JP2006049724A - Exposure mask and aligner - Google Patents

Exposure mask and aligner Download PDF

Info

Publication number
JP2006049724A
JP2006049724A JP2004231477A JP2004231477A JP2006049724A JP 2006049724 A JP2006049724 A JP 2006049724A JP 2004231477 A JP2004231477 A JP 2004231477A JP 2004231477 A JP2004231477 A JP 2004231477A JP 2006049724 A JP2006049724 A JP 2006049724A
Authority
JP
Japan
Prior art keywords
exposure
mask
temperature
exposure mask
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004231477A
Other languages
Japanese (ja)
Inventor
Hiroharu Ueda
弘治 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004231477A priority Critical patent/JP2006049724A/en
Publication of JP2006049724A publication Critical patent/JP2006049724A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exposure mask and an aligner which can expose inexpensively and accurately. <P>SOLUTION: A temperature detection means for detecting the temperature of the mask 10 is provided in an exposure light irradiation region at the periphery of a fine opening pattern formed on an exposure mask 10. A control means 51, on the basis of the temperature information from the temperature detection means, controls exposure conditions (exposure quantity, exposure time) of an exposure means 7 for applying exposure light onto the mask 10, and keeps the temperature of the mask 10 at a predetermined temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、露光用マスク及び露光装置に関し、特に近接場光を用いて露光を行うものに関する。   The present invention relates to an exposure mask and an exposure apparatus, and more particularly to an apparatus that performs exposure using near-field light.

近年、半導体メモリーの大容量化やCPUプロセッサーの高速化・大集積化の進展と共に、光リソグラフィーのさらなる微細化は必要不可欠のものとなっている。ここで、一般に、光リソグラフィー技術における微細加工の限界は、使用する光の波長程度であることから、さらなる微細化を図るため、光リソグラフィー装置に用いる光の短波長化が進んでおり、現在では紫外線レーザによる、0.1μm程度の微細加工が可能となっている。   In recent years, further miniaturization of photolithography has become indispensable as the capacity of semiconductor memories has increased and the speed and integration of CPU processors have increased. Here, in general, the limit of microfabrication in the photolithography technology is about the wavelength of light to be used. Therefore, in order to further miniaturize, the wavelength of light used in an optical lithography apparatus has been shortened, and at present, Fine processing of about 0.1 μm with an ultraviolet laser is possible.

しかし、このように微細化が進む光リソグラフィーであるが、0.1μm以下の微細加工を行うためには、レーザのさらなる短波長化、その波長域での光学レンズの開発等、解決しなければならない課題も多い。   However, optical lithography is progressing in this way, but in order to carry out microfabrication of 0.1 μm or less, there is a need to solve problems such as further shortening the laser wavelength and developing an optical lens in that wavelength range. There are many issues that must be solved.

一方、光による0.1μm以下の微細加工を可能にする手段として、近接場光を用いた近接場光学顕微鏡(SNOM)の原理を用いた露光装置が提案されている。そして、このような露光装置として、例えば露光用マスクを弾性体で構成し、被露光物のレジスト面形状に対して倣うように露光用マスクを弾性変形させることにより、露光用マスク全面をレジスト面に密着させ、露光用マスクに形成した100nm以下の大きさの微小開口パターンから滲み出す近接場光を用いて被露光物に光の波長限界を越えるパターン露光を行う構成のものが提案されている(特許文献1及び2参照。)。   On the other hand, an exposure apparatus using the principle of a near-field optical microscope (SNOM) using near-field light has been proposed as means for enabling fine processing of 0.1 μm or less with light. As such an exposure apparatus, for example, the exposure mask is made of an elastic body, and the exposure mask is elastically deformed so as to follow the resist surface shape of the object to be exposed. A structure is proposed in which pattern exposure is performed on an object to be exposed that exceeds the wavelength limit of light using near-field light that exudes from a minute aperture pattern having a size of 100 nm or less formed on an exposure mask. (See Patent Documents 1 and 2.)

ところで、このような露光装置において、露光用マスクに露光光が照射され続けると、露光用マスクに熱エネルギーが蓄積されてしまう。そして、このように露光用マスクに熱エネルギーが蓄積されてしまうと、露光用マスクの熱蓄積と熱放出が、被露光物である感光基板の露光シーケンスや照明の条件に依存して、感光基板に転写されるパターン像の寸法に誤差が発生してしまう。つまり、露光用マスクに熱蓄積が起こると露光用マスクが膨張し、転写誤差が発生してしまう。   By the way, in such an exposure apparatus, if exposure light is continuously irradiated to the exposure mask, thermal energy is accumulated in the exposure mask. If thermal energy is accumulated in the exposure mask in this way, the heat accumulation and heat release of the exposure mask depend on the exposure sequence and illumination conditions of the photosensitive substrate that is the object to be exposed. An error occurs in the dimension of the pattern image transferred to the surface. That is, when heat accumulation occurs in the exposure mask, the exposure mask expands and a transfer error occurs.

