JP2006047079A - Distance-measuring instrument - Google Patents

Distance-measuring instrument Download PDF

Info

Publication number
JP2006047079A
JP2006047079A JP2004227705A JP2004227705A JP2006047079A JP 2006047079 A JP2006047079 A JP 2006047079A JP 2004227705 A JP2004227705 A JP 2004227705A JP 2004227705 A JP2004227705 A JP 2004227705A JP 2006047079 A JP2006047079 A JP 2006047079A
Authority
JP
Japan
Prior art keywords
light
distance measuring
optical system
reflected
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004227705A
Other languages
Japanese (ja)
Inventor
Kenichiro Yoshino
健一郎 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2004227705A priority Critical patent/JP2006047079A/en
Publication of JP2006047079A publication Critical patent/JP2006047079A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provive a distance-measuring instrument of a simple photoreception optical system, and to precisely find the range in the measurement of both the far distance and the near distance. <P>SOLUTION: This distance-measuring instrument, for projecting a range finding light to a measured object, and for receiving a reflected range finding light from the measured object to measure the distance, is provided with a light source part 15 for emitting the range-finding light; a light projection optical system 16 for projecting the range-finding light from the light source, and the light-receiving optical system 18 having one portion used in common with the light projection optical system, and for receiving the reflected range-finding light from the measured object made incident and converged, and the photoreception optical system has the center part made incident and converged with the reflected range-finding light; and a perforated mask 53 for limiting transmitted luminous energy, in response to a shift of a light-converging position from the center part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、測距光を測定対象物に投光し、該測定対象物からの反射測距光を受光して測定対象物迄の距離を測定する光波距離測定装置に関し、特に測定対象物を自然物とし、コーナキューブ等のプリズムを使用しないノンプリズム方式の距離測定装置に関するものである。   The present invention relates to a lightwave distance measuring device that projects distance measuring light onto a measurement object, receives reflected distance measuring light from the measurement object, and measures the distance to the measurement object. The present invention relates to a non-prism type distance measuring apparatus that is a natural object and does not use a prism such as a corner cube.

従来の光波距離測定装置では、特許文献1に示される様に測定対象物に再帰反射プリズムを用い、測距光を再帰反射プリズムに投光して該再帰反射プリズムで反射された測距光を受光して距離測定を行っている。   In the conventional optical wave distance measuring device, as shown in Patent Document 1, a retroreflective prism is used as a measurement object, and distance measuring light is projected onto the retroreflective prism and the distance measuring light reflected by the retroreflective prism is used. Receives light and measures distance.

図5により距離測定装置の概略を説明する。   An outline of the distance measuring apparatus will be described with reference to FIG.

図中、1は発光素子であり、該発光素子1から照射された測距光2はミラー3により投光光軸4の方向に偏向され、対物レンズ5を透って平行光束とされ、コーナキューブ6に向け投光され、該コーナキューブ6で反射された反射測距光7は前記対物レンズ5、集光レンズ8、ミラー9を経て受光素子11に集光する様になっている。尚、図5中、12は視準光学系を示す。   In the figure, reference numeral 1 denotes a light emitting element. A distance measuring light 2 irradiated from the light emitting element 1 is deflected by a mirror 3 in the direction of a light projecting optical axis 4 and is converted into a parallel light beam through an objective lens 5. The reflected distance measuring light 7 projected toward the cube 6 and reflected by the corner cube 6 is condensed on the light receiving element 11 through the objective lens 5, the condenser lens 8 and the mirror 9. In FIG. 5, reference numeral 12 denotes a collimating optical system.

上記再帰反射プリズムを使用した距離測定装置では、測定対象物迄の距離の遠近に拘らず、反射測距光は略平行光の状態であり、距離測定装置に入射した反射測距光の集光位置は略同じとなり、前記受光素子11での受光状態を考慮することなく、外乱光の影響も少なく確実に反射測距光を受光することが可能であった。   In the distance measuring apparatus using the retroreflective prism, the reflected distance measuring light is in a substantially parallel state regardless of the distance to the measurement object, and the reflected distance measuring light incident on the distance measuring apparatus is condensed. The positions are substantially the same, and it is possible to reliably receive the reflected distance measuring light with little influence of disturbance light without considering the light receiving state of the light receiving element 11.

然し乍ら、測定対象物を設置する為の人手が必要であり、2人作業となると共に作業が繁雑となっていた。   However, manpower is required to install the measurement object, which is a two-person operation and a complicated operation.

又、近年では、受光装置の精度、感度の向上、測定方式の進歩等から、測定対象物に再帰反射プリズムを使用せず、ビルの壁面等自然物で直接反射された測距光を受光することで距離測定を行うノンプリズム方式の距離測定装置が普及している。   Also, in recent years, due to the accuracy and sensitivity of the light receiving device, and the advancement of measurement methods, it is possible to receive distance measuring light directly reflected by natural objects such as building walls without using retroreflective prisms for measurement objects. Non-prism type distance measuring devices that perform distance measurement using a wide range of devices are widely used.

ノンプリズム方式の距離測定装置では測定対象物を自然物とすることで、測定対象物としてプリズムを設置する必要がなくなり、1人作業が可能になり、作業性が大幅に改善されるという利点がある。   In the non-prism type distance measuring device, since the object to be measured is a natural object, there is no need to install a prism as the object to be measured, so that one person can work and the workability is greatly improved. .

ノンプリズム方式では測定対象物が自然物であり、自然物の表面からの拡散反射光を検出している。数百mの遠距離の場合、光学系に入射する拡散反射光は略平行光束である為、受光部の光学系は平行光束を集光する様に設定されている。数mの近距離測定では、拡散光も受光部に導かれる。射出光束と反射光束が同軸光学系の場合、中心部の平行光束部分は反射ミラーに遮られ、受光中心部を除くドーナッツ状に集光する。ドーナッツ状に集光した拡散光を受光部に導く為、例えば近距離用としての反射ミラーが設けられる。   In the non-prism method, the measurement object is a natural object, and diffuse reflected light from the surface of the natural object is detected. In the case of a long distance of several hundreds of meters, the diffusely reflected light incident on the optical system is a substantially parallel light beam. Therefore, the optical system of the light receiving unit is set to collect the parallel light beam. In short distance measurement of several meters, diffused light is also guided to the light receiving unit. When the outgoing light beam and the reflected light beam are coaxial optical systems, the parallel light beam portion at the center is blocked by the reflecting mirror and condensed into a donut shape excluding the light receiving center. In order to guide the diffused light collected in a donut shape to the light receiving unit, for example, a reflection mirror for short distance is provided.

