JP2006050842A - Power supply device for electric vehicle - Google Patents

Power supply device for electric vehicle Download PDF

Info

Publication number
JP2006050842A
JP2006050842A JP2004230607A JP2004230607A JP2006050842A JP 2006050842 A JP2006050842 A JP 2006050842A JP 2004230607 A JP2004230607 A JP 2004230607A JP 2004230607 A JP2004230607 A JP 2004230607A JP 2006050842 A JP2006050842 A JP 2006050842A
Authority
JP
Japan
Prior art keywords
power supply
inverter
battery
vehicle
electrode side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004230607A
Other languages
Japanese (ja)
Other versions
JP4218610B2 (en
Inventor
Toshiyuki Mori
俊之 森
Hiroki Nishi
宏樹 西
Michinori Ikezoe
通則 池添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004230607A priority Critical patent/JP4218610B2/en
Publication of JP2006050842A publication Critical patent/JP2006050842A/en
Application granted granted Critical
Publication of JP4218610B2 publication Critical patent/JP4218610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device for an electric vehicle which is charged by directly connecting an external power source to a high-voltage battery of the own vehicle. <P>SOLUTION: The power supply device for the electric vehicle includes an inverter 10 and a battery 11. The inverter converts supply power supplied through high-voltage cables 16 at a positive electrode side and at a negative electrode side into an alternating current, and drives a motor 4 for driving the vehicle. The battery supplies the power to the inverter 10 through the high-voltage cables 16 at the positive electrode side and the negative electrode side. In the power supply device, a capacitor 14 is connected in parallel between the high-voltage cables 16 at the positive electrode side, and at the negative electrode side between the battery 11 and the inverter 10. Then the external power source for charging the battery can be connected to each high-voltage cable 16 at the positive electrode side and the negative electrode side between the capacitor 14 and the inverter 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気自動車やハイブリッド車両等の電動車両用電源装置に関し、特に、外部電源による充電に好適な電動車両用電源装置に関するものである。   The present invention relates to a power supply device for an electric vehicle such as an electric vehicle or a hybrid vehicle, and more particularly to a power supply device for an electric vehicle suitable for charging with an external power supply.

従来から車両駆動用モータへの電力を供給する高電圧バッテリと車両補機への電力を供給する低電圧バッテリとを備える電動車両用電源装置が提案されている(特許文献1、2参照)。   Conventionally, there has been proposed an electric vehicle power supply device including a high voltage battery for supplying electric power to a vehicle driving motor and a low voltage battery for supplying electric power to a vehicle auxiliary machine (see Patent Documents 1 and 2).

特許文献1では、救援車による高電圧バッテリ充電を可能とするため、エンジン始動電力および高電圧の走行用モータ駆動電力を給電する高電圧バッテリと、補機モータや制御装置へ給電する低電圧バッテリとをもつ二バッテリ方式のハイブリッド車の電源装置において、救援車の低電圧バッテリからの低電圧直流電力を昇圧して高電圧バッテリを充電するためのDC−DCコンバータをこのハイブリッド車用充電装置として設けている。そして、救援車の低電圧バッテリの低電圧電力は、車載の低電圧バッテリを経由することなく、ブースターケーブルを通じて直接にこのDC−DCコンバータの低電圧直流電力入力端子に給電するようにしている。   In Patent Document 1, a high-voltage battery that supplies engine starting power and high-voltage traveling motor drive power and a low-voltage battery that supplies power to auxiliary motors and control devices are provided to enable high-voltage battery charging by a rescue vehicle. As a hybrid vehicle charging device, a DC-DC converter for boosting low voltage DC power from a low voltage battery of a rescue vehicle and charging the high voltage battery Provided. The low-voltage power of the low-voltage battery of the rescue vehicle is fed directly to the low-voltage DC power input terminal of the DC-DC converter through the booster cable without going through the on-vehicle low-voltage battery.

特許文献2では、低電圧バッテリから高電圧バッテリへの逆送電を簡素な回路構成で実現するため、エンジン始動電力および高電圧の走行用モータ駆動電力を給電する高電圧バッテリと、補機モータへ補機モータ駆動用インバータ装置を通じて給電する低電圧バッテリとをもつ二バッテリ方式のハイブリッド電気自動車の電源装置において、この補機モータ駆動用インバータ装置から受電した交流電力を整流器で整流して高電圧バッテリを充電する。即ち、低電圧バッテリから高電圧バッテリに送電するDCーDCコンバータ装置は、低電圧バッテリから給電されて補機モータに送電する補機モータ駆動用インバータ装置を利用して低電圧バッテリの直流電力を交流電力に変換するので、このDCーDCコンバータ装置の回路構成を回路共用により簡素化することができる。
特開2000−358304号公報 特開2000−358305号公報
In Patent Document 2, in order to realize reverse power transmission from a low-voltage battery to a high-voltage battery with a simple circuit configuration, a high-voltage battery that supplies engine starting power and high-voltage driving motor drive power to an auxiliary motor In a power source device for a two-battery hybrid electric vehicle having a low-voltage battery that is fed through an auxiliary motor driving inverter device, a high voltage battery is obtained by rectifying the AC power received from the auxiliary motor driving inverter device with a rectifier. To charge. That is, a DC-DC converter device that transmits power from a low-voltage battery to a high-voltage battery uses the auxiliary motor driving inverter device that is fed from the low-voltage battery and transmits power to the auxiliary motor to generate DC power from the low-voltage battery. Since it converts into alternating current power, the circuit structure of this DC-DC converter apparatus can be simplified by circuit sharing.
JP 2000-358304 A JP 2000-358305 A

