JP2006052896A - Pyrolytic gasification melting system and its operation method - Google Patents

Pyrolytic gasification melting system and its operation method Download PDF

Info

Publication number
JP2006052896A
JP2006052896A JP2004234991A JP2004234991A JP2006052896A JP 2006052896 A JP2006052896 A JP 2006052896A JP 2004234991 A JP2004234991 A JP 2004234991A JP 2004234991 A JP2004234991 A JP 2004234991A JP 2006052896 A JP2006052896 A JP 2006052896A
Authority
JP
Japan
Prior art keywords
dust collector
melting furnace
filtration
exhaust gas
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004234991A
Other languages
Japanese (ja)
Inventor
Takahiro Marumoto
隆弘 丸本
Noriyuki Oyatsu
紀之 大谷津
Tetsuya Iwase
徹哉 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004234991A priority Critical patent/JP2006052896A/en
Publication of JP2006052896A publication Critical patent/JP2006052896A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent reduction in heat transfer performance of a waste heat boiler and corrosion of a heat transfer surface, without increasing equipment cost and running cost, in a pyrolytic gasification melting system of garbage. <P>SOLUTION: This pyrolytic gasification melting system comprises a gasification furnace 3, a melting furnace 6, the waste heat boiler 8, a bag filter 10 for collecting a solid particle in exhaust gas exhausted from the waste heat boiler 8, a means for supplying a desalting agent to the exhaust gas flowing in the bag filter 10, and a means for backwashing the bag filter 10. A filtering speed of the bag filter 10 is set smaller than a particle tail end speed of the particle flowing out as a solid from the melting furnace 6, and is set larger than a particle tail end speed of a particle flowing out in a vaporized state from the melting furnace 6 and flowing in the bug filter 10 as a solid and a particle tail end speed of a particle including a desalting agent component. When the backwash is not performed, the collected particle is supplied to the melting furnace 6, and when the backwash is performed, the particle exhausted from the bag filter 10 is supplied to the melting furnace 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一般ごみや産業廃棄物等を熱分解し、灰をスラグとして回収する熱分解ガス化溶融システムとその運用方法に関する。   The present invention relates to a pyrolysis gasification and melting system that thermally decomposes general waste, industrial waste, and the like and collects ash as slag, and an operation method thereof.

一般ごみ、産業廃棄物等を対象とした熱分解ガス化溶融システムは、図4に示すように、燃料であるごみや廃棄物を流動床式ガス化炉3へ供給し、空気不足の状態で熱分解ガス化させ、生成した熱分解ガス及び未燃カーボンと灰を主成分とするチャーを溶融炉6で燃焼させることで、高温場を得てチャー中の灰をスラグ化するものである。この過程でごみは減容され、ダイオキシン類は高温場で完全に分解・無害化される。溶融炉6からの排ガスは2次燃焼室7で完全燃焼される。2次燃焼室7を出た排ガスは、廃熱ボイラ8で熱回収されたのち、集塵装置14,15において脱塵および脱塩処理され、無害化された状態で大気中に放出される。   As shown in FIG. 4, the pyrolysis gasification and melting system for general waste and industrial waste supplies fuel and waste to the fluidized bed gasification furnace 3 as shown in FIG. Pyrolysis gasification is performed, and the generated pyrolysis gas and char mainly composed of unburned carbon and ash are combusted in the melting furnace 6 to obtain a high temperature field and slag the ash in the char. In this process, the volume of waste is reduced, and dioxins are completely decomposed and detoxified at high temperatures. The exhaust gas from the melting furnace 6 is completely burned in the secondary combustion chamber 7. The exhaust gas that has exited the secondary combustion chamber 7 is recovered by the waste heat boiler 8 and then dedusted and desalted in the dust collectors 14 and 15 and released into the atmosphere in a detoxified state.

また、上述のようなごみ、産業廃棄物等を対象とした熱分解ガス化溶融システムでは、埋立て処分される廃棄煤塵fの量を低減するため、集塵装置で回収された溶融飛灰を循環飛灰eとして溶融炉へ再循環させ、一部をスラグとして回収している。   Moreover, in the pyrolysis gasification melting system for waste, industrial waste, etc. as described above, the molten fly ash collected by the dust collector is circulated in order to reduce the amount of waste dust f to be disposed of in landfills. The fly ash e is recycled to the melting furnace and a part is recovered as slag.

集塵装置は煤塵の捕集の他に、排ガス中の塩化水素除去をも目的としており、集塵装置上流側で消石灰等の脱塩剤が噴霧される。このため、捕集された溶融飛灰中には多量のカルシウムが含まれ、純粋な溶融飛灰よりも塩基度が高くなる。塩基度と融点には図5に示すような相関関係があり、塩基度が1を超えるごみの溶融飛灰では、塩基度上昇と共に融点が上昇する。溶融炉へ再循環される溶融飛灰の融点が高いと、溶融炉内で固化し、安定した溶融炉の運転が困難になる等の問題がある。このため、図4や特許文献1に示されるように集塵装置を2基設け、後段の集塵装置へのみ消石灰を供給することで、前段の集塵装置で回収された循環飛灰eのみを溶融炉へ再循環させる方法が採用されている。一般的に、集塵装置としてろ過式集塵装置であるバグフィルタが採用されることが多いが、この場合、バグフィルタの目詰まり防止のため、前段のバグフィルタへ珪藻土h等を供給する必要がある。   In addition to collecting dust, the dust collector also aims to remove hydrogen chloride in the exhaust gas, and a desalting agent such as slaked lime is sprayed on the upstream side of the dust collector. For this reason, a large amount of calcium is contained in the collected molten fly ash, and the basicity becomes higher than that of pure molten fly ash. There is a correlation as shown in FIG. 5 between the basicity and the melting point. In the case of molten fly ash having a basicity exceeding 1, the melting point increases as the basicity increases. When the melting point of the molten fly ash recirculated to the melting furnace is high, there are problems such as solidification in the melting furnace and difficulty in stable operation of the melting furnace. For this reason, as shown in FIG. 4 and Patent Document 1, only two circulating fly ash e collected by the former dust collector are provided by providing two dust collectors and supplying slaked lime only to the latter dust collector. Is used to recirculate to the melting furnace. In general, a bag filter, which is a filtration type dust collector, is often used as a dust collector. In this case, it is necessary to supply diatomaceous earth h or the like to the preceding bag filter in order to prevent clogging of the bag filter. There is.

