JP2006046331A - Steam valve, and steam turbine with steam valve - Google Patents

Steam valve, and steam turbine with steam valve Download PDF

Info

Publication number
JP2006046331A
JP2006046331A JP2005198413A JP2005198413A JP2006046331A JP 2006046331 A JP2006046331 A JP 2006046331A JP 2005198413 A JP2005198413 A JP 2005198413A JP 2005198413 A JP2005198413 A JP 2005198413A JP 2006046331 A JP2006046331 A JP 2006046331A
Authority
JP
Japan
Prior art keywords
steam
valve
valve body
bypass
annular wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005198413A
Other languages
Japanese (ja)
Other versions
JP4621553B2 (en
Inventor
Makoto Takahashi
誠 高橋
Kura Shindo
蔵 進藤
Atsushi Narabe
厚 奈良部
Hideaki Miyayashiki
秀明 宮屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005198413A priority Critical patent/JP4621553B2/en
Publication of JP2006046331A publication Critical patent/JP2006046331A/en
Application granted granted Critical
Publication of JP4621553B2 publication Critical patent/JP4621553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a flow rate of steam by the same opening/closing stroke and improve flow characteristics, in a multi-hole bypass valve and a steam valve incorporating a valve element of the multi-hole bypass valve in a valve element of a main steam stop valve. <P>SOLUTION: Multi-hole steam guide holes 8A formed in an annular wall part 7 of the valve element 3 of the bypass valve 3 are radially formed in a multi-stage around the center part of a channel 9 of the valve element 3, and the steam guide holes 8A are arranged in a staggered manner. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発電プラントに設置される蒸気タービンの蒸気弁および蒸気弁を備えた蒸気タービンに関し、特にバイパス弁を有する主蒸気止め弁に関する。   The present invention relates to a steam turbine having a steam valve and a steam valve installed in a power plant, and more particularly to a main steam stop valve having a bypass valve.

従来、例えば火力発電プラント、または原子力発電プラントでは、起動時に蒸気発生器で発生した超高温、超高圧の蒸気を部分的に高圧タービンに供給すると、その段落の金属に異常に高い熱応力が発生し、それに伴う熱変形などが生じ、亀裂または破損の原因となる。   Conventionally, for example, in a thermal power plant or a nuclear power plant, when ultra-high temperature and ultra-high pressure steam generated by a steam generator at the start-up is partially supplied to a high-pressure turbine, an abnormally high thermal stress is generated in the metal of the paragraph However, the thermal deformation accompanying it occurs, causing cracks or breakage.

したがって蒸気タービンの運転では、この過酷な熱応力の発生を抑えるため、起動時から初負荷までの間、蒸気加減弁を全開にして、主蒸気止め弁で蒸気流量を制御する、いわゆる全周噴射運転が行われ、暖機運転が行われている。
このため、主蒸気止め弁には、蒸気流量を制御するための構造が採用されている。
Therefore, in the operation of the steam turbine, in order to suppress the generation of this severe thermal stress, the steam control valve is fully opened from the start to the initial load, and the steam flow is controlled by the main steam stop valve, so-called all-round injection. Operation is performed and warm-up operation is performed.
For this reason, the main steam stop valve employs a structure for controlling the steam flow rate.

図9は従来の主蒸気止め弁を示す図で、主蒸気止め弁1の弁体2の内部にバイパス弁の弁体3を内蔵し、蒸気タービンの起動時には図示しない蒸気加減弁を全開にするとともに、主蒸気止め弁1の弁体2を弁座4に当接させて全閉にし、上記バイパス弁の弁体3のみを作動させて蒸気流量の制御を行っている。   FIG. 9 is a diagram showing a conventional main steam stop valve. A valve body 3 of a bypass valve is built in the valve body 2 of the main steam stop valve 1, and a steam control valve (not shown) is fully opened when the steam turbine is started. At the same time, the valve body 2 of the main steam stop valve 1 is brought into contact with the valve seat 4 to be fully closed, and only the valve body 3 of the bypass valve is operated to control the steam flow rate.

このバイパス弁は主蒸気止め弁1の弁体2内に内蔵される関係から、矢印で示す蒸気流5の下流側に配置した弁棒6によって弁体3を蒸気流5に抗して押し上げる(リフト)ようにして弁の開度調整を行うように構成されている。   Since this bypass valve is built in the valve body 2 of the main steam stop valve 1, the valve body 3 is pushed up against the steam flow 5 by the valve rod 6 arranged on the downstream side of the steam flow 5 indicated by the arrow ( In this way, the opening degree of the valve is adjusted.

また、このバイパス弁は弁体3の微小リフトにより高圧蒸気の流量制御を行うものであるから、バイパス弁を通過する蒸気の流速はかなり大きいものとなる。   Further, since this bypass valve controls the flow rate of the high-pressure steam by the minute lift of the valve body 3, the flow velocity of the steam passing through the bypass valve is considerably large.

高速の蒸気がバイパス弁を通過すると、蒸気中に含まれる微量のドレンや酸化物等の重量物が弁に衝突し、弁体3や弁棒6等が浸蝕作用を受ける恐れがある。   When high-speed steam passes through the bypass valve, a small amount of heavy material such as drain or oxide contained in the steam may collide with the valve, and the valve body 3 and the valve stem 6 may be eroded.

この浸蝕作用により弁体3や弁棒6が破損したりすると、破損した弁体3や弁棒6の切片が下流側のタービンのノズルや羽根に激突して損傷を与える恐れがあるという問題点があった(例えば特許文献1参照)。   If the valve body 3 or the valve stem 6 is damaged by this erosion action, the damaged valve body 3 or the stem of the valve stem 6 may collide with the nozzles or blades of the turbine on the downstream side to cause damage. (For example, refer to Patent Document 1).

