JP2006052473A - Glass cloth and printed wiring board - Google Patents

Glass cloth and printed wiring board Download PDF

Info

Publication number
JP2006052473A
JP2006052473A JP2002250421A JP2002250421A JP2006052473A JP 2006052473 A JP2006052473 A JP 2006052473A JP 2002250421 A JP2002250421 A JP 2002250421A JP 2002250421 A JP2002250421 A JP 2002250421A JP 2006052473 A JP2006052473 A JP 2006052473A
Authority
JP
Japan
Prior art keywords
glass cloth
cross
yarn bundle
yarn
warp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250421A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kimura
康之 木村
Shinji Yoshikawa
真士 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Schwebel Co Ltd
Original Assignee
Asahi Schwebel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Schwebel Co Ltd filed Critical Asahi Schwebel Co Ltd
Priority to JP2002250421A priority Critical patent/JP2006052473A/en
Priority to AU2003261727A priority patent/AU2003261727A1/en
Priority to PCT/JP2003/010775 priority patent/WO2004020715A1/en
Priority to TW092123784A priority patent/TW200403366A/en
Publication of JP2006052473A publication Critical patent/JP2006052473A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass cloth expressing an excellent dimensional stability of a printed wiring board and the printed wiring board by using the glass cloth as a reinforcing material. <P>SOLUTION: This glass cloth constituted by warp yarns and weft yarns is characterized in that each of the mean values A (μm) of yarn bundle cross-sectional width of the warp yarns and weft yarns and each of their standard deviations σ (μm) satisfy the following formula (1), and each of the mean value A (μm) of the yarn bundle cross-sectional width and the mean value B (μm) of yarn bundle cross-sectional thickness satisfy the following formula (2). 2σ≤A×0.100 ---------(1). arctan(B/A)≤7.0° ----(2). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線板用途に用いられるガラスクロス、及びそれを用いて作成したプリント配線板に関するものである。
【0002】
【従来の技術】
プリント配線板は、銅張り積層板を作成し、ドリル穴あけ、穴洗浄、無電解銅メッキ等の公知の加工工程を経ることにより作成される。銅張り積層板を作成する積層工程の熱と圧力、およびこれらの加工工程中に、銅張り積層板の寸法が変化することが一般的に知られている。
また多層プリント配線板においては、ガラスクロスにエポキシ樹脂等の熱硬化性樹脂を含浸したプリプレグを複数枚積層して金属箔を貼り、これをさらに複数枚重ね合わせて加熱加圧し、接着することにより成型製造されるため、寸法が変化することによる層間の接続不良が大きな問題となっている。これは、近年の回路パターンの高密度化及び層数の増大により、層間ずれの許容差が厳しくなったためである。このような現状に鑑みて、接着成型前後の積層板の寸法変化の絶対値、及びばらつきが小さいプリント配線板が強く要望されている。また、ガラスクロス表面の凹凸に関しても、平面度の高いものが求められている。
【0003】
これらの問題を解決するために、たとえば特開平8−127959号公報記載のように、ガラスクロスに開繊加工等の扁平化加工を施してガラスクロスを構成するガラス糸束の糸束断面幅を拡げる試みがなされてきた。糸束は複数の単糸から構成されているため、厚さ方向に重なっている単糸を平面方向に広がるよう扁平化することで、糸束断面幅を大きくすることができる。
糸束断面幅を拡げる事により、ガラスクロスとマトリックス樹脂の含浸状態の均一化、糸のうねり角度の低減による平面度の向上、及びガラス充填量の増加を図る事ができる。しかしながら、開繊加工度の不足や不均一により、細部でのばらつき低減は十分でなかった。また、ガラス充填量を上げた場合には加工性の低下やコストアップの要因となり、本質的な問題の解決には至っていなかった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の問題を解決し、プリント配線板を作成する工程で、優れた寸法安定性を示すガラスクロス、つまり寸法変化率の平均、及びばらつきを低減させる事ができるガラスクロス、及び該ガラスクロスを基材として用いたプリント配線板を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意研究した結果、ガラスクロスの織物構造に着目した。その結果、たて糸及びよこ糸の各糸束断面幅のばらつきが小さく、かつ該糸束が扁平の形状で、互いに交差する糸のうねり角度が小さいことにより、従来のガラスクロスを基材として用いた積層板と比較して、プリプレグの接着成型時に優れた寸法安定性、特に寸法変化の絶対値、及びばらつきの低減が図れる事を見出し、本発明を完成するに至った。すなわち、本発明は、:
▲1▼ たて糸とよこ糸から構成されるガラスクロスにおいて、該たて糸の糸束断面幅の平均値A1 (μm)及び標準偏差σ1 (μm)、該よこ糸の糸束断面幅の平均値A2 (μm)及び標準偏差σ2 (μm)が下式(1)を満たし、該たて糸の糸束断面幅の平均値A1 (μm)と糸束断面厚さの平均値B1 (μm)、該よこ糸の糸束断面幅の平均値A2 (μm)と糸束断面厚さの平均値B2 (μm)が下式(2)を満たすことを特徴とするガラスクロスを提供する。
2σ1 ≦A1 ×0.100 かつ 2σ2 ≦A2 ×0.100・・・(1)
arctan(B1 /A1 )≦7.0° かつ arctan(B2 /A2 )≦7.0°・・・(2)
▲2▼ ▲1▼記載のガラスクロスを基材として用いたことを特徴とするプリント配線板を提供する。
【0006】
以下に、本発明を詳細に説明する。
(1)ガラスクロスの特徴:
ガラスクロスはたて糸とよこ糸が交互に浮沈している平織り構造が一般的であり、その場合、たて糸とよこ糸が重なっている部分、たて糸またはよこ糸のどちらか一方の糸が存在している部分、バスケットホールと呼ばれるたて糸とよこ糸により囲まれたガラス糸のない部分の3種の状態が混在している。
