JP2006049848A - n-TYPE GROUP III NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE - Google Patents

n-TYPE GROUP III NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE Download PDF

Info

Publication number
JP2006049848A
JP2006049848A JP2005186599A JP2005186599A JP2006049848A JP 2006049848 A JP2006049848 A JP 2006049848A JP 2005186599 A JP2005186599 A JP 2005186599A JP 2005186599 A JP2005186599 A JP 2005186599A JP 2006049848 A JP2006049848 A JP 2006049848A
Authority
JP
Japan
Prior art keywords
group iii
layer
nitride semiconductor
iii nitride
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005186599A
Other languages
Japanese (ja)
Inventor
Akira Bando
章 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005186599A priority Critical patent/JP2006049848A/en
Publication of JP2006049848A publication Critical patent/JP2006049848A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-resistance n-type Group III nitride semiconductor layer having excellent flatness and few cracks and pits, and also to provide a Group III nitride semiconductor light emitting element having excellent light emitting efficiency with low forward voltage using the n-type Group III nitride semiconductor layer. <P>SOLUTION: An n-type Group III nitride semiconductor laminated structure is formed by laminating an n-type impurity atom higher concentration layer and an n-type impurity atom lower concentration layer alternately. Further, the Group III nitride semiconductor light emitting element is constituted by providing the n-type Group III nitride semiconductor laminated structure between a substrate and a light emitting layer of Group III nitride semiconductor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、n型III族窒化物半導体積層構造体およびそれを利用したIII族窒化物半導体発光素子に関する。   The present invention relates to an n-type group III nitride semiconductor multilayer structure and a group III nitride semiconductor light emitting device using the same.

従来から、基板上に形成されたIII族窒化物半導体は、短波長の可視光を放射する発光ダイオード(LED)やレーザダイオード(LD)等のpn接合型構造のIII族窒化物半導体発光素子を構成するための機能材料として利用されている(例えば、特許文献1参照)。例えば、近紫外帯、青色帯、或いは緑色帯の発光を呈するLEDを構成するに際し、n型またはp型の窒化アルミニウム・ガリウム(組成式AlXGaYN:0≦X,Y≦1、X+Y=1)は、クラッド層を構成するために利用されている(例えば、特許文献2参照)。また、窒化ガリウム・インジウム(組成式GaYInZN:0≦Y,Z≦1、Y+Z=1)は、発光層を構成するために利用されている(例えば、特許文献3参照)。 Conventionally, a group III nitride semiconductor formed on a substrate is a group III nitride semiconductor light emitting device having a pn junction structure such as a light emitting diode (LED) or a laser diode (LD) that emits visible light having a short wavelength. It is used as a functional material for constituting (see, for example, Patent Document 1). For example, when an LED that emits light in the near ultraviolet band, the blue band, or the green band is formed, an n-type or p-type aluminum gallium nitride (compositional formula Al X Ga Y N: 0 ≦ X, Y ≦ 1, X + Y = 1) is used to construct a cladding layer (see, for example, Patent Document 2). Further, gallium indium nitride (compositional formula Ga Y In Z N: 0 ≦ Y, Z ≦ 1, Y + Z = 1) is used to configure the light-emitting layer (for example, see Patent Document 3).

従来のIII族窒化物半導体発光素子において、発光層には、n型またはp型のIII族窒化物半導体層がクラッド層として接合されるのが一般的である。高い強度の発光を得るために、ヘテロ接合構造の発光部を構成するためである。例えば、ダブルヘテロ接合構造の発光部を構成するために、発光層は、GaYInZN(0≦Y、Z≦1、Y+Z=1)等からなり、クラッド層としてn型またはp型のIII族窒化物半導体層が接合されている(例えば非特許文献1参照)。 In a conventional group III nitride semiconductor light-emitting device, an n-type or p-type group III nitride semiconductor layer is generally bonded to the light emitting layer as a cladding layer. This is because a light-emitting portion having a heterojunction structure is formed in order to obtain high-intensity light emission. For example, in order to construct a light emitting portion having a double heterojunction structure, the light emitting layer is made of Ga Y In ZN (0 ≦ Y, Z ≦ 1, Y + Z = 1) or the like, and the n-type or p-type cladding layer is used. The group III nitride semiconductor layer is joined (for example, refer nonpatent literature 1).

例えば、基板と発光層との中間に配置されているn型III族窒化物半導体層は、従来から、もっぱら、珪素(Si)をドーピングしたIII族窒化物半導体から構成されている。珪素のドーピング量を調整することによって、制御された抵抗率を有する例えば、Siドープn型AlXGaYN(0≦X、Y≦1、X+Y=1)層が利用されている(例えば、特許文献4参照)。 For example, an n-type group III nitride semiconductor layer disposed between a substrate and a light emitting layer has heretofore been exclusively composed of a group III nitride semiconductor doped with silicon (Si). For example, Si-doped n-type Al x Ga Y N (0 ≦ X, Y ≦ 1, X + Y = 1) layers having controlled resistivity by adjusting the doping amount of silicon are utilized (for example, (See Patent Document 4).

Siは比較的高濃度まで安定した結晶性と電気特性が得られるために、n型不純物としてよく用いられるが、多量にドーピングすると、亀裂が発生する問題があった。一方、珪素以外のn型不純物としては、ゲルマニウム(Ge)、硫黄(S)、錫(Sn)、セレン(Se)およびテルル(Te)が公知である(例えば特許文献5および6参照)。しかし、Siの場合と比較すると、ドーピング効率は低く、低抵抗のn型III族窒化物半導体層を得るには不利とされている。例えば、低抵抗のn型III族窒化物半導体層を得るためにGeを高濃度にドーピングすると、n型III族窒化物半導体層の表面には、平坦性を損なう小孔(ピット)が発生する欠点があった。   Si is often used as an n-type impurity because it provides stable crystallinity and electrical characteristics up to a relatively high concentration. However, there is a problem that cracks occur when doped in large amounts. On the other hand, germanium (Ge), sulfur (S), tin (Sn), selenium (Se), and tellurium (Te) are known as n-type impurities other than silicon (see, for example, Patent Documents 5 and 6). However, compared with the case of Si, the doping efficiency is low, which is disadvantageous for obtaining a low-resistance n-type group III nitride semiconductor layer. For example, when Ge is doped at a high concentration in order to obtain a low-resistance n-type group III nitride semiconductor layer, small holes (pits) that impair flatness are generated on the surface of the n-type group III nitride semiconductor layer. There were drawbacks.

特開2000−332364号公報JP 2000-332364 A 特開2003−229645号公報JP 2003-229645 A 特公昭55−3834号公報Japanese Patent Publication No.55-3834 特許第3383242号公報Japanese Patent No. 3383242 特開平4−170397号公報Japanese Patent Laid-Open No. 4-170397 特許第3504976号公報Japanese Patent No. 3504976 赤崎勇著、「III−V族化合物半導体」、(株)培風館、1995年5月20日発行、第13章参照Akazaki Isamu, "III-V group compound semiconductor", Baifukan Co., Ltd., published on May 20, 1995, see Chapter 13.

本発明の目的は、亀裂やピットの発生が少ない平坦性に優れた低抵抗のn型III族窒化物半導体層を提供し、それを用いて順方向電圧が低く、かつ発光効率が優れたIII族窒化物半導体発光素子を提供することである。   An object of the present invention is to provide a low-resistance n-type group III nitride semiconductor layer having excellent flatness with few occurrences of cracks and pits, and using it, a forward voltage is low and a light emitting efficiency is excellent. A group nitride semiconductor light emitting device is provided.

本発明は以下の発明を提供する。
(1)基板上に積層されたn型不純物原子高濃度層およびn型不純物原子低濃度層からなり、該高濃度層上に該低濃度層が積層されていることを特徴とするn型III族窒化物半導体積層構造体。
The present invention provides the following inventions.
(1) An n-type III comprising an n-type impurity atom high-concentration layer and an n-type impurity atom low-concentration layer laminated on a substrate, wherein the low-concentration layer is laminated on the high-concentration layer Group nitride semiconductor multilayer structure.

(2)高濃度層および低濃度層が交互に周期的に存在することを特徴とする上記1項に記載のn型III族窒化物半導体積層構造体。 (2) The n-type group III nitride semiconductor multilayer structure according to the above item (1), wherein the high concentration layer and the low concentration layer are alternately present periodically.

(3)高濃度層および低濃度層の厚さがそれぞれ0.5〜500nmであることを特徴とする上記1または2項に記載のn型III族窒化物半導体積層構造体。 (3) The n-type group III nitride semiconductor multilayer structure according to the above item 1 or 2, wherein the high-concentration layer and the low-concentration layer each have a thickness of 0.5 to 500 nm.

(4)低濃度層の厚さが高濃度層の厚さと等しいか、または高濃度層の厚さよりも厚いことを特徴とする上記1〜3項のいずれか一項に記載のn型III族窒化物半導体積層構造体。 (4) The n-type group III according to any one of the above items 1 to 3, wherein the thickness of the low concentration layer is equal to or greater than the thickness of the high concentration layer Nitride semiconductor multilayer structure.

(5)高濃度層および低濃度層の繰り返し周期数が10〜1000であることを特徴とする上記2〜4項のいずれか一項に記載のn型III族窒化物半導体積層構造体。 (5) The n-type group III nitride semiconductor multilayer structure according to any one of the above items 2 to 4, wherein the number of repetition periods of the high-concentration layer and the low-concentration layer is 10 to 1,000.

(6)積層構造全体の厚さが0.1〜10μmであることを特徴とする上記1〜5項のいずれか一項に記載のn型III族窒化物半導体積層構造体。 (6) The n-type group III nitride semiconductor multilayer structure according to any one of 1 to 5 above, wherein the thickness of the entire multilayer structure is 0.1 to 10 μm.