そこで、このように露光用マスクに熱エネルギーが蓄積されるのを防ぐため、従来は、例えば露光用マスク、又は露光用マスクを含む露光部全体にエアーを吹き付ける温度調節クリーンユニットを設けると共に、この温度調節クリーンユニットのエアー吹き出し口に測温抵抗体を取り付けて吹き出し口で温度を測定する、或いは露光用マスクの温度を非接触の温度センサで検出する、或いは測温抵抗体を露光用マスクの露光有効照射領域外に取り付けることにより、露光有効照射領域外の温度を測定し、その測定結果をフィードバックして温度を調節したエアーを、露光用マスク、又は露光部全体に供給することにより、露光部全体や露光用マスクの温度管理を行っていた。   Therefore, in order to prevent thermal energy from being accumulated in the exposure mask in this way, conventionally, for example, an exposure mask or a temperature control clean unit that blows air over the entire exposure unit including the exposure mask is provided, and this Attach a resistance temperature detector to the air outlet of the temperature control clean unit and measure the temperature at the outlet, or detect the temperature of the exposure mask with a non-contact temperature sensor, or connect the resistance temperature detector to the exposure mask. By mounting outside the exposure effective irradiation area, measure the temperature outside the exposure effective irradiation area, feed back the measurement result, and adjust the temperature to supply the exposure mask or the entire exposure area. The temperature control of the entire part and exposure mask was performed.

特開平11−145051号公報Japanese Patent Laid-Open No. 11-145051 特開平11−184094号公報JP-A-11-184094

しかしながら、このように露光用マスク自体を空冷することにより、露光に伴う露光用マスクの熱膨張を抑え、パターン転写の倍率誤差を補正するようにした従来の露光装置においては、実際には温度制御の対象としている露光用マスクの温度管理が困難であることから、露光用マスクの膨張を効果的に抑えることができず、露光用マスクの微小開口パターンの転写精度に対して能動的な対処を取ることができなかった。   However, in the conventional exposure apparatus in which the exposure mask itself is air-cooled in this way to suppress the thermal expansion of the exposure mask accompanying exposure and correct the magnification error in pattern transfer, the temperature control is actually performed. Since it is difficult to control the temperature of the exposure mask that is the target of the exposure, the expansion of the exposure mask cannot be effectively suppressed, and an active countermeasure is taken against the transfer accuracy of the minute aperture pattern of the exposure mask. I couldn't take it.

また、エアーを吹き出して冷却する場合、エアーの吹き付けによる発麈が露光用マスク付近に生じる虞があった。また、露光装置側に温度センサユニットを取り付つけるようにした場合、或いは露光用マスク、又は露光部全体の温度管理をしようとすると設置費用やランニングコストが大きくなってしまう。   In addition, when cooling is performed by blowing air, there is a possibility that mist generated by the blowing of air may occur in the vicinity of the exposure mask. Further, when the temperature sensor unit is attached to the exposure apparatus side, or when it is attempted to manage the temperature of the exposure mask or the entire exposure unit, installation costs and running costs increase.

そこで、本発明は、このような現状に鑑みてなされたものであり、安価で、かつ精度の良好な露光が可能な露光用マスク及び露光装置を提供することを目的とするものである。   Accordingly, the present invention has been made in view of such a current situation, and an object of the present invention is to provide an exposure mask and an exposure apparatus that are inexpensive and can perform exposure with good accuracy.

本発明は、弾性体で構成され、微小開口パターンを有する露光用マスクにおいて、前記微小開口パターンの周辺部の露光光照射領域に、前記露光用マスクの温度を検出する温度検出手段を設けたことを特徴とするものである。   The present invention provides an exposure mask composed of an elastic body and having a minute aperture pattern, and provided with a temperature detection means for detecting the temperature of the exposure mask in an exposure light irradiation region around the minute aperture pattern. It is characterized by.

また本発明は、弾性体で構成され、微小開口パターンを有する露光用マスクを弾性変形させ、被露光物に接触させた状態で露光を行う露光装置において、前記露光用マスクに対して露光光を照射する露光手段と、前記微小開口パターンの周辺部に配され、前記露光用マスクの温度を検出する温度検出手段と、前記温度検出手段からの温度情報に基づいて前記露光用マスクの温度を所定の温度に保つよう前記露光手段の露光条件を制御する制御手段と、を備えたことを特徴とするものである。   The present invention also provides an exposure apparatus that performs exposure in a state in which an exposure mask made of an elastic body and having a minute aperture pattern is elastically deformed and in contact with an object to be exposed. An exposure means for irradiating, a temperature detection means for detecting the temperature of the exposure mask disposed at the periphery of the minute aperture pattern, and a temperature of the exposure mask based on temperature information from the temperature detection means And a control means for controlling the exposure conditions of the exposure means so as to keep the temperature at a predetermined temperature.