ところで、上記従来例のような高電圧バッテリを搭載したハイブリッド車や電気自動車の高電圧バッテリがバッテリ上がりを発生した場合に、救援車両がこのような高電圧バッテリを搭載した車両である場合には、救援車の高電圧バッテリと自車両の高電圧バッテリとを接続して充電することが好ましい。   By the way, when the high-voltage battery of a hybrid vehicle or an electric vehicle equipped with a high-voltage battery as in the above-described conventional example causes battery exhaustion, the rescue vehicle is a vehicle equipped with such a high-voltage battery. The high voltage battery of the rescue vehicle and the high voltage battery of the host vehicle are preferably connected and charged.

しかしながら、救援車両の高電圧バッテリ等の外部電源と自車両の高電圧バッテリとを直接接続して充電を行うと、自車両のバッテリの電圧が低下しているため、救援車両の高電圧バッテリと自車両の高電圧バッテリとの電圧差が大きく、回路上に突入電流が流れ、回路を損傷する虞れがある。   However, if charging is performed by directly connecting an external power source such as a high-voltage battery of the rescue vehicle and the high-voltage battery of the host vehicle, the voltage of the battery of the host vehicle is reduced. The voltage difference with the high-voltage battery of the own vehicle is large, and an inrush current flows on the circuit, which may damage the circuit.

そこで本発明は、上記問題点に鑑みてなされたもので、外部電源と自車両の高電圧バッテリとを直接接続して充電が可能な電動車両用電源装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a power supply device for an electric vehicle that can be charged by directly connecting an external power supply and a high-voltage battery of the host vehicle.

本発明は、正極側及び負極側の給電母線を介して供給される供給電力を交流に変換して車両駆動用電動機を駆動するインバータと、前記インバータに正極側及び負極側の給電母線を介して電力を供給するバッテリとを備える電動車両用電源装置において、前記バッテリとインバータとの間の正極側及び負極側の給電母線間にコンデンサを並列に接続し、前記コンデンサとインバータとの間の正極側および負極側の各給電母線にバッテリ充電用の外部電源を接続可能とした。   The present invention provides an inverter for driving a vehicle driving electric motor by converting supply power supplied via positive and negative power supply buses into alternating current, and via positive and negative power supply buses to the inverter. A power supply device for an electric vehicle comprising a battery for supplying electric power, wherein a capacitor is connected in parallel between a positive electrode side and a negative electrode side power supply bus between the battery and the inverter, and a positive electrode side between the capacitor and the inverter An external power supply for charging the battery can be connected to each power supply bus on the negative electrode side.

したがって、本発明では、正極側及び負極側の給電母線を介して供給される供給電力を交流に変換して車両駆動用電動機を駆動するインバータと、前記インバータに正極側及び負極側の給電母線を介して電力を供給するバッテリとを備える電動車両用電源装置において、前記バッテリとインバータとの間の正極側及び負極側の給電母線間にコンデンサを並列に接続し、前記コンデンサとインバータとの間の正極側および負極側の各給電母線にバッテリ充電用の外部電源を接続可能としたため、各給電母線に外部電源を接続しての充電時に発生する突入電流をコンデンサにより抑制することができる。また、前記コンデンサはインバータ筐体内に内蔵されている平滑コンデンサ、若しくは、同様の性能を備えた平滑コンデンサを高電圧ケーブル間に並列に設置すればよく、既存部品を流用可能であり、また、コンデンサ付きの充電専用の高電圧ケーブルを必要とせずに外部電源に接続でき、コストアップも少なくてよい。   Therefore, in the present invention, an inverter that converts the supplied power supplied via the positive and negative power supply buses to alternating current to drive the vehicle driving motor, and the positive and negative power supply buses are connected to the inverter. An electric vehicle power supply device including a battery for supplying electric power via a capacitor connected in parallel between a positive electrode side and a negative electrode side power supply bus between the battery and the inverter, and between the capacitor and the inverter Since an external power supply for charging a battery can be connected to each power supply bus on the positive electrode side and the negative electrode side, an inrush current generated during charging with an external power supply connected to each power supply bus can be suppressed by the capacitor. The capacitor may be a smoothing capacitor built in the inverter casing or a smoothing capacitor having similar performance may be installed in parallel between the high-voltage cables, and existing components can be used. It can be connected to an external power supply without the need for a high-voltage cable dedicated to charging, and there is little cost increase.

