JP2006046775A - Air supply valve control device - Google Patents

Air supply valve control device Download PDF

Info

Publication number
JP2006046775A
JP2006046775A JP2004227527A JP2004227527A JP2006046775A JP 2006046775 A JP2006046775 A JP 2006046775A JP 2004227527 A JP2004227527 A JP 2004227527A JP 2004227527 A JP2004227527 A JP 2004227527A JP 2006046775 A JP2006046775 A JP 2006046775A
Authority
JP
Japan
Prior art keywords
air supply
supply valve
circuit
control device
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004227527A
Other languages
Japanese (ja)
Other versions
JP4726447B2 (en
Inventor
Motoyasu Terajima
幹育 寺島
Takaya Nagahisa
堅也 永久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2004227527A priority Critical patent/JP4726447B2/en
Publication of JP2006046775A publication Critical patent/JP2006046775A/en
Application granted granted Critical
Publication of JP4726447B2 publication Critical patent/JP4726447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air supply valve control device capable of immediately controlling an air supply valve to a closed state even in case that the air supply valve is in any opening/closing state at the time of tripping a house boiler. <P>SOLUTION: In this air supply valve control device for controlling the opening and closing of the air supply valve for supplying steam generated by the house boiler to the outside, a control for automatically closing the air supply valve from the present state to a full-close state is performed when the air supply valve is not in the full-closed state at the time of tripping the house boiler. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、所内ボイラが生成した蒸気を外部に供給する送気弁の開閉動作を制御する送気弁制御装置に関する。   The present invention relates to an air supply valve control device that controls an opening / closing operation of an air supply valve that supplies steam generated by an in-house boiler to the outside.

一般に、火力発電等の発電プラントには、所内ボイラが設置されている。該所内ボイラは、プラントのユニット(ボイラ、タービン、発電機等の発電に係る設備の総称)の起動及び停止時に必要となる補助蒸気の生成を行い、生成された補助蒸気は、送気弁を介して、これを必要とする装置(例えば、復水系統にて水に含まれる空気を脱気する装置、通風系統を起動するために予め空気を予熱する装置や燃料配管を加温するためのスチームトレース装置等)に供給される。   Generally, in-house boilers are installed in power plants such as thermal power generation. The in-house boiler generates auxiliary steam necessary for starting and stopping plant units (generic name for facilities related to power generation such as boilers, turbines, and generators), and the generated auxiliary steam uses an air supply valve. Devices that require this (for example, devices that degas air contained in water in the condensate system, devices that preheat air to activate the ventilation system, and fuel pipes for heating Supplied to a steam tracing device).

通常、この送気弁には、これを制御する装置が接続され、プログラム化された所定のシーケンス制御に基づいて当該送気弁の自動開閉制御を可能にしている。図3は、従来の送気弁制御装置が行うシーケンス制御の一部を論理回路で示した図である。   Normally, a device for controlling the air supply valve is connected to the air supply valve, and automatic opening / closing control of the air supply valve is made possible based on a programmed predetermined sequence control. FIG. 3 is a diagram showing a part of the sequence control performed by the conventional air supply valve control device as a logic circuit.

図3の回路図では、送気弁の開動作及び閉動作の自動制御ロジックが示されている。先ず、送気弁の開動作については、「送気弁開指令」信号がONになると、OR回路16を経て「送気弁インチング開」信号がONになることが示され、これにより、送気弁は開動作を行う(既に全開の場合はそのままである。)。また、AND回路15及びOR回路16からなる回路41は、「送気弁開指令」信号がOFFになっても送気弁が全閉でないこと(NOT回路14の出力信号がON)を条件として、「送気弁インチング開」信号をONに制御し、送気弁の開動作を続行させる制御を可能にする、いわゆる自己保持回路である。   In the circuit diagram of FIG. 3, the automatic control logic of the opening operation and closing operation of the air supply valve is shown. First, regarding the opening operation of the air supply valve, it is shown that when the “air supply valve open command” signal is turned ON, the “air supply valve inching open” signal is turned ON via the OR circuit 16, thereby The air valve opens (if it is already fully open, it remains). Further, the circuit 41 composed of the AND circuit 15 and the OR circuit 16 has a condition that the air supply valve is not fully closed (the output signal of the NOT circuit 14 is ON) even when the “air supply valve open command” signal is turned OFF. This is a so-called self-holding circuit that enables the control to continue the opening operation of the air supply valve by controlling the “air supply valve inching open” signal to ON.