10m前後の近距離でも同様にドーナッツ状に集光するが、拡散光を受光部に導く為反射ミラー等をある程度の近距離迄対応させるのは容易ではないことから、受光する部分はこれを受光できる様な大きさに設定されている。   Similarly, it collects in a donut shape even at a short distance of around 10 m. However, since it is not easy to make a reflection mirror or the like correspond to a certain short distance in order to guide the diffused light to the light receiving portion, the light receiving portion receives this light. It is set to a size that can be done.

遠距離からの受光光束は受光部の中心部に集光するが、受光部分はある程度の近距離にも対応できる大きさに設定されている為、周辺から外乱光が受光される。遠距離からの受光光量は微弱な為外乱光に埋もれてしまい、測定対象物からの反射測距光が検出不可となり、結果的に測距距離が短くなってしまう問題がある。   Although the received light beam from a long distance is condensed at the center of the light receiving portion, the light receiving portion is set to a size that can cope with a certain short distance, so that ambient light is received from the periphery. Since the amount of light received from a long distance is weak, it is buried in disturbance light, and the reflected distance measuring light from the measurement object cannot be detected, resulting in a problem that the distance measuring distance is shortened.

特開平4−319687号公報JP-A-4-319687

本発明は斯かる実情に鑑み、ノンプリズム方式で簡単な受光光学系とし、而も遠距離測定、近距離測定のいずれでも高精度の測距を可能にするものである。   In view of such a situation, the present invention provides a simple light receiving optical system with a non-prism method, and enables highly accurate distance measurement in both long distance measurement and short distance measurement.

本発明は、測定対象物に測距光を投光し、該測定対象物からの反射測距光を受光して距離を測定する距離測定装置に於いて、測距光を発する光源部と、該光源部からの測距光を投光する投光光学系と、該投光光学系と一部を共用し、入射集光された測定対象物からの反射測距光を受光する受光光学系とを具備し、該受光光学系は反射測距光が入射集光する中心部と、集光位置が中心部からずれるに応じて透過する光量を制限する孔明きマスクとを有する距離測定装置に係り、又前記孔明きマスクは、前記受光光学系の光軸を中心に設けられた中心開口部と該中心開口部に対して放射状に設けられた周辺開口部とを有する距離測定装置に係り、又前記受光光学系は受光素子に反射測距光を導く受光ファイバを有し、前記孔明きマスクは前記受光ファイバの入射面に設けられた距離測定装置に係り、更に又前記中心開口部は、反射測距光が平行状態で入射した場合の光束を透過させる形状である距離測定装置に係るものである。   The present invention provides a light source unit that emits distance measuring light in a distance measuring device that measures distance by projecting distance measuring light onto the object to be measured and receiving reflected distance measuring light from the object to be measured. A light projecting optical system for projecting distance measuring light from the light source unit, and a light receiving optical system for receiving reflected distance measuring light from the measurement object incident and condensed in common with the light projecting optical system The light receiving optical system is a distance measuring device having a central portion where reflected distance measuring light is incident and collected, and a perforated mask that restricts the amount of light that is transmitted according to a deviation of the condensed position from the central portion. In addition, the perforated mask relates to a distance measuring device having a central opening provided around the optical axis of the light receiving optical system and a peripheral opening provided radially with respect to the central opening, The light receiving optical system has a light receiving fiber for guiding reflected distance measuring light to the light receiving element, and the perforated mask is the light receiving light. Relates to a distance measuring device provided on the incident surface of Aiba, further also said central opening reflected distance measuring light is related to the distance measuring device is a shape that transmits light beams in the case of incident parallel state.

本発明によれば、測定対象物に測距光を投光し、該測定対象物からの反射測距光を受光して距離を測定する距離測定装置に於いて、測距光を発する光源部と、該光源部からの測距光を投光する投光光学系と、該投光光学系と一部を共用し、入射集光された測定対象物からの反射測距光を受光する受光光学系とを具備し、該受光光学系は反射測距光が入射集光する中心部と、集光位置が中心部からずれるに応じて透過する光量を制限する孔明きマスクとを有するので、遠距離測定から近距離測定迄、外乱光の入光を制限しつつ反射測距光の受光を可能とし、簡単な構成で遠距離測定から近距離測定迄高精度の距離測定を実施できる。   According to the present invention, in the distance measuring device that projects the distance measuring light onto the measurement object, receives the reflected distance measurement light from the measurement object, and measures the distance, the light source unit that emits the distance measurement light A light projecting optical system that projects the distance measuring light from the light source unit, and a light receiving optical system that receives a part of the light projecting optical system and receives reflected distance measuring light from the measurement object that is incident and collected An optical system, and the light receiving optical system has a central portion where the reflected distance measuring light is incident and collected, and a perforated mask that restricts the amount of light that is transmitted according to the deviation of the condensed position from the central portion. From far distance measurement to short distance measurement, it is possible to receive reflected distance measuring light while restricting the incoming of disturbance light, and it is possible to carry out highly accurate distance measurement from long distance measurement to short distance measurement with a simple configuration.

又本発明によれば、前記孔明きマスクは、前記受光光学系の光軸を中心に設けられた中心開口部と該中心開口部に対して放射状に設けられた周辺開口部とを有するので、遠距離測定で反射測距光が平行状態で入射する場合は光量の制限が少なくなり、測距に必要な光量が得られると共に外乱光を制限し、更に近距離測定で反射測距光が平行でない状態で入射する場合は光束の周辺部分を受光可能とし、近距離測定も可能となる等の優れた効果を発揮する。   According to the invention, the perforated mask has a central opening provided around the optical axis of the light receiving optical system and a peripheral opening provided radially with respect to the central opening. When reflected distance measuring light is incident in a parallel state in long-distance measurement, the amount of light is less limited, and the amount of light necessary for distance measurement is obtained and disturbance light is limited. In addition, reflected distance measuring light is parallel in near-field measurement. When the light is incident in a state other than the above, it is possible to receive the peripheral portion of the light beam, and to exhibit excellent effects such as short distance measurement.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明に係る距離測定装置の骨子を示すものであり、図中、15は光源部、16は投光光学系、17は内部参照光学系、18は受光光学系、19は接眼光学系(望遠鏡)を示している。尚、前記距離測定装置は、プリズムを用いたプリズム測定法、プリズムを用いないノンプリズム測定法の両測定方法が可能となっている。   FIG. 1 shows the outline of a distance measuring apparatus according to the present invention, in which 15 is a light source unit, 16 is a light projecting optical system, 17 is an internal reference optical system, 18 is a light receiving optical system, and 19 is an eyepiece optical system. The system (telescope) is shown. The distance measuring device can be used for both a prism measuring method using a prism and a non-prism measuring method using no prism.