しかしながら、このようなシステムでは、集塵装置が2台以上必要になり、設備費が増加し、さらに珪藻土が消石灰に比べ高価であるためランニングコストが嵩むことになる。また、溶融飛灰中には、SiOやAl等のスラグとして回収可能な高沸点化合物と、NaO,KO及び塩化物といったスラグとして回収不可能な低沸点化合物が混在するが、後者の量が多いため、回収された溶融飛灰を溶融炉へ再循環しても、スラグとして回収される量は限られる。また、NaO,KO及び塩化物といった化合物は溶融炉後流の機器である廃熱ボイラへ付着し、伝熱性能を低下させるとともに、伝熱面を腐食させるという問題を抱えている。 However, in such a system, two or more dust collectors are required, the equipment cost increases, and the running cost increases because diatomaceous earth is more expensive than slaked lime. In addition, high-boiling compounds that can be recovered as slag such as SiO 2 and Al 2 O 3 and low-boiling compounds that cannot be recovered as slag such as Na 2 O, K 2 O and chloride are mixed in the molten fly ash. However, since the latter amount is large, even if the recovered molten fly ash is recycled to the melting furnace, the amount recovered as slag is limited. In addition, compounds such as Na 2 O, K 2 O and chloride adhere to a waste heat boiler which is a downstream device of the melting furnace, and have a problem that the heat transfer performance is deteriorated and the heat transfer surface is corroded. .

特許文献2には、NaO,KO及び塩化物といった低沸点の化合物が気相に析出しない高温雰囲気下にサイクロンセパレータを配置し、SiOやAlを主体とする灰のみを分離回収し溶融炉へ供給する技術が開示されている。しかし、この技術では、サイクロンセパレータの構造維持のため、外部からの冷却が必要となり、サイクロンセパレータ内壁温度がガス温度よりも極端に低くなる。このため、壁近傍でNaO,KO及び塩化物といった低沸点の化合物が析出することで壁に多量付着し、サイクロンセパレータが閉塞することが危惧される。 In Patent Document 2, a cyclone separator is disposed in a high temperature atmosphere in which low boiling point compounds such as Na 2 O, K 2 O and chloride do not precipitate in the gas phase, and only ash mainly composed of SiO 2 or Al 2 O 3 is used. A technique for separating and recovering and supplying to a melting furnace is disclosed. However, in this technique, in order to maintain the structure of the cyclone separator, cooling from the outside is necessary, and the inner wall temperature of the cyclone separator becomes extremely lower than the gas temperature. For this reason, it is feared that low boiling point compounds such as Na 2 O, K 2 O and chloride are deposited in the vicinity of the wall, so that a large amount adheres to the wall and the cyclone separator is blocked.

他にも、集塵装置としてサイクロン及びろ過式集塵装置を直列に配置し、サイクロンにおいて大粒子径の溶融飛灰のみを回収し溶融炉へ再供給する手法が考案されている。この手法によっても、ろ過式集塵装置の他に余分なサイクロンを設置する必要があることから、設備費の増大は不可避である。さらに、排ガス中に含まれる高濃度の塩化水素によるサイクロンの腐食が懸念される。サイクロン内壁を耐火材当で保護することも考えられるが、摩擦抵抗の増大により捕集されずサイクロンを通過していた小流径の溶融飛灰も捕集されるようになるため、大粒子径の溶融飛灰のみを回収するという本来の作用及び効果が得られなくなる。   In addition, a technique has been devised in which a cyclone and a filtration dust collector are arranged in series as a dust collector, and only the molten fly ash having a large particle diameter is collected and re-supplied to the melting furnace in the cyclone. Even with this method, it is necessary to install an extra cyclone in addition to the filtration type dust collector, so that an increase in equipment cost is inevitable. Further, there is a concern about cyclone corrosion due to high concentration of hydrogen chloride contained in the exhaust gas. Although it is conceivable to protect the inner wall of the cyclone with a refractory material, a small particle diameter of molten fly ash that has not been collected due to increased frictional resistance and has passed through the cyclone will be collected. The original action and effect of collecting only the molten fly ash cannot be obtained.

特開2001−276774号公報(第2〜3頁、図1)JP 2001-276774 A (pages 2 to 3, FIG. 1) 特開2001−280633号公報(第3〜4頁、図1)JP 2001-280633 A (pages 3 to 4, FIG. 1)

本発明の課題は、廃熱ボイラを備えたごみの熱分解ガス化溶融システムにおいて、設備費及びランニングコストを増大させることなく、廃熱ボイラの伝熱性能低下及び伝熱面の腐食を防止することにある。   SUMMARY OF THE INVENTION An object of the present invention is to prevent degradation of heat transfer performance of a waste heat boiler and corrosion of a heat transfer surface without increasing equipment costs and running costs in a pyrolysis gasification and melting system for waste with a waste heat boiler. There is.