一方、送気弁を閉動作させるには、AND回路11の入力信号が全てONとなることが必要となっている。即ち、「送気弁全開」信号がON、OR回路13の出力信号がON(NOT回路12の出力信号がON(燃料弁閉)又は「所内ボイラトリップ」信号ON)及びNOT回路14の出力信号がON(「送気弁全閉」信号がOFF)の場合のみに「送気弁インチング閉」信号がONになることが示されている。この条件が成立すると、送気弁に閉動作を行わせることができる。   On the other hand, in order to close the air supply valve, all input signals of the AND circuit 11 must be turned on. That is, the “air supply valve fully open” signal is ON, the output signal of the OR circuit 13 is ON (the output signal of the NOT circuit 12 is ON (fuel valve closed) or the “in-house boiler trip” signal is ON), and the output signal of the NOT circuit 14 It is shown that the “air supply valve inching closed” signal is turned on only when is ON (the “air supply valve fully closed” signal is OFF). When this condition is satisfied, the air supply valve can be closed.

ここで、所内ボイラのトリップとは、所内ボイラに異常(例えば、圧力高、水レベル低(循環量少)、空気・燃料等の供給不足など)が発生し、これを検出した保護装置により所内ボイラが自動停止制御される状態をいう。そして、かかる所内ボイラのトリップ時には、送気弁を閉止(全閉)する必要が生じる。これは、所内ボイラ起動時において、供給する補助蒸気の圧力等が所定の条件を満たすまでは補助蒸気の供給を行わず所内ボイラを閉状態に維持する必要があるからである。   Here, the trip of the in-house boiler refers to an abnormality in the in-house boiler (for example, high pressure, low water level (low circulation), insufficient supply of air, fuel, etc.) A state in which the boiler is automatically stopped. When such a local boiler trips, the air supply valve needs to be closed (fully closed). This is because it is necessary to maintain the in-house boiler in a closed state without supplying the auxiliary steam until the pressure of the auxiliary steam to be supplied satisfies a predetermined condition at the time of starting the in-house boiler.

しかしながら、図3の回路図に基づく従来の制御シーケンスでは、「所内ボイラトリップ」信号がONになっても、送気弁が全開でない限りは、「送気弁インチング閉」信号がONにならず、送気弁を自動的に閉止させることができない。つまり、上記従来の制御シーケンスでは、所内ボイラが通常運転時にトリップした場合のみを想定し、送気弁が開動作の途中にトリップした場合の自動閉止ロジックについては組み込まれていなかった。そして、従来では、かかる場合、いったん送気弁が全開するまで待ち、それから作業員等の操作(中央制御室等からの強制信号(送気弁閉指令))によって送気弁を閉止させるという対応を行っていた。   However, in the conventional control sequence based on the circuit diagram of FIG. 3, even if the “in-house boiler trip” signal is turned ON, the “air supply valve inching closed” signal is not turned ON unless the air supply valve is fully opened. The air supply valve cannot be closed automatically. That is, in the above conventional control sequence, only the case where the in-house boiler trips during normal operation is assumed, and the automatic closing logic when the air supply valve trips during the opening operation is not incorporated. Conventionally, in such a case, it is necessary to wait until the air supply valve is fully opened, and then close the air supply valve by an operation of a worker or the like (forced signal (air supply valve close command) from the central control room or the like). Had gone.