(7)高濃度層のn型不純物原子濃度が5×1017〜5×1019cm-3であることを特徴とする上記1〜6項のいずれか一項に記載のn型III族窒化物半導体積層構造体。 (7) The n-type group III nitride according to any one of 1 to 6 above, wherein the n-type impurity atom concentration of the high-concentration layer is 5 × 10 17 to 5 × 10 19 cm −3. Physical semiconductor laminated structure.

(8)低濃度層のn型不純物原子濃度が高濃度層のn型不純物原子濃度より低く、かつ2×1019cm-3以下であることを特徴とする上記1〜7項のいずれか一項に記載のn型III族窒化物半導体積層構造体。 (8) The n-type impurity atom concentration in the low concentration layer is lower than the n-type impurity atom concentration in the high concentration layer, and is 2 × 10 19 cm −3 or less. Item 4. An n-type group III nitride semiconductor multilayer structure according to item.

(9)低濃度層がn型不純物原子を故意にドーピングされていないことを特徴とする上記8項に記載のn型III族窒化物半導体積層構造体。 (9) The n-type group III nitride semiconductor multilayer structure according to the above item 8, wherein the low-concentration layer is not intentionally doped with n-type impurity atoms.

(10)n型不純物原子が、シリコン(Si)、ゲルマニウム(Ge)、硫黄(S)、セレン(Se)、錫(Sn)およびテルル(Te)からなる群から選ばれた1種または2種以上の組み合わせであることを特徴とする上記1〜9項のいずれか1項に記載のn型III族窒化物半導体積層構造体。 (10) One or two n-type impurity atoms selected from the group consisting of silicon (Si), germanium (Ge), sulfur (S), selenium (Se), tin (Sn), and tellurium (Te) 10. The n-type group III nitride semiconductor multilayer structure according to any one of 1 to 9 above, which is a combination of the above.

(11)基板上にIII族窒化物半導体からなる発光層を有するIII族窒化物半導体発光素子に於いて、基板と発光層との間に、上記1〜10項のいずれか一項に記載のn型III族窒化物半導体積層構造体を有することを特徴とするIII族窒化物半導体発光素子。
(12)上記11項に記載のIII族窒化物半導体発光素子と蛍光物質とを用いてなるランプ。
(11) In a group III nitride semiconductor light emitting device having a light emitting layer made of a group III nitride semiconductor on a substrate, the substrate according to any one of items 1 to 10, between the substrate and the light emitting layer. A group III nitride semiconductor light-emitting device comprising an n-type group III nitride semiconductor multilayer structure.
(12) A lamp comprising the group III nitride semiconductor light-emitting device according to item 11 and a fluorescent material.

本発明のn型III族窒化物半導体層積層構造体は、低抵抗のn型不純物原子高濃度層に発生する亀裂やピットをn型不純物原子低濃度層が埋めるため、n型III族窒化物半導体層全体として低抵抗であり、かつ平坦性に優れる。従って、このようなn型III族窒化物半導体積層構造体を用いた発光素子は順方向電圧が低く、かつ優れた発光効率を有する。これは、n型不純物元素の種類によらず効果があり、従来、低抵抗を得るのが難しかったn型不純物でも、低抵抗で平坦性に優れたn型III族窒化物半導体層とすることが出来る。   In the n-type group III nitride semiconductor layer laminated structure of the present invention, the n-type group III nitride has a low-resistance n-type impurity atom high-concentration layer filling the cracks and pits generated in the low-resistance n-type impurity atom high-concentration layer. The entire semiconductor layer has low resistance and excellent flatness. Therefore, a light emitting device using such an n-type group III nitride semiconductor multilayer structure has a low forward voltage and excellent luminous efficiency. This is effective regardless of the type of the n-type impurity element, and an n-type group III nitride semiconductor layer having low resistance and excellent flatness is obtained even with an n-type impurity that has conventionally been difficult to obtain low resistance. I can do it.

本願発明においてIII族窒化物半導体層が積層される基板としては、融点が比較的高く、耐熱性のあるサファイア(α−Al23単結晶)や酸化亜鉛(ZnO)或いは酸化ガリウム・リチウム(組成式LiGaO2)等の酸化物単結晶材料、珪素単結晶(シリコン)や立方晶或いは六方晶結晶型の炭化珪素(SiC)等のIV族半導体単結晶からなる基板等が挙げられる。基板材料として、リン化ガリウム(GaP)等のIII−V族化合物半導体単結晶材料も利用できる。発光層からの発光を透過できる、光学的に透明な単結晶材料は基板として有効に利用できる。好ましくはサファイアである。 In the present invention, the substrate on which the group III nitride semiconductor layer is laminated is a sapphire (α-Al 2 O 3 single crystal), zinc oxide (ZnO), gallium oxide / lithium (having a relatively high melting point and heat resistance). Examples thereof include an oxide single crystal material such as a composition formula LiGaO 2 ), a substrate made of a group IV semiconductor single crystal such as silicon single crystal (silicon) and cubic or hexagonal crystal type silicon carbide (SiC). As the substrate material, a III-V compound semiconductor single crystal material such as gallium phosphide (GaP) can also be used. An optically transparent single crystal material that can transmit light emitted from the light emitting layer can be effectively used as a substrate. Sapphire is preferable.

本発明のn型III族窒化物半導体層は、組成式AlXGaYInZ1-aa(0≦X≦1、0≦Y≦1、0≦Z≦1で且つ、X+Y+Z=1。記号Mは窒素とは別の第V族元素を表し、0≦a<1である。)のIII族窒化物半導体から構成する。基板と、その上に形成するIII族窒化物半導体層との間に格子ミスマッチがある場合は、そのミスマッチを緩和して、結晶性に優れるIII族窒化物半導体層をもたらす低温緩衝層或いは高温緩衝層を介在させて積層するのが得策である。緩衝層は、例えば、窒化アルミニウム・ガリウム(組成式AlXGaYN:0≦X、Y≦1、X+Y=1)等から構成できる。 N-type Group III nitride semiconductor layer of the present invention, and by a composition formula Al X Ga Y In Z N 1 -a M a (0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ Z ≦ 1, X + Y + Z = 1. Symbol M represents a Group V element different from nitrogen, and 0 ≦ a <1)). When there is a lattice mismatch between the substrate and the group III nitride semiconductor layer formed thereon, the low temperature buffer layer or the high temperature buffer that relaxes the mismatch and provides a group III nitride semiconductor layer with excellent crystallinity. It is a good idea to stack with layers. The buffer layer can be made of, for example, aluminum gallium nitride (compositional formula Al x Ga y N: 0 ≦ X, Y ≦ 1, X + Y = 1) or the like.

上記組成のIII族窒化物半導体層は、有機金属化学的気相堆積法(MOCVD、MOVPEまたはOMVPEなどと略称される)、分子線エピタキシャル法(MBE)、ハロゲン気相成長法、ハイドライド(水素化物)気相成長法等の気相成長手段に依り形成できる。これらの中でもMOCVD法が好ましい。   The group III nitride semiconductor layer having the above composition is formed by metal organic chemical vapor deposition (abbreviated as MOCVD, MOVPE or OMVPE), molecular beam epitaxy (MBE), halogen vapor phase epitaxy, hydride (hydride). ) It can be formed by vapor phase growth means such as vapor phase growth. Among these, the MOCVD method is preferable.

MOCVD法では、キャリアガスとして水素(H2)または窒素(N2)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)またはトリエチルアルミニウム(TEA)、In源としてトリメチルインジウム(TMI)またはトリエチルインジウム(TEI)、窒素源としてアンモニア(NH3)またはヒドラジン(N24)などが用いられる。 In the MOCVD method, hydrogen (H 2 ) or nitrogen (N 2 ) is used as a carrier gas, trimethyl gallium (TMG) or triethyl gallium (TEG) is used as a Ga source as a group III source, and trimethyl aluminum (TMA) or triethyl aluminum is used as an Al source. (TEA), trimethylindium (TMI) or triethylindium (TEI) is used as the In source, and ammonia (NH 3 ) or hydrazine (N 2 H 4 ) is used as the nitrogen source.

n型不純物として、シリコン(Si)、ゲルマニウム(Ge)、錫(Sn)、硫黄(S)、Se(セレン)およびTe(テルル)等を利用できる。原料としては、それぞれの元素の水素化物、例えば、モノシラン(SiH4)、ジシラン(SiH6)、ゲルマン(GeH4)、硫化水素(H2S)、セレン化水素(H2Se)、テルル化水素(H2Te)等およびそれぞれの元素の有機化合物、例えば、テトラメチルシリコン((CH34Si)、テトラエチルシリコン((C254Si)、テトラメチルゲルマニウム((CH34Ge)やテトラエチルゲルマニウム((C254Ge)、ジエチルセレン((C252Se)、ジイソプロピルセレン((C372Se)、ジエチルサルファイド((C252S)、ジイソプロピルサルファイド((C372S)、テトラメチルティン((CH34Sn)、テトラエチルティン((C254Sn)、ジメチルテルル((CH32Te)、ジエチルテルル((C252Te)等を利用できる。また、MBE法では、元素状(金属)もドーピング源として利用できる。 As the n-type impurity, silicon (Si), germanium (Ge), tin (Sn), sulfur (S), Se (selenium), Te (tellurium), or the like can be used. As raw materials, hydrides of respective elements, such as monosilane (SiH 4 ), disilane (SiH 6 ), germane (GeH 4 ), hydrogen sulfide (H 2 S), hydrogen selenide (H 2 Se), telluride Hydrogen (H 2 Te) and the like and organic compounds of the respective elements, for example, tetramethyl silicon ((CH 3 ) 4 Si), tetraethyl silicon ((C 2 H 5 ) 4 Si), tetramethyl germanium ((CH 3 ) 4 Ge), tetraethyl germanium ((C 2 H 5 ) 4 Ge), diethyl selenium ((C 2 H 5 ) 2 Se), diisopropyl selenium ((C 3 H 7 ) 2 Se), diethyl sulfide ((C 2 H 5) 2 S), diisopropyl sulfide ((C 3 H 7) 2 S), tetramethyl tin ((CH 3) 4 Sn) , tetraethyl tin ((C 2 H 5) 4 Sn), di Chiruteruru ((CH 3) 2 Te) , available diethyl tellurium ((C 2 H 5) 2 Te) or the like. In the MBE method, elemental (metal) can also be used as a doping source.

