JP2009008404A - Distance measuring apparatus - Google Patents

Distance measuring apparatus Download PDF

Info

Publication number
JP2009008404A
JP2009008404A JP2007167184A JP2007167184A JP2009008404A JP 2009008404 A JP2009008404 A JP 2009008404A JP 2007167184 A JP2007167184 A JP 2007167184A JP 2007167184 A JP2007167184 A JP 2007167184A JP 2009008404 A JP2009008404 A JP 2009008404A
Authority
JP
Japan
Prior art keywords
target
distance measuring
light beam
light receiving
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007167184A
Other languages
Japanese (ja)
Inventor
Satoru Fukumoto
哲 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Trimble Co Ltd
Original Assignee
Nikon Trimble Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Trimble Co Ltd filed Critical Nikon Trimble Co Ltd
Priority to JP2007167184A priority Critical patent/JP2009008404A/en
Publication of JP2009008404A publication Critical patent/JP2009008404A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-prism type distance measuring apparatus which can perform distance measurement promptly and with high precision without depending on the distance to a target. <P>SOLUTION: The distance measuring apparatus includes a light transmitting system (1 to 4) for transmitting a measuring light flux to a target through a reflecting member (3) arranged on an optical axis and an objective (4) arranged in front of the reflecting member and a light receiving system (3, 5, 7, 8) for receiving the measuring light flux reflected by the target through the objective and the reflecting member. The light receiving system has a relay optical system (7) for connecting a rear focal position (6A) and a light receiving surface (8) of the objective in a conjugate manner and a deflecting means which is provided in the optical path between the rear focal position and the light receiving surface to deflect a measuring light flux from a target which is in a short distance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、距離測定装置に関し、特に目標物との間を往復して受光される測定光束に基づいて目標物までの距離の測定を行う装置に関するものである。   The present invention relates to a distance measuring device, and more particularly to a device for measuring a distance to a target based on a measurement light beam received and reciprocated between the target and the target.

従来の光波を利用した距離測定装置では、光源から供給された測定光束を光軸上に配置された反射部材で反射し、この反射部材の前側に配置された対物レンズを介して平行光束に変換し、目標物であるコーナーキューブに向けて射出する。そして、コーナーキューブで反射された測定光束を対物レンズおよび反射部材を介して受光し、受光した測定光束に基づいて目標物までの距離を測定する。   In a conventional distance measuring device using a light wave, a measurement light beam supplied from a light source is reflected by a reflecting member arranged on the optical axis, and converted into a parallel light beam through an objective lens arranged on the front side of the reflecting member. And it injects towards the corner cube which is the target. Then, the measurement light beam reflected by the corner cube is received through the objective lens and the reflection member, and the distance to the target is measured based on the received measurement light beam.

一方、コーナーキューブを目標物とするプリズム方式の距離測定装置とは別に、例えばレフシートや壁のような人工物、木や崖のような自然物などを目標物とするノンプリズム方式の距離測定装置も知られている。ノンプリズム方式の距離測定装置では、目標物の反射面が散乱面であることが多く、プリズム方式の距離測定装置に比して、受光光量が著しく小さくなることが多い。そこで、ノンプリズム方式の距離測定装置では、目標物での反射光量が大きくなるように、目標物に照射される測定光束のスポットサイズを小さくするなどの工夫をしている。   On the other hand, apart from the prism type distance measuring device that uses a corner cube as a target, there are also non-prism type distance measuring devices that use, for example, an artificial object such as a reflex sheet or a wall, or a natural object such as a tree or a cliff. Are known. In the non-prism type distance measuring device, the reflecting surface of the target is often a scattering surface, and the amount of received light is often significantly smaller than that of the prism type distance measuring device. In view of this, the non-prism distance measuring device is devised to reduce the spot size of the measurement light beam irradiated to the target so as to increase the amount of light reflected by the target.

上述したように、従来の距離測定装置では、目標物で反射されて対物レンズを透過した測定光束のうち、反射部材の周囲を通過した測定光束だけが受光される。換言すれば、目標物で反射されて対物レンズを透過した測定光束のうち、反射部材で遮られた光束は測定に寄与しない。受光系に合焦機構が無い場合、目標物までの距離により測定光束の集光位置が異なると共に、集光位置から光軸方向に外れた位置では光束は中心部の抜けた中抜け状態になる。   As described above, in the conventional distance measuring apparatus, only the measurement light beam that has passed through the periphery of the reflecting member is received among the measurement light beams that are reflected by the target and transmitted through the objective lens. In other words, of the measurement light beam reflected by the target and transmitted through the objective lens, the light beam blocked by the reflecting member does not contribute to the measurement. When there is no focusing mechanism in the light receiving system, the condensing position of the measurement light beam varies depending on the distance to the target, and the light beam is in a hollow state where the central portion is missing at a position deviating from the condensing position in the optical axis direction. .

従来のノンプリズム方式の距離測定装置では、遠距離にある目標物からの測定光束の光量が小さくなるため、遠距離にある目標物からの測定光束の集光位置に合わせて受光面を配置している。したがって、近距離にある目標物からの中抜け状態の測定光束の一部だけが受光面の周辺部に達するか、あるいは測定光束の全部が受光面の周囲を通過してしまう。その結果、受光光量の低下により、測定に時間がかかったり測定精度が低下したりするか、あるいは測定自体が不可能になることがある。   In conventional non-prism distance measuring devices, the amount of measurement light beam from a target at a long distance is small, so the light receiving surface is arranged according to the condensing position of the measurement light beam from a target at a long distance. ing. Therefore, only a part of the measurement light beam in the hollow state from the target at a short distance reaches the periphery of the light receiving surface, or all of the measurement light beam passes around the light receiving surface. As a result, due to the decrease in the amount of received light, measurement may take time, measurement accuracy may decrease, or measurement itself may be impossible.