しかし、このような従来の対応では、作業員等が当該操作を忘れてしまうなどのミスが起こると、送気弁が開状態のまま所内ボイラの再起動が行われてしまう虞がある。そうすると、起動(点火)から補助蒸気が供給できるまでの準備時間(補助蒸気圧力が一定圧力なるまでの昇圧時間)が長くなり、その分の燃料代等の動力費が増加してしまうことになる。また、送気弁が開状態となっているため、起動後しばらくは、外部装置等に低温低圧状態の蒸気(温水)が供給されてしまうので、配管、装置等を損壊させてしまう要因にもなり、また、補助蒸気温度が異常に上昇し過ぎてしまう危険性もある。   However, in such a conventional response, if an error occurs such as an operator forgetting the operation, the in-house boiler may be restarted with the air supply valve open. If it does so, the preparation time (start-up time until auxiliary steam pressure will become fixed pressure) after starting (ignition) until it can supply auxiliary steam will become long, and power expenses, such as a fuel cost, will increase by that much. . In addition, since the air supply valve is open, steam (hot water) at low temperature and low pressure will be supplied to the external device for a while after startup, which may cause damage to the piping, equipment, etc. There is also a risk that the auxiliary steam temperature will rise abnormally excessively.

本発明は、上記従来の問題を解決するためになされたものであり、所内ボイラトリップ発生時に、送気弁が開動作の途中状態であっても、自動的に閉止できるように制御する送気弁制御装置を提供することを目的とする。   The present invention has been made in order to solve the above-described conventional problems. When an in-house boiler trip occurs, the air supply is controlled so that it can be automatically closed even when the air supply valve is in the middle of the opening operation. An object is to provide a valve control device.

本発明に係る送気制御装置は、所内ボイラが生成した蒸気を外部に供給する送気弁の開閉を制御する装置であって、前記所内ボイラのトリップ時に、前記送気弁が全閉状態となっていない場合には、自動的に該送気弁を現在の状態から全閉するまで閉動作させる制御を行うことを特徴とする。   An air supply control device according to the present invention is an apparatus that controls opening and closing of an air supply valve that supplies steam generated by an in-house boiler to the outside, and when the in-house boiler trips, the air supply valve is in a fully closed state. If not, control is performed to automatically close the air supply valve from the current state until it is fully closed.

上記送気弁制御装置によれば、所内ボイラトリップ発生時に、送気弁が全閉状態となっていない限りは、送気弁を閉止させる制御シーケンスに基づき制御を行うので、たとえ、当該トリップ時に送気弁が開動作の途中であっても直ちに閉動作制御に切り替わり、送気弁を閉止させる。したがって、当該トリップ後、送気弁が開状態のまま所内ボイラが再起動されることがなく、安全性の向上が図れる。   According to the above air supply valve control device, when an internal boiler trip occurs, unless the air supply valve is fully closed, control is performed based on the control sequence for closing the air supply valve. Even if the air supply valve is in the process of opening, it immediately switches to the closing operation control, and the air supply valve is closed. Therefore, after the trip, the in-house boiler is not restarted while the air supply valve is open, and safety can be improved.

以上の如く、本発明は、所内ボイラトリップ時において、送気弁の開閉状態が如何なる場合であっても、直ちに該送気弁を閉止状態に制御することができるので、所内ボイラ再起動における動力費のコストアップや異常圧力及び異常温度の蒸気(温水)を供給してしまう危険性を排除でき、安全性の向上を図れる。   As described above, the present invention can immediately control the air supply valve to be in a closed state regardless of the open / closed state of the air supply valve when the internal boiler trips. Costs can be increased and the danger of supplying steam (hot water) with abnormal pressure and abnormal temperature can be eliminated, and safety can be improved.

以下、本発明に係る送気弁制御装置の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of an air supply valve control device according to the present invention will be described with reference to the drawings.