MOCVD法では、上記原料を用いて基板上に、目的に応じたIII族窒化物半導体層を900℃〜1250℃の温度範囲で成長させることが好ましい。   In the MOCVD method, it is preferable to grow a group III nitride semiconductor layer according to the purpose in a temperature range of 900 ° C. to 1250 ° C. on the substrate using the above-mentioned raw materials.

n型不純物原子高濃度層および低濃度層は、III族窒化物半導体層の気相成長時にn型不純物のドーピング源の気相成長反応系への供給量を変化させて形成する。例えば、気相成長反応系へ多量のn型不純物ドーピング源を瞬時に供給して、n型不純物原子を高い濃度で含む層を形成した後、n型不純物のドーピング源を気相成長反応系へ供給せずに、アンドープの層すなわちn型不純物原子濃度がゼロの層を形成する。また、n型不純物原子を高濃度に含む層を成長指せた後、一旦成長を中断し、V/III族原料比率等の成長条件をn型不純物原子が低濃度の層に適した条件に調整して、n型不純物原子濃度を低濃度とする層を成長させてもよい。   The n-type impurity atom high-concentration layer and the low-concentration layer are formed by changing the supply amount of the doping source of the n-type impurity to the vapor phase growth reaction system during the vapor phase growth of the group III nitride semiconductor layer. For example, a large amount of n-type impurity doping source is instantaneously supplied to the vapor phase growth reaction system to form a layer containing n-type impurity atoms at a high concentration, and then the n-type impurity doping source is transferred to the vapor phase growth reaction system. Without supply, an undoped layer, that is, a layer having an n-type impurity atom concentration of zero is formed. In addition, after the growth of a layer containing n-type impurity atoms at a high concentration, the growth is temporarily stopped, and the growth conditions such as the V / III group material ratio are adjusted to conditions suitable for the layer having a low concentration of n-type impurity atoms. Then, a layer having a low n-type impurity atom concentration may be grown.

このn型不純物ドーピング源の気相成長反応系への供給量を経時的に増減させれば、n型不純物原子濃度の異なる薄層を交互に周期的に形成できる。本発明におけるn型不純物原子高濃度層およびn型不純物原子低濃度層からなるn型III族窒化物半導体層は、このようにn型不純物原子濃度の高い薄層とn型不純物原子濃度の低い薄層が交互に周期的に多数積層されていることが好ましい。   If the supply amount of the n-type impurity doping source to the vapor phase growth reaction system is increased or decreased over time, thin layers having different n-type impurity atom concentrations can be alternately and periodically formed. The n-type group III nitride semiconductor layer composed of the n-type impurity atom high-concentration layer and the n-type impurity atom low-concentration layer in the present invention has a thin n-type impurity atom concentration and a low n-type impurity atom concentration. It is preferable that a large number of thin layers are alternately laminated.

この場合、n型不純物原子を高濃度に含む薄層の膜厚は、0.5nm以上500nm以下が適する。好ましくは、2nm以上200nm以下、さらに好ましくは、3nm以上50nm以下である。膜厚が0.5nm未満になると、n型半導体層全体でのn型不純物ドープ量が十分でなく高抵抗化してしまう。逆に、500nmを超えると低濃度層で亀裂やピットが埋まりきらず、平坦性が悪くなる。また、亀裂やピットを埋めるために低濃度層を十分厚くすると、やはりn型半導体層全体として高抵抗化してしまう。   In this case, the thickness of the thin layer containing n-type impurity atoms at a high concentration is suitably from 0.5 nm to 500 nm. Preferably, they are 2 nm or more and 200 nm or less, More preferably, they are 3 nm or more and 50 nm or less. When the film thickness is less than 0.5 nm, the n-type impurity doping amount in the entire n-type semiconductor layer is not sufficient and the resistance is increased. On the contrary, if it exceeds 500 nm, cracks and pits are not completely filled in the low-concentration layer, resulting in poor flatness. Moreover, if the low concentration layer is made sufficiently thick to fill cracks and pits, the resistance of the entire n-type semiconductor layer is increased.

また、n型不純物原子を低濃度に含む薄層の膜厚は、n型不純物原子を高濃度に含む薄層と同様に、0.5nm以上500nm以下が好ましく、2nm以上200nm以下がさらに好ましく、3nm以上50nm以下が特に好ましい。膜厚が0.5nm未満になると高濃度層で形成される亀裂やピットを十分埋められず平坦性が損なわれる。また、500nmを超えると、n型半導体層全体として高抵抗化してしまい、順方向電圧(Vf)或いは閾値電圧(Vth)の低いIII族窒化物半導体発光素子を得るに不利である。   The thickness of the thin layer containing n-type impurity atoms at a low concentration is preferably 0.5 nm or more and 500 nm or less, more preferably 2 nm or more and 200 nm or less, similarly to the thin layer containing n-type impurity atoms at a high concentration. 3 nm or more and 50 nm or less are particularly preferable. When the film thickness is less than 0.5 nm, cracks and pits formed in the high concentration layer cannot be sufficiently filled, and flatness is impaired. On the other hand, when the thickness exceeds 500 nm, the resistance of the entire n-type semiconductor layer is increased, which is disadvantageous for obtaining a group III nitride semiconductor light emitting device having a low forward voltage (Vf) or low threshold voltage (Vth).

本発明では、互に接触している高濃度層と低濃度層の一組を一周期という。各周期の高濃度層の膜厚と低濃度層の膜厚の合計、すなわち、1周期の膜厚は、1nm以上1000nm以下が適する。好ましくは、4nm以上400nm以下、さらに好ましくは、6nm以上100nm以下である。1000nmを超えると、亀裂やピットの形成を抑制できないか、もしくは、n型半導体層全体として高抵抗化してしまう。また、膜厚の合計を1nm未満にするためにはN型不純物原料の供給量を頻繁に変更せねばならず、作業効率が低下する。   In the present invention, a set of a high concentration layer and a low concentration layer that are in contact with each other is referred to as one period. The total thickness of the high-concentration layer and the low-concentration layer in each cycle, that is, the thickness of one cycle is preferably 1 nm or more and 1000 nm or less. Preferably, they are 4 nm or more and 400 nm or less, More preferably, they are 6 nm or more and 100 nm or less. If it exceeds 1000 nm, formation of cracks and pits cannot be suppressed, or the resistance of the entire n-type semiconductor layer is increased. Further, in order to make the total film thickness less than 1 nm, the supply amount of the N-type impurity raw material must be changed frequently, and the working efficiency is lowered.

1周期中において高濃度層が低濃度層より厚い場合、亀裂やピット形成の抑制が十分でなく、平坦性が十分に得られない。一方、1周期中において低濃度層が高濃度層と同等かそれ以上厚い場合は、平坦性は良好になる。従って、低濃度層の厚さは高濃度層の厚さ以上とすることが好ましい。   If the high-concentration layer is thicker than the low-concentration layer in one cycle, cracks and pit formation are not sufficiently suppressed, and flatness cannot be obtained sufficiently. On the other hand, when the low concentration layer is equal to or thicker than the high concentration layer in one cycle, the flatness is good. Therefore, the thickness of the low concentration layer is preferably equal to or greater than the thickness of the high concentration layer.

n型III族窒化物半導体積層構造体全体の層厚は、0.1μm以上10μm以下が好ましく、0.3μm以上5μm以下がさらに好ましく、0.5μm以上3μm以下が特に好ましい。層厚が0.1μm未満になると発光素子の順方向電圧が高くなる。また、10μmより大きくしても得られる効果に大差なく、コストが上昇するのみである。   The total thickness of the n-type group III nitride semiconductor multilayer structure is preferably 0.1 μm to 10 μm, more preferably 0.3 μm to 5 μm, and particularly preferably 0.5 μm to 3 μm. When the layer thickness is less than 0.1 μm, the forward voltage of the light emitting element increases. Further, even if the thickness is larger than 10 μm, there is not much difference in the obtained effect, and only the cost increases.

上記の1周期の厚さおよびn型半導体積層構造体全体の厚さから、積層させる周期数は1以上で10000以下が好ましく、10以上で1000以下がさらに好ましく、20以上で200以下が特に好ましい。例えば、厚さ10nmの高濃度層および厚さ10nmの低濃度層の繰り返しを一周期として、100周期に亘り積層させて、合計で厚さを2μmとするn型半導体積層構造体を形成する。   From the thickness of one cycle and the thickness of the entire n-type semiconductor multilayer structure, the number of cycles to be stacked is preferably 1 or more and 10000 or less, more preferably 10 or more and 1000 or less, and particularly preferably 20 or more and 200 or less. . For example, an n-type semiconductor multilayer structure having a total thickness of 2 μm is formed by laminating over 100 periods, with a repetition of a high-concentration layer having a thickness of 10 nm and a low-concentration layer having a thickness of 10 nm as one period.