本発明は、ごみと産業廃棄物のいずれか一方もしくは双方を熱分解ガス化して熱分解ガスとチャーを排出するガス化炉と、前記排出された熱分解ガスとチャーを燃焼させる溶融炉と、前記溶融炉から排出される排ガスの熱を回収する廃熱ボイラと、前記廃熱ボイラから排出される排ガス中の固体粒子を捕集するろ過式集塵装置と、前記ろ過式集塵装置に流入する排ガスに脱塩剤を供給する脱塩剤供給手段と、前記ろ過式集塵装置の濾布を逆洗する逆洗手段と、前記ろ過式集塵装置に捕集された固体粒子の供給先を前記溶融炉とそれ以外に切り替える切替装置と、前記逆洗手段と切替装置の動作を制御する制御装置と、を有してなり、前記ろ過式集塵装置のろ過速度が、溶融炉から固体で流出する粒子の粒子終末速度より小さく、前記溶融炉から気化した状態で流出し、ろ過式集塵装置に固体となって流入する粒子の粒子終末速度及び前記脱塩剤成分を含む粒子の粒子終末速度よりも大きく設定され、前記制御装置は、逆洗終了から次回の逆洗開始までの間はろ過式集塵装置で捕集された粒子を溶融炉に供給し、逆洗中はろ過式集塵装置から排出される粒子を溶融炉に供給しないように前記切替装置を制御するものである熱分解ガス化溶融システムにより、上記課題を解決する。   The present invention includes a gasification furnace for pyrolyzing and gasifying one or both of waste and industrial waste to discharge pyrolysis gas and char, a melting furnace for burning the exhausted pyrolysis gas and char, Waste heat boiler that recovers the heat of the exhaust gas discharged from the melting furnace, a filtration dust collector that collects solid particles in the exhaust gas discharged from the waste heat boiler, and an inflow into the filtration dust collector A desalting agent supply means for supplying a desalting agent to the exhaust gas to be discharged, a backwashing means for backwashing the filter cloth of the filtration dust collector, and a supply destination of the solid particles collected by the filtration dust collector A switching device for switching between the melting furnace and the other, and a control device for controlling the operation of the backwashing means and the switching device, and the filtration speed of the filtration dust collector is solid from the melting furnace. Smaller than the particle end velocity of the particles flowing out at It is set to be larger than the particle terminal velocity of the particles flowing out in a vaporized state and flowing into the filtration type dust collector as a solid, and the particle terminal velocity of the particles containing the desalting agent component. The particles collected by the filtration dust collector are supplied to the melting furnace from the end to the start of the next back washing, and the particles discharged from the filtration dust collector are not supplied to the melting furnace during the back washing. The above-mentioned problems are solved by a pyrolysis gasification melting system that controls the switching device.

上記構成によれば、NaO,KO及び塩化物といった低沸点の化合物をろ過式集塵装置の濾布に付着させて捕集するとともに、SiO,Alなどの高沸点化合物を濾布に到達するまえに落下させて捕集することが可能になり、ろ過式集塵装置の逆洗中、すなわち、ろ過式集塵装置の濾布に付着していた粒子が脱離されている間は、脱離される粒子を溶融炉に循環させず、逆洗が終了してから次の逆洗が開始されるまでの間はろ過式集塵装置で濾布に到達するまえに落下させて捕集された粒子、つまり、SiO,Alなどの高沸点化合物の粒子を溶融炉に再循環させることで、廃熱ボイラの伝熱面にNaO,KO及び塩化物が付着するのが避けられ、伝熱性能の低下や伝熱面の腐食が防止される。 According to the above configuration, low boiling point compounds such as Na 2 O, K 2 O and chloride are collected by adhering to the filter cloth of the filtration dust collector, and high boiling points such as SiO 2 and Al 2 O 3. It is possible to collect the compound by dropping it before it reaches the filter cloth, and the particles adhering to the filter cloth of the filter type dust collector are desorbed during the backwashing of the filter type dust collector. During this period, the desorbed particles are not circulated to the melting furnace, but before the next backwashing is started after the backwashing is completed, before the filter cloth is reached by the filter type dust collector. The particles collected by dropping, that is, particles of high boiling point compounds such as SiO 2 and Al 2 O 3 are recirculated to the melting furnace, so that Na 2 O, K 2 O is applied to the heat transfer surface of the waste heat boiler. In addition, adhesion of chlorides is avoided, and deterioration of heat transfer performance and corrosion of the heat transfer surface are prevented.

前記ろ過式集塵装置に排ガスを供給する排ガスダクト中の排ガスの速度は、排ガスダクト中に前記溶融炉から固体で流出する粒子が落下して堆積するのを避けるために、前記溶融炉から固体で流出する粒子の粒子終末速度より大きく設定することが望ましい。   The speed of the exhaust gas in the exhaust gas duct supplying the exhaust gas to the filtration dust collector is such that the particles flowing out from the melting furnace in the exhaust gas duct fall and accumulate in order to avoid falling and depositing particles. It is desirable to set it larger than the particle terminal velocity of the particles flowing out at.

また、前記ろ過式集塵装置のろ過速度は、発明者らの知見によれば、0.5〜0.8m/minの範囲に設定されていることが望ましい。   Further, according to the knowledge of the inventors, it is desirable that the filtration rate of the filtration type dust collector is set in the range of 0.5 to 0.8 m / min.

本発明によれば、廃熱ボイラを備えたごみの熱分解ガス化溶融システムにおいて、設備費及びランニングコストを増大させることなく、廃熱ボイラの伝熱性能低下及び伝熱面の腐食を防止することが可能になった。   According to the present invention, in the pyrolysis gasification and melting system for waste with a waste heat boiler, the heat transfer performance of the waste heat boiler is prevented from being deteriorated and the heat transfer surface is prevented from corroding without increasing the equipment cost and running cost. It became possible.