本発明のように、露光用マスクの温度を検出する温度検出手段を露光用マスクの微小開口パターンの周辺部に設け、この温度検出手段からの温度情報に基づいて露光条件を制御して露光用マスクの温度を所定の温度に保つことにより、安価で、かつ精度の良好な露光を行うことができる。   As in the present invention, a temperature detecting means for detecting the temperature of the exposure mask is provided at the periphery of the minute opening pattern of the exposure mask, and the exposure conditions are controlled based on the temperature information from the temperature detecting means. By keeping the temperature of the mask at a predetermined temperature, it is possible to perform exposure with low cost and good accuracy.

以下、本発明を実施するための最良の形態について図面を用いて詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は、本発明の実施の形態に係る露光装置の概略構成を示す図である。図1において、50は近接場露光装置であり、この近接場露光装置50は、圧力調整室2と、露光手段である露光光源7と、ステージ5と、圧力調整室2内の圧力を調整する駆動シリンダ6aを備えた圧力調整装置6を備えている。   FIG. 1 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 50 denotes a near-field exposure apparatus. The near-field exposure apparatus 50 adjusts the pressure in the pressure adjustment chamber 2, the exposure light source 7 as an exposure means, the stage 5, and the pressure adjustment chamber 2. A pressure adjusting device 6 having a drive cylinder 6a is provided.

また、図1において、10は、圧力調整室2の底面に取り付けられている露光用マスクであり、この露光用マスク10は、図2に示すようにマスク支持体12、マスク母材11、遮光膜13から構成されている。ここで、遮光膜13は、弾性体からなる0.1μm〜100μm程度の厚さの薄膜であるマスク母材11の上に保持されるように成膜されており、この遮光膜13に微小開口パターンである所望の露光パターン14が形成されている。   Further, in FIG. 1, reference numeral 10 denotes an exposure mask attached to the bottom surface of the pressure adjusting chamber 2. This exposure mask 10 includes a mask support 12, a mask base material 11, a light shield as shown in FIG. It is composed of a film 13. Here, the light shielding film 13 is formed so as to be held on the mask base material 11, which is a thin film made of an elastic material and having a thickness of about 0.1 μm to 100 μm. A desired exposure pattern 14 which is a pattern is formed.

また、この露光用マスク10の、少なくともマスク支持体12から外れた中央部分は、弾性変形可能な薄膜部17となっている。なお、以下の説明において、露光用マスク10の図2の(a)に示す面、即ち遮光膜13が設けられた面を表面、その反対側を裏面という。そして、露光用マスク10はマスク支持体12を介して圧力調整室2の底面に取り付けられるようになっている。   Further, at least a central portion of the exposure mask 10 that is removed from the mask support 12 is an elastically deformable thin film portion 17. In the following description, the surface of the exposure mask 10 shown in FIG. 2A, that is, the surface provided with the light shielding film 13 is referred to as the front surface, and the opposite side is referred to as the back surface. The exposure mask 10 is attached to the bottom surface of the pressure adjusting chamber 2 via the mask support 12.

また、図1において、Wは、マスク面内2次元方向及びマスク面法線方向に移動可能な移動手段であるステージ5上に取り付けられた被露光物である基板であり、この基板Wの表面にはレジストRが形成されている。そして、この基板Wをステージ5上に取り付け、ステージ5を駆動することにより、露光用マスク10に対する基板Wのマスク面内2次元方向の相対位置合わせを行い、この後、マスク面法線方向に移動させるようにしている。   In FIG. 1, W is a substrate that is an object to be exposed mounted on a stage 5 that is a moving means that can move in a two-dimensional direction in the mask plane and in a normal direction of the mask plane. A resist R is formed on the substrate. Then, the substrate W is mounted on the stage 5 and the stage 5 is driven to perform relative alignment in the two-dimensional direction in the mask surface of the substrate W with respect to the exposure mask 10, and thereafter in the normal direction of the mask surface. I try to move it.

なお、図1において、8は露光光源7から出射される露光光Lを平行光にするためのコリメータレンズであり、このコリメータレンズ8で平行光とされた露光光Lは、圧力調整室2の上面に設けられたガラス窓2bを通って圧力調整室2内に導入されるようになっている。   In FIG. 1, reference numeral 8 denotes a collimator lens for making the exposure light L emitted from the exposure light source 7 parallel light. The exposure light L converted into parallel light by the collimator lens 8 is stored in the pressure adjustment chamber 2. It is introduced into the pressure adjusting chamber 2 through a glass window 2b provided on the upper surface.