一般にこれら3種の状態は、たて糸及びよこ糸の撚りや拡幅量の影響によって様々に分布しているが、プリント配線板の寸法安定性を高めるためには、第1に糸束幅の細い部分と太い部分のばらつきが少ない状態で配列されていること、第2に糸束が扁平であることが必要である。
図1に、ガラスクロスを構成するたて糸及びよこ糸の関係を説明する模式図を示す。長軸長A、短軸長Bの楕円は、1本のたて糸あるいはよこ糸を構成する、糸束の断面を模式的に示したものである。該糸束は複数の単糸から構成されているので、撚り等のためにサンプリング箇所により単糸の集合状態、すなわち楕円の寸法が変化する。従って全体を評価するには、平均値と標準偏差で評価する必要がある。
【0007】
上述の第1の条件である、糸束幅の細い部分と太い部分のばらつきが少ない状態とは、たて糸の糸束断面幅の平均値A1 (μm)及び標準偏差σ1 (μm)、及び、よこ糸の糸束断面幅の平均値A2 (μm)及び標準偏差σ2 (μm)を用いて下式(1)で表すことができる。
2σ1 ≦A1 ×0.100 かつ 2σ2 ≦A2 ×0.100・・・(1)
より好ましくは、2σ1 ≦A1 ×0.070 かつ 2σ2 ≦A2 ×0.070を満たすことである。
標準偏差σ(μm)は糸束断面幅のばらつきを表す指標であり、下式(3)で計算できる。
σ={S/(N−1)}1/2 ・・・(3)
ここで、Nはサンプリングした糸束の本数を示す。Sは偏差平方和を示し、下式(4)で計算できる。
S=ΣXi2 −(ΣXi)2 /N ・・・(4)
ここで、Xiはそれぞれの糸束の断面幅の測定値を表す。
2σの値は、糸束断面幅が正規分布するという前提で任意にサンプリングされた糸幅断面幅の値が、Aを該糸束の糸束断面幅の平均値を示すものとする時、A±2σの範囲に95.4(%)の割合で統計的に入ることを意味するものである(上式(3)以降の記述内容については、例えば、「品質管理のための統計的方法入門」鐵健司著、(株)日科技連出版社発行、1977年8月25日、P.39〜41及びP.55〜56参照)。すなわちσの値が小さいほど、糸束断面幅の細い部分と太い部分のばらつきが小さい。たて糸及びよこ糸のいずれかまたは両方の糸束断面幅の標準偏差の2倍を示す2σが糸束断面幅の平均値の0.1倍より大きい場合は、プリント配線板を作成した時にガラスの含有率の面内ばらつきが大きくなるため、後述する寸法変化率のばらつきが大きくなる。
【0008】
さらに、Bを該糸束の糸束断面厚さの平均値を示すものとする時、該糸束と交差する糸束のうねり角度θは逆三角関数arctan(B/A)で計算される(図1参照)。すなわち、たて糸の糸束断面幅の平均値A1 、断面厚さの平均値B1 より計算されるarctan(B1 /A1 )はよこ糸のうねり角度を示し、よこ糸の糸束断面幅の平均値A2 、断面厚さの平均値B2 より計算されるarctan(B2 /A2 )はたて糸のうねり角度を示す。上述の第2の条件である、糸束が扁平である事とは、該うねり角の上限が下式(2)で定義される状態である。
arctan(B1 /A1 )≦7.0° かつ arctan(B2 /A2 )≦7.0°・・・(2)
より好ましくは、arctan(B1 /A1 )≦5.0° かつ arctan(B2 /A2 )≦5.0°の関係を満たすことである。うねり角の下限は糸束を構成する単糸の本数nにて定まり、最大に扁平化した場合はarctan(1/n)となる。たとえば100本の糸束では、0.57°に相当する。たて糸及びよこ糸のいずれかまたは両方のうねり角度θが7.0°より大きければ、ガラスクロスの面方向での剛性が低下し、寸法変化率の絶対値が大きくなり、ひいてはばらつきも大きくなる。また、たて糸またはよこ糸の何れか一方のうねり角度が大きい場合には、異方性を生じることとなる。
【0009】
また上式(2)を満たすクロスは、前述のたて糸とよこ糸が重なっている部分の面積が大きく拘束力が高まるため、熱による樹脂の硬化収縮に対する抵抗を大きくする事が可能となり、寸法安定性が向上する。この場合、たて糸及びよこ糸の各糸束の断面形状は、Aの値が大きく、Bの値が小さくなるため、プリプレグの厚さのばらつきが小さくなり、プリント配線板を成型した時の板厚精度、表面平滑性が向上する事は言うまでもない。
なお、上述の平均値A,B及び標準偏差σは、後述するように、ガラスクロスを樹脂に包埋して切断し、断面写真を撮って糸束の断面幅、断面厚さを測定して計算する。測定する糸束断面の数は10〜1000が好ましく、100〜200がより好ましい。測定数が10より少ないと、0.7回/インチの撚りがあってもその箇所がサンプリングされない可能性があるので標準偏差を精度よく求めることができない。また、1000より多いと、多数の断面写真をとる必要が有り、精度の向上に比して測定コストがかかりすぎるので好ましくない。
【0010】
(2)ガラスクロスの加工:
本発明のガラスクロスは、たて糸またはよこ糸を構成するガラス糸束の少なくとも一方の撚りを、通常使用されるガラス糸束の撚り(0.7〜1.0回/インチ)よりも低撚糸化し、扁平化加工することによって得ることができる。なお、たて糸とよこ糸を構成するガラス糸束の撚りを両方とも低撚糸化することがより好ましい。
上述の低撚糸化においては、ガラス糸束の撚り数を0.3回/インチ以下にすることが好ましく、より好ましくはガラス糸束の撚り数を0回/インチにすることである。撚り数が0.3回/インチ以下の糸を用いることによって、後述の扁平化加工による糸束断面幅の平均値の拡大が容易になり、かつ、撚りによる糸束断面幅のばらつきを低減することができる。
【0011】
また、本発明のガラスクロスを得るためには、上述の低撚糸化に加えて、扁平化加工を行うことが好ましい。例えば、水流による圧力による開繊、液体を媒体とした高周波の振動による開繊、面圧を有する流体の圧力による加工、ロールによる加圧での加工等を施すことによって、より糸束断面幅の平均値は広がり、たて糸及びよこ糸共に糸束断面幅のばらつきが少なくなる。これらの扁平化加工法の中では、水流による圧力による開繊、または液体を媒体とした高周波の振動による開繊を使用することが、均一性のためにより好ましい。また、該扁平化加工の効果を高めるためには、ガラスクロスにかかる張力を少なくした状態で加工を行うことが好ましい。
さらに、ガラス糸に滑剤の特性を示す有機物が付着した状態のガラスクロス、または通常のガラスクロスを製織する際に使用されるバインダー、糊剤等が付着した状態(通常、生機という。)での、扁平化加工と低撚糸化の組み合わせによって、上述の糸束断面幅の平均値の拡大及びばらつきの低下に対する効果はより大きくすることができる。
また、次に述べる表面処理を施した後に開繊加工を施すことにより、収束したガラス単糸間の隙間を広げる事が容易になる。
【0012】
(3)ガラスの組成および処理:
プリント配線板等に使用される積層板のガラスクロスには、通常Eガラス(無アルカリガラス)と呼ばれるガラスが使用されるが、Dガラス等の低誘電率ガラス、Sガラス等の高強度ガラス、Hガラス等の高誘電率ガラス等を使用しても、ガラス種によって本発明の効果が損なわれることはない。
同様に、プリント配線板等に使用される積層板のガラスクロスには、通常シランカップリング剤を含んだ処理液による表面処理が施され、該シランカップリング剤としては通常一般に用いられるシランカップリング剤を使用する事ができ、必要に応じて、酸、染料、顔料、界面活性剤などを添加しても良い。表面処理によって本発明の効果が損なわれる事はない。
【0013】
(4)プリント配線板の製造:
本発明のプリント配線板を作成するには定法に従えばよく、例えばガラスクロスにエポキシ樹脂のようなマトリックス樹脂を含浸させて、樹脂含浸プリプレグを作り、これを複数枚積層し、または内層コア板の上にこれを複数枚または一枚積層し、加熱加圧形成することにより得られる。プリント配線板に使用されるマトリックス樹脂としては、上述のエポキシ樹脂の他に、不飽和ポリエステル樹脂、ポリイミド樹脂、BT樹脂、シアネート樹脂等の熱硬化性樹脂や、PPO樹脂、ポリエーテルイミド樹脂、フッ素樹脂等の熱可塑性樹脂、またはそれらの混合樹脂などが挙げられる。また、樹脂中に水酸化アルミニウム等の無機充填剤を混在させた樹脂を使用してもかまわない。
【0014】
【発明の実施の形態】
以下、本発明を実施例により詳しく説明する。
また、実施例、比較例中のガラスクロスの物性、ガラスクロスの糸束断面幅および厚さ、ガラスクロスを用いた積層板の作成方法、および試験方法は以下の方法により測定した。