先ず、前記光源部15について説明する。   First, the light source unit 15 will be described.

レーザ光源21は、例えば780nmの赤外光の測距光を射出する。前記レーザ光源21の光軸20上に、第1コリメートレンズ22、光路切替え手段24が配設されている。   The laser light source 21 emits infrared distance measuring light of, for example, 780 nm. A first collimating lens 22 and an optical path switching unit 24 are disposed on the optical axis 20 of the laser light source 21.

該光路切替え手段24は第1光路25、第2光路26とを選択可能となっており、前記第1光路25、前記第2光路26は前記光路切替え手段24により投光光軸27に合致する様になっている。   The optical path switching means 24 can select a first optical path 25 and a second optical path 26, and the first optical path 25 and the second optical path 26 coincide with the light projecting optical axis 27 by the optical path switching means 24. It is like.

前記光路切替え手段24は、例えば菱形プリズム28が回転可能に支持され、前記第1光路25が選択されている状態では、前記レーザ光源21からの測距光は前記菱形プリズム28に入射し、該菱形プリズム28で2回反射され、前記光軸20と平行な状態で前記投光光軸27に合致する。   In the optical path switching means 24, for example, when the rhombus prism 28 is rotatably supported and the first optical path 25 is selected, the distance measuring light from the laser light source 21 is incident on the rhombus prism 28, The light is reflected twice by the rhombus prism 28 and coincides with the light projecting optical axis 27 in a state parallel to the optical axis 20.

前記第2光路26は前記光軸20の延長に合致しており、前記第2光路26には第2コリメートレンズ29、光ファイバ31、該光ファイバ31の射出端には第3コリメートレンズ32が設けられ、該第3コリメートレンズ32の光軸は前記投光光軸27と合致している。   The second optical path 26 coincides with the extension of the optical axis 20. The second optical path 26 includes a second collimating lens 29, an optical fiber 31, and a third collimating lens 32 at the exit end of the optical fiber 31. Provided, and the optical axis of the third collimating lens 32 coincides with the light projecting optical axis 27.

前記光路切替え手段24が前記第1光路25を選択している状態では、前記菱形プリズム28の中心線が前記第1光路25に合致しており、前記菱形プリズム28の両端面はそれぞれ前記光軸20、前記投光光軸27上に位置する。前記レーザ光源21から射出された測距光は、前記光路切替え手段24の両端面で2回反射され、前記投光光軸27上に射出される。   In a state where the optical path switching means 24 selects the first optical path 25, the center line of the rhombus prism 28 coincides with the first optical path 25, and both end faces of the rhombus prism 28 are respectively in the optical axis. 20. Located on the light projecting optical axis 27. Ranging light emitted from the laser light source 21 is reflected twice by both end faces of the optical path switching unit 24 and emitted onto the light projecting optical axis 27.

前記光路切替え手段24が前記第2光路26を選択している状態では、前記菱形プリズム28が前記光軸20から外れた状態となっている。前記レーザ光源21から射出された測距光は、前記第2コリメートレンズ29で集光されて前記光ファイバ31の入射端から該光ファイバ31に入射し、該光ファイバ31から射出された測距光は前記第3コリメートレンズ32で平行にされ、前記投光光軸27上に射出される。   In the state where the optical path switching unit 24 selects the second optical path 26, the rhomboid prism 28 is off the optical axis 20. Ranging light emitted from the laser light source 21 is collected by the second collimating lens 29, enters the optical fiber 31 from the incident end of the optical fiber 31, and is measured from the optical fiber 31. The light is collimated by the third collimating lens 32 and emitted onto the light projecting optical axis 27.

前記投光光学系16について説明する。   The projection optical system 16 will be described.

前記投光光軸27上にはビームスプリッタ35、凹レンズ36、第1光路偏向部材37、第2光路偏向部材38、対物レンズ39が配設され、前記ビームスプリッタ35と前記凹レンズ36間には投光光量調整手段41が設けられている。   A beam splitter 35, a concave lens 36, a first optical path deflecting member 37, a second optical path deflecting member 38, and an objective lens 39 are disposed on the light projecting optical axis 27, and the light is projected between the beam splitter 35 and the concave lens 36. A light amount adjusting means 41 is provided.

該投光光量調整手段41はステッピングモータ等の位置決め機能を有する光量調整モータ42によって回転され、透過光量が円周方向で連続的に変化する光量調整板43を具備し、該光量調整板43は前記投光光軸27を遮る様に設けられている。   The projected light amount adjusting means 41 includes a light amount adjusting plate 43 that is rotated by a light amount adjusting motor 42 having a positioning function such as a stepping motor, and the transmitted light amount continuously changes in the circumferential direction. It is provided so as to block the light projecting optical axis 27.

前記凹レンズ36は、該凹レンズ36の焦点位置と前記対物レンズ39の焦点位置とを合致させて配設されてあり、該対物レンズ39と共にビームエキスパンダを構成しており、前記凹レンズ36迄導かれた平行光束を拡大し投光できる様になっている。この為、前記ビームスプリッタ35、前記光量調整板43等の光学部材による影響を最小限に抑えることができる。又、前記レーザ光源21を前記対物レンズ39の焦点位置に配置する構造と比較し、投光効率が向上する。   The concave lens 36 is disposed so that the focal position of the concave lens 36 and the focal position of the objective lens 39 coincide with each other, and constitutes a beam expander together with the objective lens 39, and is guided to the concave lens 36. The parallel light beam can be enlarged and projected. For this reason, the influence by optical members, such as the said beam splitter 35 and the said light quantity adjustment board 43, can be suppressed to the minimum. Further, the light projecting efficiency is improved as compared with the structure in which the laser light source 21 is disposed at the focal position of the objective lens 39.

前記ビームスプリッタ35は前記レーザ光源21からの測距光(赤外光)を略全透過すると共に一部を反射するものである。前記第1光路偏向部材37、及び前記第2光路偏向部材38は測距光を全反射するミラー等である。   The beam splitter 35 transmits distance measuring light (infrared light) from the laser light source 21 substantially entirely and reflects a part thereof. The first optical path deflecting member 37 and the second optical path deflecting member 38 are mirrors that totally reflect the distance measuring light.