次に、このように構成された近接場露光装置50の露光方法について説明する。   Next, an exposure method of the near-field exposure apparatus 50 configured as described above will be described.

まず、圧力調整室2の底面に露光用マスク10を裏面側にして、即ちマスク支持体12が圧力調整室2のマスクチャック3に面するように配置し、この後、排気手段4によって吸着し、圧力調整を加えて露光用マスク10の撓みを調整する。   First, the exposure mask 10 is arranged on the bottom surface of the pressure adjustment chamber 2 with the back side, that is, the mask support 12 faces the mask chuck 3 of the pressure adjustment chamber 2, and is then adsorbed by the exhaust means 4. Then, the deflection of the exposure mask 10 is adjusted by adjusting the pressure.

次に、基板Wをステージ5上に取り付け、ステージ5を駆動することにより、露光用マスク10に対する基板Wのマスク面内2次元方向の相対位置合わせを行い、この後、露光用マスク10との距離が所定の設定距離となるまでマスク面法線方向に移動させる。なお、この設定距離は、露光用マスク10の薄膜部17とレジストRの面が100μm以内で接触しない程度近いことが望ましい。   Next, the substrate W is mounted on the stage 5 and the stage 5 is driven to perform relative alignment in the two-dimensional direction in the mask plane of the substrate W with respect to the exposure mask 10. The mask surface is moved in the normal direction until the distance reaches a predetermined set distance. The set distance is preferably close enough that the thin film portion 17 of the exposure mask 10 and the surface of the resist R do not contact each other within 100 μm.

次に、圧力調整室2内の圧力を圧力調整室2外に比べ高くするため、圧力調整室2内に、圧力調整手段6の駆動シリンダ6aを駆動して気体を送り込む。そして、圧力調整室2内の圧力が外気より高くなると、露光用マスク10に対して裏面から表面に向かって圧力が加わり、これにより後述する図5の(b)に示すように露光用マスク10の薄膜部17、即ち露光パターン14及びその外側の周辺領域が基板側に弾性変形し(撓み)、全面にわたって露光用マスク10と基板W上のレジストRとが密着する。   Next, in order to make the pressure in the pressure adjustment chamber 2 higher than that outside the pressure adjustment chamber 2, the gas is fed into the pressure adjustment chamber 2 by driving the drive cylinder 6 a of the pressure adjustment means 6. When the pressure in the pressure adjusting chamber 2 becomes higher than the outside air, the pressure is applied to the exposure mask 10 from the back surface to the front surface. As a result, as shown in FIG. The thin film portion 17, that is, the exposure pattern 14 and the peripheral region outside thereof are elastically deformed (bent) toward the substrate side, and the exposure mask 10 and the resist R on the substrate W are in close contact with each other.

なお、圧力調整室2内には圧力センサ2aが設置されており、近接場露光装置50の所定位置、又は外部に設けられた制御装置51は、この圧力センサ2aをモニタし、圧力調整手段6の駆動を制御するようにしている。そして、この制御手段51は圧力センサ2aからの圧力情報出力から、露光用マスク表面とレジストRが所定の密着状態に到達したと判断すると、圧力調整手段6の駆動を停止する。   A pressure sensor 2 a is installed in the pressure adjustment chamber 2, and a control device 51 provided outside or at a predetermined position of the near-field exposure apparatus 50 monitors the pressure sensor 2 a to adjust the pressure adjustment means 6. The drive is controlled. When the control means 51 determines from the pressure information output from the pressure sensor 2a that the exposure mask surface and the resist R have reached a predetermined contact state, the control means 51 stops driving the pressure adjusting means 6.

次に、このように露光用マスク10をレジストRに密着させた後、露光光源7から出射される露光光Lをコリメータレンズ8で平行光にした後、ガラス窓2bを通って圧力調整室2内に導入し、露光用マスク10に対して裏面から照射する。これにより、露光用マスク10のマスク母材11上の遮光膜13に形成された微小開口パターン14から近接場光が滲み出し、この近接場光により基板WのレジストRに対して露光が行われる。   Next, after the exposure mask 10 is brought into close contact with the resist R in this way, the exposure light L emitted from the exposure light source 7 is collimated by the collimator lens 8, and then passed through the glass window 2b to pass through the pressure adjustment chamber 2. Then, the exposure mask 10 is irradiated from the back surface. Thereby, near-field light oozes out from the minute opening pattern 14 formed in the light shielding film 13 on the mask base material 11 of the exposure mask 10, and the resist R on the substrate W is exposed by this near-field light. .