本発明は、前述の課題に鑑みてなされたものであり、目標物までの距離に依存することなく、距離測定を迅速に且つ高精度に行うことのできるノンプリズム方式の距離測定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a non-prism type distance measuring device capable of performing distance measurement quickly and with high accuracy without depending on the distance to a target. For the purpose.

前記課題を解決するために、本発明では、光軸上に配置された反射部材および該反射部材の前側に配置された対物レンズを介して目標物に測定光束を送光する送光系と、前記目標物で反射された測定光束を前記対物レンズおよび前記反射部材を介して受光する受光系とを備えた距離測定装置において、
前記受光系は、前記対物レンズの後側焦点位置と受光面とを共役に結ぶリレー光学系と、前記後側焦点位置と前記受光面との間の光路中に設けられて近距離にある前記目標物からの測定光束を偏向するための偏向手段とを有することを特徴とする距離測定装置を提供する。
In order to solve the above problems, in the present invention, a light transmission system that transmits a measurement light beam to a target via a reflection member disposed on the optical axis and an objective lens disposed on the front side of the reflection member; In a distance measuring device comprising a light receiving system that receives the measurement light beam reflected by the target through the objective lens and the reflecting member,
The light receiving system is provided in the optical path between the rear focal position of the objective lens and the light receiving surface in a conjugate manner with a relay optical system that conjugates the rear focal position of the objective lens and the light receiving surface, and is at a short distance. There is provided a distance measuring device having a deflecting means for deflecting a measurement light beam from a target.

本発明では、近距離にある目標物で反射されて反射部材を経た中抜け状態の測定光束が、例えばリレー光学系中に設けられた偏向手段の作用により適宜偏向され、中抜け状態の測定光束の一部が受光面に確実に達する。その結果、本発明では、ノンプリズム方式の距離測定装置に適用しても、目標物までの距離に依存することなく、距離測定を迅速に且つ高精度に行うことができる。   In the present invention, the measurement light beam in the hollow state reflected by the target at a short distance and passing through the reflecting member is appropriately deflected by the action of the deflecting means provided in the relay optical system, for example, and is measured in the hollow state. Part of reaches the light receiving surface with certainty. As a result, in the present invention, even when applied to a non-prism type distance measuring device, distance measurement can be performed quickly and with high accuracy without depending on the distance to the target.

本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる距離測定装置の基本構成を概略的に示す図である。本実施形態では、例えばレフシートや壁のような人工物、木や崖のような自然物などを目標物とするノンプリズム方式の距離測定装置に対して本発明を適用している。以下、装置の基本構成の説明に際して、説明の理解を容易にするために、図1では目標物が無限遠にあるものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing a basic configuration of a distance measuring apparatus according to an embodiment of the present invention. In the present embodiment, for example, the present invention is applied to a non-prism type distance measuring apparatus that targets an artificial object such as a reflex sheet or a wall, or a natural object such as a tree or a cliff. In the following description of the basic configuration of the apparatus, it is assumed that the target is at infinity in FIG. 1 in order to facilitate understanding of the description.

本実施形態の距離測定装置は、測定光束を供給するための光源1として、例えば660nmの赤外光を射出するLD(レーザーダイオード)を備えている。光源1として、LED(発光ダイオード)のような他の適当な光源を用いることもできる。光源1から射出された測定光束は、送光光学系2を介して、送光用反射部材3で反射される。反射部材3で反射された測定光束は、視準用対物レンズ4を介して平行光束に変換された後、目標物(不図示)に照射される。   The distance measuring apparatus according to the present embodiment includes an LD (laser diode) that emits infrared light of 660 nm, for example, as the light source 1 for supplying a measurement light beam. As the light source 1, another suitable light source such as an LED (light emitting diode) can be used. The measurement light beam emitted from the light source 1 is reflected by the light transmission reflecting member 3 via the light transmission optical system 2. The measurement light beam reflected by the reflecting member 3 is converted into a parallel light beam via the collimating objective lens 4 and then irradiated onto a target (not shown).

例えば無限遠にある目標物で反射・散乱(以下、単に「反射」ともいう)された測定光束および外界からの背景光は、対物レンズ4および反射部材3を介して、ダイクロイックプリズム5に入射する。ダイクロイックプリズム5は、例えば650nmよりも大きい波長の光を反射し、例えば400nm〜650nmの波長の可視光を透過させる特性を有する。ダイクロイックプリズム5で反射された光、すなわち目標物からの測定光束は、参照符号6Aで示す位置に一旦集光した後、1つまたは複数のレンズからなるリレー光学系7を介して、例えばAPD(アバランシェ・フォト・ダイオード)のような受光素子8の受光面に集光する。   For example, a measurement light beam reflected and scattered (hereinafter also simply referred to as “reflection”) by a target at infinity and background light from the outside enter the dichroic prism 5 via the objective lens 4 and the reflection member 3. . The dichroic prism 5 has a characteristic of reflecting light having a wavelength larger than 650 nm, for example, and transmitting visible light having a wavelength of 400 nm to 650 nm, for example. The light reflected by the dichroic prism 5, that is, the measurement light beam from the target is once condensed at a position indicated by reference numeral 6 </ b> A, and then passed through a relay optical system 7 composed of one or a plurality of lenses, for example, APD ( The light is condensed on the light receiving surface of the light receiving element 8 such as an avalanche photo diode.