この問題点を解決するために、従来、図10および図11に示すような更に改良された主蒸気止め弁が考えられている。   In order to solve this problem, an improved main steam stop valve as shown in FIGS. 10 and 11 has been conventionally considered.

図10および図11に示すように、主蒸気止め弁の弁体2はほぼ円筒状を成し、この弁体2内に弁棒6に一体的に結合された同じくほぼ円筒状のバイパス弁の弁体3が摺動自在に、且つその上端が弁体2の上端から突出するように内蔵されている。   As shown in FIGS. 10 and 11, the valve body 2 of the main steam stop valve has a substantially cylindrical shape, and the same substantially cylindrical bypass valve is integrally connected to the valve stem 6 in the valve body 2. The valve body 3 is incorporated so that it can slide freely and its upper end protrudes from the upper end of the valve body 2.

前記バイパス弁の弁体3の弁体2の上端から突出した部分には環状壁部7が形成され、その上端は閉塞されている。環状壁部7には蒸気流5の流れ方向に対して平行な複数の蒸気導入孔8が多段に形成されている。   An annular wall portion 7 is formed in a portion of the bypass valve body 3 protruding from the upper end of the valve body 2, and the upper end thereof is closed. A plurality of steam introduction holes 8 parallel to the flow direction of the steam flow 5 are formed in the annular wall portion 7 in multiple stages.

図10は主蒸気止め弁の弁体2が弁座4に当接して閉じた状態で、かつバイパス弁の弁体3が弁棒6によって弁体2内の最上部まで押し上げられ、弁体3の環状壁部7に形成された蒸気導入孔8部分が弁体2の上端から全て突出し、バイパス弁が全開した状態を示している。
このようなバイパス弁は、複数の蒸気導入孔8が形成されていることから多孔式MSVバイパス弁と呼ばれている。
FIG. 10 shows a state in which the valve body 2 of the main steam stop valve is in contact with the valve seat 4 and is closed, and the valve body 3 of the bypass valve is pushed up to the top in the valve body 2 by the valve rod 6. The steam introduction hole 8 part formed in the annular wall part 7 of this is completely protruding from the upper end of the valve body 2, and the bypass valve is fully opened.
Such a bypass valve is called a porous MSV bypass valve because a plurality of steam introduction holes 8 are formed.

このように構成された主蒸気止め弁において、矢印に示すように、蒸気の流れ5は弁体3の多数の蒸気導入孔8にかなりの流速で流入し、この蒸気導入孔8を通った蒸気は、反対側に形成された蒸気導入孔を通って流れ込んでくる蒸気と環状壁部7内空間で互いに衝突し、ここで蒸気のもつ速度エネルギーは緩和され、低流速になる。   In the main steam stop valve configured in this way, as indicated by an arrow, the steam flow 5 flows into a large number of steam introduction holes 8 of the valve body 3 at a considerable flow rate, and the steam that has passed through the steam introduction holes 8. And collide with each other in the space inside the annular wall 7 with the steam flowing in through the steam introduction hole formed on the opposite side, where the velocity energy of the steam is relaxed and the flow velocity becomes low.

低流速になった蒸気流5は、バイパス弁の弁体3内の流路9を通過して一旦圧力を回復し、弁体3の下流側に形成された複数の蒸気穴10を通って、さらに下流側のタービンのノズルや羽根に向かって流れていく。   The steam flow 5 having a low flow velocity passes through the flow path 9 in the valve body 3 of the bypass valve, temporarily recovers the pressure, passes through the plurality of steam holes 10 formed on the downstream side of the valve body 3, Furthermore, it flows toward the nozzles and blades of the turbine on the downstream side.

このように、蒸気導入孔8を通って弁体3に流れ込んできた蒸気流5は、ここで速度エネルギーを緩和して低流速となるため、蒸気中に含まれる微量のドレンや酸化物が弁に衝突しても弁体3や弁棒6に侵食作用を及ぼすことがなくなる。   In this way, the steam flow 5 flowing into the valve body 3 through the steam introduction hole 8 relaxes the velocity energy and becomes a low flow rate here, so that a very small amount of drain or oxide contained in the steam is valved. Even if it collides, the valve body 3 and the valve stem 6 will not be eroded.

蒸気タービンの全周噴射運転時、弁の開閉により蒸気の流量を調整する場合は、弁棒6を図示の状態から矢印X方向に沿って下方へ引き下げれば一体に結合された弁体3も弁体2内を摺動しながら下方に移動する。   When adjusting the flow rate of steam by opening and closing the valve during the all-round injection operation of the steam turbine, if the valve rod 6 is lowered downward in the direction of the arrow X from the state shown in the drawing, the integrally connected valve body 3 is also It moves downward while sliding in the valve body 2.

これに伴って、弁体3の環状壁部7に形成された蒸気導入孔8が下方から順次弁体2内に引き込まれ、蒸気流5を通過させる蒸気導入孔8全体の開口面積が縮小していき、蒸気の流量を絞ることができる。   Along with this, the steam introduction hole 8 formed in the annular wall portion 7 of the valve body 3 is sequentially drawn into the valve body 2 from below, and the opening area of the entire steam introduction hole 8 through which the steam flow 5 passes is reduced. The steam flow can be reduced.

逆に、弁棒6を反矢印X方向に沿って上方へ押し上げれば、蒸気導入孔8が順次弁体2内から押し出され、蒸気流5を通過させる蒸気導入孔8全体の開口面積が拡大していき、蒸気の流量を増大させることができる。   Conversely, if the valve rod 6 is pushed upward along the opposite arrow X direction, the steam introduction holes 8 are sequentially pushed out from the valve body 2 and the opening area of the entire steam introduction hole 8 through which the steam flow 5 passes is expanded. As a result, the flow rate of the steam can be increased.