高濃度層のn型不純物原子の濃度は、5×1017cm-3以上5×1019cm-3以下とするのが好ましく、1×1018cm-3以上3×1019cm-3以下がさらに好ましく、3×1018cm-3以上2×1019cm-3以下が特に好ましい。5×1017cm-3未満の濃度では、n型半導体層全体の抵抗が高くなり、順方向電圧の低いLEDが得られ難い。一方、n型不純物原子の濃度が5×1019cm-3を超えると、キャリア濃度が概ね(3〜4)×1019cm-3となる。この原子濃度を超えてn型不純物をドーピングすると、表面の亀裂やピットの密度が急激に増加するため好ましくはない。高濃度層のn型不純物原子濃度は、n型半導体積層構造体全体に亙って必ずしも一定でなくても良く、各周期毎に濃度が連続的もしくは不連続的に変化していても良い。また、一つ一つの薄層内部でn型不純物原子濃度が変化していてもよい。さらには、n型不純物元素は1種でなくてもよく、2種類以上の元素を組み合わせてもよい。 The concentration of the n-type impurity atoms in the high-concentration layer is preferably 5 × 10 17 cm −3 or more and 5 × 10 19 cm −3 or less, preferably 1 × 10 18 cm −3 or more and 3 × 10 19 cm −3 or less. Is more preferably 3 × 10 18 cm −3 or more and 2 × 10 19 cm −3 or less. When the concentration is less than 5 × 10 17 cm −3 , the resistance of the entire n-type semiconductor layer increases, and it is difficult to obtain an LED with a low forward voltage. On the other hand, when the concentration of n-type impurity atoms exceeds 5 × 10 19 cm −3 , the carrier concentration is approximately (3-4) × 10 19 cm −3 . Doping n-type impurities exceeding this atomic concentration is not preferable because the density of cracks and pits on the surface increases rapidly. The n-type impurity atom concentration of the high-concentration layer is not necessarily constant over the entire n-type semiconductor multilayer structure, and the concentration may change continuously or discontinuously for each period. Further, the n-type impurity atom concentration may be changed inside each thin layer. Furthermore, the n-type impurity element may not be one kind, and two or more kinds of elements may be combined.

低濃度層のn型不純物原子の濃度は、高濃度層のn型不純物原子の濃度より低濃度であり、かつ、2×1019cm-3以下とするのが好ましい。n型不純物原子の濃度を2×1019cm-3より大きくすると、表面の亀裂やピットの密度が急激に増加するため好ましくない。さらに好ましくは1×1019cm-3以下、特に好ましくは5×1018cm-3以下である。下限に関しては低ければ低い程よく、むしろ故意にドーピングしない方が好ましい。n型不純物原子濃度をより小とするため、低濃度層をアンドープのIII族窒化物半導体薄層から構成すると、高濃度層の表面に発生する亀裂やピットを埋め尽くす効果がさらに高まり、表面の平坦なn型半導体層を得るのに好ましい。なお、低濃度層のn型不純物原子濃度が低く、キャリア濃度が低ければ低い程、低濃度層の厚さを薄くすることが望ましい。 The concentration of the n-type impurity atoms in the low-concentration layer is preferably lower than the concentration of the n-type impurity atoms in the high-concentration layer and 2 × 10 19 cm −3 or less. If the concentration of the n-type impurity atom is larger than 2 × 10 19 cm −3 , the density of cracks and pits on the surface increases rapidly, which is not preferable. More preferably, it is 1 × 10 19 cm −3 or less, and particularly preferably 5 × 10 18 cm −3 or less. Regarding the lower limit, the lower the better, the more preferably it is not intentionally doped. If the low-concentration layer is composed of an undoped group III nitride semiconductor thin layer in order to make the n-type impurity atom concentration smaller, the effect of filling up cracks and pits generated on the surface of the high-concentration layer is further enhanced. This is preferable for obtaining a flat n-type semiconductor layer. It is desirable that the thickness of the low-concentration layer is reduced as the n-type impurity atom concentration in the low-concentration layer is lower and the carrier concentration is lower.

また、低濃度層においても高濃度層と同様、低濃度層のn型不純物原子濃度は、n型半導体層全体に亙って必ずしも一定でなくてもよく、各周期毎に濃度が連続的もしくは不連続的に変化していてもよい。また、一つ一つの薄層内部でn型不純物原子濃度が変化していてもよい。さらには、n型不純物元素は1種でなくても良く、2種類以上の元素を組み合わせても良い。   Also in the low concentration layer, as in the high concentration layer, the n type impurity atom concentration of the low concentration layer does not necessarily have to be constant over the entire n type semiconductor layer, and the concentration is continuous or continuous for each period. It may change discontinuously. Further, the n-type impurity atom concentration may be changed inside each thin layer. Furthermore, the n-type impurity element may not be one kind, and two or more kinds of elements may be combined.

n型不純物原子の濃度および元素種は、例えば、2次イオン質量分析法(SIMS)で測定できる。これは、試料の表面に1次イオンを照射することにより、イオン化して飛び出した元素を質量分析する手法であり、特定の元素の深さ方向の濃度分布を観察かつ定量できる。III族窒化物半導体層中に存在するn型不純物元素についてもこの手法が有効である。その際に各層の厚さも算出できる。   The concentration and element type of the n-type impurity atom can be measured by, for example, secondary ion mass spectrometry (SIMS). This is a technique for performing mass analysis on an element ionized and ejected by irradiating the surface of a sample with primary ions, and the concentration distribution in the depth direction of a specific element can be observed and quantified. This method is also effective for n-type impurity elements present in the group III nitride semiconductor layer. At that time, the thickness of each layer can also be calculated.

本発明のn型III族窒化物半導体積層構造体を利用して、III族窒化物半導体発光素子を作製する場合、当該積層構造体は基板と発光層の間の何処にでも配置できる。例えば、基板の表面に直接、接合させて設けられるし、基板の表面に設けた緩衝層上に接合させて設けることもできる。また、アンドープのGaN等からなる下地層の上に接合させて設けることもできる。その際、高濃度層が基板側になるように配置し、高濃度層を積層し、次いで低濃度層を積層するようにする。   When a group III nitride semiconductor light emitting device is produced using the n-type group III nitride semiconductor multilayer structure of the present invention, the multilayer structure can be disposed anywhere between the substrate and the light emitting layer. For example, it can be directly bonded to the surface of the substrate, or can be bonded to a buffer layer provided on the surface of the substrate. Further, it can be provided by being bonded onto an underlayer made of undoped GaN or the like. At that time, the high concentration layer is disposed on the substrate side, the high concentration layer is stacked, and then the low concentration layer is stacked.

基板或いは緩衝層等に近接する本発明のn型半導体積層構造体の上方にIII族窒化物半導体層を設ければ、結晶性に優れるIII族窒化物半導体層が得られる。本発明のn型半導体積層構造体を設けることに依り、基板との格子ミスマッチに基づくミスフィット転位等の層の上方への伝搬が抑止されるからである。   If a group III nitride semiconductor layer is provided above the n-type semiconductor multilayer structure of the present invention close to the substrate or buffer layer, a group III nitride semiconductor layer having excellent crystallinity can be obtained. This is because the provision of the n-type semiconductor multilayer structure of the present invention suppresses upward propagation of layers such as misfit dislocations based on lattice mismatch with the substrate.

本発明のn型半導体積層構造体を設けると、下方から貫通して来る転位の上層への伝搬を抑制できるので、その上方に形成された発光層は結晶性に優れ、従って高い発光強度のIII族窒化物半導体発光素子を得ることができる。   Providing the n-type semiconductor multilayer structure of the present invention can suppress the propagation of dislocations penetrating from below to the upper layer, so that the light emitting layer formed thereabove has excellent crystallinity, and thus has a high emission intensity III. A group nitride semiconductor light emitting device can be obtained.

III族窒化物半導体からなる発光層としては、AlXGaYInZ1-aa(0≦X≦1、0≦Y≦1、0≦Z≦1で且つ、X+Y+Z=1。記号Mは窒素とは別の第V族元素を表し、0≦a<1である。)で表わされる各種組成の単一量子井戸構造および多重量子井戸構造等の発光層が知られており、それらの発光層を何ら制限なく用いることができる。また、ダブルヘテロ構造の発光部を構成するためのp型III族窒化物半導体もMgやZn等のp型ドーパントをドープした前記組成式で表わされる各種組成のものが知られており、それらのものを何ら制限なく用いることができる。 The light-emitting layer composed of a group III nitride semiconductor, Al X Ga Y In Z N 1-a M a ( and by 0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ Z ≦ 1, X + Y + Z = 1. Symbol M represents a group V element different from nitrogen, and 0 ≦ a <1)), and light emitting layers such as single quantum well structures and multiple quantum well structures having various compositions represented by The light emitting layer can be used without any limitation. In addition, p-type group III nitride semiconductors for constituting a light emitting part of a double heterostructure are also known in various compositions represented by the above composition formula doped with p-type dopants such as Mg and Zn. Things can be used without any restrictions.

目的とする半導体層を積層したのち、所定の位置に正極および負極を形成する。化合物半導体発光素子用の正極および負極として、各種の構成および構造が知られており、これらの正極および負極を本発明においても何ら制限なく用いることができる。また、それらの製造方法も、真空蒸着法およびスパッタリング法等公知の方法を何ら制限なく用いることができる。   After stacking the target semiconductor layer, a positive electrode and a negative electrode are formed at predetermined positions. Various configurations and structures are known as a positive electrode and a negative electrode for compound semiconductor light emitting devices, and these positive electrode and negative electrode can be used without any limitation in the present invention. Moreover, those manufacturing methods can also use well-known methods, such as a vacuum evaporation method and sputtering method, without any limitation.