本発明を一般ごみ用の熱分解ガス化溶融システムに適用した場合の実施の形態を、図1を参照して説明する。図示の熱分解ガス化溶融システムは、流動床式ガス化炉3と、この流動床式ガス化炉3に熱分解ガス流路5で接続された旋回式の溶融炉6と、溶融炉6の後段に排ガスの完全燃焼のために設けられた2次燃焼室7と、2次燃焼室7に続けて配置され排ガスからの熱回収を目的とした廃熱ボイラ8と、廃熱ボイラ8の排ガス出側に排ガスダクトで接続された排ガス温度減温装置9と、排ガス温度減温装置9の排ガス出側に排ガスダクト18で接続されたろ過式集塵装置であるバグフィルタ10と、バグフィルタ10の排ガス出側に煙道で接続された煙突11と、バグフィルタ10の煤塵出側に接続して設けられた切替装置13と、切替装置13の一方の出側と前記溶融炉6を接続する循環飛灰管路16と、切替装置13の他方の出側に接続された廃棄煤塵取出し管路17と、前記切替装置13を制御する制御装置12と、を含んで構成されている。   An embodiment when the present invention is applied to a pyrolysis gasification melting system for general waste will be described with reference to FIG. The illustrated pyrolysis gasification melting system includes a fluidized bed gasification furnace 3, a swirling melting furnace 6 connected to the fluidized bed gasification furnace 3 through a pyrolysis gas flow path 5, and a melting furnace 6. A secondary combustion chamber 7 provided for the complete combustion of the exhaust gas in the subsequent stage, a waste heat boiler 8 that is arranged after the secondary combustion chamber 7 for the purpose of recovering heat from the exhaust gas, and exhaust gas of the waste heat boiler 8 An exhaust gas temperature reducing device 9 connected to the outlet side by an exhaust gas duct, a bag filter 10 which is a filtration type dust collector connected to the exhaust gas outlet side of the exhaust gas temperature reducing device 9 by an exhaust gas duct 18, and the bag filter 10 A chimney 11 connected by a flue to the exhaust gas exhaust side of the gas generator, a switching device 13 connected to the dust output side of the bag filter 10, and one melting side of the switching device 13 and the melting furnace 6 are connected. Connected to the circulation fly ash pipe 16 and the other exit side of the switching device 13 A waste dust extraction line 17, a control unit 12 for controlling the switching device 13 is configured to include a.

流動床式ガス化炉(以下、ガス化炉という)3には、ごみを供給する供給ホッパ1、給塵装置2が設けられている。排ガス温度減温装置9は、ダイオキシン類の再合成を抑制するために排ガス温度を低下させるために設けられているものである。前記排ガスダクト18には、バグフィルタ10に流入する排ガスに脱塩剤として消石灰gを供給する脱塩剤供給手段が設けられている。また、バグフィルタ10の濾布に付着した固体粒子を剥離除去するための、図示されていない逆洗手段が設けられている。   A fluidized bed gasification furnace (hereinafter referred to as a gasification furnace) 3 is provided with a supply hopper 1 for supplying waste and a dust supply device 2. The exhaust gas temperature reduction device 9 is provided to reduce the exhaust gas temperature in order to suppress the resynthesis of dioxins. The exhaust gas duct 18 is provided with a desalting agent supply means for supplying slaked lime g as a desalting agent to the exhaust gas flowing into the bag filter 10. In addition, backwashing means (not shown) for peeling and removing solid particles adhering to the filter cloth of the bag filter 10 is provided.

上記構成のシステムにおいて、ごみは供給ホッパ1から給塵装置2を経てガス化炉3へ供給され、ガス化炉3底部に設置された散気管4から供給される流動化空気aにより流動媒体と共に流動化する。この過程でごみは部分燃焼し、熱分解されて、熱分解ガスと未燃カーボン及び灰を主成分とするチャーが生成される。   In the system configured as described above, the dust is supplied from the supply hopper 1 through the dust supply device 2 to the gasification furnace 3, and together with the fluidized medium by the fluidized air a supplied from the diffuser pipe 4 installed at the bottom of the gasification furnace 3. Fluidize. In this process, the waste is partially combusted and pyrolyzed to generate char mainly composed of pyrolysis gas, unburned carbon and ash.

生成された熱分解ガスとチャーは溶融炉6へ送られ、別途供給される燃焼空気bと反応して燃焼する。溶融炉6内は灰の溶融温度よりも高い温度に保たれており、チャー中の灰は溶融し、スラグdとなって回収される。チャー中の灰の一部は溶融炉6で捕集されず、排ガスに同伴されて溶融炉6から流出する。溶融炉6を出た排ガスは2次燃焼室7で完全燃焼され、廃熱ボイラ8で熱回収される。   The generated pyrolysis gas and char are sent to the melting furnace 6 and react with the separately supplied combustion air b to burn. The inside of the melting furnace 6 is maintained at a temperature higher than the melting temperature of ash, and the ash in the char melts and is recovered as slag d. Part of the ash in the char is not collected in the melting furnace 6 but flows out of the melting furnace 6 along with the exhaust gas. The exhaust gas leaving the melting furnace 6 is completely combusted in the secondary combustion chamber 7 and recovered by the waste heat boiler 8.