以下、本発明の電動車両用電源装置の一実施形態を図1〜図5に基づいて説明する。図1は本発明を適用した電動車両用電源装置を備えるハイブリッド車両のシステム構成図、図2は電動車両用電源装置の各要素の配置レイアウト図、図3および図4は電動車両用電源装置の高電圧ケーブルをインバータへ接続するコネクタ形状を示す端面図および斜視図、図5は救援車両(外部電源)への接続状態を示す説明図である。   Hereinafter, an embodiment of a power supply device for an electric vehicle according to the present invention will be described with reference to FIGS. FIG. 1 is a system configuration diagram of a hybrid vehicle including an electric vehicle power supply device to which the present invention is applied, FIG. 2 is an arrangement layout diagram of each element of the electric vehicle power supply device, and FIGS. 3 and 4 are diagrams of the electric vehicle power supply device. An end view and a perspective view showing a connector shape for connecting the high voltage cable to the inverter, and FIG. 5 are explanatory views showing a connection state to the rescue vehicle (external power source).

図1において、ハイブリッド車両のシステム構成は、エンジン2、ジェネレータ3、モータ4および遊星歯車5等からなり出力部がデファレンシャルギヤ6および車軸7を経由して駆動車輪8に接続された駆動装置1と、前記駆動装置1のジェネレータ3およびモータ4へを駆動するインバータ10と、前記インバータ10への入出力電力を蓄電する高電圧バッテリ11と、を備える。   In FIG. 1, the system configuration of the hybrid vehicle includes a drive device 1 including an engine 2, a generator 3, a motor 4, a planetary gear 5 and the like, and an output unit connected to a drive wheel 8 via a differential gear 6 and an axle 7. And an inverter 10 that drives the generator 3 and the motor 4 of the driving device 1 and a high-voltage battery 11 that stores input / output power to the inverter 10.

前記駆動装置1は、例えば、遊星歯車装置5の3要素の一つにエンジン2の出力軸を連結し、別の一要素にエンジン駆動の発電機、スタ−タモ−タ、回生制動用発電機として作動可能なジェネレータ3を連結し、残りの一要素にトルクアシスト用のモータ4を連結し且つ出力部としてデファレンシャルギヤ6に連結して構成する。   For example, the drive device 1 includes an output shaft of the engine 2 connected to one of the three elements of the planetary gear device 5, and an engine-driven generator, a starter motor, and a regenerative braking generator as another element. The generator 3 which can be operated is connected, the motor 4 for torque assist is connected to the remaining one element, and the differential gear 6 is connected as an output unit.

前記インバ−タ10は、高電圧バッテリ11と直流電力を授受するとともにジェネレータ3と交流電力を授受する三相インバータ回路と、高電圧バッテリ11と直流電力を授受するとともにモータ4と交流電力を授受する三相インバータ回路とを含んでおり、車両用コントローラ12により各三相インバータ回路が制御されるよう構成している。   The inverter 10 exchanges DC power with the high voltage battery 11 and also exchanges AC power with the generator 3, and exchanges DC power with the high voltage battery 11 and exchanges AC power with the motor 4. The three-phase inverter circuit is configured to be controlled by the vehicle controller 12.

前記高電圧バッテリ11の入出力を遮断可能なメインリレー13とインバータ10とは、平滑コンデンサ14を介在させて高電圧ケーブル15、16により接続されている。前記高電圧ケーブル15は、DC−DCコンバータ17を介して低電圧バッテリ18が接続され、低電圧バッテリ18はDC−DCコンバータ17を介して高電圧バッテリ11からの給電により充電される。前記高電圧ケーブル15、16、平滑コンデンサ14、DC−DCコンバータ17、メインリレー13、高電圧バッテリ11および低電圧バッテリ18は、電動車両用電源装置を構成し、電源用コントローラ20により制御するよう構成している。前記車両コントローラ12および電源用コントローラ20には、低電圧バッテリ18からの電力が供給されるよう構成している。   The main relay 13 capable of shutting off the input / output of the high voltage battery 11 and the inverter 10 are connected by high voltage cables 15 and 16 with a smoothing capacitor 14 interposed therebetween. The high voltage cable 15 is connected to a low voltage battery 18 via a DC-DC converter 17, and the low voltage battery 18 is charged by power supply from the high voltage battery 11 via the DC-DC converter 17. The high voltage cables 15 and 16, the smoothing capacitor 14, the DC-DC converter 17, the main relay 13, the high voltage battery 11, and the low voltage battery 18 constitute an electric vehicle power supply device and are controlled by the power supply controller 20. It is composed. The vehicle controller 12 and the power supply controller 20 are configured to be supplied with power from the low voltage battery 18.

前記平滑コンデンサ14は、インバータ10と高電圧バッテリ11間に並列接続され、インバータ10と高電圧バッテリ11間の電力を供給受給する際、電力を平滑化するよう機能する。この平滑コンデンサ14は、インバータ10内のスイッチングリレーのオンオフに伴う高電圧バッテリ11の電圧変動を抑制するインバータ10筐体内に設置されていたものを、インバータ10筐体外に移設して設置する。   The smoothing capacitor 14 is connected in parallel between the inverter 10 and the high voltage battery 11 and functions to smooth the power when supplying and receiving power between the inverter 10 and the high voltage battery 11. The smoothing capacitor 14 is installed outside the inverter 10 casing, which is installed in the inverter 10 casing, which suppresses voltage fluctuations of the high-voltage battery 11 caused by the switching relay in the inverter 10 being turned on and off.