本発明のIII族窒化物半導体発光素子から、例えば当業界周知の手段により透明カバーを設けてランプを作製できる。また、本願発明のIII族窒化物半導体発光素子と蛍光体を有するカバーを組み合わせて白色のランプを作製することもできる。   From the group III nitride semiconductor light emitting device of the present invention, for example, a lamp can be produced by providing a transparent cover by means well known in the art. In addition, a white lamp can be manufactured by combining the group III nitride semiconductor light emitting device of the present invention and a cover having a phosphor.

以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
図1は、本実施例で作製したGeドープn型III族窒化物半導体層を含む積層構造体の積層構造を模式的に示した図である。
Example 1
FIG. 1 is a diagram schematically showing a stacked structure of a stacked structure including a Ge-doped n-type group III nitride semiconductor layer manufactured in this example.

サファイア基板上にIII族窒化物半導体を積層した構造体は、一般的な減圧MOCVD手段を利用して以下の手順で形成した。先ず、(0001)−サファイア基板1を、高周波(RF)誘導加熱式ヒータで成膜温度に加熱される半導体用高純度グラファイト製のサセプタ上に載置した。載置後、ステンレス鋼製の気相成長反応炉内に窒素ガスを流通し、炉内をパージした。   A structure in which a group III nitride semiconductor was stacked on a sapphire substrate was formed by the following procedure using a general low pressure MOCVD means. First, the (0001) -sapphire substrate 1 was placed on a susceptor made of high-purity graphite for semiconductors heated to a film formation temperature by a high-frequency (RF) induction heater. After placing, nitrogen gas was circulated in a stainless steel vapor phase growth reactor to purge the inside of the furnace.

気相成長反応炉内に、窒素ガスを8分間に亘って流通させた後、誘導加熱式ヒータを作動させ、基板1の温度を、10分間で室温から600℃に昇温した。基板1の温度を600℃に保ったまま、水素ガスと窒素ガスを流通させて、気相成長反応炉内の圧力を1.5×104パスカル(Pa)とした。この温度及び圧力下で2分間、放置して、基板1の表面をサーマルクリーニングした。サーマルクリーニングの終了後、気相成長反応炉内への窒素ガスの供給を停止した。水素ガスの供給は継続させた。 After flowing nitrogen gas through the vapor phase growth reactor for 8 minutes, the induction heating type heater was operated, and the temperature of the substrate 1 was raised from room temperature to 600 ° C. in 10 minutes. While maintaining the temperature of the substrate 1 at 600 ° C., hydrogen gas and nitrogen gas were circulated to set the pressure in the vapor phase growth reactor to 1.5 × 10 4 pascals (Pa). The surface of the substrate 1 was thermally cleaned by being left under this temperature and pressure for 2 minutes. After the thermal cleaning was completed, the supply of nitrogen gas into the vapor phase growth reactor was stopped. The supply of hydrogen gas was continued.

その後、水素雰囲気中で、基板1の温度を1120℃に昇温させた。1120℃で温度が安定したのを確認した後、トリメチルアルミニウム(TMA)の蒸気を随伴する水素ガスを8分30秒間、気相成長反応炉内へ供給した。これにより、気相成長反応炉の内壁に以前より付着していた窒素を含む堆積沈着物の分解により生じる窒素原子と反応させて、サファイア基板1上に、厚さ数nmの窒化アルミニウム(AlN)薄膜からなる高温緩衝層2を付着させた。TMAの蒸気を随伴する水素ガスの気相成長反応炉内への供給を停止しAlNの成長を終了させた後、4分間待機し、気相成長炉内に残ったTMAを完全に排出した。   Thereafter, the temperature of the substrate 1 was raised to 1120 ° C. in a hydrogen atmosphere. After confirming that the temperature was stabilized at 1120 ° C., hydrogen gas accompanied by vapor of trimethylaluminum (TMA) was supplied into the vapor phase growth reactor for 8 minutes and 30 seconds. Thereby, it reacts with nitrogen atoms generated by the decomposition of deposition deposits containing nitrogen that have been attached to the inner wall of the vapor phase growth reactor, and aluminum nitride (AlN) having a thickness of several nm is formed on the sapphire substrate 1. A high-temperature buffer layer 2 made of a thin film was attached. After stopping the supply of hydrogen gas accompanying the vapor of TMA into the vapor phase growth reactor and terminating the growth of AlN, the process waited for 4 minutes to completely discharge the TMA remaining in the vapor phase growth reactor.

続いて、アンモニア(NH3)ガスを気相成長反応炉内に供給し、4分が経過した後、アンモニアガスの流通を続けながら、サセプタの温度を1040℃に降温した。サセプタの温度が1040℃になったのを確認した後、暫時、温度が安定するのを待ち、トリメチルガリウム(TMG)の気相成長反応炉内への供給を開始し、アンドープのGaNからなる下地層3を1時間に亘って成長させた。下地層3の層厚は2μmとした。 Subsequently, ammonia (NH 3 ) gas was supplied into the vapor phase growth reactor, and after 4 minutes, the temperature of the susceptor was lowered to 1040 ° C. while continuing the circulation of the ammonia gas. After confirming that the temperature of the susceptor reached 1040 ° C., wait for a while for the temperature to stabilize, and then start supplying trimethylgallium (TMG) into the vapor phase growth reactor, and the bottom made of undoped GaN The formation 3 was grown over 1 hour. The layer thickness of the underlayer 3 was 2 μm.

次に、基板温度を1120℃に上昇し、温度が安定したところで、テトラメチルゲルマニウム((CH34Ge)を18秒間流通、その後18秒間流通を停止した。このサイクルを100回繰り返し、厚さ2.0μmのGe濃度が周期的に変化する本発明のGe原子高濃度層とGe原子低濃度層からなるGeドープn型GaN層4を形成した。 Next, the substrate temperature was raised to 1120 ° C., and when the temperature was stabilized, tetramethyl germanium ((CH 3 ) 4 Ge) was passed for 18 seconds and then stopped for 18 seconds. This cycle was repeated 100 times to form a Ge-doped n-type GaN layer 4 composed of a Ge atom high-concentration layer and a Ge atom low-concentration layer of the present invention having a thickness of 2.0 μm and periodically changing the Ge concentration.

Geドープn型GaN層4の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板1の温度を、室温迄、約20分間で降温した。降温中は、気相成長反応炉内の雰囲気を窒素のみから構成した。基板1の温度が室温まで降温したのを確認して、積層構造体を気相成長反応炉より外部へ取り出した。   After the growth of the Ge-doped n-type GaN layer 4 was finished, energization of the induction heater was stopped, and the temperature of the substrate 1 was lowered to room temperature in about 20 minutes. During the temperature drop, the atmosphere in the vapor phase growth reactor was composed only of nitrogen. After confirming that the temperature of the substrate 1 was lowered to room temperature, the laminated structure was taken out from the vapor phase growth reactor.

得られた積層構造体のGeドープn型GaN層4のホール測定によるキャリア濃度は、7×1018cm-3であった。n型GaN層4の表面は、ピット密度が200個/cm2以下の非常に平坦な面であった。SIMS分析の結果、高濃度層はGe原子濃度が1.2×1019cm-3であり、厚さが10nmであった。また、低濃度層はGe原子濃度が1×1018cm-3であり、厚さが10nmであった。 The carrier concentration in the hole measurement of the Ge-doped n-type GaN layer 4 of the obtained multilayer structure was 7 × 10 18 cm −3 . The surface of the n-type GaN layer 4 was a very flat surface with a pit density of 200 pieces / cm 2 or less. As a result of the SIMS analysis, the high concentration layer had a Ge atom concentration of 1.2 × 10 19 cm −3 and a thickness of 10 nm. The low concentration layer had a Ge atom concentration of 1 × 10 18 cm −3 and a thickness of 10 nm.

なお、SIMSの測定条件は、一次イオン種としてCs+を用いて、加速電圧を14.5keV、イオン電流を40nAとした。また、ラスタ領域は100μm2であり、分析領域を30μm2とした。 The SIMS measurement conditions were such that Cs + was used as the primary ion species, the acceleration voltage was 14.5 keV, and the ion current was 40 nA. The raster area was 100 μm 2 and the analysis area was 30 μm 2 .

(比較例1)
Geドープn型GaN層4の形成を、(CH34Geを常に同一流量で流通させながら厚さ2.0μmの層としたこと以外は、実施例1と同様にして積層構造体を作製した。なお、(CH34Geの流量は、Geドープn型GaN層4のホール測定によるキャリア濃度が実施例1と同じ7×1018cm-3になるように調製した。
(Comparative Example 1)
A layered structure was fabricated in the same manner as in Example 1 except that the Ge-doped n-type GaN layer 4 was formed as a 2.0 μm thick layer with (CH 3 ) 4 Ge always flowing at the same flow rate. did. The flow rate of (CH 3 ) 4 Ge was adjusted so that the carrier concentration by hole measurement of the Ge-doped n-type GaN layer 4 was 7 × 10 18 cm −3 as in Example 1.

得られた積層構造体のGeドープn型GaN層4の表面はピット密度が1×106cm-3と極めて高く、平坦な表面が得られなかった。 The surface of the Ge-doped n-type GaN layer 4 of the obtained laminated structure had an extremely high pit density of 1 × 10 6 cm −3 and a flat surface could not be obtained.

(実施例2)
実施例1で作製した積層構造体の上にさらにIII族窒化物半導体層を積層させ、III族窒化物半導体発光素子を作製した。図2は、本実施例で作製したIII族窒化物半導体発光素子の断面構造を模式的に示した図である。
(Example 2)
A group III nitride semiconductor layer was further laminated on the laminated structure produced in Example 1, to produce a group III nitride semiconductor light emitting device. FIG. 2 is a diagram schematically showing a cross-sectional structure of a group III nitride semiconductor light emitting device manufactured in this example.