前記内部参照光学系17について説明する。   The internal reference optical system 17 will be described.

該内部参照光学系17は前記光源部15と後述する前記受光光学系18間に設けられ、前記内部参照光学系17は前記ビームスプリッタ35の反射光軸に合致する内部参照用光軸44を有し、該内部参照用光軸44上にコンデンサレンズ45、濃度フィルタ46、ダイクロイックプリズム47が配設されている。   The internal reference optical system 17 is provided between the light source unit 15 and the light receiving optical system 18 described later. The internal reference optical system 17 has an internal reference optical axis 44 that matches the reflected optical axis of the beam splitter 35. On the internal reference optical axis 44, a condenser lens 45, a density filter 46, and a dichroic prism 47 are disposed.

前記投光光軸27と前記内部参照用光軸44間にチョッパ手段48が掛渡って設けられている。該チョッパ手段48は前記投光光軸27と前記内部参照用光軸44とを遮るチョッパ板49及び該チョッパ板49を回転させ、位置決め可能なチョッパモータ51を具備している。前記チョッパ板49が前記投光光軸27を遮っている状態では前記内部参照用光軸44が通過状態であり、前記チョッパ板49が前記内部参照用光軸44を遮っている状態では前記投光光軸27が通過状態となっている。   A chopper means 48 is provided between the light projecting optical axis 27 and the internal reference optical axis 44. The chopper means 48 includes a chopper plate 49 that blocks the light projecting optical axis 27 and the internal reference optical axis 44, and a chopper motor 51 that can rotate and position the chopper plate 49. The internal reference optical axis 44 is in a passing state when the chopper plate 49 is blocking the light projecting optical axis 27, and the projection is performed when the chopper plate 49 is blocking the internal reference optical axis 44. The optical optical axis 27 is in a passing state.

而して、前記チョッパ板49を回転させることで、前記光源部15からの測距光が前記投光光軸27に照射されるか、或は前記内部参照用光軸44に内部参照光として照射されるか、択一的に選択される様になっている。   Thus, by rotating the chopper plate 49, the distance measuring light from the light source unit 15 is applied to the light projecting optical axis 27, or the internal reference optical axis 44 is used as internal reference light. Irradiated or alternatively selected.

前記濃度フィルタ46は、測定対象物からの反射測距光と内部参照光との光強度が略等しくなる様に、内部参照光の光強度を調整するものである。   The density filter 46 adjusts the light intensity of the internal reference light so that the reflected distance measuring light from the measurement object and the internal reference light have substantially the same light intensity.

前記受光光学系18について説明する。   The light receiving optical system 18 will be described.

該受光光学系18は前記内部参照用光軸44の延長に合致する受光光軸52を具備し、該受光光軸52には前記ダイクロイックプリズム47、マスク53、受光ファイバ54、第4コリメートレンズ55、干渉フィルタ56、集光レンズ57、受光素子58が配設される。該受光素子58としては、例えばアバランシェホトダイオード(APD)が用いられ、前記干渉フィルタ56は前記レーザ光源21の発振波長帯を透過する様な特性を有している。前記受光素子58が反射測距光を受光すると、受光信号は演算部65に送出され、該演算部65で受光信号に基づき測定対象物迄の距離が演算される。   The light receiving optical system 18 includes a light receiving optical axis 52 that matches the extension of the internal reference optical axis 44. The light receiving optical axis 52 includes the dichroic prism 47, mask 53, light receiving fiber 54, and fourth collimating lens 55. An interference filter 56, a condensing lens 57, and a light receiving element 58 are provided. As the light receiving element 58, for example, an avalanche photodiode (APD) is used, and the interference filter 56 has a characteristic of transmitting the oscillation wavelength band of the laser light source 21. When the light receiving element 58 receives the reflected distance measuring light, the received light signal is sent to the calculating unit 65, and the calculating unit 65 calculates the distance to the measurement object based on the received light signal.

前記対物レンズ39は平行光束が入射した場合に、前記受光ファイバ54の入射面に光束を集光させる様になっている。即ち、遠距離測定で前記光源部15より投光されたレーザ光線が測定対象物で反射され、前記対物レンズ39により光源像を前記受光ファイバ54の反射測距光の入射面に結像する様になっている。又、該受光ファイバ54の入射面の径は、近距離測定に対応できる入射面位置での反射測距光の光束の径と同等或はそれ以上となっている。   The objective lens 39 collects the light beam on the incident surface of the light receiving fiber 54 when a parallel light beam is incident. That is, the laser beam projected from the light source unit 15 in the long distance measurement is reflected by the measurement object, and the light source image is formed on the incident surface of the reflected distance measuring light of the light receiving fiber 54 by the objective lens 39. It has become. The diameter of the incident surface of the light receiving fiber 54 is equal to or greater than the diameter of the reflected distance measuring light beam at the position of the incident surface that can be used for short distance measurement.

前記マスク53は、図3に見られる様に前記受光ファイバ54の入射面より充分大きい外径を有し、又前記受光光軸52を中心とした中心開口部と該中心開口部に連続し、放射状に設けられた周辺開口部を有する。中心開口部としては光束通過孔81が穿設され、又周辺開口部としては該光束通過孔81の直径上に該光束通過孔81より外方に延出するスリット孔82が穿設されている。前記光束通過孔81の直径Dは、平行光束が前記受光ファイバ54の入射面に集光される場合の、前記マスク53の位置での光束の径と同径、若しくは若干大きく設定されている。   As shown in FIG. 3, the mask 53 has an outer diameter sufficiently larger than the incident surface of the light receiving fiber 54, and is continuous with the central opening centered on the light receiving optical axis 52, and the central opening. Peripheral openings are provided radially. A light beam passage hole 81 is formed as a central opening, and a slit hole 82 extending outward from the light beam passage hole 81 is formed on the diameter of the light passage hole 81 as a peripheral opening. . The diameter D of the light beam passage hole 81 is set to be the same as or slightly larger than the diameter of the light beam at the position of the mask 53 when the parallel light beam is collected on the incident surface of the light receiving fiber 54.

前記接眼光学系19について説明する。   The eyepiece optical system 19 will be described.