無限遠にある目標物からの測定光束の集光位置6Aは、対物レンズ4の後側焦点位置に他ならない。図1においてハッチングを施した領域31は、目標物で反射されて対物レンズ4を透過した測定光束のうち、対物レンズ4の後側(目標物側とは反対側)において光軸上に配置された反射部材3に遮られることなく、受光素子8の受光面に達する測定光束を表している。   The focusing position 6A of the measurement light beam from the target at infinity is nothing but the rear focal position of the objective lens 4. The hatched region 31 in FIG. 1 is arranged on the optical axis on the rear side (opposite side of the target side) of the objective lens 4 out of the measurement light beam reflected by the target and transmitted through the objective lens 4. The measurement light beam reaching the light receiving surface of the light receiving element 8 without being blocked by the reflecting member 3 is shown.

一方、ダイクロイックプリズム5を透過した光、すなわち外界からの光束(可視光)は、光軸方向に移動可能な合焦レンズ11および正立プリズム12を介して、焦点板13の位置に目標物を含む外界の中間像を形成する。このとき、正立プリズム12の作用により、焦点板13の位置には外界の正立像が形成される。焦点板13の位置に形成された中間正立像は、焦点板13に形成された視準情報とともに、接眼レンズ14を介して肉眼で観察される。図1では、肉眼のアイポイントを参照符号EPで示している。   On the other hand, the light that has passed through the dichroic prism 5, that is, the light flux (visible light) from the outside, places the target at the position of the focusing screen 13 via the focusing lens 11 and the erecting prism 12 that can move in the optical axis direction. An intermediate image of the outside world is formed. At this time, an erect image of the outside world is formed at the position of the focusing screen 13 by the action of the erecting prism 12. The intermediate erect image formed at the position of the focusing screen 13 is observed with the naked eye through the eyepiece lens 14 together with collimation information formed on the focusing screen 13. In FIG. 1, the eye point of the naked eye is indicated by the reference symbol EP.

このように、光源1、送光光学系2、反射部材3、および対物レンズ4は、目標物に測定光束を送光する送光系を構成している。対物レンズ4、ダイクロイックプリズム5、合焦レンズ11、正立プリズム12、焦点板13、および接眼レンズ14は、目標物を視準する視準系を構成している。対物レンズ4、ダイクロイックプリズム5、リレー光学系7、および受光素子8は、目標物で反射された測定光束を受光する受光系を構成している。なお、受光素子8で受光された測定光束に基づいて目標物までの距離を測定する原理については、例えば特開平8−292259号公報などを参照することができる。   Thus, the light source 1, the light transmission optical system 2, the reflecting member 3, and the objective lens 4 constitute a light transmission system that transmits the measurement light beam to the target. The objective lens 4, the dichroic prism 5, the focusing lens 11, the erecting prism 12, the focusing screen 13, and the eyepiece lens 14 constitute a collimation system for collimating the target. The objective lens 4, the dichroic prism 5, the relay optical system 7, and the light receiving element 8 constitute a light receiving system that receives the measurement light beam reflected by the target. For the principle of measuring the distance to the target based on the measurement light beam received by the light receiving element 8, reference can be made to, for example, JP-A-8-292259.

以下、本実施形態にかかる距離測定装置の特徴的な要部構成の説明に先立ち、図2を参照して従来のノンプリズム方式の距離測定装置の不都合を説明する。図2では、無限遠にある目標物で反射されて対物レンズ4を透過した測定光束のうち、反射部材3に遮られることなく、対物レンズ4の焦点位置6Aに配置された受光素子28の受光面に集光する測定光束が、一点鎖線で規定される領域21により示されている。   Prior to the description of the characteristic configuration of the distance measuring apparatus according to the present embodiment, the disadvantages of the conventional non-prism type distance measuring apparatus will be described with reference to FIG. In FIG. 2, the measurement light beam reflected by the target at infinity and transmitted through the objective lens 4 is received by the light receiving element 28 disposed at the focal position 6 </ b> A of the objective lens 4 without being blocked by the reflecting member 3. A measurement light beam condensed on the surface is indicated by a region 21 defined by a one-dot chain line.

また、近距離にある目標物で反射されて対物レンズ4を透過した測定光束のうち、反射部材3に遮られることなく、受光素子28の受光面よりも後側(対物レンズ側とは反対側)の位置6Bに集光する測定光束が、ハッチングを施した領域22により示されている。このように、目標物が無限遠または遠距離にある場合、目標物からの測定光束の一部が反射部材3により遮られるものの、反射部材3の周囲を通過した全ての測定光束21が受光素子28の受光面に達する。   Further, the measurement light beam reflected by the target at a short distance and transmitted through the objective lens 4 is not obstructed by the reflecting member 3 and is behind the light receiving surface of the light receiving element 28 (the side opposite to the objective lens side). The measurement light beam condensed at the position 6B is indicated by a hatched area 22. Thus, when the target is at infinity or a long distance, a part of the measurement light beam from the target is blocked by the reflection member 3, but all the measurement light beams 21 that have passed around the reflection member 3 are received by the light receiving element. 28 light-receiving surfaces are reached.