次に、このような露光工程が終了した後、圧力調整室2内の気体を排出し、圧力調整容器外の気圧と等しくする。これにより、露光用マスク10の撓みが解消され、露光用マスク10が基板Wから剥離される。なお、このとき露光用マスク10と基板Wの間に吸着力が存在する場合、圧力調整容器内外の気圧を等しくしても、露光用マスク10が基板Wから剥離されないことがある。この場合は、圧力調整容器内の気圧を、外の気圧よりも低くすることで露光用マスク10を図中上方向に撓ませ、剥離する力を強くするようにする。   Next, after such an exposure process is completed, the gas in the pressure adjustment chamber 2 is exhausted to be equal to the atmospheric pressure outside the pressure adjustment container. Thereby, the bending of the exposure mask 10 is eliminated, and the exposure mask 10 is peeled from the substrate W. At this time, if there is an adsorption force between the exposure mask 10 and the substrate W, the exposure mask 10 may not be peeled from the substrate W even if the pressure inside and outside the pressure adjustment container is equalized. In this case, the exposure mask 10 is bent upward in the figure by lowering the atmospheric pressure inside the pressure adjusting container to be lower than the outside atmospheric pressure so as to increase the peeling force.

以上の工程を行うことで、露光プロセスを終了し、所望のパターンを基板Wに露光することができる。なお、本実施の形態においては、露光用マスク10を撓ませる方法として露光用マスク10に圧力を印加する圧力印加方法を用いたが、この他、例えば露光用マスク10と基板Wとの間に静電力を発生させ、この静電力により露光用マスク10を基板W側に撓ませる方法もあるが、本発明はどのような露光用マスク10の撓ませ方にも限定されるものではない。   By performing the above steps, the exposure process is completed and a desired pattern can be exposed on the substrate W. In the present embodiment, a pressure application method for applying pressure to the exposure mask 10 is used as a method for bending the exposure mask 10, but in addition, for example, between the exposure mask 10 and the substrate W. Although there is a method in which an electrostatic force is generated and the exposure mask 10 is bent toward the substrate W by the electrostatic force, the present invention is not limited to any method of bending the exposure mask 10.

ところで、図2において、15は露光用マスク10の温度を検出する温度検出手段である薄膜測温抵抗体であり、この薄膜測温抵抗体15は露光用マスク10の露光光照射(有効)領域である中央部分の露光パターン14が形成されている露光パターン部14Aとマスク支持体12との間の周辺領域に被着、形成されている。また、この露光パターン部14Aの周辺に配置された薄膜測温抵抗体15には信号を制御装置51(図1参照)に入力するための電極16a,16bが配設されている。   In FIG. 2, reference numeral 15 denotes a thin film resistance thermometer which is a temperature detecting means for detecting the temperature of the exposure mask 10, and the thin film resistance thermometer 15 is an exposure light irradiation (effective) region of the exposure mask 10. The center portion of the exposure pattern 14 is deposited and formed in the peripheral region between the exposure pattern portion 14A where the mask support 12 is formed. Further, electrodes 16a and 16b for inputting signals to the control device 51 (see FIG. 1) are disposed on the thin film resistance thermometer 15 disposed around the exposure pattern portion 14A.

そして、薄膜測温抵抗体15からの温度情報が、電極16a,16bを介して入力されると、制御装置51は、予め実験等により求めておいた露光用マスク10の温度と露光時間、露光量等の露光条件との関係を示す参照データと、この温度情報とに基づいて露光条件を調整するようにしており、これにより露光用マスク10の露光パターン部14Aを的確に温度調節することができる。   When the temperature information from the thin film resistance thermometer 15 is input via the electrodes 16a and 16b, the control device 51 detects the temperature, exposure time, and exposure of the exposure mask 10 previously obtained through experiments and the like. The exposure conditions are adjusted based on the reference data indicating the relationship with the exposure conditions such as the amount and the temperature information, and thereby the temperature of the exposure pattern portion 14A of the exposure mask 10 can be accurately adjusted. it can.

ここで、この薄膜測温抵抗体15は白金等の薄膜で構成されるものであり、高速応答性があり、かつ熱容量の小さいものであることから、制御装置51は、露光パターン部14Aの温度を高速、高精度に把握することができる。   Here, since the thin film resistance thermometer 15 is composed of a thin film such as platinum, and has high-speed response and a small heat capacity, the controller 51 determines the temperature of the exposure pattern portion 14A. Can be grasped at high speed and with high accuracy.

なお、この露光用マスク10は、以下の工程により作製される。   The exposure mask 10 is manufactured by the following steps.

まず、図3の(a)に示すように、マスク支持体12となるマスク支持体母材12aの両面にマスク母材11を成膜し、この後、図3の(b)に示すように、マスク支持体母材12aの片面のマスク母材11を、露光用マスク10の作製の際のエッチングマスクとなるよう、位置合わせを行い、パターニングを行う。   First, as shown in FIG. 3A, a mask base material 11 is formed on both surfaces of a mask support base material 12a to be the mask support 12, and thereafter, as shown in FIG. 3B. Then, the mask base material 11 on one side of the mask support base material 12a is aligned and patterned so as to be an etching mask when the exposure mask 10 is manufactured.