該接眼光学系19は接眼光軸60を有し、該接眼光軸60は前記ダイクロイックプリズム47を透過する前記対物レンズ39の光軸延長に合致している。前記接眼光軸60上に、該接眼光軸60に沿って移動可能に設けられた合焦レンズ61、正立像に像を変換する正立プリズム62、十字等の視準線が設けられた視準板63、接眼レンズ64が設けられている。   The eyepiece optical system 19 has an eyepiece optical axis 60 that matches the optical axis extension of the objective lens 39 that passes through the dichroic prism 47. A viewing lens provided on the eyepiece optical axis 60 with a focusing lens 61 movably provided along the eyepiece optical axis 60, an erecting prism 62 for converting the image into an erect image, and a collimation line such as a cross. A quasi-plate 63 and an eyepiece lens 64 are provided.

以下、作動について図4を参照して説明する。尚、図4中、75は測定対象物を示し、実線は遠距離測定の場合の反射測距光の集光状態、2点鎖線は近距離測定の場合の反射測距光の集光状態を示している。   The operation will be described below with reference to FIG. In FIG. 4, reference numeral 75 denotes an object to be measured, and a solid line indicates a condensed state of reflected distance measuring light in a long distance measurement, and a two-dot chain line indicates a condensed state of reflected distance measured light in a short distance measurement. Show.

先ず、自然物である建物の壁面等を測定対象物75としたノンプリズム距離測定を行う場合は、距離測定装置の操作部(図示せず)によりノンプリズム測定を選択する。ノンプリズム測定を選択した場合、前記菱形プリズム28が前記第2光路26、前記投光光軸27を遮る様に位置決めされる。   First, when performing non-prism distance measurement using a wall surface of a building, which is a natural object, as the measurement object 75, non-prism measurement is selected by an operation unit (not shown) of the distance measurement device. When the non-prism measurement is selected, the rhombus prism 28 is positioned so as to block the second optical path 26 and the light projecting optical axis 27.

前記接眼光学系19により前記測定対象物75を視準し、測定点を決定する。   The eyepiece optical system 19 collimates the measurement object 75 to determine a measurement point.

前記レーザ光源21で発せられた測距光は、前記菱形プリズム28により光路が前記第1光路25に偏向され、前記ビームスプリッタ35を透過し、前記投光光学系16により前記測定対象物75に投光される。   The distance measuring light emitted from the laser light source 21 is deflected to the first optical path 25 by the rhomboid prism 28, passes through the beam splitter 35, and is transmitted to the measurement object 75 by the light projecting optical system 16. Lighted.

投光される測距光のビーム径、広がり角は、発光源の大きさに依存する。前記レーザ光源21の発光点は、半導体レーザ(LD)の場合、直径で3μm程度であり、広がりの少ない測距光が照射される。   The beam diameter and divergence angle of the ranging light to be projected depend on the size of the light source. In the case of a semiconductor laser (LD), the light source of the laser light source 21 has a diameter of about 3 μm and is irradiated with distance measuring light with little spread.

前記投光光学系16より前記測定対象物75に測距光が投光され、該測定対象物75で反射された反射測距光は反射面が一般に鏡面又は鏡面状ではないので、拡散されたものとなる。   Ranging light is projected from the light projecting optical system 16 onto the measuring object 75, and the reflected ranging light reflected by the measuring object 75 is diffused because the reflecting surface is generally not a mirror surface or a mirror surface. It will be a thing.

又、前述した様に、測定対象物75が遠距離の場合、例えば数百m程度の距離測定では、距離測定装置に入射する反射測距光は拡散した光束の平行光部分のみであり、前記対物レンズ39により前記受光ファイバ54の入射面に集光される。又、前記光束通過孔81の直径Dは、反射測距光が前記受光ファイバ54の入射面に集光される条件で、光束の径と同径、若しくは若干大きく設定されているので、反射測距光は前記受光ファイバ54の入射面に入射するが、投光光軸に対して角度をもつ外乱光は前記光束通過孔81に遮断される。尚、前記スリット孔82を通して外乱光が入射する可能性があるが、該スリット孔82から入射する光量は光束通過孔81より通過する光量に対して少なく、測距に影響を及すことは少ない。   Further, as described above, when the measurement object 75 is at a long distance, for example, in the distance measurement of about several hundred meters, the reflected distance measuring light incident on the distance measuring device is only the parallel light portion of the diffused light beam. The light is condensed on the incident surface of the light receiving fiber 54 by the objective lens 39. The diameter D of the light beam passage hole 81 is set to be the same as or slightly larger than the diameter of the light beam under the condition that the reflected distance measuring light is collected on the incident surface of the light receiving fiber 54. The distance light enters the incident surface of the light receiving fiber 54, but disturbance light having an angle with respect to the light projecting optical axis is blocked by the light beam passage hole 81. Although disturbance light may enter through the slit hole 82, the amount of light incident from the slit hole 82 is small relative to the amount of light passing through the light beam passage hole 81 and does not affect distance measurement. .

次に、ノンプリズムで近距離を測定する場合、例えば10m程度迄の距離測定では距離測定装置に入射する反射測距光は平行光ではなく角度を持った光束となり、又集光していない状態で前記受光ファイバ54の入射面に到達する。即ち、前記対物レンズ39による反射測距光の集光位置は前記受光ファイバ54の入射面の後方となる。従って、前記マスク53位置での反射測距光の光束の径は、前記光束通過孔81より大きくなる。   Next, when measuring a short distance with a non-prism, for example, in a distance measurement up to about 10 m, the reflected distance measuring light incident on the distance measuring device is not a parallel light but an angled light beam and is not condensed. To reach the incident surface of the light receiving fiber 54. That is, the focusing position of the reflected distance measuring light by the objective lens 39 is behind the incident surface of the light receiving fiber 54. Accordingly, the diameter of the reflected distance measuring light beam at the position of the mask 53 is larger than that of the light beam passage hole 81.

反射測距光の中心部は前記第2光路偏向部材38によって遮られているので、反射測距光は中心部が欠けた光束となっており、従って前記光束通過孔81を透しては反射測距光は前記受光ファイバ54に入射しないか、或は充分な光量が入射しない状態が発生する。前記スリット孔82は反射測距光の周辺部の一部を前記受光ファイバ54の入射面に入射させる。   Since the central portion of the reflected distance measuring light is blocked by the second optical path deflecting member 38, the reflected distance measuring light is a light beam lacking the central portion, and is therefore reflected through the light beam passage hole 81. The distance measuring light does not enter the light receiving fiber 54 or a state in which a sufficient amount of light does not enter occurs. The slit hole 82 allows a part of the periphery of the reflected distance measuring light to enter the incident surface of the light receiving fiber 54.