これに対し、目標物が近距離にある場合、目標物からの測定光束の一部が反射部材3により遮られ、受光素子28の受光面の位置6Aでは光束が中抜け状態になる。その結果、反射部材3の周囲を通過した測定光束22の一部だけが受光素子28の受光面の周辺部に達するか、あるいは反射部材3の周囲を通過した全ての測定光束22が受光素子28の受光面の周囲を通過してしまう。受光素子28での受光光量が低下すると、測定に時間がかかるだけでなく、測定精度が低下する可能性がある。また、受光素子28で全く受光できない場合には、測定自体が不可能になってしまう。   On the other hand, when the target is at a short distance, a part of the measurement light beam from the target is blocked by the reflecting member 3, and the light beam is in a hollow state at the position 6A on the light receiving surface of the light receiving element 28. As a result, only a part of the measurement light beam 22 that has passed around the reflecting member 3 reaches the periphery of the light receiving surface of the light receiving element 28, or all the measurement light beams 22 that have passed around the reflecting member 3 have received the light receiving element 28. Passes around the light receiving surface. When the amount of light received by the light receiving element 28 decreases, not only measurement takes time, but also the measurement accuracy may decrease. Further, when the light receiving element 28 cannot receive light at all, the measurement itself becomes impossible.

図3は、本実施形態にかかる距離測定装置の特徴的な要部構成を概略的に示す図である。図3では、送光系および視準系の図示を省略するとともに、図1に示す受光系のうち、ダイクロイックプリズム5よりも後側の要部だけを図示している。本実施形態にかかる距離測定装置では、図3に示すように、無限遠にある目標物で反射されて対物レンズ4および反射部材3を経た測定光束31が、対物レンズ4の焦点位置6Aに一旦集光した後、1つのレンズ7aにより構成されたリレー光学系7を介して、受光素子8の受光面に集光する。すなわち、無限遠または遠距離(例えば無限遠〜百m程度)にある目標物で反射されて対物レンズ4および反射部材3を経た測定光束の全てが、受光素子8の受光面に達する。   FIG. 3 is a diagram schematically showing a main configuration characteristic of the distance measuring apparatus according to the present embodiment. In FIG. 3, illustration of the light transmission system and the collimation system is omitted, and only the main part on the rear side of the dichroic prism 5 in the light receiving system shown in FIG. 1 is illustrated. In the distance measuring device according to the present embodiment, as shown in FIG. 3, the measurement light beam 31 reflected by the target at infinity and passed through the objective lens 4 and the reflecting member 3 is once at the focal position 6A of the objective lens 4. After condensing, the light is condensed on the light receiving surface of the light receiving element 8 via the relay optical system 7 constituted by one lens 7a. That is, all of the measurement light beam reflected by the target at infinity or a long distance (for example, about infinity to about 100 m) and passed through the objective lens 4 and the reflecting member 3 reaches the light receiving surface of the light receiving element 8.

一方、近距離(例えば数m)にある目標物で反射されて対物レンズ4および反射部材3を経た測定光束32Aは、焦点位置6Aに集光することなく、中抜け状態で焦点位置6Aに配置された背景光カット絞り(遮蔽部材)10に入射する。絞り10に入射した測定光束32Aのうち、絞り10の開口部(または光透過部)を通過した測定光束32Bは、リレー光学系7を構成するレンズ7aに入射する。そして、レンズ7aの射出面に形成された拡散面7aaで拡散された(偏向された)測定光束32Bの一部は、受光素子8の受光面に達する。   On the other hand, the measurement light beam 32A reflected by the target at a short distance (for example, several meters) and having passed through the objective lens 4 and the reflecting member 3 is arranged at the focal position 6A in a hollow state without being condensed at the focal position 6A. The incident light is incident on the background light cut stop (shielding member) 10. Of the measurement light beam 32 </ b> A that has entered the diaphragm 10, the measurement light beam 32 </ b> B that has passed through the opening (or the light transmission part) of the diaphragm 10 is incident on the lens 7 a that constitutes the relay optical system 7. A part of the measurement light beam 32 </ b> B diffused (deflected) by the diffusion surface 7 aa formed on the exit surface of the lens 7 a reaches the light receiving surface of the light receiving element 8.

拡散面7aaは、無限遠または遠距離(以下、単に「遠距離」ともいう)にある目標物からの中抜け状態の測定光束31が通過しない領域であって、近距離にある目標物からの中抜け状態の測定光束32Bが通過する領域、すなわちレンズ7aの射出面の中央領域に形成されている。ちなみに、レンズ7aの射出面に拡散面7aaが形成されていない場合、図2で示す従来技術の場合と同様に、測定光束32Bの一部だけが受光素子8の受光面の周辺部に達するか、あるいは測定光束32Bの全部が受光素子8の受光面の周囲を通過してしまう。   The diffusing surface 7aa is an area where the measurement light beam 31 in a hollow state from a target at infinity or a long distance (hereinafter also simply referred to as “far distance”) does not pass, and from the target at a short distance. It is formed in the region through which the measurement light beam 32B in the hollow state passes, that is, the central region of the exit surface of the lens 7a. Incidentally, if the diffusing surface 7aa is not formed on the exit surface of the lens 7a, whether only a part of the measurement light beam 32B reaches the peripheral portion of the light receiving surface of the light receiving element 8 as in the case of the prior art shown in FIG. Alternatively, all of the measurement light beam 32 </ b> B passes around the light receiving surface of the light receiving element 8.

本実施形態にかかる距離測定装置では、無限遠にある目標物からの測定光束31の集光位置6Aに合わせて受光素子8の受光面を配置しているので、無限遠または遠距離にある目標物からの測定光束のうち、反射部材3を経た測定光束31の全てが受光素子8の受光面に達する。一方、近距離にある目標物からの測定光束のうち、反射部材3および絞り10を経た測定光束32Bの一部が、拡散面7aaで拡散されて受光素子8の受光面に達する。   In the distance measuring apparatus according to the present embodiment, the light receiving surface of the light receiving element 8 is arranged in accordance with the condensing position 6A of the measurement light beam 31 from the target at infinity, so that the target at infinity or far distance. Of the measurement light beam from the object, all of the measurement light beam 31 that has passed through the reflecting member 3 reaches the light receiving surface of the light receiving element 8. On the other hand, of the measurement light beam from the target at a short distance, a part of the measurement light beam 32B having passed through the reflecting member 3 and the diaphragm 10 is diffused by the diffusion surface 7aa and reaches the light receiving surface of the light receiving element 8.