▲1▼ガラスクロスの物性測定方法
JIS−R−3420に従い測定した。
▲2▼たて糸及びよこ糸の糸束断面幅、及び厚さの測定方法
ガラスクロスを常温硬化のエポキシで包埋し、研磨してガラス糸束断面を削り出し、たて糸及びよこ糸をそれぞれ電子顕微鏡(日立製作所製S−570)にて測定倍率220倍で断面写真を撮影した。糸束断面幅、及び糸束断面厚さの測定は、たて糸及びよこ糸それぞれ150(本)について行い、糸束断面幅については平均値と標準偏差、糸束断面厚さについては平均値を計算した。
【0015】
▲3▼プリント配線板用積層板の作成方法
ガラスクロスに、下記調合割合で調製したエポキシ樹脂ワニスを浸漬し、0.30mmの隙間のスリットで余剰樹脂ワニスを掻き落とし、170℃で3分間乾燥させてプリプレグを得た。このプリプレグの上下に12μm銅箔を重ねて、175℃、3.9MPaで加熱加圧し、たて340mm、よこ340mmの積層板を得た。
[エポキシ樹脂ワニス調合割合]5046B80(ジャパンエポキシレジン株式会社製、商品名):70重量%、180S75B70(ジャパンエポキシレジン株式会社製、商品名):14重量%、ジシアンジアミド:1.6重量%、2−エチル−4−メチル−イミダゾール:0.2重量%、ジメチルホルムアミド:7.1重量%、メチルセロソルブ:7.1重量%。
【0016】
▲4▼プリント配線板用積層板の寸法変化測定法
前記▲3▼の方法により積層板を作成し、125mm間隔で、たて方向3カ所×よこ方向3カ所の合計9カ所の標点をつけ、たて方向、よこ方向のそれぞれについて、隣接する2標点の標点間隔6箇所を測定した(測定値a)。次に、エッチング処理によって銅箔を取り除き、170℃で30分加熱した後、該標点間隔を再度測定した(測定値b)。測定値aと測定値bの差の測定値aに対する割合を寸法変化率とした。たて方向、よこ方向それぞれについて、6つの寸法変化率の測定値を平均したものの絶対値(後述の表1では「寸法変化率の平均」という。)、及び6つの寸法変化率の測定値の最大値から最小値をひいた後の値(後述の表1では「寸法変化率のばらつき」という。)を計算した。
【0017】
【実施例1】
ガラスクロスとして、たて糸およびよこ糸にD450 1/0 無撚糸(撚りが0回/インチの糸を示す。)を使用し、エアジェットルームで、たて糸56本/25mm、よこ糸54本/25mmの織物密度で平織りに製織し、得られた生機に高圧散水流による加工を施した後、ヒートクリーニングした。
続いて、表面処理として、シランカップリング剤であるSZ6032(東レ・ダウコーニング(株)製:商品名)を用いて処理液とし、ガラスクロスを浸漬し、絞液後乾燥し、さらに高圧水流による加工を施し、実施例1のガラスクロスを得た。評価結果は表1に示したように、該ガラスクロスから得られた積層板は寸法変化率の平均・ばらつきとも小さいものであった。
【0018】
【実施例2】
ガラスクロスとして、たて糸およびよこ糸にD450 1/0 無撚糸を使用し、エアジェットルームで、たて糸56本/25mm、よこ糸54本/25mmの織物密度で平織りに製織し、得られた生機に液体を媒体とした高周波の振動による加工を施した後、ヒートクリーニングした。
続いて、表面処理として、シランカップリング剤であるSZ6032(東レ・ダウコーニング(株)製:商品名)を用いて処理液とし、ガラスクロスを浸漬し、絞液後乾燥し、実施例2のガラスクロスを得た。評価結果は表1に示したように、該ガラスクロスから得られた積層板は寸法変化率の平均・ばらつきとも小さいものであった。
【0019】
【実施例3】
ガラスクロスとして、たて糸およびよこ糸にD450 1/0 無撚糸を使用し、エアジェットルームで、たて糸56本/25mm、よこ糸54本/25mmの織物密度で平織りに製織し、得られた生機に高圧散水流による加工を施した後、ヒートクリーニングした。
続いて、表面処理として、シランカップリング剤であるSZ6032(東レ・ダウコーニング(株)製:商品名)を用いて処理液とし、ガラスクロスを浸漬し、絞液後乾燥し、実施例3のガラスクロスを得た。評価結果は表1に示したように、該ガラスクロスから得られた積層板は寸法変化率の平均・ばらつきとも小さいものであった。
【0020】
【実施例4】
ガラスクロスとして、たて糸およびよこ糸にE225 1/0 0.3Z(撚りが0.3回/インチの糸を示す。)を使用し、エアジェットルームで、たて糸61本/25mm、よこ糸47本/25mmの織物密度で平織りに製織した他は、実施例1と同様の方法で、実施例4のガラスクロスを得た。評価結果は表1に示したように、該ガラスクロスから得られた積層板は寸法変化率の平均・ばらつきとも小さいものであった。
【0021】
【比較例1】
ガラスクロスとして、たて糸およびよこ糸にD450 1/0 1.0Z(撚りが1.0回/インチの糸を示す。)を使用し、エアジェットルームで、たて糸56本/25mm、よこ糸54本/25mmの織物密度で平織りに製織した他は、実施例1と同様の方法で、比較例1のガラスクロスを得た。表1に示した評価結果からわかるように、該ガラスクロスは糸束断面幅の標準偏差が大きく、該ガラスクロスから得られた積層板は寸法変化率の平均・ばらつきが大きいものであった。
【0022】
【比較例2】
ガラスクロスとして、たて糸およびよこ糸にD450 1/0 1.0Zを使用し、エアジェットルームで、たて糸56本/25mm、よこ糸54本/25mmの織物密度で平織りに製織し、得られた生機をヒートクリーニングした。
続いて、表面処理として、シランカップリング剤であるSZ6032(東レ・ダウコーニング(株)製:商品名)を用いて処理液とし、ガラスクロスを浸漬し、絞液後乾燥し、比較例2のガラスクロスを得た。表1に示した評価結果からわかるように、該ガラスクロスは糸束断面幅の標準偏差が大きい上にうねり角度も大きく、作成した積層板は寸法変化率の平均・ばらつきとも大きいものであった。
【0023】
【比較例3】
ガラスクロスとして、たて糸およびよこ糸にE225 1/0 1.0Zを使用し、エアジェットルームで、たて糸61本/25mm、よこ糸47本/25mmの織物密度で平織りに製織し、ヒートクリーニングした。
続いて、表面処理として、シランカップリング剤であるSZ6032(東レ・ダウコーニング(株)製:商品名)を用いて処理液とし、ガラスクロスを浸漬し、絞液後乾燥し、さらに高圧水流による加工を施し、比較例3のガラスクロスを得た。表1に示した評価結果からわかるように、該ガラスクロスはうねり角度が大きく、作成した積層板は寸法変化率の平均・ばらつきとも大きいものであった。
【0024】
【表1】

Figure 2006052473
【0025】
【発明の効果】
本発明により、プリント配線板を作成する工程で、優れた寸法安定性、つまり寸法変化率の平均、及びばらつきを低減させる事ができるガラスクロス、及び該ガラスクロスを基材として用いたプリント配線板を提供することができる。
【図面の簡単な説明】
【図1】ガラスクロスを構成するガラス糸の関係およびたて糸あるいはよこ糸の糸束断面の幅、糸束断面の厚さ、及びうねり角度を説明する断面図である。
【符号の説明】
A 糸束断面幅
B 糸束断面厚さ
θ 糸束のうねり角度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass cloth used for a printed wiring board and a printed wiring board formed using the glass cloth.
[0002]
[Prior art]
The printed wiring board is prepared by creating a copper-clad laminate and performing known processing steps such as drilling, hole cleaning, and electroless copper plating. It is generally known that the heat and pressure of the laminating process for creating a copper clad laminate, and the dimensions of the copper clad laminate change during these processing steps.