そして、図2に示す配置において、インバータ10、平滑コンデンサ14および高電圧バッテリ11を配置する。即ち、インバータ10は車両前方のエンジンルーム内に配置し、高電圧バッテリ11は車両後方の例えば、トランクルーム内若しくはトランクルーム周囲のいずれかの位置に配置する。そして、平滑コンデンサ14は、エンジンルーム上方に配置し、平滑コンデンサ14と高電圧バッテリ11およびインバータ10とを夫々高電圧ケーブル15、16で接続する。   In the arrangement shown in FIG. 2, the inverter 10, the smoothing capacitor 14, and the high voltage battery 11 are arranged. That is, the inverter 10 is disposed in the engine room in front of the vehicle, and the high voltage battery 11 is disposed in any position in the trunk room or around the trunk room, for example, behind the vehicle. The smoothing capacitor 14 is disposed above the engine room, and the smoothing capacitor 14 is connected to the high voltage battery 11 and the inverter 10 via high voltage cables 15 and 16, respectively.

前記インバータ10と平滑コンデンサ14からの高電圧ケーブル16との接続は、取外し可能なコネクタ21を介して接続している。前記コネクタ21は、図3および図4に示すように、その先端から所定の接続領域に亙って絶縁部23および導電体からなる通電部24を複数の所定角度範囲を残して切除した形状に構成する。例えば、図3(A)および図4に示すコネクタ形状においては、角度90度の範囲毎に絶縁部23および導電体からなる通電部24が残された部分と切除された部分とを交互に配置するよう構成している。また、図3(B)に示すコネクタ形状においては、角度45度の範囲毎に絶縁部23および導電体からなる通電部24が残された部分と切除された部分とを交互に配置するよう構成している。そして、これら高電圧ケーブル16用のコネクタ21形状は、高電圧ケーブル16の正極側と負極側との直接接続による短絡(ショート)を防止するため、例えば、図3(A)および図3(B)に示すように、異なる端子形状に構成する。そして、インバータ10側からのコネクタ形状においても、高電圧ケーブル16の正極側と負極側とのコネクタ21に夫々形状が対応して通電部24同士が接触可能なコネクタ形状に構成している。   The inverter 10 and the high voltage cable 16 from the smoothing capacitor 14 are connected via a detachable connector 21. As shown in FIGS. 3 and 4, the connector 21 has a shape in which an insulating portion 23 and a current-carrying portion 24 made of a conductor are cut away from each other over a predetermined connection region, leaving a plurality of predetermined angle ranges. Constitute. For example, in the connector shape shown in FIG. 3A and FIG. 4, the portions where the insulating portions 23 and the current-carrying portions 24 made of a conductor are left and the portions that are cut off are alternately arranged for each range of 90 degrees. It is configured to do. Further, in the connector shape shown in FIG. 3B, the portions where the insulating portions 23 and the current-carrying portions 24 made of a conductor are left and the portions that are cut off are alternately arranged for each angle of 45 degrees. is doing. The shape of the connector 21 for the high voltage cable 16 prevents, for example, a short circuit due to a direct connection between the positive electrode side and the negative electrode side of the high voltage cable 16. For example, FIG. 3A and FIG. As shown in FIG. In the connector shape from the inverter 10 side, the shape corresponds to the connector 21 on the positive electrode side and the negative electrode side of the high voltage cable 16 so that the current-carrying portions 24 can contact each other.

以上の構成の電動車両用電源装置の高電圧バッテリに外部電源より緊急充電する場合の動作について、図5に基づいて、以下に説明する。   The operation when the high-voltage battery of the electric vehicle power supply device having the above configuration is urgently charged from an external power source will be described below with reference to FIG.

まず、高電圧バッテリ11の上がった故障車両(自車両)と救援車両との両車両の平滑コンデンサ14の搭載位置が接近するように、例えば、図5に示すように、救援車両を故障車両に対して停車させる。   First, as shown in FIG. 5, for example, as shown in FIG. 5, the rescue vehicle is changed to the failed vehicle so that the mounting positions of the smoothing capacitors 14 of both the failed vehicle (own vehicle) in which the high voltage battery 11 is raised and the rescue vehicle approach each other. Stop the vehicle.