前述したように、特にノンプリズム方式の距離測定装置では、遠距離にある目標物からの測定光束の光量が小さくなる傾向があるため、遠距離にある目標物で反射されて反射部材3を経た測定光束31の全てが受光素子8の受光面に達することは重要である。換言すれば、近距離にある目標物からの測定光束の光量は比較的大きいため、近距離にある目標物で反射されて反射部材3および絞り10を経た測定光束32Bの一部が受光素子8の受光面に達すれば十分である。   As described above, in particular, in the non-prism type distance measuring device, the amount of the measurement light beam from the target at a long distance tends to be small, so that it is reflected by the target at a long distance and passes through the reflecting member 3. It is important that all of the measurement light beam 31 reaches the light receiving surface of the light receiving element 8. In other words, since the amount of the measurement light beam from the target at a short distance is relatively large, a part of the measurement light beam 32B reflected by the target at a short distance and passing through the reflecting member 3 and the diaphragm 10 is part of the light receiving element 8. It is sufficient to reach the light receiving surface.

以上のように、本実施形態にかかる距離測定装置では、近距離にある目標物で反射されて反射部材3および絞り10を経た中抜け状態の測定光束32Bが、リレー光学系7を構成するレンズ7aの射出面の中央領域に形成された拡散面7aaの作用により拡散されるので、中抜け状態の測定光束32Bの一部が受光素子8の受光面に確実に達する。その結果、本実施形態にかかるノンプリズム方式の距離測定装置では、目標物までの距離に依存することなく、距離測定を迅速に且つ高精度に行うことができる。   As described above, in the distance measuring device according to the present embodiment, the measurement light beam 32 </ b> B that is reflected by the target at a short distance and passes through the reflecting member 3 and the diaphragm 10 is the lens that forms the relay optical system 7. Since the light is diffused by the action of the diffusing surface 7aa formed in the central area of the exit surface 7a, a part of the measurement light beam 32B in the hollow state reliably reaches the light receiving surface of the light receiving element 8. As a result, the non-prism type distance measuring apparatus according to the present embodiment can perform distance measurement quickly and accurately without depending on the distance to the target.

また、本実施形態では、対物レンズ4の焦点位置6Aに配置された背景光カット絞り10により、焦点位置6Aにおいて光軸から離れた周辺部に集光する多くの背景光成分を効率良く遮ることができる。特に、遠距離にある目標物からの測定光束の光量が小さくなる傾向があるため、遠距離からの背景光を絞り10により遮ることによって、遠距離にある目標物までの距離の測定に際してノイズ成分を大幅に減らすことができ、測定距離の長距離化や精度向上に有効である。   Further, in the present embodiment, the background light cut stop 10 disposed at the focal position 6A of the objective lens 4 efficiently blocks many background light components collected at the peripheral portion away from the optical axis at the focal position 6A. Can do. In particular, since the amount of the measurement light beam from the target at a long distance tends to be small, the noise component is measured when measuring the distance to the target at a long distance by blocking the background light from the long distance by the diaphragm 10. Can be significantly reduced, and it is effective for increasing the measurement distance and improving accuracy.

なお、上述したように、背景光カット絞り10により近距離にある目標物からの測定光束も多く遮られるが、受光光量は距離の2乗に反比例するので、近距離にある目標物までの距離の測定に必要な所要光量が確保されれば問題はない。また、遮蔽部材としての背景光カット絞り10の位置は、対物レンズ4の焦点位置6Aに限定されることなく、近距離にある目標物からの測定光束の遮蔽と背景光の遮蔽との兼ね合いにより適宜決定すればよい。   As described above, the measurement light beam from the target at a short distance is also blocked by the background light cut stop 10, but the amount of received light is inversely proportional to the square of the distance, and thus the distance to the target at a short distance. There is no problem if the required amount of light required for the measurement is secured. Further, the position of the background light cut stop 10 as the shielding member is not limited to the focal position 6A of the objective lens 4, and is due to the balance between the shielding of the measurement light beam from the target at a short distance and the shielding of the background light. What is necessary is just to determine suitably.

受光系にリレー光学系7を採用することにより、目標物までの距離による測定光束の集光位置のずれが大きくなることが懸念されるが、この点について以下に説明する。例えば、視準系の対物レンズ4の焦点距離を100mmとし、受光系のリレー光学系7の焦点距離を10mmとし、リレー光学系7のリレー倍率を1倍とすると、目標物までの距離が無限遠の場合と50mの場合とで測定光束の集光位置のずれは0.2045mmになる。   There is a concern that the use of the relay optical system 7 in the light receiving system may increase the deviation of the condensing position of the measurement light beam due to the distance to the target. This will be described below. For example, if the focal length of the collimating objective lens 4 is 100 mm, the focal length of the light receiving relay optical system 7 is 10 mm, and the relay magnification of the relay optical system 7 is 1, the distance to the target is infinite. The deviation of the condensing position of the measurement light beam is 0.2045 mm between the distance and the distance of 50 m.