次に、図3の(c)に示すように、パターニングを行っていない側のマスク母材11に遮光膜13を成膜し、この後、図3の(d)に示すように、遮光膜13の中央部分を加工し、微細パターンである露光パターン14を作製する。なお、この際、薄膜測温抵抗体15の出力端である電極16a,16bとなる箇所の遮光膜13を同時に除去する。   Next, as shown in FIG. 3 (c), a light shielding film 13 is formed on the mask base material 11 on the non-patterned side, and thereafter, as shown in FIG. 3 (d), the light shielding film is formed. 13 is processed to produce an exposure pattern 14 that is a fine pattern. At this time, the light shielding film 13 is removed at the same time as the electrodes 16a and 16b, which are the output ends of the thin film resistance thermometer 15.

次に、図4の(a)に示すように、メタルマスクを用いた真空蒸着法にて、例えば白金の薄膜からなる薄膜測温抵抗体15を成膜し、この後、図4の(b)に示すように、図3の(b)においてパターニングした側のマスク支持体母材12aをエッチングすることによって、露光用マスク10を作製する。なお、このマスク支持体母材12aをエッチングする工程は、遮光膜13を作製する前や露光パターン14の作製前に行ってもよい。   Next, as shown in FIG. 4A, a thin film resistance thermometer 15 made of, for example, a platinum thin film is formed by vacuum deposition using a metal mask, and thereafter, as shown in FIG. As shown in FIG. 3A, the mask support base material 12a on the patterned side in FIG. 3B is etched to produce the exposure mask 10. The step of etching the mask support base material 12a may be performed before the light shielding film 13 or the exposure pattern 14 is formed.

次に、このように構成された近接場露光装置50における露光用マスク10の温度制御動作について説明する。   Next, the temperature control operation of the exposure mask 10 in the near-field exposure apparatus 50 configured as described above will be described.

まず、図5の(a)に示す、露光開始前、露光用マスク10が基板WのレジストRから離間した状態のときの、即ち露光前の状態のときの露光パターン部14Aの温度を薄膜測温抵抗体15により検出する。   First, as shown in FIG. 5A, the temperature of the exposure pattern portion 14A when the exposure mask 10 is separated from the resist R of the substrate W, that is, in the state before exposure, is measured by thin film measurement before the exposure starts. It is detected by the temperature resistor 15.

次に、図5の(b)に示すように、露光用マスク10を撓ませてレジストRの全面に密着させる。そして、このように露光用マスク10がレジストRの全面に密着すると、薄膜測温抵抗体15もレジストRに密着し、この後、露光光が照射されると、薄膜測温抵抗体15からは膜測温抵抗体15の温度−抵抗率特性により、温度に比例した検出値が得られる。   Next, as shown in FIG. 5B, the exposure mask 10 is bent and brought into close contact with the entire surface of the resist R. When the exposure mask 10 is in close contact with the entire surface of the resist R in this way, the thin film resistance thermometer 15 is also in close contact with the resist R. Thereafter, when the exposure light is irradiated, the thin film resistance thermometer 15 A detection value proportional to the temperature is obtained by the temperature-resistivity characteristic of the film resistance thermometer 15.

ここで、露光パターン14の温度変化がない場合は、薄膜測温抵抗体15の電極16a,16b間の出力変化は無いが、複数ショットを露光し、熱的なエネルギーが蓄積されて露光パターン部14Aの温度が上昇すると、これに従って薄膜測温抵抗体15の抵抗が変化し、この抵抗変化に応じて出力電圧が変化し、露光パターン部14Aの温度情報として制御装置51に入力される。   Here, when there is no temperature change of the exposure pattern 14, there is no output change between the electrodes 16a and 16b of the thin film resistance temperature detector 15. However, a plurality of shots are exposed and thermal energy is accumulated to expose the exposure pattern portion. When the temperature of 14A rises, the resistance of the thin film resistance thermometer 15 changes accordingly, and the output voltage changes according to this resistance change, and is input to the control device 51 as temperature information of the exposure pattern portion 14A.

次に、このように露光パターン部14Aの温度変化に伴って薄膜測温抵抗体15から温度情報が入力されると、露光用マスク10の温度を所定の温度に保つよう露光条件を制御する制御手段である制御装置51は、この温度情報と、予め得られている露光条件と露光用マスク10の温度の関係を示す参照データとから、熱エネルギーを蓄積することなく、かつその温度における最適な露光動作を行うことができるよう露光条件である露光光源7の露光量と照射時間とを調節(制御)し、露光する。   Next, when the temperature information is input from the thin film resistance thermometer 15 in accordance with the temperature change of the exposure pattern portion 14A in this way, the control for controlling the exposure conditions so as to keep the temperature of the exposure mask 10 at a predetermined temperature. The control device 51, which is a means, uses the temperature information and the reference data indicating the relationship between the exposure conditions obtained in advance and the temperature of the exposure mask 10, without accumulating thermal energy and at the optimum temperature. Exposure is performed by adjusting (controlling) the exposure amount and the irradiation time of the exposure light source 7 as exposure conditions so that the exposure operation can be performed.