In a multilayer printed wiring board, a plurality of prepregs impregnated with a thermosetting resin such as an epoxy resin are laminated on a glass cloth, and a metal foil is pasted thereon. Since it is molded and manufactured, poor connection between layers due to changes in dimensions is a major problem. This is because the tolerance of interlayer displacement has become severe due to the recent increase in the density of circuit patterns and the increase in the number of layers. In view of such a current situation, there is a strong demand for a printed wiring board having a small absolute value and a small variation in the dimensional change of the laminate before and after adhesion molding. Moreover, the thing with high flatness is calculated | required also about the unevenness | corrugation of the surface of a glass cloth.
[0003]
In order to solve these problems, for example, as described in Japanese Patent Application Laid-Open No. 8-127959, the cross-section width of the glass yarn bundle constituting the glass cloth by performing flattening processing such as fiber opening processing on the glass cloth is set. There have been attempts to expand. Since the yarn bundle is composed of a plurality of single yarns, the cross-sectional width of the yarn bundle can be increased by flattening the single yarns overlapping in the thickness direction so as to spread in the plane direction.
By expanding the cross section width of the yarn bundle, it is possible to make the impregnation state of the glass cloth and the matrix resin uniform, improve the flatness by reducing the undulation angle of the yarn, and increase the glass filling amount. However, due to the lack or non-uniformity of the degree of opening processing, variation in details has not been sufficiently reduced. Further, when the glass filling amount is increased, the workability is lowered and the cost is increased, and the essential problems have not been solved.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems of the prior art, and in the process of producing a printed wiring board, a glass cloth exhibiting excellent dimensional stability, that is, a glass capable of reducing the average dimensional change rate and variation. An object is to provide a cloth and a printed wiring board using the glass cloth as a base material.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have paid attention to the woven structure of glass cloth. As a result, the variation in the cross-sectional width of each yarn bundle of warp and weft is small, the yarn bundle is flat, and the undulation angle of the intersecting yarns is small, so that the conventional glass cloth is used as a base material. As compared with the plate, it has been found that the dimensional stability, particularly the absolute value of the dimensional change and the variation can be reduced when the prepreg is adhesively molded, and the present invention has been completed. That is, the present invention provides:
( 1 ) In a glass cloth composed of warp and weft, the average value A 1 (μm) of the cross-sectional width of the yarn bundle of the warp and the standard deviation σ 1 (μm), and the average value A 2 of the cross-sectional width of the weft yarn (Μm) and standard deviation σ 2 (μm) satisfy the following formula (1), and average value A 1 (μm) of the yarn bundle cross-sectional width of the warp yarn and average value B 1 (μm) of the yarn bundle cross-sectional thickness, Provided is a glass cloth characterized in that the average value A 2 (μm) of the cross-sectional width of the yarn bundle and the average value B 2 (μm) of the cross-sectional thickness of the weft satisfy the following formula (2).