一方、受光系にリレー光学系を設けない場合、目標物までの距離が無限遠と50mとで測定光束の集光位置のずれは0.2mmになる。すなわち、リレー光学系7の追加による測定光束の集光位置のずれの変化量は、僅かに0.0045mmである。したがって、目標物が遠距離(無限遠から100m程度)にある場合、目標物までの距離の測定に際して、目標物までの距離による測定光束の集光位置のずれが受光光量の減少に及ぼす影響はほとんど無い。   On the other hand, when the relay optical system is not provided in the light receiving system, the deviation of the focusing position of the measurement light beam is 0.2 mm when the distance to the target is infinity and 50 m. In other words, the amount of change in the deviation of the focusing position of the measurement light beam due to the addition of the relay optical system 7 is only 0.0045 mm. Therefore, when the target is at a long distance (about 100 m from infinity), when measuring the distance to the target, there is almost no effect on the decrease in the amount of received light due to the deviation of the condensing position of the measurement light beam due to the distance to the target. No.

なお、上述の実施形態では、リレー光学系7が1つのレンズ7aにより構成された例を示しているが、これに限定されることなく、リレー光学系7を複数のレンズにより構成することもできる。具体的には、図4に示すように、例えば2つのレンズ7bと7cとによりリレー光学系7を構成することもできる。図4の変形例では、例えば後側レンズ7cの射出面の中央領域に拡散面7caを形成することにより、図3の実施形態と同様の効果を得ることができる。リレー光学系を1つのレンズにより構成する方がコスト的に有利であるが、リレー光学系を複数のレンズにより構成する方が拡散面(一般には偏向手段)の配置の自由度が増える。   In the above-described embodiment, an example in which the relay optical system 7 is configured by one lens 7a is shown. However, the present invention is not limited to this, and the relay optical system 7 can also be configured by a plurality of lenses. . Specifically, as shown in FIG. 4, for example, the relay optical system 7 can also be configured by two lenses 7b and 7c. In the modification of FIG. 4, for example, by forming the diffusion surface 7 ca in the central region of the exit surface of the rear lens 7 c, the same effect as that of the embodiment of FIG. 3 can be obtained. Although it is more cost effective to configure the relay optical system with a single lens, the degree of freedom of arrangement of the diffusing surface (generally deflection means) increases when the relay optical system is configured with a plurality of lenses.

また、上述の実施形態ではリレー光学系7中の単一レンズ7aの射出面に拡散面7aaを形成し、上述の変形例ではリレー光学系7中の後側レンズ7cの射出面に拡散面7caを形成している。しかしながら、これに限定されることなく、リレー光学系7中の少なくとも1つの光学面の一部の領域に拡散面を形成することができる。   In the above-described embodiment, the diffusing surface 7aa is formed on the exit surface of the single lens 7a in the relay optical system 7. In the above-described modification, the diffusing surface 7ca is formed on the exit surface of the rear lens 7c in the relay optical system 7. Is forming. However, the present invention is not limited to this, and a diffusing surface can be formed in a partial region of at least one optical surface in the relay optical system 7.

また、上述の実施形態および変形例では、対物レンズ4の後側焦点位置6Aと受光素子8の受光面との間の光路中に設けられて近距離にある目標物からの測定光束を偏向するための偏向手段として、リレー光学系7中の1つの光学面の一部の領域(中央領域)に、拡散作用を有する局部光学面としての拡散面7aa,7caを形成している。しかしながら、これに限定されることなく、偏向手段として、拡散作用を有する光学素子(拡散板などの拡散光学素子)を用いることもできる。拡散作用を有する光学素子は、リレー光学系7中の光学面に接するように貼り付けられるか、あるいは光学面の近傍の位置または光学面から離間した適当な位置に設けられる。   Further, in the above-described embodiment and modification, the measurement light beam from the target at a short distance is deflected by being provided in the optical path between the rear focal position 6A of the objective lens 4 and the light receiving surface of the light receiving element 8. As a deflecting means, diffusion surfaces 7aa and 7ca as local optical surfaces having a diffusion action are formed in a partial region (central region) of one optical surface in the relay optical system 7. However, the present invention is not limited to this, and an optical element having a diffusing action (a diffusing optical element such as a diffusing plate) can also be used as the deflecting means. The optical element having a diffusing action is attached so as to be in contact with the optical surface in the relay optical system 7, or is provided at a position near the optical surface or at an appropriate position separated from the optical surface.

また、上述の実施形態および変形例では、拡散作用を有する偏向手段を備えた構成を例示している。しかしながら、これに限定されることなく、屈折作用を有する偏向手段、回折作用を有する偏向手段などを用いることもできる。具体的には、屈折作用を有する偏向手段の場合、リレー光学系中の少なくとも1つの光学面の一部の領域に形成された屈折作用を有する局部光学面や、所要の位置に配置された屈折作用を有する光学素子(レンズ、プリズムなどの屈折光学素子)を用いることができる。   Moreover, in the above-mentioned embodiment and modification, the structure provided with the deflection | deviation means which has a spreading | diffusion effect is illustrated. However, the present invention is not limited to this, and deflecting means having a refractive action, deflecting means having a diffractive action, and the like can also be used. Specifically, in the case of a deflecting means having a refractive action, a local optical surface having a refractive action formed in a partial region of at least one optical surface in the relay optical system, or a refraction arranged at a required position. An optical element having a function (a refractive optical element such as a lens or a prism) can be used.

一方、回折作用を有する偏向手段の場合、リレー光学系中の少なくとも1つの光学面の一部の領域に形成された回折作用を有する局部光学面や、所要の位置に配置された回折作用を有する光学素子(回折光学素子)を用いることができる。さらに、偏向手段として、屈折率分布を有する光学部材を所要の位置に配置することもできる。   On the other hand, in the case of a deflecting means having a diffractive action, it has a local optical surface having a diffractive action formed in a partial region of at least one optical surface in the relay optical system, or a diffractive action arranged at a required position. An optical element (diffractive optical element) can be used. Furthermore, an optical member having a refractive index distribution can be disposed at a required position as the deflecting means.