溶融炉6で捕集されなかった溶融飛灰のうち、粒子径及び比重が大きなものはバグフィルタ10において逆洗を実施する前に回収され、循環飛灰eとして再び溶融炉6へ供給され、スラグdとなって回収される。バグフィルタ10において逆洗後に回収される消石灰を含む粒子径及び比重の小さな煤塵fは、無害化処理後、埋立て処分される。   Of the molten fly ash that was not collected in the melting furnace 6, those having a large particle size and specific gravity were collected before backwashing in the bag filter 10, and supplied to the melting furnace 6 again as circulating fly ash e. It is collected as slag d. The dust f having a small particle size and specific gravity including slaked lime collected after backwashing in the bag filter 10 is disposed of after landfilling.

バグフィルタの逆洗間隔は1時間で、図2に示すように、逆洗実施後、バグフィルタ差圧が許容最大差圧になる前に切替装置13を廃棄煤塵側に切り替え、所定の時間tだけ廃棄煤塵を連続的に排出し、その後、循環飛灰側に切り替えて溶融炉6へ循環飛灰eを再供給している。逆洗のタイミング及び切替装置13の作動は制御装置12からの指示により制御される。   The backwashing interval of the bag filter is 1 hour. As shown in FIG. 2, after the backwashing is performed, the switching device 13 is switched to the waste dust side before the bagfilter differential pressure reaches the allowable maximum differential pressure. Only the waste dust is continuously discharged, and then the circulation fly ash e is re-supplied to the melting furnace 6 by switching to the circulation fly ash side. The timing of backwashing and the operation of the switching device 13 are controlled by instructions from the control device 12.

本実施の形態は、流動床式ガス化炉と旋回式溶融炉を組み合わせた例であるが、本発明はこれらの形式に限定されるものではなく、流動床式以外のガス化炉と旋回式以外の溶融炉の組み合わせ、流動床式以外のガス化炉と旋回式溶融炉の組み合わせ、流動床式ガス化炉と旋回式以外の溶融炉の組み合わせにおいても、同様の作用、効果を発揮する。   The present embodiment is an example in which a fluidized bed type gasification furnace and a swirl type melting furnace are combined, but the present invention is not limited to these types, and a gasification furnace other than a fluidized bed type and a swivel type are used. The same operations and effects are also exhibited in combinations of other melting furnaces, combinations of gasification furnaces other than fluidized bed type and swirl type melting furnaces, and combinations of fluidized bed gasification furnaces and melting furnaces other than swirl type.

溶融炉で捕集されない灰は大きく分けて2種類に分けられる。一つは高温に保持された溶融炉の内壁に衝突し、SiOやAlといった高沸点の化合物がスラグとして回収され、NaO,KO及び塩化物といった低沸点の化合物のみが気化した状態で溶融炉から流出し、廃熱ボイラ8以降の低温領域で固体として析出するものであり、粒子径及び比重が非常に小さい。粒子終末速度は図3のBで示され、極端に値が小さいものである。もう一つは、溶融炉に衝突することなく、短時間で溶融炉から流出する固体状のもので、NaO,KO及び塩化物等の低沸点化合物が気散し、SiOやAlといった高沸点の化合物のみで構成される。これらは粒子径及び比重が大きく、粒子終末速度は図3のAで示されるように、前記Bに比べ、1桁大きいことが特徴である。 Ashes that are not collected in the melting furnace are roughly divided into two types. One collides with the inner wall of the melting furnace held at a high temperature, and high boiling point compounds such as SiO 2 and Al 2 O 3 are recovered as slag, and only low boiling point compounds such as Na 2 O, K 2 O and chlorides are collected. It flows out of the melting furnace in a vaporized state and precipitates as a solid in a low temperature region after the waste heat boiler 8 and has a very small particle size and specific gravity. The particle end velocity is indicated by B in FIG. 3 and has an extremely small value. The other is a solid that flows out of the melting furnace in a short time without colliding with the melting furnace, and low boiling point compounds such as Na 2 O, K 2 O and chloride are diffused, and SiO 2 and It is composed only of a high boiling point compound such as Al 2 O 3 . These are characterized by a large particle diameter and specific gravity, and the particle terminal velocity is one order of magnitude higher than B as shown by A in FIG.

また、脱塩剤である消石灰の粒子径、比重、粒子終末速度は、図3のCで示され、Bで示され小粒子径の溶融飛灰に似た特性を持っている。   Further, the particle diameter, specific gravity, and particle terminal speed of slaked lime, which is a desalting agent, are indicated by C in FIG. 3 and have characteristics similar to those of molten fly ash with a small particle diameter indicated by B.

上記各粒子の粒子終末速度を考慮し、本実施の形態におけるバグフィルタ10のろ過速度は、図3に示されているように、B,Cの粒子終末速度よりも大きく、Aの粒子終末速度よりも小さい、0.01m/s(0.6m/min)に設定されている。なお、本実施の形態では、ろ過速度は0.01m/sに設定されているが、B,Cの粒子終末速度よりも大きく、Aの粒子終末速度よりも小さい速度、好ましくは、0.5m/min〜0.8m/minであれば、0.6m/min以外の速度でもよいことは云うまでもない。   In consideration of the particle end velocity of each particle, the filtration rate of the bag filter 10 in the present embodiment is larger than the particle end velocity of B and C as shown in FIG. Is set to 0.01 m / s (0.6 m / min). In this embodiment, the filtration speed is set to 0.01 m / s, but it is larger than the particle end speeds of B and C and smaller than the particle end speed of A, preferably 0.5 m. Needless to say, a speed other than 0.6 m / min may be used as long as it is from / min to 0.8 m / min.

また、排ガスダクト18における排ガスの速度は、Aの粒子終末速度よりも大きくなるようにして、排ガスダクト18に、SiOやAlといった高沸点の化合物のみで構成される粒子が堆積しないようにしてある。 Further, the speed of the exhaust gas in the exhaust gas duct 18 is set to be larger than the particle end speed of A, so that particles composed only of high boiling point compounds such as SiO 2 and Al 2 O 3 are not deposited in the exhaust gas duct 18. It is like that.