Geドープn型GaN層4の形成までは実施例1と同じである。Geドープn型GaN層4を積層した後、1060℃で、アンドープn型In0.03Ga0.97Nクラッド層5を積積した。このクラッド層5は、トリエチルガリウム(TEG)をガリウム源とし、トリメチルインジウム(TMI)をインジウム源として成長させ、層厚は12.5nmとした。 The process up to the formation of the Ge-doped n-type GaN layer 4 is the same as that in the first embodiment. After the Ge-doped n-type GaN layer 4 was laminated, an undoped n-type In 0.03 Ga 0.97 N cladding layer 5 was stacked at 1060 ° C. The clad layer 5 was grown using triethylgallium (TEG) as a gallium source and trimethylindium (TMI) as an indium source, and the layer thickness was 12.5 nm.

次に、基板1の温度を730℃として、GaNからなる障壁層6aと、In0.25Ga0.75Nよりなる井戸層6bとを含む5周期構造の多重量子井戸構造発光層6をアンドープn型In0.03Ga0.97Nクラッド層5上に設けた。多重量子井戸構造の発光層6にあっては、先ず、GaN障壁層6aをアンドープn型In0.03Ga0.97Nクラッド層5に接合させて設けた。 Next, the temperature of the substrate 1 is set to 730 ° C., and the multi-quantum well structure light-emitting layer 6 having a five-period structure including the barrier layer 6a made of GaN and the well layer 6b made of In 0.25 Ga 0.75 N is undoped n-type In 0.03. It was provided on the Ga 0.97 N clad layer 5. In the light emitting layer 6 having the multiple quantum well structure, first, the GaN barrier layer 6 a is provided by being joined to the undoped n-type In 0.03 Ga 0.97 N cladding layer 5.

GaN障壁層6aは、トリエチルガリウム(TEG)をガリウム源として成長させた。層厚は8nmとし、アンドープとした。In0.25Ga0.75N井戸層6bは、トリエチルガリウム(TEG)をガリウム源とし、トリメチルインジウム(TMI)をインジウム源として成長させた。層厚は、2.5nmとし、アンドープとした。 The GaN barrier layer 6a was grown using triethylgallium (TEG) as a gallium source. The layer thickness was 8 nm and was undoped. The In 0.25 Ga 0.75 N well layer 6b was grown using triethylgallium (TEG) as a gallium source and trimethylindium (TMI) as an indium source. The layer thickness was 2.5 nm and was undoped.

多重量子井戸構造からなる発光層6上には、マグネシウム(Mg)をドーピングしたp型Al0.07Ga0.93Nクラッド層7を形成した。層厚は10nmとした。p型Al0.07Ga0.93Nクラッド層7上には、更に、Mgをドーピングしたp型GaNコンタクト層8を形成した。Mgのドーピング源には、ビスーシクロペンタジエニルMgを用いた。Mgは、p型GaNコンタクト層8の正孔濃度が8×1017cm-3となる様に添加した。p型GaNコンタクト層8の層厚は100nmとした。 On the light emitting layer 6 having a multiple quantum well structure, a p-type Al 0.07 Ga 0.93 N cladding layer 7 doped with magnesium (Mg) was formed. The layer thickness was 10 nm. On the p-type Al 0.07 Ga 0.93 N cladding layer 7, a p-type GaN contact layer 8 doped with Mg was further formed. Bis-cyclopentadienyl Mg was used as the Mg doping source. Mg was added so that the hole concentration of the p-type GaN contact layer 8 was 8 × 10 17 cm −3 . The layer thickness of the p-type GaN contact layer 8 was 100 nm.

p型GaNコンタクト層8の成長を終了した後、誘導加熱式ヒータへの通電を停止して、基板1の温度を、室温迄、約20分間で降温した。降温中は、気相成長反応炉内の雰囲気を窒素のみから構成した。基板1の温度が室温まで降温したのを確認して、積層構造体を気相成長反応炉より外部へ取り出した。この時点で、上記のp型GaNコンタクト層8は、p型キャリア(Mg)を電気的に活性化するためのアニール処理を行わなくても、既に、p型の伝導性を示した。   After completing the growth of the p-type GaN contact layer 8, the energization of the induction heater was stopped, and the temperature of the substrate 1 was lowered to room temperature in about 20 minutes. During the temperature drop, the atmosphere in the vapor phase growth reactor was composed only of nitrogen. After confirming that the temperature of the substrate 1 was lowered to room temperature, the laminated structure was taken out from the vapor phase growth reactor. At this point, the p-type GaN contact layer 8 already showed p-type conductivity without performing an annealing process to electrically activate the p-type carrier (Mg).

次いで、公知のフォトリソグラフィー技術及び一般的なドライエッチング技術を利用して、n型オーミック電極9を形成する予定の領域に限り、Geドープn型GaN層4のGe原子高濃度層を露出させた。露出させたGe原子高濃度層の表面に、チタンおよび金を積層した(半導体側がチタン)n型オーミック電極9を形成した。残置した積層構造体の表面をなすp型GaNコンタクト層8の表面の全域には、一般的な真空蒸着手段、及び公知のフォトリソグラフィー手段等を利用して、半導体側から順に、ニッケルおよび金を積層させたp型オーミック電極10を形成した。   Next, using a known photolithography technique and a general dry etching technique, only the region where the n-type ohmic electrode 9 is to be formed was exposed to the Ge atom high concentration layer of the Ge-doped n-type GaN layer 4. . An n-type ohmic electrode 9 in which titanium and gold were laminated (the semiconductor side was titanium) was formed on the surface of the exposed Ge atom high concentration layer. The entire surface of the p-type GaN contact layer 8 forming the surface of the remaining laminated structure is coated with nickel and gold in order from the semiconductor side by using a general vacuum deposition means and a known photolithography means. A laminated p-type ohmic electrode 10 was formed.

然る後、350μm角の正方形のLEDチップに切断し、リードフレーム上に載置し、金導線をリードフレームに結線して、リードフレームよりLEDチップへ素子駆動電流を流せる様にした。   After that, it was cut into a 350 μm square LED chip, placed on a lead frame, and a gold lead was connected to the lead frame so that an element driving current could flow from the lead frame to the LED chip.

リードフレームを介してn型およびp型オーミック電極9、10間に順方向に素子駆動電流を流した。順方向電流を20mAとした際の順方向電圧は3.5Vであった。また、20mAの順方向電流を流した際の出射される青色帯発光の中心波長は460nmであった。また、一般的な積分球を使用して測定される発光の強度は、5mWに達し、高い強度の発光をもたらすIII族窒化物半導体発光素子が得られた。   A device driving current was passed in the forward direction between the n-type and p-type ohmic electrodes 9 and 10 via the lead frame. When the forward current was 20 mA, the forward voltage was 3.5V. Further, the central wavelength of emitted blue band light when a forward current of 20 mA was passed was 460 nm. In addition, the intensity of light emission measured using a general integrating sphere reached 5 mW, and a group III nitride semiconductor light-emitting device that gave high intensity light emission was obtained.

(比較例2)
比較例1で作製される積層構造体を用いる以外は、実施例2と同様にしてIII族窒化物半導体発光素子を作製した。実施例2と同様に順方向電圧および発光強度を測定したところ、順方向電圧は実施例2と同じ3.5Vであったが、発光強度は0.4mWと低い強度の発光しか得られなかった。
(Comparative Example 2)
A group III nitride semiconductor light-emitting device was produced in the same manner as in Example 2 except that the laminated structure produced in Comparative Example 1 was used. When the forward voltage and the emission intensity were measured in the same manner as in Example 2, the forward voltage was 3.5 V, which was the same as that in Example 2. However, the emission intensity was only 0.4 mW, and only low intensity emission was obtained. .

(実施例3)
本実施例では、n型GaN層4の形成を、テトラメチルゲルマニウム((CH34Ge)の代わりにジエチルサルファイド((C252S)を用いる以外は、実施例1と同様にして積層構造体を作製し、Sドープn型III族窒化物半導体層を含む積層構造体を作製した。
(Example 3)
In this example, the n-type GaN layer 4 was formed in the same manner as in Example 1 except that diethyl sulfide ((C 2 H 5 ) 2 S) was used instead of tetramethylgermanium ((CH 3 ) 4 Ge). Thus, a laminated structure was produced, and a laminated structure including an S-doped n-type group III nitride semiconductor layer was produced.

得られた積層構造体のSドープn型GaN層4のホール測定によるキャリア濃度は、5×1018cm-3であった。n型GaN層4の表面は、ピット密度が200個/cm2以下の非常に平坦な面であった。SIMS分析の結果、高濃度層はS原子濃度が1.0×1019cm-3であり、厚さが10nmであった。また、低濃度層はS原子濃度が9×1017cm-3であり、厚さが10nmであった。 The carrier concentration by hole measurement of the S-doped n-type GaN layer 4 of the obtained multilayer structure was 5 × 10 18 cm −3 . The surface of the n-type GaN layer 4 was a very flat surface with a pit density of 200 pieces / cm 2 or less. As a result of SIMS analysis, the high concentration layer had an S atom concentration of 1.0 × 10 19 cm −3 and a thickness of 10 nm. The low concentration layer had an S atom concentration of 9 × 10 17 cm −3 and a thickness of 10 nm.