11は弁体3の外周面2箇所に形成された例えば矩形状の溝で、この溝11に対向して弁体2の内周面2箇所に形成された突起12が噛み合い、両者の周り止めを果たしている。
特公昭61−57442号公報
Reference numeral 11 denotes, for example, a rectangular groove formed at two locations on the outer peripheral surface of the valve body 3, and the projections 12 formed at two locations on the inner peripheral surface of the valve body 2 are engaged with each other so as to stop the two Plays.
Japanese Patent Publication No. 61-57442

図9に示す従来の主蒸気止め弁におけるバイパス弁では、ドレンや酸化物の衝突による浸蝕等の問題はあるものの、蒸気弁としての流量特性から見た場合、バイパス弁リフトと蒸気流量の関係は図8の特性曲線Aのようになる。   The bypass valve in the conventional main steam stop valve shown in FIG. 9 has problems such as erosion due to the collision of drain and oxide, but when viewed from the flow characteristics as a steam valve, the relationship between the bypass valve lift and the steam flow is The characteristic curve A is as shown in FIG.

これに対し、図10および図11に示す改良された従来の主蒸気止め弁におけるバイパス弁では、蒸気流量の制御は、弁棒6を介して弁体3を上下動させて、環状壁部7に多段に形成された蒸気導入孔8の開口面積を変化させて行われる。   On the other hand, in the bypass valve in the improved conventional main steam stop valve shown in FIG. 10 and FIG. 11, the steam flow rate is controlled by moving the valve body 3 up and down via the valve rod 6. The opening area of the steam introduction holes 8 formed in multiple stages is changed.

このような蒸気流5に対して平行に形成された蒸気導入孔8では、蒸気の流通に必要とする十分な蒸気の流通面積を取るためにはどうしても上下方向に長い範囲に亘って多段に形成し、開口面積を多くとらざるを得ない。   The steam introduction holes 8 formed in parallel to the steam flow 5 are inevitably formed in multiple stages over a long range in the vertical direction in order to obtain a sufficient steam circulation area necessary for the steam flow. However, the opening area must be increased.

これに伴って、蒸気導入孔8の開口面積を調整して、蒸気の流量を制御するため、どうしてもバイパス弁の弁体3の開閉ストロークを大きく取る必要が生じ、ストローク動作が不安定になるとともに弁が大型化してしまう。   Along with this, the opening area of the steam introduction hole 8 is adjusted to control the flow rate of the steam. Therefore, it becomes necessary to take a large opening / closing stroke of the valve body 3 of the bypass valve, and the stroke operation becomes unstable. The valve becomes larger.

そのバイパス弁リフトと蒸気流量の関係は、図8の特性曲線Bのようになり、蒸気弁としての流量特性的には、図9に示す主蒸気止め弁の2倍の開閉ストロークでも蒸気流量が少なく流量特性が悪い。   The relationship between the bypass valve lift and the steam flow rate is as shown in the characteristic curve B of FIG. 8. In terms of the flow rate characteristic of the steam valve, the steam flow rate is even at twice the opening / closing stroke of the main steam stop valve shown in FIG. There are few flow characteristics.

一方、上記のような構成の主蒸気止め弁でタービン発電機の起動時に絞り制御する場合、既設のものを改良型のものに置き換えて対策する場合がある。その場合、改良型のものでは前記したように全周噴射運転の流量が十分確保できないという問題点があった。   On the other hand, when the throttle control is performed at the start of the turbine generator with the main steam stop valve having the above-described configuration, measures may be taken by replacing the existing one with an improved one. In that case, the improved type has a problem that the flow rate of the all-round injection operation cannot be secured sufficiently as described above.

また、蒸気導入孔8の入口部は蒸気の流速が他の部分に比べて急速に早くなることから、この入り口部がもっとも侵食され易い。   Further, since the steam flow velocity at the inlet portion of the steam introduction hole 8 is rapidly increased as compared with other portions, this inlet portion is most easily eroded.

また、従来の主蒸気止め弁では弁体2内部に内蔵したバイパス弁の弁体3で弁全体を支え、廻り止めの溝2箇所で回転を支えるだけの構造のため、従来の支持手段では不安定となり、、弁体2が全開した状態では、弁体2が蒸気の流れに振られ、振動により、摺動部が磨耗するという問題点があった。   In addition, the conventional main steam stop valve has a structure in which the entire valve is supported by the valve body 3 of the bypass valve built in the valve body 2 and the rotation is supported by the two grooves for preventing rotation. When the valve body 2 is fully opened and the valve body 2 is fully opened, the valve body 2 is swung by the flow of steam, and the sliding portion is worn by vibration.

さらに弁体2と弁体3の摺動部は大きな円筒同士の接触であるため、どうしても接触面積が大きくなり、接触面の隙間に異物が噛みこみ易く、異物の噛み込みによるスティック現象も発生し易い。   Furthermore, since the sliding part of the valve body 2 and the valve body 3 is a contact between large cylinders, the contact area is inevitably increased, foreign matters are easily caught in the gaps between the contact surfaces, and a stick phenomenon due to the foreign matter biting also occurs. easy.

本発明は以上の課題を解決するためになされたものであって、バイパス弁の弁体に形成された蒸気導入孔部分の上下方向の長さを短くして弁体の開閉ストロークを短くし、また、主蒸気止め弁全体の弁体支持構造に安定性を増し、且つ弁体間への異物の混入を避けるようにした蒸気弁および蒸気弁を備えた蒸気タービンを提供することを目的とする。   The present invention was made to solve the above problems, and shortened the opening / closing stroke of the valve body by shortening the length in the vertical direction of the steam introduction hole portion formed in the valve body of the bypass valve, It is another object of the present invention to provide a steam turbine having a steam valve and a steam valve which increases the stability of the valve body support structure of the entire main steam stop valve and prevents foreign matter from entering between the valve bodies. .

上記目的を達成するために本発明の蒸気弁は、弁座と、この弁座に当接可能な主蒸気止め弁の弁体と、この主蒸気止め弁の弁体内に摺動自在に内蔵され、弁の全開位置で前記主蒸気止め弁の弁体から突出する環状壁部を有し、この環状壁部に蒸気を流通させる複数の蒸気導入孔を形成し、この蒸気導入孔を通過した蒸気を導く流路を内部に有するバイパス弁の弁体とからなる蒸気弁において、前記蒸気導入孔を前記流路の中心部を中心として放射状に多段に形成するとともに前記蒸気導入孔の配置を千鳥配置としたことを特徴とする。   In order to achieve the above object, the steam valve of the present invention is slidably incorporated in a valve seat, a valve body of a main steam stop valve capable of contacting the valve seat, and a valve body of the main steam stop valve. The annular wall portion protruding from the valve body of the main steam stop valve at a fully open position of the valve, and a plurality of steam introduction holes through which the steam flows are formed in the annular wall portion, and the steam that has passed through the steam introduction hole In the steam valve comprising a bypass valve body having a flow path for guiding the steam, the steam introduction holes are formed in multiple stages radially around the center of the flow path, and the arrangement of the steam introduction holes is staggered It is characterized by that.

本発明の蒸気弁および蒸気弁を備えた蒸気タービンによれば、バイパス弁の弁体に形成された蒸気導入孔部分の上下方向の長さが短くなり、弁体の開閉ストロークを短くできる。   According to the steam valve and the steam turbine provided with the steam valve of the present invention, the length in the vertical direction of the steam introduction hole portion formed in the valve body of the bypass valve is shortened, and the opening / closing stroke of the valve body can be shortened.

以下本発明の実施の形態について図面を参照して説明する。なお、以下の実施の形態の説明において、図10および図11に示す従来の蒸気弁と同一部分には同一の符号を付し、詳細な説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the following description of the embodiment, the same parts as those of the conventional steam valve shown in FIGS. 10 and 11 are denoted by the same reference numerals, and detailed description thereof is omitted.

図1および図2は本発明の第1の実施の形態による蒸気弁を示す断面図で、特に図1は縦断正面図、図2は図1のII−II線切断面図である。図1において、符号8Aはバイパス弁の弁体3の環状壁部7に蒸気流5が通過するように形成された複数の蒸気導入孔で、この蒸気導入孔8Aは図3の拡大側面図および図4の拡大横断面図に示すように、弁体3内の流路9の中心部を中心として放射状に、かつ多段に形成されている。   1 and 2 are sectional views showing a steam valve according to a first embodiment of the present invention. In particular, FIG. 1 is a longitudinal front view, and FIG. 2 is a sectional view taken along line II-II in FIG. In FIG. 1, reference numeral 8A denotes a plurality of steam introduction holes formed so that the steam flow 5 passes through the annular wall portion 7 of the valve body 3 of the bypass valve. The steam introduction holes 8A are an enlarged side view of FIG. As shown in the enlarged cross-sectional view of FIG. 4, it is formed radially and in multiple stages around the center of the flow path 9 in the valve body 3.

さらに各段、あるいは各列の蒸気導入孔8Aは千鳥配列となるように形成されている。   Further, the steam introduction holes 8A in each stage or each row are formed in a staggered arrangement.

弁体3の環状壁部7の外周面のうち、蒸気導入孔8A部分を除いた外周面13をステライト(登録商標)系合金と呼ばれている耐摩耗性、耐酸化性の高いコバルト基合金(成分構成の第1例;Ni−3%以下、Cr−28%、W−4%、Fe−3%以下、C−1%、Co−残部,成分構成の第2例;Ni−2.5%、Cr−27%、Mo−5%、Fe−2%以下、C−0.25%、Co−残部)で肉盛溶接等の表面処理を施し、更にバイパス弁の弁体3と摺動接触する主蒸気止め弁の弁体2の内周面14にも同様にコバルト基合金で肉盛溶接等の表面処理を施す。コバルト基合金の肉盛溶着方法として、コバルト基硬質合金溶接ワイヤを用いた酸素アセチレン法、TIG(Tungsten Inert Gas)法、被覆アーク法、PTA(Plasma Transferred Arc)法、レーザ法およびコバルト基硬質合金粉末を溶射あるいは塗布して硬質合金層を形成する手段等があり、被加工部品の構造や形状、寸法、材料によりそれぞれの特徴に合わせ適宜選択される。   Of the outer peripheral surface of the annular wall 7 of the valve body 3, the outer peripheral surface 13 excluding the steam introduction hole 8 </ b> A portion is called a stellite (registered trademark) alloy and is a cobalt-based alloy having high wear resistance and oxidation resistance. (First example of component composition; Ni-3% or less, Cr-28%, W-4%, Fe-3% or less, C-1%, Co-balance, second example of component composition; Ni-2.5% , Cr-27%, Mo-5%, Fe-2% or less, C-0.25%, Co-remaining) and other surface treatments such as overlay welding, and sliding contact with the valve body 3 of the bypass valve Similarly, the inner peripheral surface 14 of the valve body 2 of the steam stop valve is subjected to a surface treatment such as overlay welding with a cobalt-based alloy. As overlay welding methods for cobalt-based alloys, oxygen acetylene method, TIG (Tungsten Inert Gas) method, coated arc method, PTA (Plasma Transferred Arc) method, laser method and cobalt-based hard alloy using cobalt-based hard alloy welding wire There are means for forming a hard alloy layer by thermal spraying or applying powder, and the like, which is appropriately selected according to the respective characteristics depending on the structure, shape, dimensions, and material of the workpiece.

弁体3の外周面の等間隔に離れた4箇所には例えば矩形状の溝11が形成され、この溝11に対向して弁体2の内周面4箇所に形成された突起12が噛み合い、両者の周り止めを果たしている。
さらに、弁体3の外周面には複数条の逃げ溝15が形成されている。
For example, rectangular grooves 11 are formed at four locations on the outer peripheral surface of the valve body 3 that are spaced apart at equal intervals, and projections 12 formed at four locations on the inner peripheral surface of the valve body 2 are engaged with the grooves 11. , Has played a stop around both.
Furthermore, a plurality of escape grooves 15 are formed on the outer peripheral surface of the valve body 3.

このように構成された本実施の形態による蒸気弁によれば、蒸気導入孔8Aの配列を千鳥配列とし、且つ放射状に形成することによって、弁体3の同一開閉ストロークにおける蒸気導入孔8Aの総面積を、従来比に対して約30%大きくすることができる。   According to the steam valve according to the present embodiment configured as described above, the steam introduction holes 8A are arranged in a staggered arrangement and are formed radially, so that the total number of the steam introduction holes 8A in the same opening / closing stroke of the valve body 3 is increased. The area can be increased by about 30% compared to the conventional ratio.

これにより、蒸気の流量特性的にも30%多く蒸気が流れるので、同一開閉ストロークでは、図8に示す従来の特性曲線Bに対して特性曲線Cのように改善される。   As a result, 30% more steam flows in terms of the flow rate characteristic of the steam, so that the characteristic curve C is improved with respect to the conventional characteristic curve B shown in FIG.

これにより、図9に示す従来の蒸気弁に対して、バイパス弁の開閉ストロークを2倍にするだけで、ほぼ同量の蒸気流量を流すことができる。   Thereby, the steam flow of substantially the same amount can be flowed only by doubling the opening / closing stroke of the bypass valve with respect to the conventional steam valve shown in FIG.

これは、既設品の取替えに際して、構造上許容できる範囲で、したがって、千鳥配列、放射状配列の蒸気導入孔8Aを設ける事で、浸蝕を防ぐことが出来るタイプの弁と置き換えてもストロークを2倍にするだけで、ほぼ同量の蒸気を流すことができる。   This is within an allowable range when replacing existing components. Therefore, by providing a steam introduction hole 8A in a staggered or radial arrangement, the stroke can be doubled even if it is replaced with a valve that can prevent erosion. It is possible to flow almost the same amount of steam.

また、弁体3の環状壁部7の外周にステライト金属で表面処理を施したので、蒸気の流速が早くなる蒸気導入孔8A部分での浸蝕も防ぐことができる。   In addition, since the outer periphery of the annular wall portion 7 of the valve body 3 is surface-treated with stellite metal, it is possible to prevent erosion at the portion of the steam introduction hole 8A where the flow velocity of the steam is increased.

さらに、弁体2に設けた4箇所の突起12とバイパス弁の弁体3に設けた4箇所の溝の噛み合いにより、弁体2の全開時にバイパス弁の弁体3によって支えられた状態に弁体2はあるが、極めて支持構造に安定性が増す。   Furthermore, the four protrusions 12 provided on the valve body 2 and the four grooves provided on the valve body 3 of the bypass valve mesh with each other so that the valve body 2 is supported by the valve body 3 of the bypass valve when the valve body 2 is fully opened. Although there is a body 2, the support structure is very stable.

また、弁体2の内側に表面処理されたステライト金属により、この部分の対酸化性が増すことで、当該部のクリアランスを詰めることができ、このことも安定性を高めることに寄与し、結果として当該摺動部での摩耗は回避できる。   In addition, the sterite metal surface-treated inside the valve body 2 can increase the oxidation resistance of this portion, thereby reducing the clearance of the portion, which also contributes to improving the stability, As a result, wear at the sliding portion can be avoided.

また、バイパス弁の弁体3に逃げ溝15を複数条設けたことにより、上部よりこの摺動部に侵入した異物は、逃げ溝15に流れ込み、ここを通って下流側に流れるため、弁体間への異物の混入を避けることができ、スティック現象は回避できる。   Further, by providing a plurality of relief grooves 15 in the valve body 3 of the bypass valve, foreign matter that has entered the sliding portion from the upper part flows into the escape groove 15 and flows downstream therethrough. It is possible to avoid mixing foreign objects between them, and stick phenomenon can be avoided.

さらに、本実施の形態に係る蒸気弁において、バイパス弁の弁体3の環状壁部7形成される複数の蒸気導入孔8Aの配置を図5のようにした変形例とすることも可能である。図5は本実施の形態の変形例に係るバイパス弁の環状壁部7の拡大側面図であり、蒸気導入孔8Aの配置をさらに密に配置したものである。   Furthermore, in the steam valve according to the present embodiment, the arrangement of the plurality of steam introduction holes 8A formed in the annular wall portion 7 of the valve body 3 of the bypass valve may be a modified example as shown in FIG. . FIG. 5 is an enlarged side view of the annular wall portion 7 of the bypass valve according to the modification of the present embodiment, in which the steam introduction holes 8A are arranged more densely.

この変形例では、蒸気導入孔8Aの配列を千鳥配列とするだけでなく、周方向に配置されている蒸気導入孔8Aの列同士の間隔を詰めている。これによって、水平方向に配列された蒸気導入孔8Aの列が、隣接する蒸気導入孔8Aの列と上下方向にオーバーラップする構成となっている。   In this modification, not only the arrangement of the steam introduction holes 8A is a staggered arrangement, but the intervals between the rows of the steam introduction holes 8A arranged in the circumferential direction are reduced. Accordingly, the row of steam introduction holes 8A arranged in the horizontal direction is configured to overlap with the row of adjacent steam introduction holes 8A in the vertical direction.

バイパス弁からの蒸気流量は、バイパス弁の弁体3が上下動することによって調節されるが、図3のように、環状壁部7に周方向に配置される蒸気導入孔8Aの列とこの列に隣接する蒸気導入孔8Aの列との間に上下方向の幅がある場合、この部分ではバイパス弁の弁体3を上下動させても流量の変化起きず、バイパス弁リフトと蒸気流量との関係が細かな階段状になって制御性に影響する虞がある。   The steam flow rate from the bypass valve is adjusted by moving the valve body 3 of the bypass valve up and down. As shown in FIG. 3, the row of steam introduction holes 8 </ b> A arranged in the circumferential direction on the annular wall portion 7 and this When there is a vertical width between the steam introduction holes 8A adjacent to the row, the flow rate does not change even when the valve body 3 of the bypass valve is moved up and down in this portion. There is a possibility that the relationship becomes a fine step and affects the controllability.

図5の変形例はこれを防止するためのものであり、環状壁部7に形成される蒸気導入孔8Aの配置を、水平方向に配列された蒸気導入孔8Aの列が隣接する蒸気導入孔8Aの列と上下方向にオーバーラップするようにしたので、バイパス弁リフトとバイパス弁と通過する蒸気流量との関係をより直線に近づけて制御性を良好にすることができる。   The modified example of FIG. 5 is for preventing this, and the arrangement of the steam introduction holes 8A formed in the annular wall portion 7 is the same as the steam introduction holes adjacent to the row of the steam introduction holes 8A arranged in the horizontal direction. Since it overlaps with the 8A row in the vertical direction, the relationship between the bypass valve lift, the bypass valve and the flow rate of the steam passing therethrough can be made closer to a straight line to improve the controllability.

なお、図5の変形例では蒸気導入孔8Aの形状を円形としているが、形状やオーバーラップの幅を適宜修正することによって、より直線的な流量特性を得ることができる。   In the modification of FIG. 5, the shape of the steam introduction hole 8A is circular, but a more linear flow rate characteristic can be obtained by appropriately modifying the shape and the width of the overlap.

次に本発明の第2の実施の形態について図6および図7を参照して説明する。
図6および図7に示すように、弁体3の環状壁部7を、積層された複数枚の環状薄板16と、この環状薄板16間に介在される複数枚の間隔板17との組み合わせで構成し、間隔板17と環状薄板16で形成した隙間を蒸気導入孔8として機能するようにしている。
Next, a second embodiment of the present invention will be described with reference to FIGS.
As shown in FIGS. 6 and 7, the annular wall portion 7 of the valve body 3 is formed by a combination of a plurality of laminated annular thin plates 16 and a plurality of spacing plates 17 interposed between the annular thin plates 16. The gap formed by the spacing plate 17 and the annular thin plate 16 functions as the steam introduction hole 8.

各板は溶接などにより一体的に固定され、蒸気弁しての強度が保てるように板厚、組立寸法などを設計すれば、蒸気通路の面積をさらに大きく取ることができる。   Each plate is fixed integrally by welding or the like, and if the plate thickness, assembly dimensions, etc. are designed so that the strength as a steam valve can be maintained, the area of the steam passage can be further increased.

これにより、弁体3の開閉ストロークと流量特性の関係は図8の特性曲線Dのように改善され、さらに開閉ストロークを短くすることができる。   Thereby, the relationship between the opening / closing stroke of the valve body 3 and the flow rate characteristic is improved as shown by the characteristic curve D in FIG. 8, and the opening / closing stroke can be further shortened.

また、図7に示すように、環状薄板16間に介在される間隔板17の途中に、蒸気の流れを一部妨げるような突起板18を設けると、蒸気の流れはここで速度エネルギーを緩和されて低速となり、前記した蒸気の衝突による緩和作用と相まって蒸気の流れを緩やかにしてより侵食作用を防ぐことができる。   Further, as shown in FIG. 7, if a projection plate 18 is provided in the middle of the spacing plate 17 interposed between the annular thin plates 16, the steam flow here relaxes the velocity energy. Thus, the speed becomes low, and coupled with the relaxation action due to the collision of the steam described above, the steam flow can be moderated to further prevent the erosion action.

また、徐々に蒸気の速度エネルギーが緩和されるため蒸気タービンの起動時の騒音を低減することもできる。   Further, since the velocity energy of the steam is gradually relaxed, noise at the time of starting the steam turbine can be reduced.