また、上述の実施形態および変形例では、対物レンズ4の後側焦点位置6Aと光学的に共役な第2焦点位置に受光素子8の受光面を配置している。しかしながら、これに限定されることなく、光ファイバのようなライトガイドの入射面を第2焦点位置に配置して、この入射面を受光面とし、ライトガイドの射出面から射出される測定光束を受光素子により受光することもできる。   In the embodiment and the modification described above, the light receiving surface of the light receiving element 8 is arranged at the second focal position optically conjugate with the rear focal position 6A of the objective lens 4. However, the present invention is not limited to this, and the incident surface of the light guide such as an optical fiber is disposed at the second focal position, the incident surface is used as the light receiving surface, and the measurement light beam emitted from the emission surface of the light guide is Light can also be received by the light receiving element.

また、上述の実施形態および変形例では、ノンプリズム方式の距離測定装置に対して本発明を適用しているが、これに限定されることなく、例えばコーナーキューブを目標物とするプリズム方式の距離測定装置にも同様に本発明を適用することができる。   In the above-described embodiments and modifications, the present invention is applied to the non-prism type distance measuring device. However, the present invention is not limited to this, and for example, a prism type distance with a corner cube as a target is used. The present invention can be similarly applied to a measuring apparatus.

本発明の実施形態にかかる距離測定装置の基本構成を概略的に示す図である。It is a figure showing roughly the basic composition of the distance measuring device concerning the embodiment of the present invention. 従来のノンプリズム方式の距離測定装置の不都合を説明する図である。It is a figure explaining the disadvantage of the conventional non-prism type distance measuring device. 本実施形態にかかる距離測定装置の特徴的な要部構成を概略的に示す図である。It is a figure which shows roughly the characteristic principal part structure of the distance measuring device concerning this embodiment. 本実施形態の変形例にかかる距離測定装置の特徴的な要部構成を概略的に示す図である。It is a figure which shows roughly the characteristic principal part structure of the distance measuring device concerning the modification of this embodiment.

符号の説明Explanation of symbols

1 光源
2 送光光学系
3 反射部材
4 対物レンズ
5 ダイクロイックプリズム
7 リレー光学系
7aa 拡散面
8 受光素子
11 合焦レンズ
12 正立プリズム
13 焦点板
14 接眼レンズ
DESCRIPTION OF SYMBOLS 1 Light source 2 Light transmission optical system 3 Reflective member 4 Objective lens 5 Dichroic prism 7 Relay optical system 7aa Diffusing surface 8 Light receiving element 11 Focusing lens 12 Erecting prism 13 Focus plate 14 Eyepiece

Claims (11)

光軸上に配置された反射部材および該反射部材の前側に配置された対物レンズを介して目標物に測定光束を送光する送光系と、前記目標物で反射された測定光束を前記対物レンズおよび前記反射部材を介して受光する受光系とを備えた距離測定装置において、
前記受光系は、前記対物レンズの後側焦点位置と受光面とを共役に結ぶリレー光学系と、前記後側焦点位置と前記受光面との間の光路中に設けられて近距離にある前記目標物からの測定光束を偏向するための偏向手段とを有することを特徴とする距離測定装置。
A light transmission system for transmitting a measurement light beam to a target via a reflection member disposed on the optical axis and an objective lens disposed on the front side of the reflection member; and the measurement light beam reflected by the target for the objective In a distance measuring device including a lens and a light receiving system that receives light through the reflecting member,
The light receiving system is provided in the optical path between the rear focal position of the objective lens and the light receiving surface in a conjugate manner with a relay optical system that conjugates the rear focal position of the objective lens and the light receiving surface, and is at a short distance. A distance measuring apparatus comprising a deflecting unit for deflecting a measurement light beam from a target.
前記偏向手段は、遠距離にある前記目標物からの測定光束が通過しない領域に設けられていることを特徴とする請求項1に記載の距離測定装置。 2. The distance measuring apparatus according to claim 1, wherein the deflecting unit is provided in a region where a measurement light beam from the target at a long distance does not pass. 前記偏向手段は、前記リレー光学系中の少なくとも1つの光学面の一部の領域に形成された拡散作用を有する局部光学面を有することを特徴とする請求項1または2に記載の距離測定装置。 The distance measuring device according to claim 1, wherein the deflecting unit has a local optical surface having a diffusion action formed in a partial region of at least one optical surface in the relay optical system. . 前記偏向手段は、拡散作用を有する光学素子を有することを特徴とする請求項1または2に記載の距離測定装置。 The distance measuring apparatus according to claim 1, wherein the deflecting unit includes an optical element having a diffusing action. 前記偏向手段は、前記リレー光学系中の少なくとも1つの光学面の一部の領域に形成された屈折作用を有する局部光学面を有することを特徴とする請求項1または2に記載の距離測定装置。 The distance measuring device according to claim 1, wherein the deflecting unit includes a local optical surface having a refractive action formed in a partial region of at least one optical surface in the relay optical system. . 前記偏向手段は、屈折作用を有する光学素子を有することを特徴とする請求項1または2に記載の距離測定装置。 The distance measuring apparatus according to claim 1, wherein the deflecting unit includes an optical element having a refractive action. 前記偏向手段は、前記リレー光学系中の少なくとも1つの光学面の一部の領域に形成された回折作用を有する局部光学面を有することを特徴とする請求項1または2に記載の距離測定装置。 The distance measuring device according to claim 1, wherein the deflecting unit includes a local optical surface having a diffractive action formed in a partial region of at least one optical surface in the relay optical system. . 前記偏向手段は、回折作用を有する光学素子を有することを特徴とする請求項1または2に記載の距離測定装置。 The distance measuring apparatus according to claim 1, wherein the deflecting unit includes an optical element having a diffractive action. 前記偏向手段は、屈折率分布を有する光学部材を有することを特徴とする請求項1または2に記載の距離測定装置。 The distance measuring device according to claim 1, wherein the deflecting unit includes an optical member having a refractive index distribution. 前記リレー光学系は、複数のレンズを有することを特徴とする請求項1乃至9のいずれか1項に記載の距離測定装置。 The distance measuring apparatus according to claim 1, wherein the relay optical system includes a plurality of lenses. 前記目標物で反射された測定光束以外の遠距離からの背景光の通過を遮るための遮蔽部材を備えていることを特徴とする請求項1乃至10のいずれか1項に記載の距離測定装置。 The distance measuring device according to claim 1, further comprising a shielding member that blocks passage of background light from a long distance other than the measurement light beam reflected by the target. .
JP2007167184A 2007-06-26 2007-06-26 Distance measuring apparatus Pending JP2009008404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167184A JP2009008404A (en) 2007-06-26 2007-06-26 Distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167184A JP2009008404A (en) 2007-06-26 2007-06-26 Distance measuring apparatus