次いで、自車両および救援車両の高電圧バッテリ11と平滑コンデンサ14との高電圧電力の導通・遮断を可能とするメインリレー13を夫々電源コントローラ20により遮断側に切換える。この遮断動作により、各車両の高電圧ケーブル16は高電圧バッテリ11から切離される。この状態において、各車両において、インバータ10と高電圧ケーブル16とを接続しているコネクタ21を取外す。このコネクタ21の取外しおよび高電圧ケーブル16の取出しは、インバータ10を車両前端近傍に配置し、平滑コンデンサ14をエンジンルーム上方に配置しているため、容易に取外しおよび取出しが可能である。   Next, the main relays 13 that enable the high voltage battery 11 and the smoothing capacitor 14 of the host vehicle and the rescue vehicle to be connected and disconnected are switched to the cutoff side by the power supply controller 20 respectively. By this blocking operation, the high voltage cable 16 of each vehicle is disconnected from the high voltage battery 11. In this state, the connector 21 connecting the inverter 10 and the high voltage cable 16 is removed from each vehicle. The connector 21 and the high-voltage cable 16 can be easily removed and removed because the inverter 10 is disposed near the front end of the vehicle and the smoothing capacitor 14 is disposed above the engine room.

次に、両車両の高電圧ケーブル16の正極側と負極側のコネクタ21同士を接続して高電圧ケーブル16同士をそれぞれ電気的に接続する。このコネクタ21同士の接続にあたっては、正極側のコネクタ21同士と負極側のコネクタ21同士とを接続する必要がある。本構造にあっては、正極側のコネクタ21同士は互いに嵌合しあう形状となっているが、正極側コネクタ21と負極側コネクタ21とは、コネクタ形状が異なるため、誤って極が異なるコネクタ21同士の接続は回避させることができる。以上で、充電準備が完了となる。   Next, the high-voltage cables 16 of both vehicles are connected to the positive-side and negative-side connectors 21 to electrically connect the high-voltage cables 16 to each other. In connecting the connectors 21, it is necessary to connect the positive connectors 21 and the negative connectors 21 together. In this structure, the connectors 21 on the positive electrode side are shaped to be fitted to each other. However, since the connector shape of the positive electrode side connector 21 and the negative electrode side connector 21 is different, the connectors are erroneously different in polarity. Connection between 21 can be avoided. This completes preparation for charging.

そして、充電のために、両車両のメインリレー13を導通側に切換えることにより、救援車両の高電圧バッテリ11から故障車両の高電圧バッテリ11へ充電が開始される。充電の開始時において、故障車両側の高電圧バッテリ11の電圧が低下しているため、救援車両側の高電圧バッテリ11から故障車両側の高電圧バッテリ11へ突入電流が流入しようとするが、救援車両側および故障車両側において、大容量の平滑コンデンサ14が並列に配置されているので、突入電流は効果的に抑制することができる。   Then, charging is started from the high-voltage battery 11 of the rescue vehicle to the high-voltage battery 11 of the failed vehicle by switching the main relays 13 of both vehicles to the conduction side for charging. At the start of charging, since the voltage of the high-voltage battery 11 on the failed vehicle side has decreased, an inrush current tends to flow from the high-voltage battery 11 on the rescue vehicle side to the high-voltage battery 11 on the failed vehicle side. Since the large-capacity smoothing capacitor 14 is arranged in parallel on the rescue vehicle side and the broken vehicle side, the inrush current can be effectively suppressed.

上記緊急充電開始から所定時間経過後、又は、高電圧バッテリ11への送電電力量が所定値以上となれば、各車両の電源コントローラ20は各メインリレー13を遮断して電力の授受を停止させ、充電状態を終了させる。このメインリレー13の遮断時における高電圧ケーブル16の電圧の急激な変動による突入電流も、平滑コンデンサ14により効果的に抑制することができる。その後、高電圧ケーブル16同士のコネクタ21接続を取外し、各車両のインバータ10にコネクタ21を介して高電圧ケーブル16を接続すれば、故障車両は自らの高電圧バッテリ11の電力によりジェネレータ3を作動させてエンジン2を始動させることができる。また、高電圧バッテリ11からの直流電力をインバータ10で交流電力に変換する際のスイッチングリレーによる高電圧バッテリ11側の電圧変動は、インバータ10と並列接続している平滑コンデンサ14の作動により従来と同様に抑制することができる。   After a predetermined time has elapsed since the start of emergency charging, or if the amount of power transmitted to the high voltage battery 11 exceeds a predetermined value, the power controller 20 of each vehicle shuts off each main relay 13 to stop power transfer. , Terminate the charging state. An inrush current due to a sudden change in the voltage of the high voltage cable 16 when the main relay 13 is cut off can also be effectively suppressed by the smoothing capacitor 14. After that, if the connector 21 connection between the high voltage cables 16 is disconnected and the high voltage cable 16 is connected to the inverter 10 of each vehicle via the connector 21, the failed vehicle operates the generator 3 with the power of its own high voltage battery 11. Thus, the engine 2 can be started. Further, the voltage fluctuation on the high voltage battery 11 side due to the switching relay when the DC power from the high voltage battery 11 is converted to AC power by the inverter 10 is caused by the operation of the smoothing capacitor 14 connected in parallel with the inverter 10. It can be similarly suppressed.

