴とする脳画像データ処理プログラム。
  13. 請求項1ないし12のいずれかに記載の脳画像データ処理プログラムにおいて、前記機能画像データはSPECT画像データ又はPET画像データであることを特徴とする脳画像データ処理プログラム。
  14. 請求項1ないし13のいずれかに記載の脳画像データ処理プログラムを記録したコンピュータ読取り可能な記録媒体。
  15. 脳画像データの処理をコンピュータに行わせる脳画像データ処理方法であって、
    所定のフォーマットの解剖学的画像データを1つ選択させる解剖学的画像データ選択ステップと、
    前記所定のフォーマットの機能画像データを2つ選択させる機能画像データ選択ステップと、
    前記解剖学的画像データ選択ステップで選択させた解剖学的画像データの修正を行なう解剖学的画像データ修正ステップと、
    前記機能画像データ選択ステップで選択させた2つの機能画像データの差分画像データを求める機能画像データ差分ステップと、
    前記解剖学的画像データ修正ステップで修正した解剖学的画像データと前記機能画像データ選択ステップで選択させた2つの機能画像データの各々とを重ね合わせた融合画像データ、及び前記解剖学的画像データ修正ステップで修正した解剖学的画像データと前記機能画像データ差分ステップで求めた差分画像データとを重ね合わせた融合画像データを求める融合ステップと、
    前記融合ステップで求めた融合画像データを所定の形式及び/又は所定の条件で表示する表示ステップとを備えたことを特徴とする脳画像データ処理方法。
  16. 請求項15記載の脳画像データ処理方法において、
    前記解剖学的画像データ選択ステップ及び前記機能画像データ選択ステップにおける前記所定のフォーマットは、入力された脳領域における第1のフォーマットによる解剖学的画像データを変換したフォーマットであり、且つ入力された脳領域における第2のフォーマットによる機能画像データを変換したフォーマットであることを特徴とする脳画像データ処理方法。
  17. 請求項15又は16記載の脳画像データ処理方法において、前記解剖学的画像データ修正ステップにおける修正は、頭皮部及び/又は頸部の解剖学的画像データを除去することを特徴とする脳画像データ処理方法。
  18. 請求項15ないし17のいずれかに記載の脳画像データ処理方法において、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定量画像データの場合、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量及び/又は変化率をとることにより求めることを特徴とする脳画像データ処理方法。
  19. 請求項15ないし17のいずれかに記載の脳画像データ処理方法において、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定性画像データの場合、該2つの機能画像データを所定の基準値に基づく機能画像データへ変換した後、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量及び/又は変化率をとることにより求めることを特徴とする脳画像データ処理方法。
  20. 請求項15ないし17のいずれかに記載の脳画像データ処理方法において、前記機能画像データ差分ステップにおける差分画像データは、前記2つの機能画像データが定性画像データの場合、後に撮像された機能画像データと前に撮像された機能画像データとの間の所定の単位毎の変化量をとることにより求めるものであり、前記表示ステップにおける前記所定の条件は、該所定の単位毎の変化量が該所定の単位毎の変化量の標準偏差より大きい場合を表示する対象とすることを特徴とする脳画像データ処理方法。
  21. 請求項15ないし20のいずれかに記載の脳画像データ処理方法において、前記表示ステップは、前記融合ステップで求めた融合画像データを所定の断面軸方向にスライスした複数の融合画像データを同時に表示することを特徴とする脳画像データ処理方法。
  22. 請求項21記載の脳画像データ処理方法において、前記所定の断面軸方向は、横断面、矢状断面又は冠状断面の方向のいずれか1つ又は複数の方向であることを特徴とする脳画像データ処理方法。
  23. 請求項21又は22記載の脳画像データ処理方法において、前記表示ステップで同時に表示された前記複数の融合画像データの内、選択させた1つの融合画像データを拡大して表示する拡大表示ステップをさらに備えたことを特徴とする脳画像データ処理方法。
  24. 請求項23記載の脳画像データ処理方法において、
    前記拡大表示ステップで表示された融合画像データ上に所定の数及び所定の形状の関心領域を設定する関心領域設定ステップと、
    前記関心領域設定ステップで設定された関心領域に所定の操作を行なう関心領域操作ステップと、
    前記関心領域設定ステップで設定された関心領域及び/又は前記関心領域操作ステップで操作後の関心領域を記録部に記録する記録ステップとをさらに備えたことを特徴とする脳画像データ処理方法。
  25. 請求項22記載の脳画像データ処理方法において、前記所定の断面軸方向が横断面の方向と矢状断面又は冠状断面の方向とである場合、
    前記表示ステップで表示された横断面の方向の融合画像データを所定の角度範囲で回転させる回転ステップと、
    前記表示ステップで表示された矢状断面又は冠状断面の方向の融合画像データを前記回転ステップで回転させた角度に合わせて表示する修正表示ステップとをさらに備えたことを特徴とする脳画像データ処理方法。
  26. 請求項15ないし25のいずれかに記載の脳画像データ処理方法において、前記解剖学的画像データはMRI画像データ又はCT画像データであることを特徴とする脳画像データ処理方法。
  27. 請求項15ないし26のいずれかに記載の脳画像データ処理方法において、前記機能画像データはSPECT画像データ又はPET画像データであることを特徴とする脳画像データ処理方法。
JP2004236244A 2004-08-13 2004-08-13 脳画像データ処理プログラム、記録媒体および脳画像データ処理方法 Pending JP2006053102A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236244A JP2006053102A (ja) 2004-08-13 2004-08-13 脳画像データ処理プログラム、記録媒体および脳画像データ処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236244A JP2006053102A (ja) 2004-08-13 2004-08-13 脳画像データ処理プログラム、記録媒体および脳画像データ処理方法