尚、光量は距離2乗で反比例する為、近距離測定では大光量が前記距離測定装置に到達する。例えば、測定対象物が500mと10mとでは遠距離測定に対して近距離測定では(500/10)2 =2500倍の光量が得られる。従って、前記スリット孔82で入射光量を制限しても測距に充分な光量が得られる。 Since the light quantity is inversely proportional to the square of the distance, a large quantity of light reaches the distance measuring device in short distance measurement. For example, when the object to be measured is 500 m and 10 m, the light quantity of (500/10) 2 = 2500 times is obtained in the short distance measurement with respect to the long distance measurement. Therefore, even if the amount of incident light is limited by the slit hole 82, a sufficient amount of light for distance measurement can be obtained.

而して、遠距離測定では外乱光の入射を抑制して反射測距光を前記受光ファイバ54に導くことができ精度の高い測定が可能となり、又近距離測定では反射測距光が前記受光ファイバ54の入射面に集光しなくても充分に光量が得られ、測定が可能である。   Thus, in the long distance measurement, the incident of the disturbance light is suppressed and the reflected distance measuring light can be guided to the light receiving fiber 54, and the highly accurate measurement is possible. In the short distance measurement, the reflected distance measuring light is received by the light receiving light. A sufficient amount of light can be obtained without focusing on the incident surface of the fiber 54, and measurement is possible.

反射測距光が前記受光ファイバ54に入射し、該受光ファイバ54により前記第4コリメートレンズ55迄反射測距光が導かれると、該第4コリメートレンズ55で平行光束にされる。前記干渉フィルタ56で外乱光がカットされ、前記集光レンズ57により前記受光素子58に集光される。該受光素子58は、S/N比の大きい測距光を受光する。   When the reflected distance measuring light is incident on the light receiving fiber 54 and the reflected distance measuring light is guided to the fourth collimating lens 55 by the light receiving fiber 54, the fourth collimating lens 55 makes a parallel light beam. The disturbance light is cut by the interference filter 56, and is collected on the light receiving element 58 by the condenser lens 57. The light receiving element 58 receives distance measuring light having a large S / N ratio.

前記光量調整モータ42は距離測定に応じて前記光量調整板43を回転させ、該光量調整板43により射出される測距光の強度を調整し、測定対象物迄の距離に拘らず、前記受光素子58が受光する反射測距光の強度が一定となる様にする。又、前記チョッパ手段48は測距光が測定対象物に投光されるか、或は内部参照光として前記受光光学系18に入射されるかを切替え、前記濃度フィルタ46は内部参照光と反射測距光との光強度が略同一となる様に内部参照光の光強度を調整する。   The light amount adjustment motor 42 rotates the light amount adjustment plate 43 according to the distance measurement, adjusts the intensity of the distance measuring light emitted by the light amount adjustment plate 43, and the light reception regardless of the distance to the measurement object. The intensity of the reflected distance measuring light received by the element 58 is made constant. The chopper means 48 switches whether the distance measuring light is projected onto the object to be measured or is incident on the light receiving optical system 18 as the internal reference light. The density filter 46 reflects the internal reference light and the reflected light. The light intensity of the internal reference light is adjusted so that the light intensity with the distance measuring light is substantially the same.

前記受光素子58は前記反射測距光と内部参照光の受光信号を前記演算部65に送信し、該演算部65は前記受光素子58からの受光信号で測定対象物迄の距離を演算する。上記した様に、前記干渉フィルタ56で反射測距光の波長帯を除く外乱光が除去されるので、前記受光素子58が受光する反射測距光はS/N比が大きく精度の高い測距が可能となる。   The light receiving element 58 transmits light reception signals of the reflected distance measuring light and the internal reference light to the calculation unit 65, and the calculation unit 65 calculates the distance to the measurement object using the light reception signal from the light receiving element 58. As described above, since the disturbance light except the wavelength band of the reflected distance measuring light is removed by the interference filter 56, the reflected distance measuring light received by the light receiving element 58 has a large S / N ratio and high accuracy. Is possible.

プリズム距離測定を行う場合は、距離測定装置の操作部(図示せず)によりプリズム測定を選択する。プリズム測定では、測距範囲にあるプリズムを測定する為、ノンプリズム測定より広がり角の大きな光束が射出される。   When performing prism distance measurement, prism measurement is selected by an operation unit (not shown) of the distance measuring device. In the prism measurement, in order to measure the prism in the distance measuring range, a light beam having a larger divergence angle than the non-prism measurement is emitted.

プリズム測定を選択した場合、前記菱形プリズム28が前記光軸20から外れた状態に位置決めされる。   When prism measurement is selected, the rhombus prism 28 is positioned in a state of being off the optical axis 20.

前記レーザ光源21で発せられた測距光は前記第2コリメートレンズ29で前記光ファイバ31の入射面に集光され、入射される。該光ファイバ31の射出端面は前記投光光軸27上に位置しており、前記光ファイバ31から射出する測距光は、前記第3コリメートレンズ32により集光された後、前記ビームスプリッタ35を透過し、前記投光光学系16により測定対象物(コーナキューブ等の再帰反射プリズム)に投光される。   Ranging light emitted from the laser light source 21 is collected and incident on the incident surface of the optical fiber 31 by the second collimating lens 29. The exit end face of the optical fiber 31 is located on the light projecting optical axis 27, and the distance measuring light emitted from the optical fiber 31 is collected by the third collimating lens 32 and then the beam splitter 35. And is projected onto a measurement object (a retroreflective prism such as a corner cube) by the light projecting optical system 16.

測定対象物から反射された測距光は、前記投光光軸27上を経て前記対物レンズ39より入射する。該対物レンズ39により集光される。該対物レンズ39を透過した反射測距光は、前記ダイクロイックプリズム47に入射する。該ダイクロイックプリズム47により反射された反射測距光は、前記受光ファイバ54に入射する。該受光ファイバ54により前記第4コリメートレンズ55迄反射測距光が導かれ、該第4コリメートレンズ55で平行光束にされ、前記干渉フィルタ56で外乱光がカットされ、前記集光レンズ57により集光され、前記受光素子58に受光される。     The distance measuring light reflected from the measurement object enters from the objective lens 39 through the light projecting optical axis 27. The light is condensed by the objective lens 39. The reflected distance measuring light transmitted through the objective lens 39 is incident on the dichroic prism 47. The reflected distance measuring light reflected by the dichroic prism 47 enters the light receiving fiber 54. Reflected distance-measuring light is guided to the fourth collimating lens 55 by the light receiving fiber 54, collimated by the fourth collimating lens 55, disturbance light is cut by the interference filter 56, and collected by the condenser lens 57. The light is received by the light receiving element 58.