なお、上記実施形態においては、外部電源として、救援車両よりの高電圧バッテリ11から充電するものについて説明しているが、図示しないが、充電ステーション(充電スタンド)においても同様に、インバータ10から取外した高電圧ケーブル16のコネクタ21を、充電スタンドのコネクタに接続して、充電スタンドより直接高電圧バッテリ11に充電する際にも容易に対応することができる。   In the above-described embodiment, the external power source that is charged from the high-voltage battery 11 from the rescue vehicle has been described. However, although not shown, the external power source is also detached from the inverter 10 at the charging station (charging station). In addition, the connector 21 of the high voltage cable 16 is connected to the connector of the charging stand so that the high voltage battery 11 can be easily charged directly from the charging stand.

また、上記実施形態においては、平滑コンデンサとして、インバータ10に内蔵されている平滑コンデンサをインバータ10から分離して高電圧ケーブル16に並列接続するものについて説明しているが、図示しないが、インバータ10の平滑コンデンサはそのままとし、新たに同様の性能を備えた平滑コンデンサを準備して高電圧ケーブル16に並列接続するものであってもよい。   In the above embodiment, the smoothing capacitor built in the inverter 10 is separated from the inverter 10 and connected in parallel to the high voltage cable 16 as a smoothing capacitor. The smoothing capacitor may be left as it is, and a new smoothing capacitor having the same performance may be prepared and connected to the high voltage cable 16 in parallel.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)正極側及び負極側の給電母線(16)を介して供給される供給電力を交流に変換して車両駆動用電動機(4)を駆動するインバータ10と、前記インバータ10に正極側及び負極側の給電母線(16)を介して電力を供給するバッテリ11とを備える電動車両用電源装置において、前記バッテリ11とインバータ10との間の正極側及び負極側の給電母線(16)間にコンデンサ14を並列に接続し、前記コンデンサ14とインバータ10との間の正極側および負極側の各給電母線(16)に、バッテリ充電用の外部電源を接続可能としたため、各給電母線(16)に外部電源を接続しての充電時に発生する突入電流をコンデンサ14により抑制することができる。また、前記コンデンサ14はインバータ10筐体内に内蔵されている平滑コンデンサ、若しくは、同様の性能を備えた平滑コンデンサ14を高電圧ケーブル16間に並列に設置すればよく、既存部品を流用可能であり、また、コンデンサ付きの充電専用の高電圧ケーブルを必要とせずに外部電源に接続でき、コストアップも少なくてよい。   (A) Inverter 10 that drives the vehicle driving motor (4) by converting the supplied power supplied through the positive and negative power feeding buses (16) into alternating current; And a battery 11 for supplying electric power via a power feeding bus (16) on the side, a capacitor between the power feeding bus (16) on the positive side and the negative side between the battery 11 and the inverter 10 14 are connected in parallel, and an external power supply for charging the battery can be connected to each of the positive and negative power supply buses (16) between the capacitor 14 and the inverter 10, so that each power supply bus (16) An inrush current generated during charging with an external power supply connected can be suppressed by the capacitor 14. The capacitor 14 may be a smoothing capacitor built in the casing of the inverter 10 or a smoothing capacitor 14 having similar performance may be installed in parallel between the high-voltage cables 16, and existing components can be used. In addition, it can be connected to an external power supply without the need for a high-voltage cable dedicated to charging with a capacitor, and the cost increase can be reduced.

(イ)コンデンサ14とインバータ10とを接続する正極側および負極側の各給電母線(16)の前記インバータ10側端部をコネクタ21により取外し可能にインバータ10に接続し、前記バッテリ11を前記各給電母線(16)および前記コネクタ21を介して外部電源を接続可能としたため、充電時に別途に充電専用の接続線を必要とせずに、バッテリ11に充電が可能であり、安価に構成できる。   (B) The inverter 10 side ends of the positive and negative power supply buses (16) connecting the capacitor 14 and the inverter 10 are detachably connected to the inverter 10 by a connector 21, and the batteries 11 are connected Since the external power supply can be connected via the power supply bus (16) and the connector 21, the battery 11 can be charged without requiring a separate connection line for charging at the time of charging, and can be configured at low cost.

(ウ)コネクタ21の端子形状として、正極側給電母線(16)に接続された正極側コネクタ21と、負極側給電母線に接続された負極側コネクタ21とで形状を異ならせることにより、充電時に、高電圧ケーブル16の正極・負極の区別が容易にでき、且つ異極同士では接続できないため、誤組付けの危険性を低減できる。   (C) As the terminal shape of the connector 21, the positive electrode side connector 21 connected to the positive electrode side power supply bus (16) and the negative electrode side connector 21 connected to the negative electrode side power supply busbar are made different in shape during charging. Since the positive and negative electrodes of the high voltage cable 16 can be easily distinguished from each other and cannot be connected to each other, the risk of erroneous assembly can be reduced.

(エ)インバータ10に接続されたコネクタ21およびコネクタ21に連なる各給電母線(16)は、車両のエンジンルームの前方側に配置しているため、高電圧ケーブル16を車両前方から容易に取出すことができ、容易に充電のための配線作業が行える。   (D) Since the connector 21 connected to the inverter 10 and each power supply bus (16) connected to the connector 21 are arranged on the front side of the engine room of the vehicle, the high voltage cable 16 can be easily taken out from the front of the vehicle. Wiring work for charging can be easily performed.