そして、このように露光パターン部14Aの周辺部の露光光照射(有効)領域に、薄膜測温抵抗体15を設けると共に、この薄膜測温抵抗体15からの温度情報に基づき、露光条件(露光光源7の露光量及び露光時間)を制御して露光することにより、露光用マスク10の温度を所定の温度に保つようにすることができる。   Then, the thin film resistance thermometer 15 is provided in the exposure light irradiation (effective) region in the peripheral portion of the exposure pattern portion 14A as described above, and the exposure condition (exposure) is based on the temperature information from the thin film resistance thermometer 15. By controlling the exposure amount and exposure time of the light source 7 for exposure, the temperature of the exposure mask 10 can be maintained at a predetermined temperature.

この結果、露光用マスク10の温度変化による露光パターン14の伸縮に起因する露光用マスク寸法誤差の発生を防止することができ、これにより精度の良好な露光を行うことができる。さらに、このように露光条件を調節して露光用マスク10の温度を所定の温度に保つようにすることにより、露光装置全体を温度管理する必要がなく、温度調節設備及び温度調節の小容量化が可能となる。この結果、露光装置全体の省スペース化や露光装置を設けるためにかかる費用や消費電力の低減を図ることができる。   As a result, it is possible to prevent the exposure mask dimension error from occurring due to the expansion and contraction of the exposure pattern 14 due to the temperature change of the exposure mask 10, thereby performing exposure with good accuracy. Furthermore, by adjusting the exposure conditions in this way so as to keep the temperature of the exposure mask 10 at a predetermined temperature, it is not necessary to control the temperature of the entire exposure apparatus, and the temperature adjustment equipment and the temperature adjustment capacity can be reduced. Is possible. As a result, it is possible to save space for the entire exposure apparatus and to reduce the cost and power consumption required for providing the exposure apparatus.

さらに、本実施の形態のように、露光中の露光パターン部14Aの温度を薄膜測温抵抗体15により直接検出(測定)して露光を制御することにより、露光パターン部14Aの温度を的確に、かつ短時間で管理することができる。   Furthermore, as in the present embodiment, the temperature of the exposure pattern portion 14A is accurately detected by directly detecting (measuring) the temperature of the exposure pattern portion 14A during exposure using the thin film resistance thermometer 15 and controlling the exposure. And can be managed in a short time.

なお、これまでの説明においては、薄膜測温抵抗体15から温度情報に基づき露光光源7の露光量及び露光時間を制御する場合について述べてきたが、本発明は、これに限らず、露光光源7の露光量及び露光時間の少なくとも一方を制御するようにしても良い。   In the above description, the case where the exposure amount and the exposure time of the exposure light source 7 are controlled based on the temperature information from the thin film resistance thermometer 15 has been described. However, the present invention is not limited to this, and the exposure light source is not limited thereto. 7 may be controlled at least one of the exposure amount and the exposure time.

本発明の実施の形態に係る露光装置の概略構成を示す図。1 is a view showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention. 上記露光装置に用いられる露光用マスクの構成を説明する図。The figure explaining the structure of the mask for exposure used for the said exposure apparatus. 上記露光用マスクの製作工程を示す第1の図。The 1st figure which shows the manufacturing process of the said mask for exposure. 上記露光用マスクの製作工程を示す第2の図。The 2nd figure which shows the manufacturing process of the said mask for exposure. 上記露光装置における露光用マスクの温度制御動作を説明する図。The figure explaining the temperature control operation | movement of the mask for exposure in the said exposure apparatus.

符号の説明Explanation of symbols

2 圧力調整室
7 露光光源
10 露光用マスク
12 マスク支持体
13 遮光膜
14 露光パターン
14A 露光パターン部
15 薄膜測温抵抗体
17 薄膜部
50 近接場露光装置
51 制御装置
L 露光光
R レジスト
W 基板
2 Pressure adjustment chamber 7 Exposure light source 10 Exposure mask 12 Mask support 13 Light shielding film 14 Exposure pattern 14A Exposure pattern portion 15 Thin film resistance temperature detector 17 Thin film portion 50 Near field exposure device 51 Control device L Exposure light R Resist W Substrate

Claims (5)