尚、プリズム測定での測距でも、前記干渉フィルタ56により外乱光がカットされることでS/N比が向上する。又前記第4コリメートレンズ55が前記干渉フィルタ56に入射する反射測距光を垂直入射の状態とし、反射測距光が前記干渉フィルタ56により光量が減少されることがない様にする等については、ノンプリズム測定と同様である。   Even in the distance measurement by prism measurement, the interference light is cut by the interference filter 56, so that the S / N ratio is improved. The fourth collimating lens 55 makes the reflected distance measuring light incident on the interference filter 56 in a vertically incident state so that the reflected distance measuring light is not reduced in light quantity by the interference filter 56. This is the same as the non-prism measurement.

図2により前記光路切替え手段24の一例について説明する。   An example of the optical path switching means 24 will be described with reference to FIG.

前記菱形プリズム28はプリズムホルダ66により保持され、該プリズムホルダ66からは回転軸67が突出され、該回転軸67を介して前記菱形プリズム28が回転自在に支持されている。又、前記回転軸67にはモータ(図示せず)、ソレノイド等のアクチュエータ(図示せず)が連結され、該アクチュエータにより前記菱形プリズム28が前記第2光路26、前記投光光軸27に挿脱できる様所要角で回転される様になっている。   The rhombus prism 28 is held by a prism holder 66, and a rotation shaft 67 protrudes from the prism holder 66, and the rhombus prism 28 is rotatably supported via the rotation shaft 67. The rotary shaft 67 is connected to an actuator (not shown) such as a motor (not shown) and a solenoid, and the rhombus prism 28 is inserted into the second optical path 26 and the light projecting optical axis 27 by the actuator. It is designed to rotate at the required angle so that it can be removed.

尚、前記スリット孔82は1つの直径上に配設したが、複数の直径上に放射状に配設してもよい。又前記スリット孔82と光束通過孔81とは連続してなくてもよい。或は、前記スリット孔82の代りに、小孔を複数穿設し、該小孔を透して反射測距光の周辺の光束を前記受光ファイバ54に入射させる様にしてもよい。更に、前記スリット孔82の形状も中心から外方に行くに従って幅広、或は幅狭となってもよい。更に又、前記マスク53は前記受光ファイバ54の入射面に直接設けてもよい。又、反射測距光を該受光ファイバ54を介して前記受光素子58に導いたが、前記受光ファイバ54を省略して直接受光素子58に反射測距光を入射させ、入射面を受光素子58の受光面としてもよい。   In addition, although the said slit hole 82 was arrange | positioned on one diameter, you may arrange | position radially on several diameters. The slit hole 82 and the light beam passage hole 81 may not be continuous. Alternatively, instead of the slit hole 82, a plurality of small holes may be formed, and light beams around the reflected distance measuring light may be incident on the light receiving fiber 54 through the small holes. Further, the shape of the slit hole 82 may be wider or narrower as it goes outward from the center. Furthermore, the mask 53 may be provided directly on the incident surface of the light receiving fiber 54. The reflected distance measuring light is guided to the light receiving element 58 through the light receiving fiber 54. However, the light receiving fiber 54 is omitted and the reflected distance measuring light is directly incident on the light receiving element 58. It may be a light receiving surface.

本発明の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of this invention. 該実施の形態で使用される光路切替え手段の要部説明図であり、(A)は平面図、(B)は正面図、(C)は側面図である。It is principal part explanatory drawing of the optical path switching means used by this embodiment, (A) is a top view, (B) is a front view, (C) is a side view. 該実施の形態で使用されるマスクの正面図である。It is a front view of the mask used in this embodiment. 該実施の形態に於ける反射測距光の集光状態を示す説明図である。It is explanatory drawing which shows the condensing state of the reflected ranging light in this embodiment. 従来の距離測定装置の光学系を示す説明図である。It is explanatory drawing which shows the optical system of the conventional distance measuring apparatus.

符号の説明Explanation of symbols

15 光源部
16 投光光学系
17 内部参照光学系
18 受光光学系
19 接眼光学系
21 レーザ光源
24 光路切替え手段
27 投光光軸
38 第2光路偏向部材
39 対物レンズ
41 投光光量調整手段
53 マスク
54 受光ファイバ
58 受光素子
DESCRIPTION OF SYMBOLS 15 Light source part 16 Light projection optical system 17 Internal reference optical system 18 Light reception optical system 19 Eyepiece optical system 21 Laser light source 24 Optical path switching means 27 Light projection optical axis 38 2nd optical path deflection member 39 Objective lens 41 Light projection light quantity adjustment means 53 Mask 54 Light-receiving fiber 58 Light-receiving element

Claims (4)

測定対象物に測距光を投光し、該測定対象物からの反射測距光を受光して距離を測定する距離測定装置に於いて、測距光を発する光源部と、該光源部からの測距光を投光する投光光学系と、該投光光学系と一部を共用し、入射集光された測定対象物からの反射測距光を受光する受光光学系とを具備し、該受光光学系は反射測距光が入射集光する中心部と、集光位置が中心部からずれるに応じて透過する光量を制限する孔明きマスクとを有することを特徴とする距離測定装置。   In a distance measuring device that projects distance measuring light onto a measurement object, receives reflected distance measuring light from the measurement object, and measures the distance, a light source unit that emits distance measuring light, and a light source unit A light projecting optical system for projecting a distance measuring light, and a light receiving optical system for receiving a reflected distance measuring light from a measurement object incident and condensed in common with the light projecting optical system. The light receiving optical system includes a central portion where reflected distance measuring light is incident and collected, and a perforated mask that restricts the amount of light to be transmitted according to a deviation of the condensed position from the central portion. . 前記孔明きマスクは、前記受光光学系の光軸を中心に設けられた中心開口部と該中心開口部に対して放射状に設けられた周辺開口部とを有する請求項1の距離測定装置。   The distance measuring device according to claim 1, wherein the perforated mask has a central opening provided around the optical axis of the light receiving optical system and a peripheral opening provided radially with respect to the central opening. 前記受光光学系は受光素子に反射測距光を導く受光ファイバを有し、前記孔明きマスクは前記受光ファイバの入射面に設けられた請求項1の距離測定装置。   The distance measuring device according to claim 1, wherein the light receiving optical system includes a light receiving fiber that guides reflected distance measuring light to a light receiving element, and the perforated mask is provided on an incident surface of the light receiving fiber. 前記中心開口部は、反射測距光が平行状態で入射した場合の光束を透過させる形状である請求項2の距離測定装置。   The distance measuring device according to claim 2, wherein the central opening has a shape that transmits a luminous flux when reflected distance measuring light is incident in a parallel state.
JP2004227705A 2004-08-04 2004-08-04 Distance-measuring instrument Pending JP2006047079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004227705A JP2006047079A (en) 2004-08-04 2004-08-04 Distance-measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227705A JP2006047079A (en) 2004-08-04 2004-08-04 Distance-measuring instrument