上記構成によれば、バグフィルタ10のろ過速度がB,Cの粒子終末速度よりも大きく、Aの粒子終末速度よりも小さく設定されているため、バグフィルタに流入する灰のうち、粒子径及び比重が大きい、SiOやAlといった高沸点の化合物のみで構成される粒子Aは、濾布に到達せずに落下してしまい、バグフィルタの下部ホッパから排出される。一方、消石灰Cと粒子径及び比重が小さい粒子Bは容易に濾布に到達し、濾布表面に付着する。したがって、逆洗が実施されるまでは、消石灰Cと粒子径及び比重が小さい粒子Bは下部ホッパに落下堆積することはない。 According to the above configuration, since the filtration speed of the bag filter 10 is set to be larger than the particle end speeds of B and C and smaller than the particle end speed of A, the particle diameter and the ash flowing into the bag filter Particles A having a high specific gravity and composed only of high boiling point compounds such as SiO 2 and Al 2 O 3 fall without reaching the filter cloth and are discharged from the lower hopper of the bag filter. On the other hand, slaked lime C and particles B having a small particle diameter and specific gravity easily reach the filter cloth and adhere to the filter cloth surface. Therefore, until backwashing is performed, the slaked lime C and the particles B having a small particle diameter and specific gravity do not fall and accumulate on the lower hopper.

濾布表面では、消石灰Cと粒子径及び比重が小さい粒子Bが密集し、排ガスの力で密着することで、ある程度の厚みを持った層を形成する。逆洗を実施することで、濾布に付着した消石灰Cと粒子径及び比重が小さい粒子Bで構成される層は濾布から剥離し、落下する。剥離した層は大きいため、終末速度がろ過速度よりも大きく、濾布に再付着することなく、下部ホッパに落下する。   On the surface of the filter cloth, slaked lime C and particles B having a small particle diameter and specific gravity are densely packed and adhered to each other by the force of exhaust gas, thereby forming a layer having a certain thickness. By performing backwashing, the layer composed of slaked lime C adhering to the filter cloth and particles B having a small particle diameter and specific gravity peels off from the filter cloth and falls. Since the peeled layer is large, the terminal speed is higher than the filtration speed, and it falls to the lower hopper without reattaching to the filter cloth.

バグフィルタの逆洗は短時間で実施され、逆洗の間隔は1時間程度と長いため、逆洗の直前までは粒子径及び比重の大きい粒子Aのみが下部ホッパに回収され、逆洗直後には消石灰Cと粒子径及び比重が小さい灰Bのみが回収可能である。   Bag filters are backwashed in a short time, and the interval between backwashes is as long as about 1 hour. Therefore, until just before backwashing, only particles A having a large particle size and specific gravity are collected in the lower hopper and immediately after backwashing. Only slaked lime C and ash B having a small particle size and specific gravity can be recovered.

粒子径及び比重が大きい灰Aは、SiOやAlといった高沸点の化合物で構成されるので、この灰を循環飛灰eとして溶融炉へ再供給すれば、ほぼ全量をスラグとして回収できる。また、NaO,KO及び塩化物等の低沸点化合物からなる粒子径及び比重が小さい灰Bは無害化処理後、埋立て処分することができるので、廃熱ボイラ伝熱面への灰付着による伝熱性能の低下及び伝熱面の腐食を防止できる。 Ash A having a large particle size and specific gravity is composed of a high boiling point compound such as SiO 2 or Al 2 O 3 , and if this ash is re-supplied to the melting furnace as circulating fly ash e, almost the entire amount is recovered as slag. it can. Moreover, since the ash B having a small particle size and specific gravity composed of a low boiling point compound such as Na 2 O, K 2 O and chloride can be disposed of in landfill after detoxification treatment, it can be disposed of on the heat transfer surface of the waste heat boiler. It can prevent deterioration of heat transfer performance and corrosion of heat transfer surface due to ash adhesion.

本実施の形態によれば、溶融飛灰の中でSiOやAlといった高沸点化合物の含有割合の高い溶融飛灰のみを選択的に溶融炉へ再循環供給してスラグとして回収し、NaO,KO及び塩化物等の低沸点化合物が廃熱ボイラへ流入するのを防止できるため、サイクロンセパレータ等の追加設備を設けることなく、かつ、珪藻土等の高価な剥離剤を用いることなく、廃熱ボイラ伝熱性能の低下及び伝熱面の腐食防止が可能になる。さらに、スラグとして回収される灰分が増えて廃棄煤塵の量が低減され、環境負荷が低くなる。 According to the present embodiment, only molten fly ash having a high content of high-boiling compounds such as SiO 2 and Al 2 O 3 in the molten fly ash is selectively recycled to the melting furnace and recovered as slag. , Na 2 O, K 2 O and low-boiling compounds such as chlorides can be prevented from flowing into the waste heat boiler, and an expensive stripping agent such as diatomaceous earth can be used without providing additional equipment such as a cyclone separator. Without using it, it becomes possible to reduce the heat transfer performance of the waste heat boiler and to prevent corrosion of the heat transfer surface. Furthermore, the amount of ash collected as slag increases, the amount of waste dust is reduced, and the environmental load is reduced.