Publications (1)

Publication Number Publication Date
JP2006053102A true JP2006053102A (ja) 2006-02-23

Family

ID=36030676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236244A Pending JP2006053102A (ja) 2004-08-13 2004-08-13 脳画像データ処理プログラム、記録媒体および脳画像データ処理方法

Country Status (1)

Country Link
JP (1) JP2006053102A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098131A (ja) * 2007-09-25 2009-05-07 Fujifilm Ri Pharma Co Ltd 心臓核医学検査法による検査画像の解析装置及び方法
JP2010057649A (ja) * 2008-09-03 2010-03-18 Kanazawa Univ 診断支援システム、方法及びコンピュータプログラム
JP2010178949A (ja) * 2009-02-06 2010-08-19 Toshiba Corp 医用画像処理装置、医用画像処理プログラム及び核医学画像撮影装置
JP2011047819A (ja) * 2009-08-27 2011-03-10 Toshiba Corp 核医学診断装置及び画像処理装置
JP2014116974A (ja) * 2014-02-03 2014-06-26 Nikon Corp 画像再生装置
JP2015505690A (ja) * 2011-12-07 2015-02-26 コーニンクレッカ フィリップス エヌ ヴェ 3d医療灌流画像の視覚化
JP2016140761A (ja) * 2015-01-30 2016-08-08 デンタル・イメージング・テクノロジーズ・コーポレーション 歯の変動追跡および予測
JP6060302B1 (ja) * 2016-06-10 2017-01-11 日本メジフィジックス株式会社 心筋核医学画像データの解析方法及び解析装置
US9788725B2 (en) 2012-07-11 2017-10-17 Toshiba Medical Systems Corporation Medical image display apparatus and method
JP2019512361A (ja) * 2016-02-08 2019-05-16 ソニー株式会社 体積画像データセット内の血管構造のセグメント化のための方法及びシステム