1 ≦ A 1 × 0.100 and 2σ 2 ≦ A 2 × 0.100 (1)
arctan (B 1 / A 1 ) ≦ 7.0 ° and arctan (B 2 / A 2 ) ≦ 7.0 ° (2)
(2) Provided is a printed wiring board using the glass cloth described in (1) as a base material.
[0006]
The present invention is described in detail below.
(1) Features of glass cloth:
A glass cloth generally has a plain weave structure in which warp yarns and weft yarns are alternately raised and lowered. In this case, a portion where warp yarns and weft yarns overlap, a portion where either warp yarns or weft yarns exist, baskets There are three kinds of states, a warp yarn called a hole and a portion without glass yarn surrounded by weft yarn.
In general, these three states are distributed in various ways due to the effects of warp and weft twists and widening amounts. In order to improve the dimensional stability of the printed wiring board, It is necessary to arrange the thick portions with little variation, and secondly, the yarn bundle must be flat.
FIG. 1 is a schematic diagram for explaining the relationship between the warp and the weft constituting the glass cloth. An ellipse having a major axis length A and a minor axis length B schematically shows a cross-section of a yarn bundle constituting one warp or weft. Since the yarn bundle is composed of a plurality of single yarns, the gathering state of the single yarns, that is, the size of the ellipse changes depending on the sampling location for twisting and the like. Therefore, in order to evaluate the whole, it is necessary to evaluate with an average value and a standard deviation.
[0007]
The state where the variation between the narrow portion and the thick portion, which is the first condition described above, is small is that the average value A 1 (μm) and the standard deviation σ 1 (μm) of the cross section width of the warp yarns, and The average value A 2 (μm) and the standard deviation σ 2 (μm) of the cross section width of the weft yarn can be expressed by the following formula (1).
1 ≦ A 1 × 0.100 and 2σ 2 ≦ A 2 × 0.100 (1)
More preferably, 2σ 1 ≦ A 1 × 0.070 and 2σ 2 ≦ A 2 × 0.070 are satisfied.
The standard deviation σ (μm) is an index representing the variation in the cross section width of the yarn bundle, and can be calculated by the following equation (3).
σ = {S / (N−1)} 1/2 (3)
Here, N indicates the number of sampled yarn bundles. S represents a deviation sum of squares and can be calculated by the following equation (4).
S = ΣXi 2 − (ΣXi) 2 / N (4)
Here, Xi represents a measured value of the cross-sectional width of each yarn bundle.
The value of 2σ is such that when the value of the yarn width sectional width arbitrarily sampled on the assumption that the yarn bundle sectional width is normally distributed, A indicates the average value of the yarn bundle sectional width of the yarn bundle, This means that it is statistically included in the range of ± 2σ at a rate of 95.4 (%). (For the description content after the above equation (3), for example, “Introduction to Statistical Methods for Quality Control” "Kenji Tsuji, published by Nikka Techen Publishers, Inc., August 25, 1977, see pages 39-41 and pages 55-56). That is, the smaller the value of σ, the smaller the variation between the narrow portion and the thick portion of the yarn bundle cross-sectional width. If 2σ, which is twice the standard deviation of the yarn bundle cross-sectional width of either or both of the warp and weft, is greater than 0.1 times the average value of the yarn bundle cross-sectional width, the inclusion of glass when the printed wiring board is produced Since the in-plane variation of the rate becomes large, the variation of the dimensional change rate described later becomes large.
[0008]
Furthermore, when B represents the average value of the cross section thickness of the yarn bundle, the undulation angle θ of the yarn bundle intersecting with the yarn bundle is calculated by the inverse trigonometric function arctan (B / A) ( (See FIG. 1). That is, arctan (B 1 / A 1 ) calculated from the average value A 1 of the cross-sectional width of the yarn bundle of the warp and the average value B 1 of the cross-sectional thickness indicates the undulation angle of the weft yarn, and the average of the cross-sectional width of the weft yarn bundle Arctan (B 2 / A 2 ) calculated from the value A 2 and the average value B 2 of the cross-sectional thickness indicates the swell angle of the warp yarn. The above-mentioned second condition, that the yarn bundle is flat, is a state in which the upper limit of the waviness angle is defined by the following equation (2).
arctan (B 1 / A 1 ) ≦ 7.0 ° and arctan (B 2 / A 2 ) ≦ 7.0 ° (2)
More preferably, the relationship of arctan (B 1 / A 1 ) ≦ 5.0 ° and arctan (B 2 / A 2 ) ≦ 5.0 ° is satisfied. The lower limit of the undulation angle is determined by the number n of single yarns constituting the yarn bundle, and arctan (1 / n) when flattened to the maximum. For example, with 100 yarn bundles, this corresponds to 0.57 °. If the waviness angle θ of either or both of the warp and the weft is greater than 7.0 °, the rigidity in the surface direction of the glass cloth is lowered, the absolute value of the dimensional change rate is increased, and the variation is also increased. In addition, when the waviness angle of either the warp or the weft is large, anisotropy occurs.
[0009]
In addition, the cloth satisfying the above formula (2) has a large area where the warp and weft are overlapped and the binding force is increased, so that resistance to curing and shrinkage of the resin due to heat can be increased, and dimensional stability Will improve. In this case, the cross-sectional shape of each yarn bundle of warp and weft has a large value of A and a small value of B, so the variation in the thickness of the prepreg is small, and the plate thickness accuracy when the printed wiring board is molded Needless to say, the surface smoothness is improved.
The average values A and B and the standard deviation σ described above are obtained by embedding a glass cloth in a resin and cutting it, and taking a cross-sectional photograph to measure the cross-sectional width and cross-sectional thickness of the yarn bundle, as will be described later. calculate. The number of yarn bundle cross sections to be measured is preferably 10 to 1000, more preferably 100 to 200. If the number of measurements is less than 10, even if there is a twist of 0.7 times / inch, that portion may not be sampled, so the standard deviation cannot be obtained with high accuracy. On the other hand, when the number is more than 1000, it is necessary to take a number of cross-sectional photographs, which is not preferable because the measurement cost is excessive as compared with improvement in accuracy.