Publications (1)

Publication Number Publication Date
JP2009008404A true JP2009008404A (en) 2009-01-15

Family

ID=40323645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167184A Pending JP2009008404A (en) 2007-06-26 2007-06-26 Distance measuring apparatus

Country Status (1)

Country Link
JP (1) JP2009008404A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018203B1 (en) 2009-03-25 2011-02-28 삼성전기주식회사 Distance Measuring Apparatus
JP2015161683A (en) * 2014-02-25 2015-09-07 ジック アーゲー Photoelectric sensor, and method of detecting objects in monitoring area
CN107367736A (en) * 2017-08-14 2017-11-21 杭州欧镭激光技术有限公司 A kind of high-rate laser range unit
EP3489715A1 (en) * 2017-11-27 2019-05-29 Riegl Laser Measurement Systems GmbH Optical device for detecting a light beam reflected on a distant target
JP2020530572A (en) * 2017-08-14 2020-10-22 杭州欧▲雷▼激光技▲術▼有限公司 Laser ranging device and how to use it
US11940559B2 (en) * 2018-12-11 2024-03-26 Baidu Usa Llc Light detection and range (LIDAR) device with component stacking for coaxial readout without splitter mirror for autonomous driving vehicles

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018203B1 (en) 2009-03-25 2011-02-28 삼성전기주식회사 Distance Measuring Apparatus
JP2015161683A (en) * 2014-02-25 2015-09-07 ジック アーゲー Photoelectric sensor, and method of detecting objects in monitoring area
CN107367736A (en) * 2017-08-14 2017-11-21 杭州欧镭激光技术有限公司 A kind of high-rate laser range unit
JP2020530572A (en) * 2017-08-14 2020-10-22 杭州欧▲雷▼激光技▲術▼有限公司 Laser ranging device and how to use it
JP2020530571A (en) * 2017-08-14 2020-10-22 杭州欧▲雷▼激光技▲術▼有限公司 High-speed laser ranging device
US11662466B2 (en) 2017-08-14 2023-05-30 Hangzhou Ole-Systems Co., Ltd. Laser distance measuring device and method of use thereof
US11681018B2 (en) 2017-08-14 2023-06-20 Hangzhou Ole-Systems Co., Ltd. High-speed laser distance measuring device
CN107367736B (en) * 2017-08-14 2024-01-19 杭州欧镭激光技术有限公司 High-speed laser range unit
EP3489715A1 (en) * 2017-11-27 2019-05-29 Riegl Laser Measurement Systems GmbH Optical device for detecting a light beam reflected on a distant target
US11360194B2 (en) * 2017-11-27 2022-06-14 Riegl Laser Measurement Systems Gmbh Optical device for detecting a reflected light beam
US11940559B2 (en) * 2018-12-11 2024-03-26 Baidu Usa Llc Light detection and range (LIDAR) device with component stacking for coaxial readout without splitter mirror for autonomous driving vehicles

Similar Documents

Publication Publication Date Title
JP4927182B2 (en) Laser distance meter
JP4301863B2 (en) Ranging device
WO2010038645A1 (en) Optical distance measuring device
JP2020079807A (en) Confocal displacement meter
JP6892734B2 (en) Light wave distance measuring device
JP4936818B2 (en) Surveyor with light splitting by dichroic prism
JP2009008404A (en) Distance measuring apparatus
JP6396696B2 (en) Light wave distance meter
JP2015223463A5 (en)
JPH09105625A (en) Distance-measuring apparatus
JP2015210098A (en) Laser radar device
JP2022000659A (en) Measurement device
KR100953749B1 (en) Distance measuring optical system
JP2000193748A (en) Laser distance-measuring device for large measurement range
JP6323056B2 (en) Photoelectric sensor
JP5154028B2 (en) Light wave distance meter
JP6867736B2 (en) Light wave distance measuring device
JP3634719B2 (en) Lightwave ranging finder with AF function
JP6425456B2 (en) Microscope device
KR102072623B1 (en) Optical beam forming unit, distance measuring device and laser illuminator
JP6788396B2 (en) Laser rangefinder
JP5624727B2 (en) Ranging device
JP3713185B2 (en) AF surveying machine
JPH06265773A (en) Autofocusing device for microscope
JP6888638B2 (en) Light source device and ranging sensor equipped with it