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CSNC200800842011, 松田 博史 H. Matsuda, "特集 新しい脳の画像診断法はどのように役に立つのか?", Japanese Journal of Diagnostic lmaging, 20031025, 第23巻, P1296−1309, JP, 須摩 春樹 株式会社秀潤社 *
JPN6009056043, 松田 博史 H. Matsuda, "特集 新しい脳の画像診断法はどのように役に立つのか?", Japanese Journal of Diagnostic lmaging, 20031025, 第23巻, P1296−1309, JP, 須摩 春樹 株式会社秀潤社 *
JPN6010013107, Jiri Cizek, Karl Herholz, Stefan Vollmar, Rainer Schrader, Johannes Klein, Wolf−Dieter Heiss, "Fast and robust registration of PET and MR images of human brain", NeuroImage, 200405, volume 22 Issue 1, P434−442, Academic Press *
JPN7009004721, 総編集 松平正明, 臨床精神医学講座 精神課臨床における医学診断, 20000731, P.167−174, JP, 中山書店 *
JPN7009004722, T.J. O’Brien, M.P. Mullan, M.F. Hauser, B.H. Brinkmann, N.I. Bohnen, D. Hanson, G.D. Cascino, C.R. J, "Subtraction ictal SPECT co−registered to MRI improves clinical usefulness of SPECT in localizing the", Neurology, 199802, Vol.50, P.445−454, US, American Academy of Neurology *
JPN7009004723, Kohkichi Hosoda, Tetsuro Kawaguchi, Kanunari Ishii, Satoshi Minoshima, Yuji Shibata, Masaki Iwakura,, "Prediction of Hyperfusion After Carotid Endarterectomy by Brain SPECT Analysis With Semiquantitative", Stroke, 20030417, P1187−1193, GB, the American Heart Association *
JPN7009004724, Kohkichi Hosoda, Tetsuro Kawaguchi, Yuji Shibata, Masahito Kamei Keiji Kidoguchi, Junji Koyama, Shig, "Cerebral Vasoreactivity and Internal Carotid Artery Flow Help to Identify Patients at Risk for Hyper", Stroke, 2001, P1567−1573, US, the American Heart Association *
JPN7009004725, 奥田卓、小笠原邦昭、笹生昌之、紺野広、黒田清司、鈴木倫保、小川彰, "IMP SPECTの定性画像による脳循環予備能低下の検出は可能か", 東北脳SPECT研究会講演集8, 199809, P.12−14, JP *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098131A (ja) * 2007-09-25 2009-05-07 Fujifilm Ri Pharma Co Ltd 心臓核医学検査法による検査画像の解析装置及び方法
JP2010057649A (ja) * 2008-09-03 2010-03-18 Kanazawa Univ 診断支援システム、方法及びコンピュータプログラム
JP2010178949A (ja) * 2009-02-06 2010-08-19 Toshiba Corp 医用画像処理装置、医用画像処理プログラム及び核医学画像撮影装置
JP2011047819A (ja) * 2009-08-27 2011-03-10 Toshiba Corp 核医学診断装置及び画像処理装置
JP2015505690A (ja) * 2011-12-07 2015-02-26 コーニンクレッカ フィリップス エヌ ヴェ 3d医療灌流画像の視覚化
US9788725B2 (en) 2012-07-11 2017-10-17 Toshiba Medical Systems Corporation Medical image display apparatus and method
JP2014116974A (ja) * 2014-02-03 2014-06-26 Nikon Corp 画像再生装置
JP2016140761A (ja) * 2015-01-30 2016-08-08 デンタル・イメージング・テクノロジーズ・コーポレーション 歯の変動追跡および予測
JP2019512361A (ja) * 2016-02-08 2019-05-16 ソニー株式会社 体積画像データセット内の血管構造のセグメント化のための方法及びシステム
JP6060302B1 (ja) * 2016-06-10 2017-01-11 日本メジフィジックス株式会社 心筋核医学画像データの解析方法及び解析装置
JP2017219490A (ja) * 2016-06-10 2017-12-14 日本メジフィジックス株式会社 心筋核医学画像データの解析方法及び解析装置

Similar Documents

Publication Publication Date Title
JP5060610B2 (ja) Dicom医用画像情報処理システム、dicom医用画像情報処理方法およびdicom医用画像情報処理プログラム
US7616799B2 (en) System and method for monitoring disease progression or response to therapy using multi-modal visualization
JP5366356B2 (ja) 医用画像処理装置及び医用画像処理方法
US7840050B2 (en) System and method for piecewise registration of timepoints
JP5263997B2 (ja) 医用レポート作成装置、医用レポート作成方法および医用レポート作成プログラム
US8965080B2 (en) Perfusion imaging
US9392980B2 (en) Nuclear medical imaging apparatus, image processing apparatus, and image processing method
US20060171578A1 (en) System and method for splicing medical image datasets
US20110015520A1 (en) Perfusion imaging
CN101006465B (zh) 横跨时间点链接vois以分析疾病进展或者对治疗的响应的系统和方法
US20060239585A1 (en) System and method for reducing artifacts in motion corrected dynamic image sequences
JP2011502729A (ja) 患者から取得された生体画像の多数の系列を処理する方法およびシステム[関連出願の相互参照]本願は、参照により本明細書に組み込まれている2007年11月20日に出願された、FaycalDjeridaneによる米国仮特許出願第60/996,509号の合衆国法典第35巻第119条(e)に基づく優先権を主張する。
US20040027359A1 (en) System and method for generating movie loop display from medical image data
JP7129869B2 (ja) 疾患領域抽出装置、方法及びプログラム
US11139068B2 (en) Methods, systems, and computer readable media for smart image protocoling
DE102005036998A1 (de) Vorrichtung zur automatischen Detektion von Auffälligkeiten in medizinischen Bilddaten
AU2008360162A1 (en) Technique for Detecting Neurodegenerative Disorders
JP2006053102A (ja) 脳画像データ処理プログラム、記録媒体および脳画像データ処理方法
CN111584066B (zh) 基于卷积神经网络与对称信息的脑部医学影像诊断方法
JP4542204B2 (ja) 脳血流量定量装置、脳血流量定量方法、およびプログラム
JP4721693B2 (ja) 頭蓋内容積および局所脳構造物解析プログラム、記録媒体および頭蓋内容積および局所脳構造物解析方法
JP4807819B2 (ja) 画像処理装置
US20190267129A1 (en) Conversion apparatus, conversion method, and program
CN114841996A (zh) 一种图像分析系统及方法
JP4099357B2 (ja) 画像処理方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100706

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100813