(比較例3)
Sドープn型GaN層4の形成を、(C252Sを常に同一流量で流通させながら厚さ2.0μmの層としたこと以外は、実施例3と同様にして積層構造体を作製した。なお、(C252Sの流量は、Sドープn型GaN層14のホール測定によるキャリア濃度が実施例3と同じ5×1018cm-3になるように調製した。
得られた積層構造体のSドープn型GaN層14の表面はピット密度が1×106cm-3と極めて高く、平坦な表面が得られなかった。
(Comparative Example 3)
The S-doped n-type GaN layer 4 was formed in the same manner as in Example 3 except that (C 2 H 5 ) 2 S was made to be a layer having a thickness of 2.0 μm while always flowing at the same flow rate. Was made. The flow rate of (C 2 H 5 ) 2 S was adjusted so that the carrier concentration by hole measurement of the S-doped n-type GaN layer 14 was 5 × 10 18 cm −3 as in Example 3.
The surface of the S-doped n-type GaN layer 14 of the obtained laminated structure had an extremely high pit density of 1 × 10 6 cm −3 and a flat surface could not be obtained.

(実施例4)
実施例3で作製される積層構造体を用いる以外は、実施例2と同様にしてIII族窒化物半導体発光素子を作製した。実施例2と同様に順方向電圧および発光強度を測定したところ、3.5Vおよび4.8mWであった。また、青色帯発光の中心波長は465nmであった。
Example 4
A group III nitride semiconductor light-emitting device was produced in the same manner as in Example 2 except that the laminated structure produced in Example 3 was used. When the forward voltage and the light emission intensity were measured in the same manner as in Example 2, they were 3.5 V and 4.8 mW. The center wavelength of blue band emission was 465 nm.

(比較例4)
比較例3で作製される積層構造体を用いる以外は、実施例2と同様にしてIII族窒化物半導体発光素子を作製した。実施例2と同様に順方向電圧および発光強度を測定したところ、順方向電圧は実施例4と同じ3.5Vであったが、発光強度は0.3mWと低い強度の発光しか得られなかった。
(Comparative Example 4)
A group III nitride semiconductor light-emitting device was produced in the same manner as in Example 2 except that the laminated structure produced in Comparative Example 3 was used. When the forward voltage and the light emission intensity were measured in the same manner as in Example 2, the forward voltage was 3.5 V, which was the same as in Example 4, but the light emission intensity was only 0.3 mW, which was a low intensity light emission. .

(実施例5)
本実施例では、n型GaN層4の形成を、テトラメチルゲルマニウム((CH34Ge)の代わりにテトラメチルティン((CH34Sn)を用いる以外は、実施例1と同様にして積層構造体を作製し、Snドープn型III族窒化物半導体層を含む積層構造体を作製した。
(Example 5)
In this example, the n-type GaN layer 4 is formed in the same manner as in Example 1 except that tetramethyltin ((CH 3 ) 4 Sn) is used instead of tetramethyl germanium ((CH 3 ) 4 Ge). Thus, a laminated structure was produced, and a laminated structure including an Sn-doped n-type group III nitride semiconductor layer was produced.

得られた積層構造体のSnドープn型GaN層4のホール測定によるキャリア濃度は、5×1018cm-3であった。n型GaN層4の表面は、ピット密度が200個/cm2以下の非常に平坦な面であった。SIMS分析の結果、高濃度層はSn原子濃度が1.0×1019cm-3であり、厚さが10nmであった。また、低濃度層はSn原子濃度が9×1017cm-3であり、厚さが10nmであった。 The carrier concentration by hole measurement of the Sn-doped n-type GaN layer 4 of the obtained multilayer structure was 5 × 10 18 cm −3 . The surface of the n-type GaN layer 4 was a very flat surface with a pit density of 200 pieces / cm 2 or less. As a result of SIMS analysis, the high concentration layer had an Sn atom concentration of 1.0 × 10 19 cm −3 and a thickness of 10 nm. The low concentration layer had a Sn atom concentration of 9 × 10 17 cm −3 and a thickness of 10 nm.

(比較例5)
Snドープn型GaN層4の形成を、(CH34Snを常に同一流量で流通させながら厚さ2.0μmの層としたこと以外は、実施例5と同様にして積層構造体を作製した。なお、(CH34Snの流量は、Snドープn型GaN層4のホール測定によるキャリア濃度が実施例5と同じ5×1018cm-3になるように調製した。
得られた積層構造体のSnドープn型GaN層24の表面はピット密度が1×106cm-3と極めて高く、平坦な表面が得られなかった。
(Comparative Example 5)
A laminated structure was produced in the same manner as in Example 5 except that the Sn-doped n-type GaN layer 4 was formed as a 2.0 μm thick layer while always circulating (CH 3 ) 4 Sn at the same flow rate. did. The flow rate of (CH 3 ) 4 Sn was adjusted so that the carrier concentration by hole measurement of the Sn-doped n-type GaN layer 4 was 5 × 10 18 cm −3 as in Example 5.
The surface of the Sn-doped n-type GaN layer 24 of the obtained laminated structure had an extremely high pit density of 1 × 10 6 cm −3 and a flat surface could not be obtained.

(実施例6)
実施例5で作製される積層構造体を用いる以外は、実施例2と同様にしてIII族窒化物半導体発光素子を作製した。実施例2と同様に順方向電圧および発光強度を測定したところ、3.5Vおよび4.8mWであった。また、青色帯発光の中心波長は460nmであった。
(Example 6)
A group III nitride semiconductor light-emitting device was produced in the same manner as in Example 2 except that the laminated structure produced in Example 5 was used. When the forward voltage and the light emission intensity were measured in the same manner as in Example 2, they were 3.5 V and 4.8 mW. The center wavelength of blue band emission was 460 nm.

(比較例6)
比較例5で作製される積層構造体を用いる以外は、実施例2と同様にしてIII族窒化物半導体発光素子を作製した。実施例2と同様に順方向電圧および発光強度を測定したところ、順方向電圧は実施例6と同じ3.5Vであったが、発光強度は0.2mWと低い強度の発光しか得られなかった。
(Comparative Example 6)
A group III nitride semiconductor light-emitting device was produced in the same manner as in Example 2 except that the laminated structure produced in Comparative Example 5 was used. When the forward voltage and the light emission intensity were measured in the same manner as in Example 2, the forward voltage was 3.5 V, which was the same as in Example 6, but the light emission intensity was only 0.2 mW. .

(実施例7)
本実施例では、n型GaN層4の形成を、テトラメチルゲルマニウム((CH34Ge)の代わりにモノシラン(SiH4)を用いる以外は、実施例1と同様にして積層構造体を作製し、Siドープn型III族窒化物半導体層を含む積層構造体を作製した。
(Example 7)
In this example, the n-type GaN layer 4 was formed in the same manner as in Example 1 except that monosilane (SiH 4 ) was used instead of tetramethylgermanium ((CH 3 ) 4 Ge) to produce a laminated structure. Then, a laminated structure including the Si-doped n-type group III nitride semiconductor layer was produced.

得られた積層構造体のSiドープn型GaN層4のホール測定によるキャリア濃度は、2×1019cm-3であった。n型GaN層4の表面は、ピット密度が200個/cm2以下の非常に平坦な面であった。SIMS分析の結果、高濃度層はSi原子濃度が3×1019cm-3であり、厚さが10nmであった。また、低濃度層はSi原子濃度が3×1018cm-3であり、厚さが10nmであった。 The carrier concentration by hole measurement of the Si-doped n-type GaN layer 4 of the obtained multilayer structure was 2 × 10 19 cm −3 . The surface of the n-type GaN layer 4 was a very flat surface with a pit density of 200 pieces / cm 2 or less. As a result of SIMS analysis, the high concentration layer had a Si atom concentration of 3 × 10 19 cm −3 and a thickness of 10 nm. The low concentration layer had a Si atom concentration of 3 × 10 18 cm −3 and a thickness of 10 nm.

(比較例7)
Siドープn型GaN層4の形成を、SiH4を常に同一流量で流通させながら厚さ2.0μmの層としたこと以外は、実施例7と同様にして積層構造体を作製した。なお、SiH4の流量は、Siドープn型GaN層4のホール測定によるキャリア濃度が実施例7と同じ2×1019cm-3になるように調製した。
得られた積層構造体のSiドープn型GaN層4の表面はピット密度が1×106cm-3と極めて高く、平坦な表面が得られなかった。
(Comparative Example 7)
A laminated structure was fabricated in the same manner as in Example 7 except that the Si-doped n-type GaN layer 4 was formed into a layer having a thickness of 2.0 μm while constantly flowing SiH 4 at the same flow rate. The flow rate of SiH 4 was adjusted so that the carrier concentration by hole measurement of the Si-doped n-type GaN layer 4 was 2 × 10 19 cm −3 as in Example 7.
The surface of the Si-doped n-type GaN layer 4 of the obtained laminated structure had an extremely high pit density of 1 × 10 6 cm −3 and a flat surface could not be obtained.

(実施例8)
実施例7で作製される積層構造体を用いる以外は、実施例2と同様にしてIII族窒化物半導体発光素子を作製した。実施例2と同様に順方向電圧および発光強度を測定したところ、3.5Vおよび4.8mWであった。また、青色帯発光の中心波長は455nmであった。
(Example 8)
A group III nitride semiconductor light-emitting device was produced in the same manner as in Example 2 except that the laminated structure produced in Example 7 was used. When the forward voltage and the light emission intensity were measured in the same manner as in Example 2, they were 3.5 V and 4.8 mW. The center wavelength of blue band emission was 455 nm.