なお、上記実施形態において、電動車両として、高電圧バッテリ11を備えるハイブリッド車両に適用した車両用電源装置について説明したが、図示しないが、高電圧バッテリ11でないバッテリ電力により車両駆動用モータを駆動する、所謂電気自動車に適用する車両用電源装置であってもよい。   In the above embodiment, the vehicle power supply device applied to a hybrid vehicle including the high voltage battery 11 is described as the electric vehicle. However, although not shown, the vehicle drive motor is driven by battery power other than the high voltage battery 11. It may be a vehicle power supply device applied to a so-called electric vehicle.

本発明の一実施形態を示す電動車両用電源装置を備えるハイブリッド車両のシステム構成図。1 is a system configuration diagram of a hybrid vehicle including an electric vehicle power supply device according to an embodiment of the present invention. 同じく電動車両用電源装置の各要素の配置レイアウト図。The arrangement layout figure of each element of the power supply device for electric vehicles similarly. 電動車両用電源装置の高電圧ケーブルをインバータへ接続するコネクタ形状の一例(A)、(B)を示す端面図。The end view which shows an example (A) of a connector shape which connects the high voltage cable of the power supply device for electric vehicles to an inverter, and (B). 電動車両用電源装置の高電圧ケーブルをインバータへ接続するコネクタ形状の一例の斜視図。The perspective view of an example of the connector shape which connects the high voltage cable of the power supply device for electric vehicles to an inverter. 救援車両(外部電源)への接続時の状態図。The state figure at the time of the connection to a rescue vehicle (external power supply).

符号の説明Explanation of symbols

1 駆動装置
2 エンジン
3 ジェネレータ
4 モータ
5 遊星歯車装置
6 デファレンシャルギヤ
7 車軸
8 駆動車輪
10 インバータ
11 バッテリとしての高電圧バッテリ
13 メインリレー
14 コンデンサとしての平滑コンデンサ
15、16 高電圧ケーブル(給電母線)
21 コネクタ
DESCRIPTION OF SYMBOLS 1 Drive device 2 Engine 3 Generator 4 Motor 5 Planetary gear device 6 Differential gear 7 Axle 8 Drive wheel 10 Inverter 11 High voltage battery as battery 13 Main relay 14 Smoothing capacitor as capacitor 15, 16 High voltage cable (power supply bus)
21 Connector

Claims (4)

正極側及び負極側の給電母線を介して供給される供給電力を交流に変換して車両駆動用電動機を駆動するインバータと、前記インバータに正極側及び負極側の給電母線を介して電力を供給するバッテリとを備える電動車両用電源装置において、
前記バッテリとインバータとの間の正極側及び負極側の給電母線間にコンデンサを並列に接続し、
前記コンデンサとインバータとの間の正極側および負極側の各給電母線にバッテリ充電用の外部電源を接続可能としたことを特徴とする電動車両用電源装置。
An inverter that drives the vehicle driving motor by converting supply power supplied via the positive and negative power supply buses to AC, and supplies power to the inverter via the positive and negative power supply buses In an electric vehicle power supply device comprising a battery,
A capacitor is connected in parallel between the positive and negative power supply buses between the battery and the inverter,
An electric vehicle power supply device characterized in that an external power supply for charging a battery can be connected to each of the positive and negative power supply buses between the capacitor and the inverter.
前記コンデンサとインバータとを接続する正極側および負極側の各給電母線の前記インバータ側端部をコネクタにより取外し可能にインバータに接続し、前記バッテリを前記各給電母線および前記コネクタを介して外部電源を接続可能としたことを特徴とする請求項1に記載の電動車両用電源装置。   The inverter side ends of the positive and negative power supply buses connecting the capacitor and the inverter are detachably connected to the inverter by a connector, and the battery is connected to the external power source via the power supply bus and the connector. The electric vehicle power supply device according to claim 1, wherein connection is possible. 前記コネクタの端子形状は、正極側給電母線に接続された正極側コネクタと、負極側給電母線に接続された負極側コネクタとで端子形状を異ならせたことを特徴とする請求項2に記載の電動車両用電源装置。   The terminal shape of the connector is different between the positive electrode side connector connected to the positive electrode side power supply bus and the negative electrode side connector connected to the negative electrode side power supply bus. Electric vehicle power supply device. 前記インバータに接続されたコネクタおよびコネクタに連なる各給電母線は、車両のエンジンルームの前方側に配置されていることを特徴とする請求項2または請求項3に記載の電動車両用電源装置。
4. The electric vehicle power supply device according to claim 2, wherein the connector connected to the inverter and each feeding bus connected to the connector are arranged on the front side of the engine room of the vehicle. 5.
JP2004230607A 2004-08-06 2004-08-06 Electric vehicle power supply Expired - Fee Related JP4218610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230607A JP4218610B2 (en) 2004-08-06 2004-08-06 Electric vehicle power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230607A JP4218610B2 (en) 2004-08-06 2004-08-06 Electric vehicle power supply