[0010]
(2) Processing of glass cloth:
In the glass cloth of the present invention, the twist of at least one of the glass yarn bundles constituting the warp yarn or the weft yarn is made lower than the twist of the normally used glass yarn bundle (0.7 to 1.0 times / inch), It can be obtained by flattening. It is more preferable to lower both the twists of the glass yarn bundles constituting the warp yarn and the weft yarn.
In the above-mentioned low twisting, it is preferable to set the number of twists of the glass yarn bundle to 0.3 times / inch or less, and more preferably to set the number of twists of the glass yarn bundle to 0 times / inch. By using a yarn having a number of twists of 0.3 times / inch or less, it becomes easy to increase the average value of the cross-sectional width of the yarn bundle by flattening, which will be described later, and the variation in the cross-sectional width of the yarn bundle due to twisting is reduced. be able to.
[0011]
Moreover, in order to obtain the glass cloth of this invention, it is preferable to perform a flattening process in addition to the above-mentioned low twist yarn. For example, the average of the cross-sectional width of the yarn bundle can be increased by performing opening with pressure due to water flow, opening with high-frequency vibration using liquid as a medium, processing with pressure of fluid having surface pressure, processing with pressure by a roll, etc. The value spreads and the variation in the cross-sectional width of the yarn bundle is reduced for both the warp and the weft. Among these flattening methods, it is more preferable for the uniformity to use the opening by the pressure by the water flow or the opening by the high frequency vibration using the liquid as a medium. In order to enhance the effect of the flattening process, it is preferable to perform the process in a state where the tension applied to the glass cloth is reduced.
Furthermore, a glass cloth in a state in which an organic substance exhibiting the characteristics of a lubricant is adhered to the glass yarn, or a state in which a binder, a glue or the like used when weaving a normal glass cloth is adhered (usually referred to as a living machine). The combination of flattening and low twisting can further increase the effect of increasing the average value of the above-mentioned yarn bundle cross-sectional width and reducing variations.
Moreover, it becomes easy to widen the gap between the converged glass single yarns by performing the fiber opening process after the surface treatment described below.
[0012]
(3) Glass composition and treatment:
A glass cloth of a laminated board used for a printed wiring board or the like is usually a glass called E glass (non-alkali glass), but low dielectric constant glass such as D glass, high strength glass such as S glass, Even if high dielectric constant glass such as H glass is used, the effect of the present invention is not impaired by the glass type.
Similarly, a glass cloth of a laminated board used for a printed wiring board or the like is usually subjected to a surface treatment with a treatment liquid containing a silane coupling agent, and the silane coupling agent generally used as the silane coupling agent is generally used. An agent, an dye, a pigment, a surfactant, and the like may be added as necessary. The effect of the present invention is not impaired by the surface treatment.
[0013]
(4) Manufacture of printed wiring boards:
The printed wiring board of the present invention may be prepared by a conventional method. For example, a glass cloth is impregnated with a matrix resin such as an epoxy resin to form a resin-impregnated prepreg, and a plurality of these are laminated, or an inner layer core board It is obtained by laminating a plurality of sheets or one sheet on top of each other and forming by heating and pressing. As the matrix resin used for the printed wiring board, in addition to the above-mentioned epoxy resin, thermosetting resin such as unsaturated polyester resin, polyimide resin, BT resin, cyanate resin, PPO resin, polyetherimide resin, fluorine Examples thereof include thermoplastic resins such as resins, or mixed resins thereof. Also, a resin in which an inorganic filler such as aluminum hydroxide is mixed in the resin may be used.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples.
Moreover, the physical property of the glass cloth in an Example and a comparative example, the thread | bundle cross-sectional width and thickness of a glass cloth, the preparation method of a laminated board using a glass cloth, and the test method were measured with the following method.
(1) Measurement method of physical properties of glass cloth Measured according to JIS-R-3420.
(2) Measuring method of cross-sectional width and thickness of warp and weft yarns Embedded glass cloth with epoxy cured at room temperature, polished to cut out the cross-section of the glass yarn bundle, and the warp yarns and weft yarns were respectively electron microscopes (Hitachi) A cross-sectional photograph was taken at a measurement magnification of 220 times with S-570). The yarn bundle cross-sectional width and the yarn bundle cross-sectional thickness were measured for each of the warp and weft yarns 150 (pieces). The average value and the standard deviation were calculated for the yarn bundle cross-sectional width, and the average value was calculated for the yarn bundle cross-sectional thickness. .
[0015]
(3) Preparation method of laminated board for printed wiring board Immerse the epoxy resin varnish prepared in the following blending ratio in glass cloth, scrape off the excess resin varnish with a slit of 0.30 mm gap, and dry at 170 ° C for 3 minutes. To obtain a prepreg. A 12 μm copper foil was placed on the top and bottom of the prepreg and heated and pressurized at 175 ° C. and 3.9 MPa to obtain a laminate having a length of 340 mm and a width of 340 mm.
[Epoxy resin varnish preparation ratio] 5046B80 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.): 70% by weight, 180S75B70 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.): 14% by weight, dicyandiamide: 1.6% by weight, 2 -Ethyl-4-methyl-imidazole: 0.2 wt%, dimethylformamide: 7.1 wt%, methyl cellosolve: 7.1 wt%.
[0016]
(4) Dimensional change measurement method for laminates for printed wiring boards A laminate is prepared by the method described in (3) above, and a total of 9 marks are placed at 125 mm intervals, 3 in the vertical direction and 3 in the horizontal direction. In each of the vertical direction and the horizontal direction, 6 intervals between the two adjacent reference points were measured (measurement value a). Next, the copper foil was removed by etching treatment, and after heating at 170 ° C. for 30 minutes, the distance between the gauge points was measured again (measurement value b). The ratio of the difference between the measured value a and the measured value b to the measured value a was defined as the dimensional change rate. For each of the vertical direction and the horizontal direction, the average value of six measured values of dimensional change rate (referred to as “average of dimensional change rate” in Table 1 described later), and the measured values of the six dimensional change rates. A value after subtracting the minimum value from the maximum value (referred to as “variation in dimensional change rate” in Table 1 described later) was calculated.
[0017]
[Example 1]
As a glass cloth, we used D450 1/0 untwisted yarn for warp and weft (shows 0 twist / inch). In air jet loom, weaving density of warp 56 / 25mm, weft 54 / 25mm After weaving into a plain weave, the resulting green machine was processed with a high-pressure water spray and then heat cleaned.