弾性体で構成され、微小開口パターンを有する露光用マスクにおいて、
前記微小開口パターンの周辺部の露光光照射領域に、前記露光用マスクの温度を検出する温度検出手段を設けたことを特徴とする露光用マスク。
In an exposure mask composed of an elastic body and having a fine aperture pattern,
An exposure mask comprising temperature detecting means for detecting a temperature of the exposure mask in an exposure light irradiation region in a peripheral portion of the minute aperture pattern.
前記温度検出手段は、薄膜測温抵抗体を用いたものであることを特徴とする請求項1記載の露光用マスク。   2. The exposure mask according to claim 1, wherein the temperature detecting means uses a thin film resistance thermometer. 弾性体で構成され、微小開口パターンを有する露光用マスクを弾性変形させ、被露光物に接触させた状態で露光を行う露光装置において、
前記露光用マスクに対して露光光を照射する露光手段と、
前記微小開口パターンの周辺部に配され、前記露光用マスクの温度を検出する温度検出手段と、
前記温度検出手段からの温度情報に基づいて前記露光用マスクの温度を所定の温度に保つよう前記露光手段の露光条件を制御する制御手段と、
を備えたことを特徴とする露光装置。
In an exposure apparatus that is composed of an elastic body, elastically deforms an exposure mask having a minute aperture pattern, and performs exposure in a state where the exposure mask is in contact with an object to be exposed.
Exposure means for irradiating exposure light to the exposure mask;
A temperature detecting means disposed on the periphery of the microscopic aperture pattern for detecting the temperature of the exposure mask;
Control means for controlling exposure conditions of the exposure means so as to keep the temperature of the exposure mask at a predetermined temperature based on temperature information from the temperature detection means;
An exposure apparatus comprising:
前記露光条件は、前記露光手段の露光量及び露光時間の少なくとも一つであることを特徴とする請求項3記載の露光装置。   4. The exposure apparatus according to claim 3, wherein the exposure condition is at least one of an exposure amount and an exposure time of the exposure means. 前記温度検出手段は、薄膜測温抵抗体であり、前記微小開口パターンの周辺部の露光光照射領域に配されることを特徴とする請求項3又は4記載の露光装置。
5. The exposure apparatus according to claim 3, wherein the temperature detecting means is a thin film resistance thermometer and is disposed in an exposure light irradiation region in a peripheral portion of the minute aperture pattern.
JP2004231477A 2004-08-06 2004-08-06 Exposure mask and aligner Pending JP2006049724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231477A JP2006049724A (en) 2004-08-06 2004-08-06 Exposure mask and aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231477A JP2006049724A (en) 2004-08-06 2004-08-06 Exposure mask and aligner

Publications (1)

Publication Number Publication Date
JP2006049724A true JP2006049724A (en) 2006-02-16

Family

ID=36027909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231477A Pending JP2006049724A (en) 2004-08-06 2004-08-06 Exposure mask and aligner

Country Status (1)

Country Link
JP (1) JP2006049724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294790A (en) * 2006-04-27 2007-11-08 Canon Inc Pressure control method and apparatus for near field exposure mask
JP2018094803A (en) * 2016-12-13 2018-06-21 セイコーエプソン株式会社 Coating member peeling method and manufacturing method for liquid injection head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294790A (en) * 2006-04-27 2007-11-08 Canon Inc Pressure control method and apparatus for near field exposure mask
JP2018094803A (en) * 2016-12-13 2018-06-21 セイコーエプソン株式会社 Coating member peeling method and manufacturing method for liquid injection head

Similar Documents

Publication Publication Date Title
US11630399B2 (en) Lithographic apparatus and method
US10591828B2 (en) Lithographic apparatus and method
TWI396053B (en) Lithographic apparatus and device manufacturing method
US9798251B2 (en) Object holder, lithographic apparatus, device manufacturing method, and method of manufacturing an object holder
TW201704894A (en) A substrate holder, a lithographic apparatus and method of manufacturing devices
TWI620991B (en) Lithographic apparatus, substrate support system, device manufacturing method and control program
KR102021432B1 (en) Sensor, lithographic apparatus and device manufacturing method
EP2196857A2 (en) Lithographic apparatus and device manufacturing method
US9535335B2 (en) Exposure apparatus and device manufacturing method
TW201827931A (en) A substrate, a substrate holder, a substrate coating apparatus, a method for coating the substrate and a method for removing the coating
TW201329648A (en) Support, lithographic apparatus and device manufacturing method
JP2005175176A (en) Exposure method and method for manufacturing device
US20070058323A1 (en) Electroactive polymers for lithography
JP2007150287A (en) Position measuring device and positional deviation measurement method
JP2006049724A (en) Exposure mask and aligner
JP4893463B2 (en) Exposure equipment
KR102611765B1 (en) System and method for overlay error reduction
JP4922358B2 (en) Device manufacturing method
US20220342315A1 (en) A lithographic apparatus
JP2005101135A (en) Deformation control method of substrate, near-field exposure method and near-field exposure system