(比較例8)
比較例7で作製される積層構造体を用いる以外は、実施例2と同様にしてIII族窒化物半導体発光素子を作製した。実施例2と同様に順方向電圧および発光強度を測定したところ、順方向電圧は実施例8と同じ3.5Vであったが、発光強度は0.2mWと低い強度の発光しか得られなかった。
(Comparative Example 8)
A group III nitride semiconductor light-emitting device was produced in the same manner as in Example 2 except that the laminated structure produced in Comparative Example 7 was used. When the forward voltage and the light emission intensity were measured in the same manner as in Example 2, the forward voltage was 3.5 V, which was the same as in Example 8. However, the light emission intensity was only 0.2 mW, and only low intensity light emission was obtained. .

本発明によって得られるn型III族窒化物半導体積層構造体は表面平坦性に優れ、かつ低抵抗であるため、III族窒化物半導体発光素子用として有用である。   Since the n-type group III nitride semiconductor multilayer structure obtained by the present invention has excellent surface flatness and low resistance, it is useful for a group III nitride semiconductor light emitting device.

実施例1で作製した積層構造体の積層構造を模式的に示した図である。3 is a diagram schematically showing a laminated structure of a laminated structure produced in Example 1. FIG. 実施例3で作製したIII族窒化物半導体発光素子の断面構造を模式的に示した図である。6 is a diagram schematically showing a cross-sectional structure of a group III nitride semiconductor light-emitting device manufactured in Example 3. FIG.

Claims (12)

基板上に積層されたn型不純物原子高濃度層およびn型不純物原子低濃度層からなり、該高濃度層上に該低濃度層が積層されていることを特徴とするn型III族窒化物半導体積層構造体。   An n-type group III nitride comprising an n-type impurity atom high-concentration layer and an n-type impurity atom low-concentration layer laminated on a substrate, wherein the low-concentration layer is laminated on the high-concentration layer Semiconductor laminated structure. 高濃度層および低濃度層が交互に周期的に存在することを特徴とする請求項1に記載のn型III族窒化物半導体積層構造体。   2. The n-type group III nitride semiconductor multilayer structure according to claim 1, wherein the high concentration layer and the low concentration layer are alternately and periodically present. 高濃度層および低濃度層の厚さがそれぞれ0.5〜500nmであることを特徴とする請求項1または2に記載のn型III族窒化物半導体積層構造体。   3. The n-type group III nitride semiconductor multilayer structure according to claim 1, wherein the high-concentration layer and the low-concentration layer each have a thickness of 0.5 to 500 nm. 低濃度層の厚さが高濃度層の厚さと等しいか、または高濃度層の厚さよりも厚いことを特徴とする請求項1〜3のいずれか一項に記載のn型III族窒化物半導体積層構造体。   4. The n-type group III nitride semiconductor according to claim 1, wherein the thickness of the low concentration layer is equal to or greater than the thickness of the high concentration layer. 5. Laminated structure. 高濃度層および低濃度層の繰り返し周期数が10〜1000であることを特徴とする請求項2〜4のいずれか一項に記載のn型III族窒化物半導体積層構造体。   5. The n-type group III nitride semiconductor multilayer structure according to claim 2, wherein the high-concentration layer and the low-concentration layer have a repetition period of 10 to 1,000. 積層構造体全体の厚さが0.1〜10μmであることを特徴とする請求項1〜5のいずれか一項に記載のn型III族窒化物半導体積層構造体。   The thickness of the whole laminated structure is 0.1-10 micrometers, The n-type group III nitride semiconductor laminated structure as described in any one of Claims 1-5 characterized by the above-mentioned. 高濃度層のn型不純物原子濃度が5×1017〜5×1019cm-3であることを特徴とする請求項1〜6のいずれか一項に記載のn型III族窒化物半導体積層構造体。 The n-type group III nitride semiconductor multilayer according to claim 1, wherein the n-type impurity atom concentration of the high-concentration layer is 5 × 10 17 to 5 × 10 19 cm −3. Structure. 低濃度層のn型不純物原子濃度が高濃度層のn型不純物原子濃度より低く、かつ2×1019cm-3以下であることを特徴とする請求項1〜7のいずれか一項に記載のn型III族窒化物半導体積層構造体。 8. The n-type impurity atom concentration in the low concentration layer is lower than the n-type impurity atom concentration in the high concentration layer, and is 2 × 10 19 cm −3 or less. An n-type group III nitride semiconductor multilayer structure. 低濃度層がn型不純物原子を故意にドーピングされていないことを特徴とする請求項8に記載のn型III族窒化物半導体積層構造体。   9. The n-type group III nitride semiconductor multilayer structure according to claim 8, wherein the low-concentration layer is not intentionally doped with n-type impurity atoms. n型不純物原子が、シリコン(Si)、ゲルマニウム(Ge)、硫黄(S)、セレン(Se)、錫(Sn)およびテルル(Te)からなる群から選ばれた1種または2種以上の組み合わせであることを特徴とする請求項1〜9のいずれか1項に記載のn型III族窒化物半導体積層構造体。   The n-type impurity atom is one or a combination of two or more selected from the group consisting of silicon (Si), germanium (Ge), sulfur (S), selenium (Se), tin (Sn) and tellurium (Te) The n-type group III nitride semiconductor multilayer structure according to any one of claims 1 to 9, wherein 基板上にIII族窒化物半導体からなる発光層を有するIII族窒化物半導体発光素子に於いて、基板と発光層との間に、請求項1〜10のいずれか一項に記載のn型III族窒化物半導体積層構造体を有することを特徴とするIII族窒化物半導体発光素子。   11. A group III nitride semiconductor light-emitting device having a light-emitting layer made of a group III nitride semiconductor on a substrate, wherein the n-type III according to claim 1 is interposed between the substrate and the light-emitting layer. A group III nitride semiconductor light-emitting device comprising a group nitride semiconductor multilayer structure. 請求項11に記載のIII族窒化物半導体発光素子と蛍光物質とを用いてなるランプ。   A lamp comprising the group III nitride semiconductor light-emitting device according to claim 11 and a fluorescent material.
JP2005186599A 2004-06-30 2005-06-27 n-TYPE GROUP III NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE Pending JP2006049848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186599A JP2006049848A (en) 2004-06-30 2005-06-27 n-TYPE GROUP III NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004193744 2004-06-30
JP2005186599A JP2006049848A (en) 2004-06-30 2005-06-27 n-TYPE GROUP III NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE

Publications (1)

Publication Number Publication Date
JP2006049848A true JP2006049848A (en) 2006-02-16

Family

ID=36027990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186599A Pending JP2006049848A (en) 2004-06-30 2005-06-27 n-TYPE GROUP III NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE

Country Status (1)

Country Link
JP (1) JP2006049848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814921B1 (en) 2006-11-10 2008-03-19 삼성전기주식회사 Nitride semiconductor light emitting diode
KR100814920B1 (en) 2006-10-26 2008-03-19 삼성전기주식회사 Vertically structured gan type semiconductor light emitting device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236142A (en) * 1998-12-15 2000-08-29 Nichia Chem Ind Ltd Nitride semiconductor laser
JP2002164573A (en) * 1997-11-18 2002-06-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2004056109A (en) * 2002-05-27 2004-02-19 Nichia Chem Ind Ltd Nitride semiconductor light emitting element, light emitting element, element laminate, and light emitting device using them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164573A (en) * 1997-11-18 2002-06-07 Nichia Chem Ind Ltd Nitride semiconductor light emitting element
JP2000236142A (en) * 1998-12-15 2000-08-29 Nichia Chem Ind Ltd Nitride semiconductor laser
JP2004056109A (en) * 2002-05-27 2004-02-19 Nichia Chem Ind Ltd Nitride semiconductor light emitting element, light emitting element, element laminate, and light emitting device using them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814920B1 (en) 2006-10-26 2008-03-19 삼성전기주식회사 Vertically structured gan type semiconductor light emitting device and method of manufacturing the same
KR100814921B1 (en) 2006-11-10 2008-03-19 삼성전기주식회사 Nitride semiconductor light emitting diode

Similar Documents

Publication Publication Date Title
JP2006114886A (en) N-type group iii nitride semiconductor lamination structure
US7646027B2 (en) Group III nitride semiconductor stacked structure
US7456445B2 (en) Group III nitride semiconductor light emitting device
US7855386B2 (en) N-type group III nitride semiconductor layered structure
US8049227B2 (en) Group III nitride semiconductor light emitting device, method for producing the same, and lamp thereof
JP2006313771A (en) Epitaxial substrate for group iii nitride semiconductor element
JP4781028B2 (en) Group III nitride semiconductor laminate and method for manufacturing group III nitride semiconductor light emitting device
JP4457609B2 (en) Method for producing gallium nitride (GaN)
JP2005340762A (en) Group iii nitride semiconductor light-emitting element
JP2012204540A (en) Semiconductor device and method of manufacturing the same
JP4705384B2 (en) Gallium nitride semiconductor device
JP2005129923A (en) Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
JP2006049848A (en) n-TYPE GROUP III NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE
JP3874779B2 (en) Ge-doped n-type group III nitride semiconductor layered product, method for producing the same, and group III nitride semiconductor light-emitting device using the same
JP2006013463A (en) Group iii nitride semiconductor light emitting element
JP2007288052A (en) Method of manufacturing group-iii nitride semiconductor light-emitting element
JP2007173316A (en) Nitride semiconductor light emitting element and its fabrication process
JP2005340789A (en) Group iii nitride semiconductor light-emitting element
JP2006013473A (en) Group iii nitride semiconductor light emitting element
JP2006093681A (en) Germanium additional source for compound semiconductor, method of manufacturing compound semiconductor using the same, and compound semiconductor
JP2006019713A (en) Group iii nitride semiconductor light-emitting device and led using same
CN103518266B (en) III group-III nitride semiconductor light-emitting component
JP4963301B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2005183780A (en) Manufacturing method of nitride-based iii group compound semiconductor light emitting element
JP2006013472A (en) Iii group nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419