Publications (1)

Publication Number Publication Date
JP2006047079A true JP2006047079A (en) 2006-02-16

Family

ID=36025799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227705A Pending JP2006047079A (en) 2004-08-04 2004-08-04 Distance-measuring instrument

Country Status (1)

Country Link
JP (1) JP2006047079A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018203B1 (en) 2009-03-25 2011-02-28 삼성전기주식회사 Distance Measuring Apparatus
JP2011511280A (en) * 2008-02-01 2011-04-07 ファロ テクノロジーズ インコーポレーテッド Objective distance measuring device
JP2011257193A (en) * 2010-06-07 2011-12-22 Ihi Corp Object detector
JP2015161683A (en) * 2014-02-25 2015-09-07 ジック アーゲー Photoelectric sensor, and method of detecting objects in monitoring area
JP2018514790A (en) * 2015-05-18 2018-06-07 ヒルティ アクチエンゲゼルシャフト Device for optically measuring the distance from a reflective target
JP2018514791A (en) * 2015-05-18 2018-06-07 ヒルティ アクチエンゲゼルシャフト Device for optically measuring the distance from a reflective target
JPWO2017135303A1 (en) * 2016-02-02 2018-11-22 コニカミノルタ株式会社 measuring device
WO2021142997A1 (en) * 2020-01-15 2021-07-22 深圳玩智商科技有限公司 Receiving lens, tof coaxial radar laser receive-emit system structure and product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511082U (en) * 1991-07-24 1993-02-12 三菱電機株式会社 Laser light transmission / reception optical system
JPH065168A (en) * 1992-06-19 1994-01-14 Omron Corp Regressing reflection type photoelectric switch
JPH1054714A (en) * 1996-08-12 1998-02-24 Japan Atom Energy Res Inst Method for measuring distance
JP2004504618A (en) * 2000-07-24 2004-02-12 ライカ ジオシステムズ アクチエンゲゼルシャフト Method and apparatus for optically measuring distance or velocity
JP2004212059A (en) * 2002-12-26 2004-07-29 Topcon Corp Distance measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511082U (en) * 1991-07-24 1993-02-12 三菱電機株式会社 Laser light transmission / reception optical system
JPH065168A (en) * 1992-06-19 1994-01-14 Omron Corp Regressing reflection type photoelectric switch
JPH1054714A (en) * 1996-08-12 1998-02-24 Japan Atom Energy Res Inst Method for measuring distance
JP2004504618A (en) * 2000-07-24 2004-02-12 ライカ ジオシステムズ アクチエンゲゼルシャフト Method and apparatus for optically measuring distance or velocity
JP2004212059A (en) * 2002-12-26 2004-07-29 Topcon Corp Distance measuring apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011511280A (en) * 2008-02-01 2011-04-07 ファロ テクノロジーズ インコーポレーテッド Objective distance measuring device
KR101018203B1 (en) 2009-03-25 2011-02-28 삼성전기주식회사 Distance Measuring Apparatus
JP2011257193A (en) * 2010-06-07 2011-12-22 Ihi Corp Object detector
JP2015161683A (en) * 2014-02-25 2015-09-07 ジック アーゲー Photoelectric sensor, and method of detecting objects in monitoring area
JP2018514790A (en) * 2015-05-18 2018-06-07 ヒルティ アクチエンゲゼルシャフト Device for optically measuring the distance from a reflective target
JP2018514791A (en) * 2015-05-18 2018-06-07 ヒルティ アクチエンゲゼルシャフト Device for optically measuring the distance from a reflective target
US10816645B2 (en) 2015-05-18 2020-10-27 Hilti Aktiengesellschaft Device for optically measuring the distance from a reflective target object
US10908284B2 (en) 2015-05-18 2021-02-02 Hilti Aktiengesellschaft Device for optically measuring the distance from a reflective target object
JPWO2017135303A1 (en) * 2016-02-02 2018-11-22 コニカミノルタ株式会社 measuring device
WO2021142997A1 (en) * 2020-01-15 2021-07-22 深圳玩智商科技有限公司 Receiving lens, tof coaxial radar laser receive-emit system structure and product

Similar Documents

Publication Publication Date Title
JP4301863B2 (en) Ranging device
JP4166083B2 (en) Ranging device
US7130035B2 (en) Target for surveying instrument
US6894767B2 (en) Light wave distance-measuring system
JP2004519697A (en) Optical ranging device
AU2023200702B2 (en) Airborne topo-bathy lidar system and methods thereof
WO2010038645A1 (en) Optical distance measuring device
JP2001021354A (en) Optical position detector
JP2017110964A (en) Light wave distance-measuring device
JP4236326B2 (en) Automatic surveying machine
KR100953749B1 (en) Distance measuring optical system
JP2006047079A (en) Distance-measuring instrument
JP2000193748A (en) Laser distance-measuring device for large measurement range
KR100763974B1 (en) Method and apparatus for aligning optical axis for wavefront sensor for mid-infrared band
JP2009008404A (en) Distance measuring apparatus
JP2007298372A (en) Light-wave distance meter
JP3069893B2 (en) Focusing method and focusing device for surveying instrument
EP3839566A1 (en) Geodetic surveying device for measuring scenes comprising natural and artificial targets
JP2019023650A (en) Light wave ranging device
JP2000275043A (en) Tracking device for automatic survey machine
JP6732442B2 (en) Lightwave distance measuring device
JPH08292258A (en) Distance measuring equipment
JP2006105769A (en) Range finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622