本発明の実施の形態に係る熱分解ガス化溶融システムの要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the pyrolysis gasification melting system which concerns on embodiment of this invention. 本発明の実施の形態に係る熱分解ガス化溶融システムの運転方法を示すタイムチャートである。It is a time chart which shows the operating method of the pyrolysis gasification melting system which concerns on embodiment of this invention. 本発明の原理を示す概念図である。It is a conceptual diagram which shows the principle of this invention. 従来技術の例を示すブロック図である。It is a block diagram which shows the example of a prior art. 灰の塩基度と融点の関係を示す概念図である。It is a conceptual diagram which shows the relationship between the basicity of ash, and melting | fusing point.

符号の説明Explanation of symbols

1 供給ホッパ
2 給塵装置
3 流動床式ガス化炉
4 散気管
5 熱分解ガス流路
6 溶融炉
7 2次燃焼室
8 廃熱ボイラ
9 減温装置
10 バグフィルタ
11 煙突
12 制御装置
13 切替装置
14,15 集塵装置
16 循環飛灰管路
17 廃棄煤塵取出し管路
18 排ガスダクト
DESCRIPTION OF SYMBOLS 1 Supply hopper 2 Dust supply apparatus 3 Fluidized bed type gasification furnace 4 Aeration pipe 5 Pyrolysis gas flow path 6 Melting furnace 7 Secondary combustion chamber 8 Waste heat boiler 9 Temperature reduction apparatus 10 Bag filter 11 Chimney 12 Control apparatus 13 Switching apparatus 14, 15 Dust collector 16 Circulating fly ash pipe 17 Waste dust extraction pipe 18 Exhaust gas duct

Claims (6)

ごみと産業廃棄物のいずれか一方もしくは双方を熱分解ガス化して熱分解ガスとチャーを排出するガス化炉と、前記排出された熱分解ガスとチャーを燃焼させる溶融炉と、前記溶融炉から排出される排ガスの熱を回収する廃熱ボイラと、前記廃熱ボイラから排出される排ガス中の固体粒子を捕集するろ過式集塵装置と、前記ろ過式集塵装置に流入する排ガスに脱塩剤を供給する脱塩剤供給手段と、前記ろ過式集塵装置の濾布を逆洗する逆洗手段と、前記ろ過式集塵装置に捕集された固体粒子の供給先を前記溶融炉とそれ以外に切り替える切替装置と、前記逆洗手段と切替装置の動作を制御する制御装置と、を有してなり、
前記ろ過式集塵装置のろ過速度が、溶融炉から固体で流出する粒子の粒子終末速度より小さく、前記溶融炉から気化した状態で流出し、ろ過式集塵装置に固体となって流入する粒子の粒子終末速度及び前記脱塩剤成分を含む粒子の粒子終末速度よりも大きく設定され、
前記制御装置は、逆洗終了から次回の逆洗開始までの間はろ過式集塵装置で捕集された粒子を溶融炉に供給し、逆洗中はろ過式集塵装置から排出される粒子を溶融炉に供給しないように前記切替装置を制御するものである熱分解ガス化溶融システム。
A gasification furnace for pyrolyzing and / or pyrolyzing one or both of waste and industrial waste to discharge pyrolysis gas and char, a melting furnace for burning the discharged pyrolysis gas and char, and A waste heat boiler that recovers the heat of the exhaust gas discharged, a filtration dust collector that collects solid particles in the exhaust gas discharged from the waste heat boiler, and an exhaust gas that flows into the filtration dust collector. Desalting agent supply means for supplying a salt agent, backwashing means for backwashing the filter cloth of the filtration dust collector, and a supply destination of solid particles collected by the filtration dust collector is the melting furnace. And a switching device that switches to other than that, and a control device that controls the operation of the backwashing means and the switching device,
The filtration speed of the filtration type dust collector is lower than the particle end speed of the particles flowing out of the melting furnace as a solid, the particles flowing out from the melting furnace in a vaporized state, and flowing into the filtration type dust collecting apparatus as a solid Set to be larger than the particle end velocity of the particles and the particle end velocity of the particles containing the desalting agent component,
The controller supplies particles collected by the filtration dust collector to the melting furnace from the end of backwashing to the start of the next backwashing, and particles discharged from the filtration dust collector during backwashing. A pyrolysis gasification melting system for controlling the switching device so as not to supply the gas to the melting furnace.
請求項1記載の熱分解ガス化溶融システムにおいて、前記ろ過式集塵装置に排ガスを供給する排ガスダクト中の排ガスの速度は、前記溶融炉から固体で流出する粒子の粒子終末速度より大きく設定されていることを特徴とする熱分解ガス化溶融システム。   2. The pyrolysis gasification melting system according to claim 1, wherein a speed of exhaust gas in an exhaust gas duct for supplying exhaust gas to the filtration dust collector is set to be higher than a particle terminal speed of particles flowing out of the melting furnace as solids. Pyrolysis gasification melting system characterized by 請求項1または2に記載の熱分解ガス化溶融システムにおいて、ろ過式集塵装置のろ過速度が、0.5〜0.8m/minであることを特徴とする熱分解ガス化溶融システム。   The pyrolysis gasification and melting system according to claim 1 or 2, wherein the filtration rate of the filtration type dust collector is 0.5 to 0.8 m / min. ごみと産業廃棄物のいずれか一方もしくは双方を熱分解ガス化して熱分解ガスとチャーを排出するガス化炉と、前記排出された熱分解ガスとチャーを燃焼させる溶融炉と、前記溶融炉から排出される排ガスの熱を回収する廃熱ボイラと、前記廃熱ボイラから排出される排ガス中の固体粒子を捕集するろ過式集塵装置と、前記ろ過式集塵装置に流入する排ガスに脱塩剤を供給する脱塩剤供給手段と、前記ろ過式集塵装置の濾布を逆洗する逆洗手段と、前記ろ過式集塵装置に捕集された固体粒子の供給先を前記溶融炉とそれ以外に切り替える切替装置と、前記逆洗手段と切替装置の動作を制御する制御装置と、を有してなる熱分解ガス化溶融システムの運用方法であって、前記ろ過式集塵装置のろ過速度を、溶融炉から固体で流出する粒子の粒子終末速度より小さく、前記溶融炉から気化した状態で流出し、ろ過式集塵装置に固体となって流入する粒子の粒子終末速度及び前記脱塩剤成分を含む粒子の粒子終末速度よりも大きく設定し、かつ、逆洗終了から次回の逆洗開始までの間はろ過式集塵装置で捕集された粒子を溶融炉に供給し、逆洗中はろ過式集塵装置から排出される粒子を溶融炉に供給しないように前記切替装置を制御する熱分解ガス化溶融システムの運用方法。   A gasification furnace for pyrolyzing and / or pyrolyzing one or both of waste and industrial waste to discharge pyrolysis gas and char, a melting furnace for burning the discharged pyrolysis gas and char, and A waste heat boiler that recovers the heat of the exhaust gas discharged, a filtration dust collector that collects solid particles in the exhaust gas discharged from the waste heat boiler, and an exhaust gas that flows into the filtration dust collector. Desalting agent supply means for supplying a salt agent, backwashing means for backwashing the filter cloth of the filtration dust collector, and a supply destination of solid particles collected by the filtration dust collector is the melting furnace. And a switching device for switching to the other, a control device for controlling the operation of the backwashing means and the switching device, and a method for operating a pyrolysis gasification and melting system, comprising: Particles flowing out of the melting furnace with solid filtration rate It is smaller than the terminal velocity, set to be larger than the particle terminal velocity of the particles flowing out from the melting furnace in a vaporized state and flowing into the filtration type dust collector as solid and the particle terminal velocity of the particles containing the desalting agent component. During the period from the end of backwashing to the start of the next backwashing, the particles collected by the filtration dust collector are supplied to the melting furnace, and during backwashing, the particles discharged from the filtration dust collector are removed. A method for operating a pyrolysis gasification melting system for controlling the switching device so as not to supply the melting furnace. 請求項4記載の熱分解ガス化溶融システムの運用方法において、前記ろ過式集塵装置に排ガスを供給する排ガスダクト中の排ガスの速度を、前記溶融炉から固体で流出する粒子の粒子終末速度より大きく設定することを特徴とする熱分解ガス化溶融システムの運用方法。   5. The operation method of the pyrolysis gasification melting system according to claim 4, wherein the exhaust gas velocity in the exhaust gas duct supplying the exhaust gas to the filtration dust collector is determined from the particle terminal velocity of particles flowing out of the melting furnace as a solid. A method of operating a pyrolysis gasification melting system, characterized in that it is set large. 請求項4または5に記載の熱分解ガス化溶融システムの運用方法において、ろ過式集塵装置のろ過速度を、0.5〜0.8m/minに設定することを特徴とする熱分解ガス化溶融システムの運用方法。
The operation method of the pyrolysis gasification melting system according to claim 4 or 5, wherein the filtration rate of the filtration dust collector is set to 0.5 to 0.8 m / min. How to operate the melting system.
JP2004234991A 2004-08-12 2004-08-12 Pyrolytic gasification melting system and its operation method Pending JP2006052896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234991A JP2006052896A (en) 2004-08-12 2004-08-12 Pyrolytic gasification melting system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234991A JP2006052896A (en) 2004-08-12 2004-08-12 Pyrolytic gasification melting system and its operation method