Subsequently, as a surface treatment, a silane coupling agent SZ6032 (manufactured by Toray Dow Corning Co., Ltd .: trade name) is used as a treatment liquid, a glass cloth is immersed in the glass cloth, dried after drawing, and further subjected to high-pressure water flow. The glass cloth of Example 1 was obtained by processing. As shown in Table 1, the evaluation results showed that the laminate obtained from the glass cloth had a small average and variation in dimensional change rate.
[0018]
[Example 2]
As glass cloth, we used D450 1/0 untwisted yarn for warp and weft, weaved into plain weave at a fabric density of 56 warps / 25mm and weft yarns / 25mm in an air jet loom. After processing by high-frequency vibration as a medium, heat cleaning was performed.
Subsequently, as a surface treatment, SZ6032 (made by Toray Dow Corning Co., Ltd .: trade name), which is a silane coupling agent, was used as a treatment liquid, a glass cloth was dipped, dried after squeezing, and Example 2 A glass cloth was obtained. As shown in Table 1, the evaluation results showed that the laminate obtained from the glass cloth had a small average and variation in dimensional change rate.
[0019]
[Example 3]
As a glass cloth, we used D450 1/0 untwisted yarn for warp and weft, weaved into a plain weave at a fabric density of 56 warps / 25mm and weft yarns / 25mm in an air jet loom. After processing with a water stream, heat cleaning was performed.
Subsequently, as surface treatment, SZ6032 which is a silane coupling agent (manufactured by Toray Dow Corning Co., Ltd .: trade name) was used as a treatment liquid, a glass cloth was immersed, and after drying, dried, A glass cloth was obtained. As shown in Table 1, the evaluation results showed that the laminate obtained from the glass cloth had a small average and variation in dimensional change rate.
[0020]
[Example 4]
As glass cloth, use E225 1/0 0.3Z for warp and weft yarns (shows a yarn with a twist of 0.3 times / inch). In an air jet loom, warp yarns 61/25 mm, weft yarns 47/25 mm A glass cloth of Example 4 was obtained in the same manner as in Example 1 except that it was woven into a plain weave at a fabric density of. As shown in Table 1, the evaluation results showed that the laminate obtained from the glass cloth had a small average and variation in dimensional change rate.
[0021]
[Comparative Example 1]
As a glass cloth, use D450 1/0 1.0Z for warp and weft yarns (indicating a yarn with a twist of 1.0 turns / inch). In an air jet loom, warp yarns 56/25 mm, weft yarns 54/25 mm A glass cloth of Comparative Example 1 was obtained in the same manner as in Example 1 except that it was woven into a plain weave at a fabric density of. As can be seen from the evaluation results shown in Table 1, the glass cloth had a large standard deviation in the cross-sectional width of the yarn bundle, and the laminate obtained from the glass cloth had a large average and variation in the dimensional change rate.
[0022]
[Comparative Example 2]
As a glass cloth, we used D450 1/0 1.0Z for warp and weft, weaved into plain weave at a fabric density of 56 warps / 25mm and weft 54 / 25mm in an air jet loom. Cleaned.
Subsequently, as a surface treatment, SZ6032 (made by Toray Dow Corning Co., Ltd .: trade name), which is a silane coupling agent, was used as a treatment liquid, a glass cloth was dipped, dried after drawing, A glass cloth was obtained. As can be seen from the evaluation results shown in Table 1, the glass cloth had a large standard deviation of the cross-sectional width of the yarn bundle and a large waviness angle, and the produced laminate had a large average and variation in the dimensional change rate. .
[0023]
[Comparative Example 3]
As the glass cloth, E225 1/0 1.0Z was used for the warp and the weft, and weaved into a plain weave at a fabric density of 61 warps / 25 mm and 47 wefts / 25 mm in an air jet loom and heat cleaned.
Subsequently, as a surface treatment, a silane coupling agent SZ6032 (manufactured by Toray Dow Corning Co., Ltd .: trade name) is used as a treatment liquid, a glass cloth is immersed in the glass cloth, dried after drawing, and further subjected to high-pressure water flow. The glass cloth of the comparative example 3 was obtained by processing. As can be seen from the evaluation results shown in Table 1, the glass cloth had a large undulation angle, and the produced laminate had a large average and variation in dimensional change rate.
[0024]
[Table 1]
Figure 2006052473
[0025]
【The invention's effect】
According to the present invention, a glass cloth capable of reducing excellent dimensional stability, that is, average of dimensional change rate and variation, and a printed wiring board using the glass cloth as a base material in a process for producing a printed wiring board. Can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating the relationship between glass yarns constituting a glass cloth, the width of a cross section of a warp or weft yarn bundle, the thickness of a cross section of the yarn bundle, and the waviness angle.
[Explanation of symbols]
A Yarn bundle cross section width B Yarn bundle cross section thickness θ Yarn bundle waviness angle

Claims (2)

たて糸とよこ糸から構成されるガラスクロスにおいて、該たて糸の糸束断面幅の平均値A1 (μm)及び標準偏差σ1 (μm)、該よこ糸の糸束断面幅の平均値A2 (μm)及び標準偏差σ2 (μm)が下式(1)を満たし、該たて糸の糸束断面幅の平均値A1 (μm)と糸束断面厚さの平均値B1 (μm)、該よこ糸の糸束断面幅の平均値A2 (μm)と糸束断面厚さの平均値B2 (μm)が下式(2)を満たすことを特徴とするガラスクロス。
2σ1 ≦A1 ×0.100 かつ 2σ2 ≦A2 ×0.100・・・(1)
arctan(B1 /A1 )≦7.0° かつ arctan(B2 /A2 )≦7.0°・・・(2)
In a glass cloth composed of warp and weft, the average value A 1 (μm) of the cross-sectional width of the warp yarn and the standard deviation σ 1 (μm), and the average value A 2 (μm) of the cross-sectional width of the weft yarn And the standard deviation σ 2 (μm) satisfy the following formula (1), the average value A 1 (μm) of the cross-sectional width of the yarn bundle and the average value B 1 (μm) of the cross-sectional thickness of the warp yarn, A glass cloth characterized in that the average value A 2 (μm) of the cross-sectional width of the yarn bundle and the average value B 2 (μm) of the cross-sectional thickness of the yarn bundle satisfy the following formula (2).
1 ≦ A 1 × 0.100 and 2σ 2 ≦ A 2 × 0.100 (1)
arctan (B 1 / A 1 ) ≦ 7.0 ° and arctan (B 2 / A 2 ) ≦ 7.0 ° (2)
請求項1記載のガラスクロスを基材として用いたことを特徴とするプリント配線板。  A printed wiring board comprising the glass cloth according to claim 1 as a substrate.