本発明の第1の実施の形態による蒸気弁を示す縦断正面図。1 is a longitudinal front view showing a steam valve according to a first embodiment of the present invention. 図1をII−II線に沿って切断し、矢印方向に見た横断平面図。Fig. 2 is a cross-sectional plan view of Fig. 1 cut along the line II-II and viewed in the direction of the arrows. 図1を矢印III方向に見た蒸気導入孔部分の拡大側面図。FIG. 3 is an enlarged side view of a steam introduction hole portion when FIG. 1 is viewed in the direction of arrow III. 図1をIV−IV線に沿って切断し矢印方向に見た拡大横断平面図。FIG. 4 is an enlarged cross-sectional plan view of FIG. 1 cut along line IV-IV and viewed in the direction of the arrow. 図3で示した蒸気導入孔部分の変形例を示す拡大側面図。The expanded side view which shows the modification of the steam introduction hole part shown in FIG. 本発明の第2の実施の形態による蒸気弁の蒸気導入孔部分の拡大側面図。The expanded side view of the steam introduction hole part of the steam valve by the 2nd Embodiment of this invention. 本発明の第2の実施の形態の変形例を示す平面図。The top view which shows the modification of the 2nd Embodiment of this invention. 蒸気弁ストロークと蒸気流量との関係を示す特性図。The characteristic view which shows the relationship between a steam valve stroke and a steam flow rate. 従来の蒸気弁の一例を示す縦断正面図。The longitudinal cross-sectional front view which shows an example of the conventional steam valve. 従来の更に改良された蒸気弁の一例を示す縦断正面図。The longitudinal cross-sectional front view which shows an example of the conventional further improved steam valve. 図10をX−X線に沿って切断し矢印方向に見た横断平面図。FIG. 11 is a cross-sectional plan view of FIG. 10 cut along the line XX and viewed in the direction of the arrow.

符号の説明Explanation of symbols

1…主蒸気止め弁、2…主蒸気止め弁の弁体、3…バイパス弁の弁体、4…弁座、5…蒸気流、6…弁棒、7…環状壁部、8,8A…蒸気導入孔、9…流路、10…蒸気穴、11…溝、12…突起、13…蒸気導入孔を除く外周面、14…弁体内周面、15…逃げ溝、16…環状薄板、17…間隔板、18…突起板。   DESCRIPTION OF SYMBOLS 1 ... Main steam stop valve, 2 ... Valve body of main steam stop valve, 3 ... Valve body of bypass valve, 4 ... Valve seat, 5 ... Steam flow, 6 ... Valve rod, 7 ... Annular wall part, 8, 8A ... Steam introduction hole, 9 ... flow path, 10 ... steam hole, 11 ... groove, 12 ... projection, 13 ... outer peripheral surface excluding steam introduction hole, 14 ... peripheral surface of valve body, 15 ... escape groove, 16 ... annular thin plate, 17 ... interval plate, 18 ... projection plate.

Claims (8)

弁座と、この弁座に当接可能な主蒸気止め弁の弁体と、この主蒸気止め弁の弁体内に摺動自在に内蔵され、弁の全開位置で前記主蒸気止め弁の弁体から突出する環状壁部を有し、この環状壁部に蒸気を流通させる複数の蒸気導入孔が形成され、この蒸気導入孔を通過した蒸気を導く流路を内部に有するバイパス弁の弁体とからなる蒸気弁において、前記蒸気導入孔を前記流路の中心部を中心として放射状に多段に形成するとともに、前記蒸気導入孔の配置を千鳥配置としたことを特徴とする蒸気弁。   A valve body, a valve body of a main steam stop valve that can come into contact with the valve seat, and a valve body of the main steam stop valve that is slidably incorporated in the valve body of the main steam stop valve. A bypass valve body having an annular wall portion protruding from the inner wall, a plurality of steam introduction holes through which the steam flows are formed in the annular wall portion, and a passage for guiding the steam that has passed through the steam introduction hole. A steam valve comprising: the steam inlet holes formed radially in multiple stages around the center of the flow path, and the steam inlet holes arranged in a staggered arrangement. 前記バイパス弁の弁体の環状壁部表面にコバルト基合金で表面処理を施したことを特徴とする請求項1記載の蒸気弁。   The steam valve according to claim 1, wherein the surface of the annular wall portion of the valve body of the bypass valve is surface-treated with a cobalt-based alloy. 前記環状壁部を環状薄板および間隔板の組み合わせにより構成し、間隔板と環状薄板とで形成された隙間で前記蒸気導入孔を板形成したことを特徴とする請求項1記載の蒸気弁。   2. The steam valve according to claim 1, wherein the annular wall portion is constituted by a combination of an annular thin plate and a spacing plate, and the steam introduction hole is formed by a gap formed by the spacing plate and the annular thin plate. 前記バイパス弁の弁体と前記主蒸気止め弁の弁体との摺動部に、その外周に沿って溝と突起との組み合わせからなる少なくとも4箇所の周り止め部を形成したことを特徴とする請求項1記載の蒸気弁。   The sliding portion between the valve body of the bypass valve and the valve body of the main steam stop valve has at least four anti-rotation portions formed of a combination of grooves and protrusions along the outer periphery thereof. The steam valve according to claim 1. 前記主蒸気止め弁の弁体の内周面にコバルト基合金で表面処理を施したことを特徴とする請求項1記載の蒸気弁。   The steam valve according to claim 1, wherein the inner peripheral surface of the valve body of the main steam stop valve is surface-treated with a cobalt-based alloy. 前記主蒸気止め弁の弁体の内周面と摺動するバイパス弁の弁体の外周面に異物が流れ込む逃げ溝を形成したことを特徴とする請求項1記載の蒸気弁。   2. The steam valve according to claim 1, wherein an escape groove into which foreign matter flows is formed on an outer peripheral surface of a valve body of a bypass valve that slides with an inner peripheral surface of the valve body of the main steam stop valve. 前記蒸気導入孔は、周方向に配置された蒸気導入孔の列を上下に複数配列してなるととともに、前記蒸気導入孔の列が隣接する蒸気導入孔の列と上下方向に重なりをもつように配列されていることを特徴とする請求項1記載の蒸気弁。   The steam introduction hole is formed by arranging a plurality of rows of steam introduction holes arranged in the circumferential direction in the vertical direction, and the row of the steam introduction holes overlaps with the row of adjacent steam introduction holes in the vertical direction. The steam valve according to claim 1, wherein the steam valve is arranged. 請求項1乃至7のいずれかに記載の蒸気弁を備えた蒸気タービン。   A steam turbine comprising the steam valve according to claim 1.
JP2005198413A 2004-07-07 2005-07-07 Steam valve and steam turbine with steam valve Active JP4621553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198413A JP4621553B2 (en) 2004-07-07 2005-07-07 Steam valve and steam turbine with steam valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004200640 2004-07-07
JP2005198413A JP4621553B2 (en) 2004-07-07 2005-07-07 Steam valve and steam turbine with steam valve

Publications (2)

Publication Number Publication Date
JP2006046331A true JP2006046331A (en) 2006-02-16
JP4621553B2 JP4621553B2 (en) 2011-01-26

Family

ID=36025173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198413A Active JP4621553B2 (en) 2004-07-07 2005-07-07 Steam valve and steam turbine with steam valve

Country Status (1)

Country Link
JP (1) JP4621553B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333094A (en) * 2006-06-15 2007-12-27 Tlv Co Ltd Float-type steam trap
EP1914393A2 (en) * 2006-10-18 2008-04-23 Kabushiki Kaisha Toshiba Steam valve and steam turbine plant
JP2009168022A (en) * 2008-01-11 2009-07-30 Snecma Gas turbine engine provided with valve for establishing communication between two enclosures
JP2009191815A (en) * 2008-02-18 2009-08-27 Kawasaki Heavy Ind Ltd Joint structure for marine main engine turbine
JP2010159829A (en) * 2009-01-08 2010-07-22 Toshiba Corp Steam valve device, and power generating facility equipped with the same
JP2019218985A (en) * 2018-06-19 2019-12-26 株式会社不二工機 On-off valve and manufacturing method of the same
WO2024034368A1 (en) * 2022-08-12 2024-02-15 三菱重工業株式会社 Steam valve and power generation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7207999B2 (en) 2018-12-28 2023-01-18 三菱重工業株式会社 Steam valve, power generation system, and steam valve inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077931A (en) * 1973-11-15 1975-06-25
JPS6157442B2 (en) * 1982-02-19 1986-12-06 Tokyo Shibaura Electric Co
JPS626402U (en) * 1985-06-27 1987-01-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077931A (en) * 1973-11-15 1975-06-25
JPS6157442B2 (en) * 1982-02-19 1986-12-06 Tokyo Shibaura Electric Co
JPS626402U (en) * 1985-06-27 1987-01-16

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333094A (en) * 2006-06-15 2007-12-27 Tlv Co Ltd Float-type steam trap
EP1914393A2 (en) * 2006-10-18 2008-04-23 Kabushiki Kaisha Toshiba Steam valve and steam turbine plant
US7784279B2 (en) 2006-10-18 2010-08-31 Kabushiki Kaisha Toshiba Steam valve and steam turbine plant
EP1914393A3 (en) * 2006-10-18 2014-07-09 Kabushiki Kaisha Toshiba Steam valve and steam turbine plant
JP2009168022A (en) * 2008-01-11 2009-07-30 Snecma Gas turbine engine provided with valve for establishing communication between two enclosures
JP2009191815A (en) * 2008-02-18 2009-08-27 Kawasaki Heavy Ind Ltd Joint structure for marine main engine turbine
JP2010159829A (en) * 2009-01-08 2010-07-22 Toshiba Corp Steam valve device, and power generating facility equipped with the same
JP2019218985A (en) * 2018-06-19 2019-12-26 株式会社不二工機 On-off valve and manufacturing method of the same
JP7160307B2 (en) 2018-06-19 2022-10-25 株式会社不二工機 On-off valve and its manufacturing method
WO2024034368A1 (en) * 2022-08-12 2024-02-15 三菱重工業株式会社 Steam valve and power generation system

Also Published As

Publication number Publication date
JP4621553B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4621553B2 (en) Steam valve and steam turbine with steam valve
US7383859B2 (en) Main steam valve for a steam turbine
DE69605045T2 (en) HOUSING OF A GAS TURBINE WITH A THERMAL INSULATING LAYER THAT REDUCES THE SIZE OF THE AXIAL GAP BETWEEN BLOW AND VANE
DE60127503T2 (en) Nuclear power plant with valves made of corrosion-resistant and wear-resistant alloy
JP4776494B2 (en) Steam valves and steam turbines
JP2015533409A (en) Valve cage with no dead band between the noise reduction section and the high volume flow section
JP2008151013A (en) Turbine rotor and steam turbine
CH702000B1 (en) Device with swirl chambers to the gap flow control in a turbine stage.
JP5917312B2 (en) Steam valve device and manufacturing method thereof
WO2010112421A1 (en) Axial turbomachine with passive gap control
EP1529580A1 (en) Casting mould
DE102015100362A1 (en) Steam turbine engine valve with a valve member and a seal assembly
JP2014238143A (en) Valve device and valve device manufacturing method
WO2008021618A2 (en) Multiple vane variable geometry nozzle
US20140284509A1 (en) Valve apparatus, method of manufacturing valve apparatus, and method of repairing valve apparatus
EP2184445A1 (en) Axial segmented vane support for a gas turbine
CN101548120A (en) Valve device
DE102015203871A1 (en) Rotor of a turbine of a gas turbine with improved cooling air flow
EP2236759A1 (en) Rotor blade system
JP2012097592A (en) Steam valve device
JP6732515B2 (en) Method for manufacturing valve device
JP2015224754A5 (en)
JP2013249824A (en) Method for manufacturing member for steam turbine plant, member for steam turbine plant, governing valve and steam turbine
JPS58174765A (en) Steam valve
US20160208930A1 (en) Valve for shutting off and/or controlling the flow rate of fluid flows, and a method for the post-production of such a valve

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4621553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3