Publications (1)

Publication Number Publication Date
JP2006052896A true JP2006052896A (en) 2006-02-23

Family

ID=36030492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234991A Pending JP2006052896A (en) 2004-08-12 2004-08-12 Pyrolytic gasification melting system and its operation method

Country Status (1)

Country Link
JP (1) JP2006052896A (en)

Similar Documents

Publication Publication Date Title
JPS6143069Y2 (en)
JP3285692B2 (en) Fly ash treatment device in incinerator
JP2006159036A (en) Exhaust gas treatment method and system
JP2007117890A (en) Exhaust gas treating method and system
JPH11257619A (en) City refuse combustion device
JP2006052896A (en) Pyrolytic gasification melting system and its operation method
JP3664941B2 (en) Exhaust gas treatment method and system for ash melting furnace
JP2004263952A (en) Heat recovering method and device from exhaust gas
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
JP2000126550A (en) Combustion device and method for treating exhaust gas therefrom, ash cooling device therefor
JP2005195228A (en) Waste material melting treatment system
JP3091197B1 (en) Method and apparatus for reducing dioxins in garbage gasification and melting equipment with char separation method
JP2000300953A (en) Method for treatment of combustion exhaust gas of waste
JP3358503B2 (en) Exhaust gas treatment method for waste melting furnace etc.
JP2004084965A (en) Combustion exhaust gas processing equipment
JP3869043B2 (en) Exhaust gas treatment equipment in waste treatment equipment
JP2005046815A (en) Method and apparatus for treating flue gas from melting furnace
JP2007285583A (en) Waste treatment equipment
JP3506608B2 (en) Dry distillation pyrolysis melting combustion equipment for waste
JP4285863B2 (en) Method and apparatus for removing hazardous substances from waste treatment facilities
JPH11118138A (en) Melting treatment equipment
JP2002153838A (en) Method for treating activated carbon with dioxins adsorbed
JP2004233006A (en) Exhaust gas treatment system, and melting facility having the same
JP2005098585A (en) Method of collecting incineration ash and incineration exhaust gas treatment system
JP2002317914A (en) Waste gas processing method for melting furnace, and its equipment