JP2002250421A 2002-08-29 2002-08-29 Glass cloth and printed wiring board Pending JP2006052473A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002250421A JP2006052473A (en) 2002-08-29 2002-08-29 Glass cloth and printed wiring board
AU2003261727A AU2003261727A1 (en) 2002-08-29 2003-08-26 Glass cloth for printed circuit plate, and multilayer plate
PCT/JP2003/010775 WO2004020715A1 (en) 2002-08-29 2003-08-26 Glass cloth for printed circuit plate, and multilayer plate
TW092123784A TW200403366A (en) 2002-08-29 2003-08-28 Glass cloth for printed circuit plate, and multilayer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250421A JP2006052473A (en) 2002-08-29 2002-08-29 Glass cloth and printed wiring board

Publications (1)

Publication Number Publication Date
JP2006052473A true JP2006052473A (en) 2006-02-23

Family

ID=31972627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250421A Pending JP2006052473A (en) 2002-08-29 2002-08-29 Glass cloth and printed wiring board

Country Status (4)

Country Link
JP (1) JP2006052473A (en)
AU (1) AU2003261727A1 (en)
TW (1) TW200403366A (en)
WO (1) WO2004020715A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181286A1 (en) * 2017-03-30 2020-02-06 日立化成株式会社 Prepreg manufacturing method, prepreg, laminate, printed wiring board, and semiconductor package
JP7017214B1 (en) 2021-05-27 2022-02-08 ユニチカ株式会社 Glass cloth and glass yarn
WO2022038944A1 (en) * 2020-08-19 2022-02-24 旭化成株式会社 Glass cloth, prepreg, and printed wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398465B (en) * 2009-12-18 2013-06-11 Ind Tech Res Inst Modified bismaleimide resins, preparation method thereof and compositions comprising the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512475B2 (en) * 1987-06-08 1996-07-03 旭シュエ−ベル株式会社 Laminated board for printed circuit board
JPH01249333A (en) * 1988-03-31 1989-10-04 Nitto Boseki Co Ltd Glass cloth for laminate, and laminate
JP3674960B2 (en) * 1994-03-28 2005-07-27 日東紡績株式会社 Glass woven fabric for printed wiring board and printed wiring board
IT1271681B (en) * 1994-07-19 1997-06-04 Gividi Italia Spa GLASS FABRIC PRODUCED WITH ZERO TWISTING YARN
JP3023427B2 (en) * 1998-02-27 2000-03-21 旭シュエーベル株式会社 Glass cloth and printed wiring board
US7049253B1 (en) * 1999-04-05 2006-05-23 Asahi-Schwebel Co., Ltd. Glass cloth and printed wiring board
JP2001073249A (en) * 1999-08-31 2001-03-21 Unitika Glass Fiber Co Ltd Glass cloth for printed circuit board
JP2001207375A (en) * 1999-11-19 2001-08-03 Arisawa Mfg Co Ltd Method for producing textile fabric for printed wiring board, the resultant textile fabric for printed wiring board and prepreg for printed wiring board
JP4540186B2 (en) * 2000-06-02 2010-09-08 旭化成イーマテリアルズ株式会社 Glass cloth and printed wiring board
JP2002348754A (en) * 2001-05-28 2002-12-04 Matsushita Electric Works Ltd Glass cloth, prepreg, laminated sheet, and printed wiring board
JP2003013338A (en) * 2001-06-29 2003-01-15 Arisawa Mfg Co Ltd Glass fiber woven fabric for printed wiring board, prepreg and laminate for printed wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181286A1 (en) * 2017-03-30 2020-02-06 日立化成株式会社 Prepreg manufacturing method, prepreg, laminate, printed wiring board, and semiconductor package
JP7120219B2 (en) 2017-03-30 2022-08-17 昭和電工マテリアルズ株式会社 Prepreg manufacturing method, prepreg, laminate, printed wiring board and semiconductor package
WO2022038944A1 (en) * 2020-08-19 2022-02-24 旭化成株式会社 Glass cloth, prepreg, and printed wiring board
JP7029033B1 (en) * 2020-08-19 2022-03-02 旭化成株式会社 Glass cloth, prepreg, and printed circuit board
JP7017214B1 (en) 2021-05-27 2022-02-08 ユニチカ株式会社 Glass cloth and glass yarn
JP2022181738A (en) * 2021-05-27 2022-12-08 ユニチカ株式会社 glass cloth and glass yarn

Also Published As

Publication number Publication date
TW200403366A (en) 2004-03-01
WO2004020715A1 (en) 2004-03-11
AU2003261727A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
US9161441B2 (en) Glass cloth for printed wiring board
JP4536010B2 (en) Double woven glass cloth, and prepreg and printed wiring board substrate using the glass cloth
WO1999041441A1 (en) Woven glass fabrics and laminate for printed wiring boards
EP1176239B1 (en) Glass cloth and printed wiring board
JP2002242047A (en) Glass cloth for printed wiring board
JP4446754B2 (en) Glass cloth
JP2006052473A (en) Glass cloth and printed wiring board
JP2744866B2 (en) Laminates for printed circuit boards
JP4467449B2 (en) Substrate reinforcing fiber fabric, prepreg using the reinforcing fiber fabric, and printed wiring board substrate
JP3023427B2 (en) Glass cloth and printed wiring board
JP4200595B2 (en) Glass fiber fabric
JPH1161596A (en) Glass cloth and laminate therefrom
JP2001055642A (en) Cloth for reinforcing resin and laminated board by using the same
JP2004124324A (en) Glass cloth for printed circuit board
JP3323116B2 (en) Glass cloth
JP2005132857A (en) Prepreg
JP4908240B2 (en) Organic fiber woven fabric for laminate reinforcement
JP4540186B2 (en) Glass cloth and printed wiring board
JP4582954B2 (en) Glass cloth and printed wiring board
JP2004050755A (en) Laminate and its manufacturing method
JP3272437B2 (en) Glass fiber woven fabric and method for producing the same
JP3720406B2 (en) Glass fiber fabric and its production method
JPH0578945A (en) Glass fiber fabric for printed wiring board
JP2006028686A (en) Glass cloth, prepreg and method for producing laminate
JP2000234239A (en) Glass cloth and printed circuit board