図1は、本実施形態に係る送気弁制御装置を含む補助蒸気供給システムの概念図である。図1において、所内ボイラ1は、発電プラント内の所定の箇所に設置され、ユニットの起動及び停止時、つまりユニットボイラからの主蒸気が供給されない期間に、その代用となる蒸気(補助蒸気)を生成し、送気弁2を介して、空気脱気装置、空気予熱装置やスチームトレース装置等に供給を行う。   FIG. 1 is a conceptual diagram of an auxiliary steam supply system including an air supply valve control device according to the present embodiment. In FIG. 1, an in-house boiler 1 is installed at a predetermined location in a power plant, and substitutes steam (auxiliary steam) when starting and stopping the unit, that is, during a period when main steam from the unit boiler is not supplied. It produces | generates and supplies to an air deaeration apparatus, an air preheating apparatus, a steam trace apparatus, etc. via the air supply valve 2. FIG.

保護装置3は、所内ボイラ1の状態(蒸気圧力、蒸気レベル等)を監視し、異常(圧力高、レベル低等)を検出した場合は、所内ボイラ1の運転を停止(トリップ)させると共に、送気弁制御装置4にトリップ信号(ON)を出力する。   The protection device 3 monitors the state of the in-house boiler 1 (steam pressure, steam level, etc.), and when an abnormality (high pressure, low level, etc.) is detected, the operation of the in-house boiler 1 is stopped (tripped) A trip signal (ON) is output to the air supply valve control device 4.

送気弁制御装置4は、該トリップ信号、送気弁2の状態に関する信号及び図示しない中央制御装置からの操作信号を入力パラメータとして、予め決められた制御シーケンスに基づき送気弁2の開閉制御を行う。該制御シーケンスはプログラム化され、送気弁制御装置4の内部に備えられた図示しない記憶装置(例えば、ROM)に記憶されている。該プログラムは、同様に装置内部に備えられたCPU等の処理装置(図示せず)によって、読み出され実行される。   The air supply valve control device 4 uses the trip signal, a signal related to the state of the air supply valve 2 and an operation signal from a central control device (not shown) as input parameters to control opening / closing of the air supply valve 2 based on a predetermined control sequence. I do. The control sequence is programmed and stored in a storage device (for example, ROM) (not shown) provided in the air supply valve control device 4. Similarly, the program is read and executed by a processing device (not shown) such as a CPU provided in the device.

本実施形態に係る送気弁制御装置4は、その制御シーケンスにおいて、保護装置3からのトリップ信号(ON)入力時に、たとえ送気弁2が開動作途中の状態(全閉かつ全開でない状態)であっても直ちに閉動作に切り替えることができるロジックを備えている点に特徴を持つ。   In the air supply valve control device 4 according to the present embodiment, in the control sequence, when the trip signal (ON) is input from the protection device 3, the air supply valve 2 is in the middle of the opening operation (a state where the air supply valve 2 is fully closed and not fully open). Even so, it has a feature in that it has a logic that can be immediately switched to the closing operation.

以下、かかる特徴点について図2を用いて説明する。   Hereinafter, such feature points will be described with reference to FIG.

図2は、本実施形態に係る送気弁制御装置4が行うシーケンス制御の一部を論理回路で示した図である。図2には、図3と同様に送気弁の開動作及び閉動作の自動制御ロジックが示されている。   FIG. 2 is a diagram showing a part of sequence control performed by the air supply valve control device 4 according to the present embodiment in a logic circuit. FIG. 2 shows the automatic control logic of the opening and closing operations of the air supply valve as in FIG.

図2において、21及び24が、従来の回路(図3)にはない新たに追加された回路(ロジック)である。また、回路28は図3の回路31に相当する自己保持回路であり、回路31との相違点は、AND回路15に、破線部で示されたラインが新たに入力されている点である。尚、図4で示す回路と図3で示す従来の回路との共通部については、同一符号を付し、説明を省略する。   In FIG. 2, 21 and 24 are newly added circuits (logic) that are not present in the conventional circuit (FIG. 3). Further, the circuit 28 is a self-holding circuit corresponding to the circuit 31 of FIG. 3, and a difference from the circuit 31 is that a line indicated by a broken line is newly input to the AND circuit 15. The common parts of the circuit shown in FIG. 4 and the conventional circuit shown in FIG. 3 are denoted by the same reference numerals and description thereof is omitted.

回路21は、AND回路22及びOR回路23からなり、AND回路22には、「送気弁全開」信号及び「所内ボイラトリップ」信号が入力される構成となっている。また、OR回路23には、AND回路22の出力信号及びOR回路13の出力信号が入力される。OR回路23の出力信号は、AND回路11の入力信号となる。   The circuit 21 includes an AND circuit 22 and an OR circuit 23. The AND circuit 22 is configured to receive an “air supply valve fully open” signal and an “in-house boiler trip” signal. Further, the output signal of the AND circuit 22 and the output signal of the OR circuit 13 are input to the OR circuit 23. The output signal of the OR circuit 23 becomes the input signal of the AND circuit 11.

かかる回路21の追加によって、OR回路13の出力信号がONかつNOT回路14の出力信号がON(全閉状態でない)であれば、AND回路11の出力信号がONになり、それを入力するOR回路27の出力信号もONになるため、「送気弁インチング閉」信号はONになり、送気弁に閉動作を行わせることができる。   By adding the circuit 21, if the output signal of the OR circuit 13 is ON and the output signal of the NOT circuit 14 is ON (not in a fully closed state), the output signal of the AND circuit 11 is turned ON and the OR that inputs it is input. Since the output signal of the circuit 27 is also turned ON, the “air supply valve inching close” signal is turned ON, and the air supply valve can be closed.

OR回路13の入力信号は、NOT回路12の出力信号及び「所内ボイラトリップ」信号であることから、回路21によって、「所内ボイラトリップ」信号がONになると、送気弁が全開であるか否かに拘わらず、直ちに閉動作制御ができる制御シーケンスが構築されていることになる。尚、回路21の追加によって、NOT回路12の出力信号がON(「燃料弁開」信号OFF)の場合も直ちに閉動作制御が行われるようになるが、これによる不都合が生じることはない。その理由は、そもそも燃料弁が閉じている場合(所内ボイラ1内で燃焼が行われていない場合)は、補助蒸気を供給できる状態でないため、送気弁2が閉止されていなければならないからである。   Since the input signal of the OR circuit 13 is the output signal of the NOT circuit 12 and the “in-house boiler trip” signal, when the “in-house boiler trip” signal is turned on by the circuit 21, whether or not the air supply valve is fully opened. Regardless, a control sequence that can immediately control the closing operation is established. The addition of the circuit 21 allows the closing operation control to be performed immediately even when the output signal of the NOT circuit 12 is ON (“fuel valve open” signal OFF), but this does not cause any inconvenience. The reason for this is that when the fuel valve is closed (when combustion is not performed in the in-house boiler 1), auxiliary steam cannot be supplied, so the air supply valve 2 must be closed. is there.

回路24は、NOT回路25、AND回路26及びOR回路27からなり、NOT回路25には、「送気弁全閉」信号が入力され、AND回路26には、NOT回路25の出力信号及びOR回路27の出力信号が入力され、OR回路27にはAND回路26の出力信号及びAND回路11の出力信号が入力される構成となっている。   The circuit 24 includes a NOT circuit 25, an AND circuit 26, and an OR circuit 27, and the “air supply valve fully closed” signal is input to the NOT circuit 25, and the output signal of the NOT circuit 25 and the OR circuit are input to the AND circuit 26. The output signal of the circuit 27 is input, and the output signal of the AND circuit 26 and the output signal of the AND circuit 11 are input to the OR circuit 27.

かかる構成の回路24は、AND回路11の出力信号がいったんONになると、その後にOFFになっても、送気弁2が全閉されるまでは、閉動作を続行させる制御を行うという、いわゆる自己保持回路としての役割を有している。具体的には、例えば、ボイラトリップ信号がいったんONになったものの、送気弁2が閉止される前に何らかの理由でリセット(OFF)された場合等に有効となる。   The circuit 24 having such a configuration is a so-called control in which once the output signal of the AND circuit 11 is turned ON, control is performed to continue the closing operation until the air supply valve 2 is fully closed even if the output signal is turned OFF thereafter. It has a role as a self-holding circuit. Specifically, for example, it is effective when the boiler trip signal is once turned ON, but is reset (OFF) for some reason before the air supply valve 2 is closed.

回路28は、図3の従来の回路31と同様に「送気弁開指令」信号がONからOFFになっても送気弁の開動作を続行させる制御を行う自己保持回路として機能する。従来との変更点は、NOT回路29が追加され、この出力信号がAND回路15に入力される構成となっている点である。かかる変更により、たとえ、自己保持回路として機能中(「送気弁開指令」信号OFFで、「送気弁インチング開」信号ON)でも、OR回路13の出力信号がON(即ち、燃料弁閉又はトリップ状態)になると、「送気弁インチング開」信号を直ちにOFFにできる。従って、送気弁2の開動作制御から閉動作制御への切替がスムーズにできる。   The circuit 28 functions as a self-holding circuit that performs control to continue the opening operation of the air supply valve even when the “air supply valve opening command” signal is turned from ON to OFF, as in the conventional circuit 31 of FIG. The difference from the prior art is that a NOT circuit 29 is added and this output signal is input to the AND circuit 15. With this change, even if the self-holding circuit is functioning (the “air supply valve open command” signal is OFF and the “air supply valve inching open” signal is ON), the output signal of the OR circuit 13 is ON (ie, the fuel valve is closed). (Or trip state), the “air supply valve inching open” signal can be immediately turned OFF. Therefore, switching from the opening operation control of the air supply valve 2 to the closing operation control can be performed smoothly.

以上のように本実施形態の送気弁制御装置によれば、送気弁が開いている状態で、所内ボイラ1がトリップすると、自動的に送気弁2の閉動作制御を行うことができ、当該トリップ後の所内ボイラ1の再起動を支障なく行うことができる。   As described above, according to the air supply valve control device of the present embodiment, when the in-house boiler 1 trips in a state where the air supply valve is open, it is possible to automatically control the closing operation of the air supply valve 2. The in-house boiler 1 can be restarted without any trouble after the trip.

尚、本発明に係る送気弁制御装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   The air supply valve control device according to the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば、上記実施形態では、送気弁制御装置を送気弁の制御を行う独立した装置として示しているが、これに限定されず、例えば、所内ボイラ制御システムの一機能として適用することも可能である。   For example, in the above-described embodiment, the air supply valve control device is shown as an independent device that controls the air supply valve. However, the present invention is not limited to this. For example, the air supply valve control device can also be applied as a function of an in-house boiler control system. It is.

本発明の一実施形態に係る補助蒸気供給システムの概念図である。1 is a conceptual diagram of an auxiliary steam supply system according to an embodiment of the present invention. 同実施形態に係る送気弁制御装置が行う開閉制御の論理回路図である。It is a logic circuit diagram of opening and closing control performed by the air supply valve control device according to the same embodiment. 従来の送気弁制御装置が行う開閉制御の論理回路図である。It is a logic circuit diagram of the opening / closing control which the conventional air supply valve control apparatus performs.

符号の説明Explanation of symbols

1 所内ボイラ
2 送気弁
3 保護装置
4 送気弁制御装置
1 In-house boiler 2 Air supply valve 3 Protection device 4 Air supply valve control device

Claims (1)

所内ボイラが生成した蒸気を外部に供給する送気弁の開閉を制御する装置であって、
前記所内ボイラのトリップ時に、前記送気弁が全閉状態となっていない場合には、自動的に該送気弁を現在の状態から全閉するまで閉動作させる制御を行うことを特徴とする送気弁制御装置。
A device that controls the opening and closing of an air supply valve that supplies steam generated by the in-house boiler to the outside,
If the air supply valve is not fully closed when the internal boiler trips, the air supply valve is automatically controlled to be closed until it is fully closed from the current state. Air supply valve control device.
JP2004227527A 2004-08-04 2004-08-04 Air supply valve controller Expired - Lifetime JP4726447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004227527A JP4726447B2 (en) 2004-08-04 2004-08-04 Air supply valve controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227527A JP4726447B2 (en) 2004-08-04 2004-08-04 Air supply valve controller

Publications (2)

Publication Number Publication Date
JP2006046775A true JP2006046775A (en) 2006-02-16
JP4726447B2 JP4726447B2 (en) 2011-07-20

Family

ID=36025526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227527A Expired - Lifetime JP4726447B2 (en) 2004-08-04 2004-08-04 Air supply valve controller

Country Status (1)

Country Link
JP (1) JP4726447B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273002A (en) * 1985-09-27 1987-04-03 三菱重工業株式会社 Method of controlling steam pressure in variable pressure operation boiler
JPS63220002A (en) * 1987-03-10 1988-09-13 株式会社タクマ Boiler automatic drum-number control method
JPH01305201A (en) * 1988-05-31 1989-12-08 Takuma Co Ltd Method of automatically controlling number of drums for boiler
JP2002070506A (en) * 2000-08-31 2002-03-08 Toshiba Corp Combined cycle power generation plant and warming and cooling steam supply method of combined cycle power generation plant
JP2003232501A (en) * 2002-02-08 2003-08-22 Nippon Reonaado Shokai:Kk Automatic steam supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273002A (en) * 1985-09-27 1987-04-03 三菱重工業株式会社 Method of controlling steam pressure in variable pressure operation boiler
JPS63220002A (en) * 1987-03-10 1988-09-13 株式会社タクマ Boiler automatic drum-number control method
JPH01305201A (en) * 1988-05-31 1989-12-08 Takuma Co Ltd Method of automatically controlling number of drums for boiler
JP2002070506A (en) * 2000-08-31 2002-03-08 Toshiba Corp Combined cycle power generation plant and warming and cooling steam supply method of combined cycle power generation plant
JP2003232501A (en) * 2002-02-08 2003-08-22 Nippon Reonaado Shokai:Kk Automatic steam supply device

Also Published As

Publication number Publication date
JP4726447B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP2008069763A (en) Load setter follow-up boiler-turbine parallel control runback control system
JP2013155919A (en) Storage type hot water supply system
JP6280778B2 (en) Fuel cell system
EP0928882B1 (en) Steam cooling apparatus for gas turbine
JP4726447B2 (en) Air supply valve controller
JP2010216730A (en) Power generation unit and method of starting power generation unit
JP2014071997A (en) Cogeneration apparatus
JP2009052813A (en) Instantaneous hot water supply control device and instantaneous hot water system comprising the same
JP4901335B2 (en) How to deal with auxiliary boiler trip while boiler unit is running
JP2018146129A (en) Hot water supply system
JP5545099B2 (en) Hot water system
JP2006083731A (en) Steam turbine power generating unit and its operation method
JP4560481B2 (en) Steam turbine plant
JP4162371B2 (en) Start-up control method for single-shaft combined power plant
JP2006329624A (en) Automatic boiler controller
JP2007285220A (en) Combined cycle power generation facility
JP2007252099A (en) Power supply device
JP2006057929A (en) Auxiliary steam pressure control method for once-through boiler
JPS6124645Y2 (en)
JPH024102A (en) Reheater protection device and thermal power plant
JPH0195203A (en) Temperature controller
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPH0633705A (en) Steam turbine control device
JP2019011879A (en) Heat recovery hot water supply system
CN114251646A (en) Steam generator liquid level control method suitable for main pump start-stop working condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Ref document number: 4726447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250