JP2008069763A - Load setter follow-up boiler-turbine parallel control runback control system - Google Patents

Load setter follow-up boiler-turbine parallel control runback control system Download PDF

Info

Publication number
JP2008069763A
JP2008069763A JP2006275768A JP2006275768A JP2008069763A JP 2008069763 A JP2008069763 A JP 2008069763A JP 2006275768 A JP2006275768 A JP 2006275768A JP 2006275768 A JP2006275768 A JP 2006275768A JP 2008069763 A JP2008069763 A JP 2008069763A
Authority
JP
Japan
Prior art keywords
runback
load
turbine
command
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006275768A
Other languages
Japanese (ja)
Other versions
JP4406908B2 (en
Inventor
Yoshio Sekine
喜夫 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006275768A priority Critical patent/JP4406908B2/en
Publication of JP2008069763A publication Critical patent/JP2008069763A/en
Application granted granted Critical
Publication of JP4406908B2 publication Critical patent/JP4406908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable safe and certain runback drive in a thermal power plant controlled by a boiler-turbine cooperative control system. <P>SOLUTION: Output of a load setter is so planned as to serve as a runback target load command also at the time of runback by having the load setter follow the output of a runback fall rate setter. As a result, since the load setter maintains the runback target load command value as it is even after resetting the runback, a stability of the drive can be improved at the time of transition to the boiler-turbine cooperative control. Furthermore, controlled variables such as main steam pressure and drum level are changed not excessively at the time of the runback by the parallel control with a fall rate different from that of the boiler by separating the target load command into a boiler input amount control command and a turbine control valve aperture control command for providing a change rate limitter also in the turbine control valve aperture control command. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はボイラ、タービン協調制御方式をもって運転制御される火力発電プラントにおいて給水ポンプ、押し込み通風機(FDF)、吸引通風機(IDF)等の主要補機の一台が事故停止喪失した場合に、残った補機で運転可能なところまで負荷を降下させてユニット停止を防ぐランバック運転機能に関する。  In the case of a thermal power plant that is operated and controlled with a boiler and a turbine cooperative control system, the present invention, when one of the main auxiliary equipment such as a feed pump, a forced draft fan (FDF), a suction ventilator (IDF), etc. loses an accidental stop, It relates to the run-back operation function that prevents the unit from stopping by reducing the load to the point where it can be operated with the remaining auxiliary equipment.

図2は現在火力発電プラントで一般的に採用されているランバック制御方式の概要図である。本従来型ランバック制御方式ではランバック制御回路は
1) ランバック要因毎の目標値選択ロジック回路47
2) ランバック目標負荷設定値48
3) ランバック検出49
4) 切替器(低選択器のケースもある)45
5) ランバック降下レート設定器46
で構成され、負荷設定器41、負荷変化率設定器43で構成される出力指令設定回路の下流に配置されている。何れかの補機が停止してランバックが発生するとその要因に対応したランバック目標負荷設定値48が選択されてランバック降下レート設定器46で設定される所定の降下レートでランバック目標負荷指令が目標値まで下げられる。ランバック中の運転モードは目標値の降下によるボイラ入力量降下によって下がる主蒸気圧力をタービン加減弁が制御し、その結果発電機出力(MW)がボイラ入力量とバランスするタービン追従モードである。ランバック中、負荷設定器41及び負荷変化率設定器43はランバック制御回路と遮断されておりその間は発電機出力(MW)に追従している。即ちMWがランバックリセット時の待機信号になっている。負荷設定器41及び負荷変化率設定器43のMW追従は負荷変化率設定器43の後方に配置された切替器44を介して前に戻るという不自然な形である。このようにランバック中は信号の流れが二分された煩雑な構成になっている。ランバックリセット時にはランバック目標負荷指令はランバック目標負荷設定値48からその時のMWに相当した負荷設定器41の値に替わるのでランバック目標負荷指令が目標値からずれてしまう。尚、ランバックのリセットは当該ランバック検出49のリセットによる方法である。
FIG. 2 is a schematic diagram of a run-back control method that is generally employed in thermal power plants. In this conventional runback control system, the runback control circuit is 1) target value selection logic circuit 47 for each runback factor.
2) Runback target load setting value 48
3) Runback detection 49
4) Switcher (also available with low selector) 45
5) Runback descent rate setter 46
And is arranged downstream of an output command setting circuit including a load setting unit 41 and a load change rate setting unit 43. When any auxiliary machine stops and runback occurs, the runback target load set value 48 corresponding to the cause is selected and the runback target load is set at a predetermined descent rate set by the runback descent rate setter 46. The command is lowered to the target value. The operation mode during the runback is a turbine follow-up mode in which the turbine control valve controls the main steam pressure that is lowered by the boiler input amount drop due to the drop in the target value, and as a result, the generator output (MW) balances with the boiler input amount. During the runback, the load setting device 41 and the load change rate setting device 43 are disconnected from the runback control circuit and follow the generator output (MW) during that time. That is, the MW is a standby signal at the time of a runback reset. The MW tracking of the load setting device 41 and the load change rate setting device 43 is an unnatural form of returning to the front through the switch 44 disposed behind the load change rate setting device 43. In this way, the signal flow is divided into two complicated parts during the runback. At the time of the runback reset, the runback target load command is changed from the runback target load set value 48 to the value of the load setting device 41 corresponding to the MW at that time, so the runback target load command is deviated from the target value. Note that the resetting of the runback is a method by resetting the runback detection 49.

ランバック中の運転方式がタービン追従方式ではボイラ入力量を降下しその結果が主蒸気圧力に効いてからタービン加減弁が主蒸気圧力を制御することによって蒸気流量が下がる運転方式であるので蒸気流量の絞り込みが遅くなるという欠陥がある。
ドラムボイラ、変圧貫流ボイラ共にランバック発生と同時にボイラ入力量と並行して蒸気流量即ちタービン加減弁を絞り込むことが効果的である。特に給水ポンプ、ランバックではタービン追従方式の欠陥が顕著である。
If the operation method during run-back is the turbine follow-up method, the steam input is reduced and the steam flow rate is reduced by the turbine control valve controlling the main steam pressure after the result is effective on the main steam pressure. There is a flaw that slows down the search.
It is effective to narrow down the steam flow rate, that is, the turbine control valve in parallel with the boiler input amount simultaneously with the occurrence of the runback in both the drum boiler and the transformer once-through boiler. In particular, defects in the turbine follow-up method are significant in feed pumps and runbacks.

なお、本願発明に関する公知技術として次の特許文献を挙げることができる。In addition, the following patent document can be mentioned as a well-known technique regarding this invention.

[特許
特開2002−41094号公報 特開平10−122549号
[Patent
JP 2002-41094 A JP-A-10-122549

発明が解決しようとする問題Problems to be solved by the invention

上述したように従来技術では、あるランバック要因で設定されるランバック目標負荷設定値がランバックリセット後負荷設定器の出力として保持されない。  As described above, in the related art, the runback target load set value set by a certain runback factor is not held as the output of the load setter after the runback reset.

従来のランバック制御回路ではランバック要因毎に異なる目標負荷設定に対しそれぞれ目標負荷設定値を設けているのでロジックの構成が極めて煩雑である。
例えば給水ポンプ喪失ランバックを例にとると、タービン駆動給水ポンプ(TBFP)が2台、電動駆動給水ポンプが(MBFP)が1台という一般的なプラントの場合、TBFP2台運転中に一台停止した場合にはランバック目標負荷は50%、3台運転中にTBFPが一台停止した場合には80%負荷、MBFPが一台残った場合には30%の目標負荷とするとき従来システムでは各々の要因毎にロジックを作成してその目標負荷設定値を選択するという煩雑なロジックを構成している。
In the conventional runback control circuit, the target load setting value is provided for each different target load setting for each runback factor, so that the logic configuration is extremely complicated.
For example, in the case of a runback that has lost feedwater pumps, in the case of a typical plant with two turbine-driven feedwater pumps (TBFP) and one electrically-driven feedwater pump (MBFP), one unit stops during operation of two TBFPs. In the conventional system, the runback target load is 50%, 80% load when one TBFP stops during operation of 3 units, and 30% target load when one MBFP remains. Complicated logic is formed in which logic is created for each factor and the target load setting value is selected.

ランバック中の運転モードがタービン追従モードである為ランバックと同時にボイラ入力量の降下と並行して蒸気流量を絞り込むことが出来ない。  Since the operation mode during the runback is the turbine follow-up mode, the steam flow rate cannot be reduced simultaneously with the decrease in the boiler input amount at the same time as the runback.

ランバックリセット方法。従来の方法ではランバック中にタービン側に不測の事態が発生してMWが急激に下がり、そこでタービンマスターが手動になった場合MWトラッキングモード運転になってボイラ入力指令がMWに追従して下がり最悪失火に至る危険性がある。Runback reset method. In the conventional method, an unexpected situation occurs on the turbine side during the runback, and the MW suddenly drops. If the turbine master is set to manual operation, the MW tracking mode is activated and the boiler input command follows the MW. Risk of worst misfire.

信号の流れに沿ったシンプルな回路構成とすること。  A simple circuit configuration that follows the signal flow.

本発明は以上を解決する為に成されたものであり、補機の喪失という苛酷な条件でのランバック運転をユニット停止させることなく安全且つ確実に実行できるシステムをシンプルな回路構成として提供する事を目的とする。  The present invention has been made to solve the above problems, and provides a simple circuit configuration that can safely and reliably execute a runback operation under severe conditions such as loss of auxiliary equipment without stopping the unit. For the purpose.

課題を解決するための手段Means for solving the problem

本発明は以下の態様に係わる。
1、火力発電プラントのボイラ、タービン協調制御装置においてランバック運転を下記の 形態で行う方法。
1) ランバック目標負荷指令を所定の変化率をもって降下させるとき負荷設定器及び 負苛変化率設定器を追従動作としてランバック降下レート設定器の出力に追従させ る。
2) ランバック目標負荷指令をボイラ入力量制御指令とタービン加減弁開度制御指令 に分けて、タービン加減弁開度指令中に変化率制限器を設けタービン加減弁を制御 する。
2、ひとつのランバック目標負荷設定器を置きランバック目標負苛指令が当該目標値に到 達した事を検出して目標値に保持させる方法。
3、タービン加減弁開度が変圧域では一定の変圧貫流ボイラのために当該ランバック毎に タイムディレイとディジタル加算でバイアス値を作りこれを変化率制限器によってター ビン加減弁開度指令にバイアスをかける方法。
4 ディジタル加算を使用して給水ポンプ(BFP)ランバック時の目標負荷設定をする 方法。
5、信号の流れを発電機出力(MW)から負荷設定器、負荷変化率設定器と一本化して発 電機出力追従モード(MWトラッキングモード)運転を行う方法。
6、ランバックリセットを時間で行う方法。
The present invention relates to the following aspects.
1. A method of performing a run-back operation in the following form in a boiler and turbine cooperative control device of a thermal power plant.
1) When the runback target load command is lowered at a predetermined rate of change, the load setter and negative change rate setter are made to follow the output of the runback drop rate setter as a follow-up operation.
2) Divide the runback target load command into the boiler input amount control command and the turbine control valve opening control command, and control the turbine control valve by installing a change rate limiter in the turbine control valve opening control command.
2. A method of setting one runback target load setting device and detecting that the runback target load command has reached the target value and holding it at the target value.
3. For a transformer once-through boiler where the turbine valve opening is constant in the transformation range, a bias value is created by time delay and digital addition for each runback, and this is biased to the turbine valve opening command by the change rate limiter. How to apply.
4 A method to set the target load at the time of water pump (BFP) run-back using digital addition.
5. A method in which the signal flow is unified from the generator output (MW) to the load setter and load change rate setter to perform the generator output follow-up mode (MW tracking mode) operation.
6. Method to perform runback reset by time.

発明の効果The invention's effect

ランバック運転及びMWトラッキングモード運転時の信号の流れが一本化し回路構成が極めてシンプルな構成になった。又ランバック要因毎に設けられていたランバック目標負荷設定値選択ロジック回路、目標負荷設定値、検出回路が簡略化された。
ランバック中、負荷設定器がランバック降下レート設定器の出力に追従するのでランバックリセット後もランバック目標負荷指令の変動がなくなりボイラ、タービン協調制御モードへ移行の際に安定した運転が得られるようになった。更にランバック発生と同時にボイラ入力量と並行してタービン加減弁を変化速度が調節可能な変化率制限動作によって目標開度まで降下させることが出来るようになったことにより、ボイラの被制御量の変動を少なくすることが可能となった。特に従来システムではユニットトリップ(停止)に至ることが多かったドラムボイラにおける給水ポンプ喪失ランバックにおいて本発明の結果ドラムレベルの過大な変動が押さえられ安定したランバック運転が得られるようになった。
変圧貫流ボイラにおいても同じく給水ポンプ喪失ランバック時、給水ポンプ過負荷トリップを防止するのにタービン加減弁をボイラ入力量と並行して絞ることで効果を上げることができた。又ランバックリセットを時間で行う方法によって次のような場合での安全が確保された。若しランバック中にタービン側に不測の事態が発生してMWが急激に下がり過ぎて、そこでタービンマスターが手動に切替わった場合、ボイラ入力量制御指令はMWに追従して下がらずに保持しているのでボイラ運転の混乱を避けることが出来る。
The signal flow during runback operation and MW tracking mode operation is unified, and the circuit configuration is extremely simple. In addition, the runback target load set value selection logic circuit, the target load set value, and the detection circuit provided for each runback factor have been simplified.
During the runback, the load setter follows the output of the runback descent rate setter, so there is no change in the runback target load command even after the runback reset and stable operation is obtained when shifting to the boiler / turbine cooperative control mode. It came to be able to. Furthermore, the turbine controlled valve can be lowered to the target opening by the rate-of-change limiting operation that can adjust the change speed in parallel with the boiler input amount at the same time as the runback occurs. It became possible to reduce the fluctuation. In particular, in the conventional system, in a drum boiler runback that often results in a unit trip (stop), excessive runoff of the drum level is suppressed and stable runback operation can be obtained as a result of the present invention.
Similarly, in a transformer once-through boiler, when the feedwater pump was lost, the turbine control valve was throttled in parallel with the boiler input to prevent the feedwater pump overload trip. In addition, safety in the following cases was ensured by the method of performing the runback reset by time. If an unexpected situation occurs on the turbine side during the runback and the MW falls too rapidly, and the turbine master is switched to manual operation, the boiler input amount control command follows the MW and does not drop. So that the confusion of boiler operation can be avoided.

以下、本発明の実施の形態を図面に基づき詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1及び図3、図4、図5は本発明の実施の形態に係わり、図1は機能図、図3はランバック目標負荷設定及びリセット回路の詳細図、図4はタービン加減弁制御指令回路図である。図5は給水ポンプ喪失ランバック時の目標負荷設定回路である。  1, 3, 4, and 5 relate to an embodiment of the present invention, FIG. 1 is a functional diagram, FIG. 3 is a detailed diagram of a runback target load setting and reset circuit, and FIG. 4 is a turbine control valve control command. It is a circuit diagram. FIG. 5 shows a target load setting circuit at the time when the feed water pump is lost.

図1で示すようにランバック目標負荷設定器1、切替器10及び2、ランバック降下レート設定器3は負荷設定器4、負荷変化率設定器6の上流に配置される。ランバックが発生すると切替器10、及び2はランバック目標負荷設定器1からの信号に切替わる。ここで1はランバック要因中の一番低い値に設定される(例えば25%相当)。この値が3にかかり3の出力は予め設定された降下レート(通常100%/分)で降下する。3の出力は降下の途中でランバック目標負荷指令が目標値に到達したところで切替器10がb側に切替わり保持、停止する。4及び6はランバック中追従動作(Tracking動作)になっており3の出力がそのまま通過しランバック目標負荷指令になる。ランバック目標負荷指令は二つに分けられ一方はボイラ入力量制御指令にもう一方はタービン加減弁降下レート設定器7、とタービン加減弁開度プログラム8を経てタービン加減弁開度制御指令になる。ランバック中、負荷設定器4はランバック降下レート設定器に追従しているので負荷設定器4からランバック目標負荷指令を降下している形となっている。発電機出力(MW)は切替器2で止まっておりランバック中もランバックリセットの後も目標負荷指令には関係しない。通常運転中にMWトラッキングモードとなったときに負荷設定器4と負荷変化率設定器6がMWに追従する。  As shown in FIG. 1, the runback target load setting device 1, the switching devices 10 and 2, and the runback drop rate setting device 3 are arranged upstream of the load setting device 4 and the load change rate setting device 6. When the runback occurs, the switching units 10 and 2 are switched to the signal from the runback target load setting unit 1. Here, 1 is set to the lowest value among the runback factors (e.g., corresponding to 25%). This value takes 3 and the output of 3 drops at a preset drop rate (usually 100% / min). When the runback target load command reaches the target value during the descent, the switch 10 is switched to the b side and held and stopped. 4 and 6 are follow-up operations during tracking (tracking operation), and the output of 3 passes as it is and becomes a run-back target load command. The runback target load command is divided into two, one is a boiler input amount control command, and the other is a turbine control valve opening control command through a turbine control valve lowering rate setting device 7 and a turbine control valve opening program 8. . During the runback, the load setting device 4 follows the runback lowering rate setting device, so that the runback target load command is lowered from the load setting device 4. The generator output (MW) is stopped at the switch 2 and is not related to the target load command during the runback or after the runback reset. When the MW tracking mode is set during normal operation, the load setting device 4 and the load change rate setting device 6 follow the MW.

図3はランバック目標値設定の詳細図である。FANランバックの例で説明する。ランバック目標負荷指令中に配置された高低検出器(Hi/Loモニタ)11のHi側はランバック要因の許容負荷条件でありLo側設定値はランバック目標値になる。FANランバックの場合、通常50%以上の負荷でFDF又はIDFのいずれか一台が停止するとランバックが作動し50%まで負荷を降下させる。従ってHi/Loモニタ11のHi側は51%〜52%、Lo側は降下目標値50%に設定される。仮に100%負荷運転中にFDF−Aがトリップ(停止)すると13FANランバック発生ロジックが“1”になりそして14ランバック発生ロジックも“1”になり同時にメモリ16がセットされランバック動作中となる。その結果、切替器10と2はa側に切替わりランバック目標負荷設定器1の出力がランバック降下レート設定器3に導かれる。ランバック中、負荷設置器4と負荷変化率設定器6は追従動作になっておりランバック降下レート設定器3の出力値に追従している。ランバック降下レート設定器の出力は予め設定されたレート例えば100%/分で降下する。この降下途中でHi/Loモニタ11のLo側が50%を検出したところでメモリ12がリセットされ13FANランバック発生ロジック、及び14ランバック発生ロジックが“0”になる。その結果切替器10はb側に切替わりランバック降下レート設定器3の出力は保持状態になって止まる。このとき負荷設定器4及び負荷変化率設定器6の追従モードは同時に解除しても好いが既に3の出力が保持状態になっているのでランバック動作中がリセットした時に追従モードを解除する。14ランバック発生ロジックがリセットされても、ランバック動作中ロジックはまだ保持されておりタイムディレイ(オンディレイ)15による限時時間(経験的に6〜8分程度)後リセットする。メモリ16がリセットしてランバック動作中がリセットするとボイラタービン協調モード運転になりランバック運転は終了する。負荷設定器4及び負荷変化率設定器6は上述したように追従モードが解除され運転員によって操作される。
ランバックリセットを時間で行う方法によって若しランバック中にタービン側に不測の事態が発生してMWが急降下するようになったときでもボイラ入力量制御指令を保持することが出来ボイラ運転の混乱を防ぐことが出来るようになった。
FIG. 3 is a detailed diagram of setting the runback target value. An example of FAN runback will be described. The Hi side of the height detector (Hi / Lo monitor) 11 arranged in the runback target load command is an allowable load condition for the runback factor, and the Lo side set value becomes the runback target value. In the case of FAN runback, when either FDF or IDF stops with a load of 50% or more, the runback is activated and the load is reduced to 50%. Therefore, the Hi side of the Hi / Lo monitor 11 is set to 51% to 52%, and the Lo side is set to the target descent value 50%. If FDF-A trips (stops) during 100% load operation, the 13 FAN runback generation logic becomes “1” and the 14 runback generation logic also becomes “1”. At the same time, the memory 16 is set and the runback operation is in progress. Become. As a result, the switches 10 and 2 are switched to the a side, and the output of the runback target load setting device 1 is guided to the runback lowering rate setting device 3. During the runback, the load setting device 4 and the load change rate setting device 6 are in a follow-up operation and follow the output value of the runback descent rate setting device 3. The output of the runback descent rate setter drops at a preset rate, for example 100% / min. In the middle of the descent, when the Lo side of the Hi / Lo monitor 11 detects 50%, the memory 12 is reset, and the 13FAN runback generation logic and the 14 runback generation logic become “0”. As a result, the switching device 10 is switched to the b side, and the output of the runback lowering rate setting device 3 is held and stopped. At this time, the tracking mode of the load setting unit 4 and the load change rate setting unit 6 may be canceled at the same time. However, since the output of 3 is already held, the tracking mode is canceled when the runback operation is reset. Even if the 14 runback generation logic is reset, the logic during the runback operation is still held and is reset after the time limit (on the order of 6 to 8 minutes) by the time delay (on-delay) 15. When the memory 16 is reset and the runback operation is reset, the boiler turbine cooperative mode operation is performed, and the runback operation ends. As described above, the load setting device 4 and the load change rate setting device 6 are operated by the operator after the tracking mode is canceled.
Even if an unexpected situation occurs on the turbine side during the runback due to the method of performing the runback reset, the boiler input amount control command can be held even when the MW suddenly drops, and the boiler operation is disrupted. Can be prevented.

図4ではタービン加減弁開度が変圧域では一定である変圧貫流ボイラのためのタービン加減弁開度制御指令作成回路を示す。回路はタービン加減弁降下レート設定器7とタービン加減弁開度プログラム8の後ろに加算器24を置きタイムディレイ(ワイプアウト)20、21、ディジタル加算22、変化率制限器23で構成する回路を加算して構成される。本回路の動作を以下に説明する。例えば給水ポンプ喪失ランバックが発生すると17BFPランバック発生ロジックが1になるのでタイムディレイ20がオンとなりディジタル加算22で設定されたバイアス量が変化率制限器23に送られここで所定の変化率をもってタービン加減弁開度指令を下げる。タイムディレイ20は限時時間後にリセットしデジタル加算22の出力は零に戻る。この戻りを変化率制限器で最適に調節する。
尚、ドラムボイラの場合にはタービン加減弁降下レート設定器7とタービン加減弁開度プログラム8だけで好いので加算器24を始めから取り付けないか又は図4の回路で加算器24のS2入力のゲインを零に設定する。尚、7と8は配置を反対にしてもよい。
FIG. 4 shows a turbine control valve opening control command generation circuit for a transformer once-through boiler in which the turbine control valve opening is constant in the transformer region. The circuit is a circuit constituted by a time delay (wipeout) 20, 21, a digital addition 22, and a change rate limiter 23 after an adder 24 is placed behind the turbine adjustment valve lowering rate setting device 7 and the turbine adjustment valve opening degree program 8. It is composed by adding. The operation of this circuit will be described below. For example, when the lost runback of the water supply pump occurs, the 17BFP runback generation logic becomes 1, so that the time delay 20 is turned on, and the bias amount set by the digital addition 22 is sent to the change rate limiter 23, where it has a predetermined change rate. Lower the turbine control valve opening command. The time delay 20 is reset after the time limit, and the output of the digital adder 22 returns to zero. This return is optimally adjusted by the rate of change limiter.
In the case of a drum boiler, the turbine adjusting valve lowering rate setting unit 7 and the turbine adjusting valve opening degree program 8 are preferable only, so the adder 24 is not attached from the beginning, or the S2 input of the adder 24 is input in the circuit of FIG. Set the gain to zero. 7 and 8 may be reversed in arrangement.

図5はBFPランバック時の目標負荷設定回路である。ディジタル加算30によって各ポンプの負荷の重みをもたせ、例えばタービン駆動給水ポンプ(TBFP)は50%、モーター駆動給水ポンプ(MBFP)は30%のように、これを加算して減算器31でランバック目標負荷指令と付き合わせこの結果を高低検出器(Hi/Loモニタ)32で検出する。例えば100%負荷でTBFP2台運転中のときディジタル加算30の出力は100%負荷相当である。ここでTBFP1台が停止すればディジタル加算30の出力は50%になる。即ちTBFPの何れかのポンプが一台停止すると高低検出器32はHi側がオンとなりメモリ33はセットし出力が“1”となって、17BFPランバック発生及び14ランバック発生ロジックがオンとなり同時に図3中のメモリ16がセットしてランバック動作中になる。その結果図3中の切替器10と、切替器2がランバック目標負荷設定器1の出力値を選択してランバック降下レート設定器3がランバック目標負荷指令を降下させる。そしてランバック目標負荷指令が50%まで下がってディジタル加算30の出力と一致したところで高低検出器32のLoがオンしてメモリ33はリセットされる。その結果、図3内切替器10はa側からb側に切替わりランバック目標負荷指令を選択して出力が保持状態になって止まる。
尚、本回路はミルランバック時の目標負荷設定にも応用できる。
FIG. 5 shows a target load setting circuit at the time of BFP runback. The load of each pump is given by the digital addition 30. For example, the turbine-driven feed pump (TBFP) is 50%, and the motor-driven feed pump (MBFP) is 30%. This result is detected by the height detector (Hi / Lo monitor) 32 in association with the target load command. For example, when two TBFP units are operating at 100% load, the output of the digital adder 30 corresponds to 100% load. Here, if one TBFP is stopped, the output of the digital adder 30 becomes 50%. That is, when one of the TBFP pumps stops, the high / low detector 32 is turned on on the Hi side, the memory 33 is set and the output is "1", and the 17BFP runback generation and 14 runback generation logics are turned on simultaneously. 3 is set and the runback operation is in progress. As a result, the switcher 10 and the switcher 2 in FIG. 3 select the output value of the runback target load setting device 1, and the runback lowering rate setting device 3 lowers the runback target load command. When the runback target load command falls to 50% and coincides with the output of the digital adder 30, Lo of the high / low detector 32 is turned on and the memory 33 is reset. As a result, the switch 10 in FIG. 3 switches from the a side to the b side, selects the runback target load command, and the output is held and stops.
This circuit can also be applied to target load setting during mill runback.

本発明の実施の形態に係わる機能図である。It is a functional diagram concerning embodiment of this invention. 本発明の背景技術に係わる従来のランバック制御方法の概要図である。It is a schematic diagram of a conventional runback control method according to the background art of the present invention. 図1の機能の実施の形態に係わるランバック目標負荷設定回路の詳細説明図である。FIG. 2 is a detailed explanatory diagram of a runback target load setting circuit according to the embodiment of the function of FIG. 1. 図1の実施の形態に係わるタービン加減弁開度制御の方法図である。It is a method figure of the turbine control valve opening degree control concerning embodiment of FIG. 図1の実施の形態に係わるBFPポンプ喪失ランバック時の目標負荷設定回路図である。It is a target load setting circuit diagram at the time of BFP pump loss runback according to the embodiment of FIG.

記号の説明Explanation of symbols

1、 ランバック目標負荷設定器
2、9、10、42、44、45 切替器
3、46 ランバック降下レート設定器
6、43 負苛変化率設定器
7、23、4 変化率制限器
4、41 負荷設定器
5、50、 負荷設定器出力増減
8、 タービン加減弁開度プログラム
11、32 高低検出器(Hi/Loモニタ)
12、16,33 メモリ
15、 タイムディレイ(オンディレイ)
0、21 タイムディレイ(ワイプアウト)
22、30 ディジタル加算
24、 加算器
31、 減算器
47、 ランバック要因毎の目標負荷選択ロジック
48、 ランバック目標負荷設定値
49、 ランバック検出
1, runback target load setting device 2, 9, 10, 42, 44, 45 switching device 3, 46 runback descent rate setting device 6, 43 negative caustic change rate setting device 7, 23, 4 change rate limiting device 4, 41 Load setters 5, 50, Load setter output increase / decrease 8, Turbine boost / decrease valve opening programs 11, 32 Height detector (Hi / Lo monitor)
12, 16, 33 Memory 15, time delay (on delay)
0, 21 Time delay (wipe out)
22, 30 Digital addition 24, adder 31, subtractor 47, target load selection logic 48 for each runback factor, runback target load set value 49, runback detection

Claims (6)

火力発電プラントのボイラ、タービン協調制御装置におけるランバック運転を下記の形態で行う方法。
1) ランバック目標負荷指令を所定の変化率をもって降下させるとき負荷設定器及び 負荷変化率設定器を追従動作としてランバック降下レート設定器の出力に追従させる。
2) ランバック目標負荷指令をボイラ入力量制御指令とタービン加減弁開度制御指令 に分けタービン加減弁開度指令中に変化率制限器を設けてタービン加減弁を制御する。
A method of performing a run-back operation in a boiler and turbine cooperative control apparatus of a thermal power plant in the following form.
1) When the runback target load command is lowered with a predetermined change rate, the load setter and the load change rate setter are caused to follow the output of the runback drop rate setter as a follow-up operation.
2) Divide the runback target load command into a boiler input amount control command and a turbine control valve opening control command, and provide a change rate limiter in the turbine control valve opening control command to control the turbine control valve.
ひとつのランバック目標負荷設定器を置きランバック目標負荷指令が当該目標値に到達した事を検出して目標値に保持させる方法。A method of setting one runback target load setting device and detecting that the runback target load command has reached the target value and holding it at the target value. タービン加減弁開度が変圧域では一定である変圧貫流ボイラのために当該ランバック毎に限時タイマーとディジタル加算でバイアス値を作りこれを変化率制限器によってタービン加減弁開度指令にバイアスをかける方法。For a transformer once-through boiler whose turbine adjustment valve opening is constant in the transformation range, a bias value is generated by a time limit timer and digital addition for each runback, and this is biased to the turbine adjustment valve opening command by a change rate limiter. Method. ディジタル加算を使用して給水ポンプ(BFP)ランバック時の目標負荷設定をする方法。A method of setting a target load at the time of runback of a feed pump (BFP) using digital addition. 信号の流れを発電機出力(MW)から負荷設定器、負荷変化率設定器と一本化して発電機出力追従モード(MWトラッキングモード)運転を行う方法。A method of performing a generator output follow-up mode (MW tracking mode) operation by unifying a signal flow from a generator output (MW) with a load setter and a load change rate setter. ランバックリセットを時間で行う方法。A method of performing a runback reset over time.
JP2006275768A 2006-09-11 2006-09-11 Load setter follow-up type, boiler, turbine parallel control runback control system Active JP4406908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006275768A JP4406908B2 (en) 2006-09-11 2006-09-11 Load setter follow-up type, boiler, turbine parallel control runback control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006275768A JP4406908B2 (en) 2006-09-11 2006-09-11 Load setter follow-up type, boiler, turbine parallel control runback control system

Publications (2)

Publication Number Publication Date
JP2008069763A true JP2008069763A (en) 2008-03-27
JP4406908B2 JP4406908B2 (en) 2010-02-03

Family

ID=39291551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006275768A Active JP4406908B2 (en) 2006-09-11 2006-09-11 Load setter follow-up type, boiler, turbine parallel control runback control system

Country Status (1)

Country Link
JP (1) JP4406908B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609327B (en) * 2008-06-18 2012-08-22 浙江省电力试验研究院 All-working-condition automatic RB control method
CN102661283A (en) * 2012-05-14 2012-09-12 山东电力研究院 Power frequency and variable frequency mixed working condition power station fan RB control system and control method thereof
CN104131847A (en) * 2014-06-30 2014-11-05 华电国际电力股份有限公司技术服务中心 Automatic optimization control system and method of rated sliding pressure of steam turbine unit
CN104296156A (en) * 2013-07-19 2015-01-21 国家电网公司 Desulfuration gas-gas heater RB method and system
CN105135405A (en) * 2015-08-17 2015-12-09 国家电网公司 Induced draft fan RB control method of high-sodium lignite tower boiler unit
JP5886409B1 (en) * 2014-12-19 2016-03-16 中国電力株式会社 RUNBACK CONTROL DEVICE AND RUNBACK CONTROL METHOD
CN105627287A (en) * 2015-12-23 2016-06-01 神华集团有限责任公司 Water feeding pump RB control system and method of supercritical CFB boiler generator set
CN106355513A (en) * 2016-08-29 2017-01-25 江苏方天电力技术有限公司 Analysis method for unit adjustable contribution area based on auxiliary machine state assessment of unit
CN111255531A (en) * 2020-01-20 2020-06-09 岭东核电有限公司 Method for testing load switch of steam inlet valve of steam turbine of nuclear power station and determining parameters of steam inlet valve
CN113325690A (en) * 2021-04-29 2021-08-31 华电电力科学研究院有限公司 Safety control method for main steam pressure abnormal working condition of thermal power generating unit coordinated control system
CN113741175A (en) * 2021-09-14 2021-12-03 华电电力科学研究院有限公司 Method and system for coordinated control of machine and furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447083B2 (en) * 2010-03-29 2014-03-19 三浦工業株式会社 Program, controller and boiler system
CN103672845B (en) * 2012-09-19 2015-05-13 上海宝信软件股份有限公司 Fuel cutting method for multi-fuel blending combustion unit under run back (RB) condition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609327B (en) * 2008-06-18 2012-08-22 浙江省电力试验研究院 All-working-condition automatic RB control method
CN102661283A (en) * 2012-05-14 2012-09-12 山东电力研究院 Power frequency and variable frequency mixed working condition power station fan RB control system and control method thereof
CN104296156B (en) * 2013-07-19 2016-10-05 国家电网公司 A kind of method and system of desulfurization fume heat exchanger RB
CN104296156A (en) * 2013-07-19 2015-01-21 国家电网公司 Desulfuration gas-gas heater RB method and system
CN104131847A (en) * 2014-06-30 2014-11-05 华电国际电力股份有限公司技术服务中心 Automatic optimization control system and method of rated sliding pressure of steam turbine unit
JP5886409B1 (en) * 2014-12-19 2016-03-16 中国電力株式会社 RUNBACK CONTROL DEVICE AND RUNBACK CONTROL METHOD
CN105135405A (en) * 2015-08-17 2015-12-09 国家电网公司 Induced draft fan RB control method of high-sodium lignite tower boiler unit
CN105627287A (en) * 2015-12-23 2016-06-01 神华集团有限责任公司 Water feeding pump RB control system and method of supercritical CFB boiler generator set
CN105627287B (en) * 2015-12-23 2018-06-29 神华集团有限责任公司 The feed pump RB control systems and method of Supercritical CFB Boiler generating set
CN106355513A (en) * 2016-08-29 2017-01-25 江苏方天电力技术有限公司 Analysis method for unit adjustable contribution area based on auxiliary machine state assessment of unit
CN111255531A (en) * 2020-01-20 2020-06-09 岭东核电有限公司 Method for testing load switch of steam inlet valve of steam turbine of nuclear power station and determining parameters of steam inlet valve
CN113325690A (en) * 2021-04-29 2021-08-31 华电电力科学研究院有限公司 Safety control method for main steam pressure abnormal working condition of thermal power generating unit coordinated control system
CN113741175A (en) * 2021-09-14 2021-12-03 华电电力科学研究院有限公司 Method and system for coordinated control of machine and furnace
CN113741175B (en) * 2021-09-14 2023-08-15 华电电力科学研究院有限公司 Coordinated control method and system for machine and furnace

Also Published As

Publication number Publication date
JP4406908B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4406908B2 (en) Load setter follow-up type, boiler, turbine parallel control runback control system
US20120183413A1 (en) Reactor Feedwater Pump Control System
CN111123770B (en) Method and device for determining opening of bypass model under FCB working condition
CN109974028B (en) Optimization method for shutdown and non-shutdown of 660MW supercritical coal-fired unit
EP3757355A1 (en) Control device for steam governing valve of power generation plant, and method for controlling steam governing valve of power generation plant
JP4734184B2 (en) Steam turbine control device and steam turbine control method
JP2013148347A (en) Water supply control device, and water supply control method
JP2001289989A (en) Steam turbine controller for nuclear power plant
JP5562806B2 (en) Reactor water level control system
JP2506224B2 (en) Water supply controller for steam generating plant
JP2013174223A (en) Speed governing controller for steam turbine, method for controlling the same and steam turbine
JP4560481B2 (en) Steam turbine plant
JPH11257018A (en) Steam by-pass system for steam turbine
JP5178074B2 (en) Boiler operation switching device
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JPH0456957B2 (en)
JP2519282B2 (en) Deaerator water level control system
JP2010216706A (en) Water supply control device and water supply control method
JP4986834B2 (en) Turbine controller
JPS6133354B2 (en)
JP3604566B2 (en) Water supply control device for boiling water nuclear power plant
JPS63314302A (en) Turbine controller for nuclear power station
JP2564351B2 (en) Output control device for reactor plant
CN114688520A (en) Liquid level auxiliary control method and system for steam generator of nuclear power station
JPS62210205A (en) Turbine controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

R150 Certificate of patent or registration of utility model

Ref document number: 4406908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151120

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250