Publications (2)

Publication Number Publication Date
JP2006050842A true JP2006050842A (en) 2006-02-16
JP4218610B2 JP4218610B2 (en) 2009-02-04

Family

ID=36028722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230607A Expired - Fee Related JP4218610B2 (en) 2004-08-06 2004-08-06 Electric vehicle power supply

Country Status (1)

Country Link
JP (1) JP4218610B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113990A1 (en) * 2006-04-04 2007-10-11 Toyota Jidosha Kabushiki Kaisha Vehicle assistance system
JP2010187466A (en) * 2009-02-12 2010-08-26 Omron Corp Battery charging device for vehicle
JP2010252547A (en) * 2009-04-16 2010-11-04 Nissan Motor Co Ltd Apparatus for charging and discharging of power, and system and method for charging and discharging of power between vehicle
JP2010252549A (en) * 2009-04-16 2010-11-04 Nissan Motor Co Ltd System and method for charging and discharging of power between vehicles
JP2011155800A (en) * 2010-01-28 2011-08-11 Honda Motor Co Ltd Relief method of electric vehicle
JP2011205798A (en) * 2010-03-25 2011-10-13 Gpm Kk Electric vehicle and charging system thereof
JP2011234468A (en) * 2010-04-27 2011-11-17 Denso Corp Vehicular power supply device
CN102684248A (en) * 2011-03-18 2012-09-19 富士电机株式会社 Inter-vehicle charging device
CN102815226A (en) * 2012-09-13 2012-12-12 庄景阳 Improvement method for prolonging driving mileage of electromobile
US20180144865A1 (en) * 2015-05-18 2018-05-24 Calsonic Kansei Corporation Capacitor module
CN112776624A (en) * 2021-02-03 2021-05-11 爱驰汽车有限公司 Vehicle-to-vehicle charging system and method and electric vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113990A1 (en) * 2006-04-04 2007-10-11 Toyota Jidosha Kabushiki Kaisha Vehicle assistance system
JP2007282329A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Vehicle support system
JP2010187466A (en) * 2009-02-12 2010-08-26 Omron Corp Battery charging device for vehicle
JP2010252547A (en) * 2009-04-16 2010-11-04 Nissan Motor Co Ltd Apparatus for charging and discharging of power, and system and method for charging and discharging of power between vehicle
JP2010252549A (en) * 2009-04-16 2010-11-04 Nissan Motor Co Ltd System and method for charging and discharging of power between vehicles
JP2011155800A (en) * 2010-01-28 2011-08-11 Honda Motor Co Ltd Relief method of electric vehicle
JP2011205798A (en) * 2010-03-25 2011-10-13 Gpm Kk Electric vehicle and charging system thereof
JP2011234468A (en) * 2010-04-27 2011-11-17 Denso Corp Vehicular power supply device
CN102684248A (en) * 2011-03-18 2012-09-19 富士电机株式会社 Inter-vehicle charging device
CN102815226A (en) * 2012-09-13 2012-12-12 庄景阳 Improvement method for prolonging driving mileage of electromobile
US20180144865A1 (en) * 2015-05-18 2018-05-24 Calsonic Kansei Corporation Capacitor module
CN112776624A (en) * 2021-02-03 2021-05-11 爱驰汽车有限公司 Vehicle-to-vehicle charging system and method and electric vehicle

Also Published As

Publication number Publication date
JP4218610B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4900535B2 (en) Vehicle power conversion device and vehicle equipped with the same
US9960612B2 (en) Charging and discharging system for a vehicle including a first fuse in the vehicle and a second fuse in a cable connected to the vehicle
US11077761B2 (en) Power supply system for vehicle
JP2010259274A (en) Charging pack for electric storage device
JP6973669B2 (en) Power supply system and vehicles equipped with it
KR20120005747A (en) System and method of recharge for hybrid vehicle
US10381922B2 (en) Power converter
JP2009142010A (en) Drive device and power output device equipped therewith
JP4218610B2 (en) Electric vehicle power supply
JP7254270B2 (en) vehicle drive
JP4822025B2 (en) In-vehicle charger
US20190115848A1 (en) Power converter
JP2019193457A (en) Inverter control device
JP2013051831A (en) Power source control device of electric vehicle
KR20150104044A (en) Method for implementation of exterior starting procedure or exterior charging procedure of vehicle
JP5936745B1 (en) Power converter for vehicle
JP5919423B1 (en) Power converter
JP2006067683A (en) Storage device
JP2022105313A (en) Battery control method and battery system providing the same
JP2013150524A (en) Electric vehicle
US20160288649A1 (en) Vehicle and charging and discharging system using vehicle
JP5160882B2 (en) Motor drive circuit
JP2019088170A (en) On-vehicle electric power conversion system
US11850954B2 (en) Electrified vehicle inverter with dual neutral legs
JP6885307B2 (en) In-vehicle structure of power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees