JP2009191815A - Joint structure for marine main engine turbine - Google Patents

Joint structure for marine main engine turbine Download PDF

Info

Publication number
JP2009191815A
JP2009191815A JP2008035488A JP2008035488A JP2009191815A JP 2009191815 A JP2009191815 A JP 2009191815A JP 2008035488 A JP2008035488 A JP 2008035488A JP 2008035488 A JP2008035488 A JP 2008035488A JP 2009191815 A JP2009191815 A JP 2009191815A
Authority
JP
Japan
Prior art keywords
joint
turbine
shaft
contact
main engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008035488A
Other languages
Japanese (ja)
Other versions
JP5096958B2 (en
Inventor
Hiroshi Horiie
弘 堀家
Kozo Sato
晃三 佐藤
Kazuo Miki
一男 三木
Shunichiro Fukuda
俊一郎 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2008035488A priority Critical patent/JP5096958B2/en
Publication of JP2009191815A publication Critical patent/JP2009191815A/en
Application granted granted Critical
Publication of JP5096958B2 publication Critical patent/JP5096958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint structure capable of enhancing durability against fretting on a contact section in a joint section of a marine main engine turbine. <P>SOLUTION: In the joint structure 27 of a turbine joint 1 for connecting a turbine rotor shaft 53 and a reduction gear pinion shaft 71 in the marine main engine turbine, piled-up metals 23, 24 having designated thickness and made of cobalt base alloy are provided on the surface of the contact section 18 between the joint shaft 5 of the turbine joint 1 and the turbine rotor shaft 53. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、舶用の主機タービンにおける継手部の構造に関する。   The present invention relates to a structure of a joint portion in a marine main engine turbine.

従来、舶用の主機関として蒸気タービンが採用されるものがある。例えば、LNG運搬船の場合には、航海中において運搬するガスから発生するボイルオフガス(Boil Off Gas)をボイラで燃焼させ、そのボイラの蒸気で駆動する蒸気タービンが主機関(この明細書及び特許請求の範囲の書類中では、「主機タービン」という)として採用されている。   Conventionally, a steam turbine is employed as a marine main engine. For example, in the case of an LNG carrier, a steam turbine that burns a boil-off gas (Boil Off Gas) generated from a gas carried during voyage in a boiler and is driven by the steam of the boiler is the main engine (this specification and claims). In the document of the range, it is adopted as "main engine turbine").

このような舶用の主機タービンには、蒸気タービンのタービンロータ軸とプロペラ軸を駆動する減速機のピニオン軸との間の動力伝達にタービン継手が採用されている。このタービン継手は、タービンロータ軸と減速機ピニオン軸との間で芯ずれ等を吸収する撓み継手にもなっている。   Such a marine main engine turbine employs a turbine joint for power transmission between a turbine rotor shaft of a steam turbine and a pinion shaft of a speed reducer that drives a propeller shaft. This turbine joint is also a flexible joint that absorbs misalignment and the like between the turbine rotor shaft and the reduction gear pinion shaft.

図6は、従来の舶用主機タービンとタービン継手とを模式的に示す全体図である。この図では、主機タービンを縦断面して示している。図示する右側が船首側であり、左側が船尾側である。船尾側に設けられる減速機やプロペラ軸等の構成は、記載を省略している。なお、この明細書及び特許請求の範囲の書類中では、タービン継手の入力側であるタービンロータ軸53側を上流側、出力側である減速機ピニオン軸71側を下流側という。   FIG. 6 is an overall view schematically showing a conventional marine main engine turbine and a turbine joint. In this figure, the main turbine is shown in a longitudinal section. The right side shown is the bow side, and the left side is the stern side. The description of the configuration of the speed reducer, propeller shaft, etc. provided on the stern side is omitted. In the specification and claims, the turbine rotor shaft 53 side that is the input side of the turbine joint is referred to as the upstream side, and the reduction gear pinion shaft 71 side that is the output side is referred to as the downstream side.

図示するように、主機タービン51には複数段のタービン翼52が設けられ、これらのタービン翼52によって回転させられるタービンロータ軸53が軸受59によって支持されている。このタービンロータ軸53には、船尾側に接続フランジ54が設けられている。タービンロータ軸53と減速機ピニオン軸71との間にはタービン継手61が設けられ、上記接続フランジ54はこのタービン継手61の上流側にあるスプラインフランジ62とボルト63で連結されている。タービン継手61の下流側は減速機ピニオン軸71の接続フランジ72とボルト63で連結されている。これら主機タービン51、タービン継手61は、運転時にはカバー55,56,64で覆われており、保守点検時にこれらのカバー55,56,64が取外されて分解・点検等が行われる。なお、主機タービン51の詳細な説明は省略する。   As shown in the figure, the main turbine 51 is provided with a plurality of stages of turbine blades 52, and a turbine rotor shaft 53 rotated by these turbine blades 52 is supported by a bearing 59. The turbine rotor shaft 53 is provided with a connection flange 54 on the stern side. A turbine joint 61 is provided between the turbine rotor shaft 53 and the reduction gear pinion shaft 71, and the connection flange 54 is connected to a spline flange 62 on the upstream side of the turbine joint 61 by a bolt 63. The downstream side of the turbine joint 61 is connected to the connection flange 72 of the reduction gear pinion shaft 71 by a bolt 63. The main engine turbine 51 and the turbine joint 61 are covered with covers 55, 56, and 64 during operation, and these covers 55, 56, and 64 are removed and subjected to disassembly and inspection during maintenance and inspection. Detailed description of the main engine turbine 51 is omitted.

図7は、図6に示すVII部の舶用主機タービンにおける継手構造の縦断面図であり、図8は、図7に示すVIII部拡大図である。図7に示すように、上記スプラインフランジ62の内周には外側スプライン66が形成されており、タービン継手61の継手軸65の端部には、この外側スプライン66に係合する内側スプライン67が形成されている。これら外側スプライン66と内側スプライン67とによってスプライン部68が構成されており、このスプライン部68により、継手軸65は軸方向のスライドが許容された状態で周方向の回転動力を伝達するようになっている。このようなスプライン部68により、タービンロータ軸53や減速機ピニオン軸71における熱膨張等をタービン継手61部で吸収している。   7 is a longitudinal sectional view of a joint structure in the marine main engine turbine of the VII part shown in FIG. 6, and FIG. 8 is an enlarged view of the VIII part shown in FIG. As shown in FIG. 7, an outer spline 66 is formed on the inner periphery of the spline flange 62, and an inner spline 67 that engages with the outer spline 66 is formed at the end of the joint shaft 65 of the turbine joint 61. Is formed. The outer spline 66 and the inner spline 67 constitute a spline portion 68. The spline portion 68 allows the joint shaft 65 to transmit circumferential rotational power in a state where axial sliding is permitted. ing. The spline portion 68 absorbs thermal expansion or the like in the turbine rotor shaft 53 or the reduction gear pinion shaft 71 by the turbine joint 61 portion.

図8に示すように、このタービン継手61とタービンロータ軸53との接触部57は、継手軸65の軸芯位置に上流側接触片69が設けられ、タービンロータ軸53側の軸芯位置に設けられた中心栓58とこの上流側接触片69とが接触するようになっている。上流側接触片69の表面は球面に形成され、中心栓58の表面は平面に形成され、これらは点接触によって接触している。一般的に、これら上流側接触片69と中心栓58との接触部57の表面は、焼入れ・焼戻し等の処理が施されて表面硬度が上げられている。   As shown in FIG. 8, the contact portion 57 between the turbine joint 61 and the turbine rotor shaft 53 is provided with an upstream contact piece 69 at the shaft core position of the joint shaft 65, and at the shaft core position on the turbine rotor shaft 53 side. The provided center plug 58 and the upstream contact piece 69 come into contact with each other. The surface of the upstream contact piece 69 is formed into a spherical surface, and the surface of the central plug 58 is formed into a flat surface, which are in contact by point contact. Generally, the surface of the contact portion 57 between the upstream contact piece 69 and the central plug 58 is subjected to treatment such as quenching and tempering to increase the surface hardness.

なお、この種の蒸気タービンに関する従来技術として、タービン動翼のシュラウドカバーとの接触面にコバルト基合金の溶接材を肉盛り溶接することにより、長期間安定的に使用し得るタービン翼とそれを備えた蒸気タービンを提供しようとするものがある(例えば、特許文献1参照)。   As a conventional technology related to this type of steam turbine, a turbine blade that can be used stably for a long period of time is obtained by depositing a cobalt-based alloy welding material on the contact surface of the turbine blade with the shroud cover. There exists a thing which intends to provide the provided steam turbine (for example, refer patent document 1).

また、他の従来技術として、蒸気タービン部材の表面処理として、高硬度セラミックス粉末を金属バインダとともに肉盛り溶接するようにしたものもある(例えば、特許文献2参照)。
特開平11−336502号公報 特開平4−224207号公報
As another conventional technique, as a surface treatment of a steam turbine member, there is a technique in which high-hardness ceramic powder is build-up welded together with a metal binder (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 11-336502 JP-A-4-224207

ところで、上記したような主機タービン51は、数年毎に定期検査が行われ、その定期検査時に各部の点検が行われる。上記したように、タービン継手61の両端部は、上流側はタービンロータ軸53と接触し、下流側は減速機ピニオン軸71と接触した状態で共に回転して動力を伝達しているので、これらの接触部にすべり等を生じることがない構造となっている。   By the way, the main turbine 51 as described above is regularly inspected every several years, and each part is inspected at the time of the periodic inspection. As described above, since both ends of the turbine joint 61 are in contact with the turbine rotor shaft 53 on the upstream side and are in contact with the speed reducer pinion shaft 71 on the downstream side, both rotate to transmit power. It is a structure which does not produce a slip etc. in the contact part.

しかしながら、船舶のタービン継手61の場合、船体動揺等によってタービンロータ軸53との接触部に微少なすべりを生じ、経年使用によりこの接触部にフレッチング(一種の腐食摩耗)を生じることがある。このフレッチングによる摩耗を生じると、その磨耗した摩耗粉が更に摩耗を促進させ、上流側接触片69の球面による点接触が面接触になり、接触部における抵抗を増加させる。しかも、摩耗が進むと大きな面での接触によってタービン継手61が撓み継手の機能を失うおそれもある。   However, in the case of a ship turbine joint 61, a slight slip may occur in a contact portion with the turbine rotor shaft 53 due to a hull motion or the like, and fretting (a kind of corrosion wear) may occur in the contact portion due to use over time. When wear due to this fretting occurs, the worn wear powder further promotes wear, and point contact by the spherical surface of the upstream contact piece 69 becomes surface contact, and resistance at the contact portion is increased. In addition, when wear progresses, the turbine joint 61 may bend due to contact on a large surface and lose the function of the joint.

そのため、蒸気タービンの定期検査時にはタービン継手61の両端部の接触部も検査されるが、タービン継手61の両端部を検査するには、主機タービン51の構成部品を多く分解しなければならず、重量物(例えば、数トン)が多い主機タービン51側の構成部品を分解し、移動させるには非常に多くの時間と労力を要する。特に、タービンロータ軸53を分解するには軸受59の部分を分解しなければならず、更に多くの時間と労力を要する。   Therefore, the contact portions of both ends of the turbine joint 61 are also inspected at the time of periodic inspection of the steam turbine, but in order to inspect both ends of the turbine joint 61, many components of the main turbine 51 must be disassembled. It takes a great deal of time and labor to disassemble and move components on the main turbine 51 side that are heavy (for example, several tons). In particular, in order to disassemble the turbine rotor shaft 53, the bearing 59 must be disassembled, and more time and labor are required.

また、上記したように、タービン継手61の継手軸65とタービンロータ軸53との接触部57である上流側接触片69と中心栓58の表面には焼入れ・焼戻し等の表面処理が施されて硬度が高くなっているが、上記定期検査時にフレッチングによる摩耗が発見される場合が多い。しかも、船舶によっては定期検査の度(例えば、2.5年毎)にフレッチングによる摩耗が発見される場合がある。この摩耗は、上記したように磨耗した摩耗粉が更に摩耗を促進させることによるものと考えられる。   Further, as described above, the upstream contact piece 69 which is the contact portion 57 between the joint shaft 65 of the turbine joint 61 and the turbine rotor shaft 53 and the surface of the central plug 58 are subjected to surface treatment such as quenching and tempering. Although the hardness is high, wear due to fretting is often found during the regular inspection. In addition, depending on the ship, wear due to fretting may be found at every periodic inspection (for example, every 2.5 years). This wear is considered to be due to the wear powder further worn out as described above.

そして、このフレッチングによる摩耗が発見された場合には、上記したように分解、交換、組立等の作業に多くの時間と労力を要して行わなければならず、保守点検作業に多くの時間と労力を要してしまう。そのため、タービン継手の両端部における接触部のフレッチングによる摩耗を長期間防止できる継手構造が切望されている。   If wear due to fretting is found, as described above, the work such as disassembly, replacement, and assembly must be performed with much time and labor, and much time is required for maintenance and inspection work. It takes effort. Therefore, a joint structure that can prevent wear due to fretting of contact portions at both ends of the turbine joint for a long period of time is desired.

なお、上記特許文献1,2に記載された発明は、タービン翼の摩耗を防止しようとするものであり、本発明のように舶用主機タービンの継手における接触部のフレッチングを防止できるものではない。   Note that the inventions described in Patent Documents 1 and 2 are intended to prevent wear of the turbine blades, and cannot prevent fretting of the contact portion in the joint of the marine main engine turbine as in the present invention.

そこで、本発明は、舶用の主機タービンにおける継手部において、接触部におけるフレッチング等に対する耐久力を高めることができる継手構造を提供することを目的とする。   Then, an object of this invention is to provide the joint structure which can raise the durability with respect to the fretting etc. in a contact part in the joint part in the main engine turbines for ships.

上記目的を達成するために、本発明は、舶用の主機タービンにおけるタービンロータ軸と減速機ピニオン軸とを連結するタービン継手の継手構造であって、前記タービン継手の継手軸と前記タービンロータ軸との接触部の表面に、それぞれ所定厚のコバルト基合金の盛り金を具備していることを特徴とする。この明細書及び特許請求の範囲の書類中における「コバルト基合金の盛り金」は、例えば、ステライト(R)の溶接材による肉盛り溶接等の盛り金をいう。これにより、タービンロータ軸と継手軸との接触部ではコバルト基合金の盛り金が接触するので、これらの接触部のフレッチング等による摩耗進行に対する耐久力を大幅に高めることができ、保守点検時における部品交換等の期間を延して、保守点検に要する時間と労力を大幅に軽減することができる。   In order to achieve the above object, the present invention provides a joint structure of a turbine joint for connecting a turbine rotor shaft and a reducer pinion shaft in a marine main engine turbine, wherein the joint shaft of the turbine joint, the turbine rotor shaft, Each of the contact portions is provided with a deposit of a cobalt-based alloy having a predetermined thickness. “Cobalt-based alloy deposit” in the specification and claims refers to, for example, deposit such as overlay welding using a welding material of Stellite (R). As a result, since the deposit of the cobalt-based alloy comes into contact with the contact portion between the turbine rotor shaft and the joint shaft, the durability against wear progress due to fretting or the like of these contact portions can be greatly increased, and at the time of maintenance inspection The time and labor required for maintenance and inspection can be greatly reduced by extending the period for parts replacement.

また、前記接触部のタービンロータ軸端部の軸芯位置に、表面が平面の取外し可能な中心栓を有し、前記接触部の継手軸端部の軸芯位置に、表面が突出する球面の取外し可能な接触片を有し、該接触片と前記中心栓との接触部の表面に前記盛り金を具備しているようにしてもよい。これにより、接触部の耐久力を大幅に高めることができると共に、保守点検時に中心栓と接触片とを交換すれば接触部の摩耗分を元に戻すことができ、保守点検に要する時間と労力の軽減と、効率の良い作業を行うことができる。このことは、例えば、上記したように2.5年に1回の割合で定期検査(保守点検)のためにドックに入る船舶の場合、中心栓と接触片とを5年に1回の割合で交換すればよくなるので、1回の交換に要する時間約200時間程度を削減できる。   The contact portion has a center plug whose surface is removable at the axial center position of the turbine rotor shaft end portion, and a spherical surface whose surface protrudes at the axial center position of the joint shaft end portion of the contact portion. A removable contact piece may be provided, and the metal plate may be provided on the surface of the contact portion between the contact piece and the central plug. As a result, the durability of the contact area can be greatly increased, and the wear of the contact area can be restored by replacing the central plug and contact piece during maintenance inspection. Can be reduced, and efficient work can be performed. For example, in the case of a ship that enters the dock for periodic inspection (maintenance inspection) once every 2.5 years as described above, the center plug and the contact piece are removed once every five years. Therefore, the time required for one replacement can be reduced by about 200 hours.

しかも、前記継手軸の端部に中央が突出する球面部を設け、該球面部に、球面部の軸方向高さと等しい厚さの盛り金を具備させてもよい。これにより、球面部で形成した継手軸の端部とタービンロータ軸との接触を長期間ほぼ点接触の状態とすることができ、接触部における摩擦抵抗を極力小さくすることができる。   In addition, a spherical portion whose center projects from the end portion of the joint shaft may be provided, and a deposit having a thickness equal to the axial height of the spherical portion may be provided on the spherical portion. Thereby, the contact between the end of the joint shaft formed by the spherical surface portion and the turbine rotor shaft can be in a substantially point contact state for a long time, and the frictional resistance at the contact portion can be minimized.

さらに、前記タービンロータ軸の接触部が具備する盛り金を、前記継手軸の球面部が具備する盛り金の厚さと等しい厚さにしてもよい。これにより、タービンロータ軸と継手軸との接触部における摩耗進行量を同等にでき、タービンロータ軸と継手軸との接触部における寿命を同等にすることができる。   Furthermore, the fill provided in the contact portion of the turbine rotor shaft may have a thickness equal to the thickness of the fill provided in the spherical portion of the joint shaft. Thereby, the amount of progress of wear at the contact portion between the turbine rotor shaft and the joint shaft can be made equal, and the life at the contact portion between the turbine rotor shaft and the joint shaft can be made equivalent.

また、前記タービン継手と減速機ピニオン軸との間に、該減速機ピニオン軸と接触して前記継手軸を前記タービンロータ軸側に付勢する付勢部を備え、該付勢部に、前記減速機ピニオン軸と接触する接触部材と、該接触部材を継手軸側から減速機ピニオン軸側に付勢する付勢部材とを具備してもよい。これにより、継手軸をタービンロータ軸側に所定の力で付勢することができ、タービンロータ軸と継手軸との接触部における接触圧力を駆動動力等に適した圧力として、接触部におけるすべりによる摩耗を抑えることができる。   Further, an urging portion is provided between the turbine joint and the speed reducer pinion shaft so as to contact the speed reducer pinion shaft and urge the joint shaft toward the turbine rotor shaft side. You may comprise the contact member which contacts a reduction gear pinion shaft, and the urging member which urges | biases this contact member to the reduction gear pinion shaft side from the coupling shaft side. As a result, the joint shaft can be urged to the turbine rotor shaft side with a predetermined force, and the contact pressure at the contact portion between the turbine rotor shaft and the joint shaft is set to a pressure suitable for driving power, etc., by sliding at the contact portion. Wear can be suppressed.

さらに、前記接触部材と前記減速機ピニオン軸との接触部の表面に、それぞれ所定厚さのコバルト基合金の盛り金を具備していてもよい。これにより、継手軸と減速機ピニオン軸との接触部においても、フレッチング等による摩耗進行に対する耐久力を大幅に高めることができる。   Furthermore, the surface of the contact portion between the contact member and the speed reducer pinion shaft may be provided with a deposit of a cobalt-based alloy having a predetermined thickness. Thereby, also in the contact part of a joint axis | shaft and a reduction gear pinion axis | shaft, the durability with respect to wear progress by fretting etc. can be improved significantly.

本発明は、以上説明したような手段により、舶用主機タービンのタービン継手部における接触部の摩耗進行に対する耐久力を大幅に高めることができ、部品交換期間等を長くして舶用主機タービンの保守点検作業に要する労力と時間を大幅に軽減することが可能となる。   According to the present invention, by means such as described above, the durability against the progress of wear of the contact portion in the turbine joint of the marine main engine turbine can be greatly increased, and the maintenance inspection of the marine main engine turbine can be performed by extending the part replacement period and the like. The labor and time required for the work can be greatly reduced.

以下、本発明の一実施の形態を図面に基づいて説明する。図1は、本発明の一実施の形態に係る舶用主機タービンの継手構造を示す縦断面図であり、図2は、図1に示すII部拡大図、図3は、図2に示す上流側接触片と中心栓とを分解した拡大図である。なお、上述した図6,7に示すタービンロータ軸53と減速機ピニオン軸71とに関する構成で同一の構成には、上述した符号と同一の符号を付して説明する。また、これらの図では、円形の軸を半断面して示している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view showing a joint structure of a marine main engine turbine according to an embodiment of the present invention, FIG. 2 is an enlarged view of a portion II shown in FIG. 1, and FIG. 3 is an upstream side shown in FIG. It is the enlarged view which decomposed | disassembled the contact piece and the center plug. In addition, the same code | symbol as the code | symbol mentioned above is attached | subjected and demonstrated to the same structure regarding the turbine rotor shaft 53 and the reduction gear pinion shaft 71 shown in FIGS. In these figures, the circular shaft is shown as a half section.

図1に示すように、タービン継手1は、上流側にはタービンロータ軸53が連結され、下流側には減速機ピニオン軸71が連結された状態で設けられる。このタービン継手1の上流側には、タービンロータ軸53の接続フランジ54と連結されるスプラインフランジ2が設けられ、下流側には、減速機ピニオン軸71の接続フランジ72と連結されるスプラインフランジ3が設けられている。これらのスプラインフランジ2,3は、両接続フランジ54,72とボルト4で連結されている。   As shown in FIG. 1, the turbine joint 1 is provided in a state in which a turbine rotor shaft 53 is connected to the upstream side and a reduction gear pinion shaft 71 is connected to the downstream side. The spline flange 2 connected to the connection flange 54 of the turbine rotor shaft 53 is provided on the upstream side of the turbine joint 1, and the spline flange 3 connected to the connection flange 72 of the reduction gear pinion shaft 71 on the downstream side. Is provided. These spline flanges 2 and 3 are connected to both connection flanges 54 and 72 by bolts 4.

また、このタービン継手1の継手軸5には、上流側に上記スプラインフランジ2の内周に形成された外側スプライン6と係合する内側スプライン7が形成され、下流側に上記スプラインフランジ3の内周に形成された外側スプライン6と係合する内側スプライン7が形成されている。これら外側スプライン6と内側スプライン7とからなるスプライン部8によって、継手軸5とタービンロータ軸53及び減速機ピニオン軸71とが係合している。これにより、継手軸5の軸方向スライドをスプライン部8で許容しつつ、回転動力を伝達している。スプラインフランジ2,3には、内側スプライン7の軸方向移動を所定位置で係止する係止爪9がそれぞれ設けられている。   Further, an inner spline 7 that engages with an outer spline 6 formed on the inner periphery of the spline flange 2 is formed on the upstream side of the joint shaft 5 of the turbine joint 1, and the inner side of the spline flange 3 is formed on the downstream side. An inner spline 7 that engages with the outer spline 6 formed on the circumference is formed. The joint shaft 5, the turbine rotor shaft 53, and the reduction gear pinion shaft 71 are engaged with each other by the spline portion 8 including the outer spline 6 and the inner spline 7. Thereby, rotational power is transmitted while allowing the spline portion 8 to allow the joint shaft 5 to slide in the axial direction. The spline flanges 2 and 3 are respectively provided with locking claws 9 for locking the axial movement of the inner spline 7 at a predetermined position.

さらに、この継手軸5は、軸方向長さがタービンロータ軸53と減速機ピニオン軸71との間の間隔Lよりも短く形成されており、タービンロータ軸53と減速機ピニオン軸71との間に所定の隙間Sが設けられている。この継手軸5の上流側には、軸芯位置に上流側接触片10が設けられ、この上流側接触片10がタービンロータ軸53の軸芯位置に設けられた中心栓20と接触している。中心栓20の詳細は,後述する。この上流側接触片10は、継手軸5の軸芯位置に形成された挿入穴11内に設けられている。   Further, the joint shaft 5 is formed such that the axial length is shorter than the interval L between the turbine rotor shaft 53 and the reduction gear pinion shaft 71, and the joint shaft 5 is provided between the turbine rotor shaft 53 and the reduction gear pinion shaft 71. Is provided with a predetermined gap S. An upstream contact piece 10 is provided at the axial center position on the upstream side of the joint shaft 5, and the upstream contact piece 10 is in contact with the central plug 20 provided at the axial position of the turbine rotor shaft 53. . Details of the center plug 20 will be described later. The upstream contact piece 10 is provided in an insertion hole 11 formed at the axial center position of the joint shaft 5.

一方、継手軸5の下流側には、軸芯位置に下流側接触片12が設けられ、この下流側接触片12が減速機ピニオン軸71と接触している。この下流側接触片12は、継手軸5の下流側端部に設けられた案内部材13のスライド穴14内で軸方向にスライド可能なように設けられている。下流側接触片12は継手軸5側が開放し、減速機ピニオン軸71側が閉鎖された筒状に形成されている。この下流側接触片12と案内部材13との間には、下流側接触片12を減速機ピニオン軸71側に付勢する付勢部材たるスプリング15が設けられている。このスプリング15によって下流側接触片12を減速機ピニオン軸71側に付勢することにより、その反力で案内部材13を介して継手軸5がタービンロータ軸53側に付勢され、継手軸5の上流側軸芯位置に設けられた上流側接触片10がタービンロータ軸53の中心栓20に押付けられている。この下流側接触片12とスプリング15とを備えた部分が、減速機ピニオン軸71と継手軸5との間に設けられて、この継手軸5をタービンロータ軸53側に付勢する付勢部16である。このように、継手軸5をタービンロータ軸53側に付勢することにより、継手軸5が動力伝達時に容易に軸方向に移動するのを抑止している。この継手軸5の付勢力は、上記スプリング15のバネ力によって設定される。   On the other hand, on the downstream side of the joint shaft 5, a downstream contact piece 12 is provided at the axial center position, and the downstream contact piece 12 is in contact with the speed reducer pinion shaft 71. The downstream contact piece 12 is provided so as to be slidable in the axial direction within the slide hole 14 of the guide member 13 provided at the downstream end of the joint shaft 5. The downstream contact piece 12 is formed in a cylindrical shape with the joint shaft 5 side opened and the speed reducer pinion shaft 71 side closed. Between the downstream contact piece 12 and the guide member 13, a spring 15 is provided as a biasing member that biases the downstream contact piece 12 toward the reduction gear pinion shaft 71. By urging the downstream contact piece 12 toward the reduction gear pinion shaft 71 by the spring 15, the joint shaft 5 is urged toward the turbine rotor shaft 53 via the guide member 13 by the reaction force. The upstream contact piece 10 provided at the upstream axial center position is pressed against the center plug 20 of the turbine rotor shaft 53. A portion including the downstream contact piece 12 and the spring 15 is provided between the reduction gear pinion shaft 71 and the joint shaft 5, and an urging portion that urges the joint shaft 5 toward the turbine rotor shaft 53 side. 16. Thus, by urging the joint shaft 5 toward the turbine rotor shaft 53, the joint shaft 5 is prevented from easily moving in the axial direction during power transmission. The biasing force of the joint shaft 5 is set by the spring force of the spring 15.

図2に基いて、継手軸5の上流側における接触部18を詳細に説明する。上記タービンロータ軸53の軸芯位置には挿入穴19が設けられ、この挿入穴19内に中心栓20が設けられている。この中心栓20は、挿入穴19内に焼きばめ等で固定されている。この中心栓20の下流側端面は、タービンロータ軸53の下流側端面とほぼ同一面となるように設けられている。   Based on FIG. 2, the contact part 18 in the upstream of the joint axis | shaft 5 is demonstrated in detail. An insertion hole 19 is provided at the axial center position of the turbine rotor shaft 53, and a central plug 20 is provided in the insertion hole 19. The center plug 20 is fixed in the insertion hole 19 by shrink fitting or the like. The downstream end surface of the center plug 20 is provided so as to be substantially flush with the downstream end surface of the turbine rotor shaft 53.

一方、継手軸5の軸芯位置に設けられた上流側接触片10は、継手軸5に設けられた挿入穴11に挿入される大径の基部21と、この基部21の中心部からタービンロータ軸53側に突出する突出部22とを有している。挿入穴11に挿入された基部21は、タービンロータ軸53側が継手軸5の上流側端面と同一面となっており、上記挿入穴11内に焼きばめ等で固定されている。また、突出部22は、上記中心栓20とほぼ同じ外径で形成され、中心栓20側に所定高さで突出している。この上流側接触片10の表面は球面に形成され、上記中心栓20の表面は平面に形成されており、これらの接触部18は点接触となっている。   On the other hand, the upstream contact piece 10 provided at the axial center position of the joint shaft 5 includes a large-diameter base portion 21 inserted into the insertion hole 11 provided in the joint shaft 5, and a turbine rotor from the center portion of the base portion 21. It has the protrusion part 22 which protrudes in the axis | shaft 53 side. The base 21 inserted into the insertion hole 11 is flush with the upstream end surface of the joint shaft 5 on the turbine rotor shaft 53 side, and is fixed in the insertion hole 11 by shrink fitting or the like. Moreover, the protrusion part 22 is formed with the substantially same outer diameter as the said center plug 20, and protrudes in the center plug 20 side by predetermined height. The surface of the upstream contact piece 10 is formed into a spherical surface, the surface of the central plug 20 is formed into a flat surface, and these contact portions 18 are point contacts.

そして、上記タービンロータ軸53側の中心栓20と、継手軸5側の上流側接触片10との接触部18に、それぞれコバルト基合金の盛り金23,24が具備されている。このコバルト基合金の盛り金23,24は、例えば、ステライト(R)が用いられ、その溶接材による肉盛り溶接等によって具備される。盛り金23,24としては、軸芯を中心に所定の円形に形成される。このようにコバルト基合金の盛り金23,24が具備された接触部18では、非常に耐摩耗性の高いコバルト基合金の盛り金23,24が接触する構造となる。   Further, cobalt metal alloy deposits 23 and 24 are provided at the contact portions 18 between the central plug 20 on the turbine rotor shaft 53 side and the upstream contact piece 10 on the joint shaft 5 side, respectively. The cobalt-based alloy deposits 23 and 24 are made of, for example, stellite (R), and are formed by overlay welding using the welding material. The deposits 23 and 24 are formed in a predetermined circle around the axis. In this way, the contact portion 18 provided with the deposits 23 and 24 of the cobalt base alloy has a structure in which the deposits 23 and 24 of the cobalt base alloy having very high wear resistance are in contact with each other.

図3に示すように、この実施の形態では、上記コバルト基合金系の盛り金23,24が、上流側接触片10の突出部22に形成された球面部25の軸方向高さh(軸方向寸法)とほぼ同等の厚さtで形成されている。盛り金23,24をこのような厚さtとすることにより、継手軸5の上流側接触片10における盛り金24と、タービンロータ軸53の中心栓20における盛り金23とが同等に摩耗して、これら上流側接触片10と中心栓20とが面接触するような摩耗量となるまでコバルト基合金の盛り金23,24による接触を保つことができる。この実施の形態では、両方の盛り金23,24を厚さtとしているが、少なくとも盛り金24を厚さtとすることにより、球面部25が磨耗して面接触となるのを効果的に抑止することができる。この場合、中心栓20側の盛り金23はより厚くなる。   As shown in FIG. 3, in this embodiment, the cobalt-base alloy-based deposits 23, 24 are arranged so that the axial height h (axis) of the spherical portion 25 formed on the protruding portion 22 of the upstream contact piece 10. And a thickness t substantially equal to the direction dimension). By setting the deposits 23 and 24 to such a thickness t, the deposit 24 in the upstream contact piece 10 of the joint shaft 5 and the deposit 23 in the center plug 20 of the turbine rotor shaft 53 are equally worn. Thus, the contact by the deposits 23 and 24 of the cobalt base alloy can be maintained until the wear amount is such that the upstream contact piece 10 and the central plug 20 are in surface contact. In this embodiment, both the metal plates 23 and 24 have a thickness t. However, by setting at least the metal plate 24 to a thickness t, it is possible to effectively wear the spherical surface portion 25 and make surface contact. Can be deterred. In this case, the deposit 23 on the side of the center plug 20 becomes thicker.

また、この実施の形態では、継手軸5の上流側における上流側接触片10とタービンロータ軸53の中心栓20との間の接触部18にコバルト基合金系の盛り金23,24を具備させる例を説明したが、継手軸5の下流側における下流側接触片12と減速機ピニオン軸71との接触部にもコバルト基合金系の盛り金を具備させてもよく、タービン継手1の構成に応じて適宜採用すればよく、上記実施の形態に限定されるものではない。   Further, in this embodiment, cobalt base alloy-based metal deposits 23 and 24 are provided in the contact portion 18 between the upstream contact piece 10 on the upstream side of the joint shaft 5 and the central plug 20 of the turbine rotor shaft 53. Although the example has been described, the contact portion between the downstream contact piece 12 and the reduction gear pinion shaft 71 on the downstream side of the joint shaft 5 may be provided with a deposit based on a cobalt-based alloy. Accordingly, it may be appropriately adopted and is not limited to the above embodiment.

図4は、本発明に係る継手構造の効果を確認するための試験装置を示す模式図であり、図5は、図4に示す試験装置による試験結果を示すグラフである。図4に示す試験装置31は、台座32の上部に下試験片33を保持する移動体34がスプリング等の弾性部材35で支持され、その移動体34の上部に上試験片36を上下動可能に保持する保持体37が設けられている。この保持体37の上部には、一端(図示する左端)が台座32の支持ブロック38に揺動可能に支持され、他端(図の右端)に所定の錘39が設けられるアーム40が設けられている。このアーム40に設けられる錘39により、アーム40の押圧部41によって保持体37が下向きに押圧されている。保持体37を下向きに押圧することにより、保持体37に保持された上試験片36を下試験片33に所定の押圧力で押すようにしている。上試験片36には、下向きに突起部42が設けられており、この突起部42が下試験片33に押圧されている。この突起部42と下試験片33との接触部が摩耗試験部である。   FIG. 4 is a schematic diagram showing a test apparatus for confirming the effect of the joint structure according to the present invention, and FIG. 5 is a graph showing a test result by the test apparatus shown in FIG. In the test apparatus 31 shown in FIG. 4, a moving body 34 holding a lower test piece 33 is supported on an upper portion of a pedestal 32 by an elastic member 35 such as a spring, and the upper test piece 36 can be moved up and down on the moving body 34. A holding body 37 is provided for holding. An arm 40 is provided on the upper portion of the holding body 37. One end (the left end in the drawing) is swingably supported by the support block 38 of the pedestal 32 and the other end (the right end in the drawing) is provided with a predetermined weight 39. ing. The holding body 37 is pressed downward by the pressing portion 41 of the arm 40 by the weight 39 provided on the arm 40. By pressing the holding body 37 downward, the upper test piece 36 held by the holding body 37 is pressed against the lower test piece 33 with a predetermined pressing force. The upper test piece 36 is provided with a protrusion 42 facing downward, and the protrusion 42 is pressed against the lower test piece 33. A contact portion between the protrusion 42 and the lower test piece 33 is a wear test portion.

さらに、移動体34には横方向に作動部材43が設けられており、この作動部材43は偏心軸付き電動機45を駆動することによりカム44で直線運動させられるようになっている。この作動部材43をカム44の偏心量で直線運動させることにより、移動体34が下試験片33を水平移動させ、保持体37に保持された上試験片36の突起部42との接触部にすべりを生じさせる。この例では、接触部荷重を47kgf/mm2 、カム44によって作動部材43を直線運動させる振幅を20μm、試験時間を2時間としている。 Further, the moving body 34 is provided with an actuating member 43 in the lateral direction, and the actuating member 43 is linearly moved by a cam 44 by driving an electric motor 45 with an eccentric shaft. By moving the actuating member 43 linearly with the amount of eccentricity of the cam 44, the moving body 34 moves the lower test piece 33 horizontally, and at the contact portion with the protrusion 42 of the upper test piece 36 held by the holding body 37. Causes a slip. In this example, the contact portion load is 47 kgf / mm 2 , the amplitude for linearly moving the operating member 43 by the cam 44 is 20 μm, and the test time is 2 hours.

図6に示すように、上記図5に示す試験装置31による試験結果としては、試験1に示すように、従来技術である上試験片36に対する表面焼入れと、下試験片33に対する表面焼鈍しとを行った場合の摩耗量を「1」とすると、試験2に示すように、本発明のタービン継手構造27のようにコバルト基合金の盛り金23,24を上試験片36と下試験片33とに具備させれば、摩耗粉の発生も非常に少なく摩耗量が「約0.3」となる。したがって、本発明のタービン継手構造27によれば従来技術に比べて約3倍の耐摩耗性を発揮するといえる。また、摩耗粉の発生も非常に少ないので、その摩耗粉による摩耗促進もないといえる。   As shown in FIG. 6, the test results by the test apparatus 31 shown in FIG. 5 include surface quenching for the upper test piece 36 and surface annealing for the lower test piece 33 as shown in Test 1. Assuming that the amount of wear in the case of performing "1" is "1", as shown in Test 2, as shown in the turbine joint structure 27 of the present invention, the deposits 23 and 24 of the cobalt-based alloy are connected to the upper test piece 36 and the lower test piece 33. In this case, the generation of wear powder is very small and the wear amount is “about 0.3”. Therefore, it can be said that the turbine joint structure 27 of the present invention exhibits about three times the wear resistance as compared with the prior art. Further, since the generation of wear powder is very small, it can be said that there is no acceleration of wear by the wear powder.

以上のように、上記タービン継手構造27によれば、継手軸5の上流側接触片10とタービンロータ軸53の中心栓20との接触部18におけるフレッチングによる摩耗進行に対して耐久力を大幅に高めることができるので、主機タービン51(図6)の保守点検時等における、タービン継手1との接触部18における上流側接触片10や中心栓20等の交換期間を長くすることができ、保守点検時の労力と時間を大幅に軽減することが可能となる。   As described above, according to the turbine joint structure 27, the durability is greatly increased against the progress of wear due to fretting in the contact portion 18 between the upstream contact piece 10 of the joint shaft 5 and the central plug 20 of the turbine rotor shaft 53. Therefore, it is possible to lengthen the replacement period of the upstream contact piece 10 and the central plug 20 in the contact portion 18 with the turbine joint 1 during maintenance and inspection of the main turbine 51 (FIG. 6). Labor and time during inspection can be greatly reduced.

なお、上記コバルト基合金の盛り金23,24の種類は、使用条件等に応じて適した種類を採用すればよく、例えば、上記ステライト(R)を採用する場合でも、そのクラスは使用条件等に応じて決定すればよい。   The cobalt-base alloy deposits 23 and 24 may be of any suitable type depending on the use conditions. For example, even when the above-mentioned stellite (R) is used, the class may be the use conditions, etc. It may be determined according to.

さらに、前述した実施の形態は一例を示しており、本発明の要旨を損なわない範囲での種々の変更は可能であり、本発明は前述した実施の形態に限定されるものではない。   Furthermore, the above-described embodiment shows an example, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment.

本発明に係る舶用主機タービンの継手構造は、軸方向に接触する接触部を有し、回転力を伝達するる継手構造に利用できる。   The joint structure of a marine main engine turbine according to the present invention has a contact portion that makes contact in the axial direction and can be used for a joint structure that transmits rotational force.

本発明の一実施の形態に係る舶用主機タービンの継手構造を示す縦断面図である。1 is a longitudinal sectional view showing a joint structure of a marine main engine turbine according to an embodiment of the present invention. 図1に示すII部拡大図である。It is the II section enlarged view shown in FIG. 図2に示す上流側接触片と中心栓とを分解した拡大図である。It is the enlarged view which decomposed | disassembled the upstream contact piece and center plug shown in FIG. 本発明に係る継手構造の効果を確認するための試験装置を示す模式図である。It is a schematic diagram which shows the test apparatus for confirming the effect of the joint structure which concerns on this invention. 図4に示す試験装置による試験結果を示すグラフである。It is a graph which shows the test result by the testing apparatus shown in FIG. 従来の舶用主機タービンとタービン継手とを模式的に示す全体図である。It is a general view which shows the conventional marine main engine turbine and a turbine coupling typically. 図6に示すVII部の舶用主機タービンにおける継手構造の縦断面図である。It is a longitudinal cross-sectional view of the joint structure in the marine main engine turbine of the VII part shown in FIG. 図7に示すVIII部拡大図である。It is the VIII section enlarged view shown in FIG.

符号の説明Explanation of symbols

1…タービン継手
5…継手軸
8…スプライン部
10…上流側接触片
12…下流側接触片
13…案内部材
15…スプリング
16…付勢部
18…接触部
20…中心栓
22…突出部
23,24…盛り金
25…球面部
27…タービン継手構造
h…軸方向高さ
t…厚さ
1 ... Turbine joint
5 ... Joint shaft
DESCRIPTION OF SYMBOLS 8 ... Spline part 10 ... Upstream side contact piece 12 ... Downstream side contact piece 13 ... Guide member 15 ... Spring 16 ... Energizing part 18 ... Contact part 20 ... Center plug 22 ... Projection part 23, 24 ... Filling 25 ... Spherical part 27 ... Turbine joint structure
h: Axial height
t ... thickness

Claims (6)

舶用の主機タービンにおけるタービンロータ軸と減速機ピニオン軸とを連結するタービン継手の継手構造であって、
前記タービン継手の継手軸と前記タービンロータ軸との接触部の表面に、それぞれ所定厚のコバルト基合金の盛り金を具備していることを特徴とする舶用主機タービンの継手構造。
A joint structure of a turbine joint for connecting a turbine rotor shaft and a reduction gear pinion shaft in a marine main engine turbine,
A joint structure for a marine main engine turbine, wherein a surface of a contact portion between the joint shaft of the turbine joint and the turbine rotor shaft is provided with a deposit of a cobalt-based alloy having a predetermined thickness.
前記接触部のタービンロータ軸端部の軸芯位置に、表面が平面の取外し可能な中心栓を有し、
前記接触部の継手軸端部の軸芯位置に、表面が突出する球面の取外し可能な接触片を有し、
該接触片と前記中心栓との接触部の表面に前記盛り金を具備している請求項1に記載の舶用主機タービンの継手構造。
At the axial center position of the turbine rotor shaft end portion of the contact portion, there is a removable central plug having a flat surface.
At the axial center position of the joint shaft end portion of the contact portion, a spherically removable contact piece whose surface protrudes,
The marine main engine turbine joint structure according to claim 1, wherein the metal plate is provided on a surface of a contact portion between the contact piece and the central plug.
前記継手軸の端部に中央が突出する球面部を設け、該球面部に、球面部の軸方向高さと等しい厚さの盛り金を具備させた請求項1又は請求項2に記載の舶用主機タービンの継手構造。   3. The marine main engine according to claim 1, wherein a spherical portion projecting from the center is provided at an end portion of the joint shaft, and the metal portion having a thickness equal to the axial height of the spherical portion is provided on the spherical portion. Turbine joint structure. 前記タービンロータ軸の接触部が具備する盛り金を、前記継手軸の球面部が具備する盛り金の厚さと等しい厚さにした請求項3に記載の舶用主機タービンの継手構造。   The joint structure for a marine main engine turbine according to claim 3, wherein the filling provided in the contact portion of the turbine rotor shaft has a thickness equal to the thickness of the filling provided in the spherical portion of the joint shaft. 前記タービン継手と減速機ピニオン軸との間に、該減速機ピニオン軸と接触して前記継手軸を前記タービンロータ軸側に付勢する付勢部を備え、
該付勢部に、前記減速機ピニオン軸と接触する接触部材と、該接触部材を継手軸側から減速機ピニオン軸側に付勢する付勢部材とを具備している請求項1〜4のいずれか1項に記載の舶用主機タービンの継手構造。
Between the turbine joint and the reduction gear pinion shaft, provided with a biasing portion that contacts the reduction gear pinion shaft and biases the joint shaft toward the turbine rotor shaft side,
The biasing portion includes a contact member that contacts the reduction gear pinion shaft, and a biasing member that biases the contact member from the joint shaft side to the reduction gear pinion shaft side. A joint structure for a marine main engine turbine according to any one of the preceding claims.
前記接触部材と前記減速機ピニオン軸との接触部の表面に、それぞれ所定厚さのコバルト基合金の盛り金を具備している請求項5に記載の舶用主機タービンの継手構造。   The joint structure of a marine main engine turbine according to claim 5, wherein a surface of a contact portion between the contact member and the reduction gear pinion shaft is provided with a deposit of a cobalt-based alloy having a predetermined thickness.
JP2008035488A 2008-02-18 2008-02-18 Joint structure of marine main engine turbine Active JP5096958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035488A JP5096958B2 (en) 2008-02-18 2008-02-18 Joint structure of marine main engine turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035488A JP5096958B2 (en) 2008-02-18 2008-02-18 Joint structure of marine main engine turbine

Publications (2)

Publication Number Publication Date
JP2009191815A true JP2009191815A (en) 2009-08-27
JP5096958B2 JP5096958B2 (en) 2012-12-12

Family

ID=41074044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035488A Active JP5096958B2 (en) 2008-02-18 2008-02-18 Joint structure of marine main engine turbine

Country Status (1)

Country Link
JP (1) JP5096958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096301A (en) * 2016-12-14 2018-06-21 川崎重工業株式会社 Starter of gas turbine engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543220A (en) * 1977-06-08 1979-01-11 Kawasaki Heavy Ind Ltd Exhausttgas turbogenerator for vessel
JPS62127517A (en) * 1985-11-27 1987-06-09 Hitachi Ltd Gear type flexible joint
JPS62127516A (en) * 1985-11-27 1987-06-09 Hitachi Ltd Gear type flexible joint
JPH06341452A (en) * 1993-06-03 1994-12-13 Hitachi Ltd Shaft coupling
JPH11270571A (en) * 1998-03-25 1999-10-05 Mitsubishi Heavy Ind Ltd Backlash quantity adjusting device
JPH11336502A (en) * 1998-05-27 1999-12-07 Mitsubishi Heavy Ind Ltd Steam turbine moving blade and steam turbine having the same
JP2006046331A (en) * 2004-07-07 2006-02-16 Toshiba Corp Steam valve, and steam turbine with steam valve
JP2007085467A (en) * 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd Power transmission gear and reduction gear for shipping, including shaft coupling and manufacturing method of shaft coupling
WO2008012991A1 (en) * 2006-07-27 2008-01-31 Kabushiki Kaisha Kobe Seiko Sho Connection device, and kneading facility having kneading device and drive device connected to each other by the connection device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543220A (en) * 1977-06-08 1979-01-11 Kawasaki Heavy Ind Ltd Exhausttgas turbogenerator for vessel
JPS62127517A (en) * 1985-11-27 1987-06-09 Hitachi Ltd Gear type flexible joint
JPS62127516A (en) * 1985-11-27 1987-06-09 Hitachi Ltd Gear type flexible joint
JPH06341452A (en) * 1993-06-03 1994-12-13 Hitachi Ltd Shaft coupling
JPH11270571A (en) * 1998-03-25 1999-10-05 Mitsubishi Heavy Ind Ltd Backlash quantity adjusting device
JPH11336502A (en) * 1998-05-27 1999-12-07 Mitsubishi Heavy Ind Ltd Steam turbine moving blade and steam turbine having the same
JP2006046331A (en) * 2004-07-07 2006-02-16 Toshiba Corp Steam valve, and steam turbine with steam valve
JP2007085467A (en) * 2005-09-22 2007-04-05 Mitsubishi Heavy Ind Ltd Power transmission gear and reduction gear for shipping, including shaft coupling and manufacturing method of shaft coupling
WO2008012991A1 (en) * 2006-07-27 2008-01-31 Kabushiki Kaisha Kobe Seiko Sho Connection device, and kneading facility having kneading device and drive device connected to each other by the connection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096301A (en) * 2016-12-14 2018-06-21 川崎重工業株式会社 Starter of gas turbine engine
CN110073091A (en) * 2016-12-14 2019-07-30 川崎重工业株式会社 The starting device of gas-turbine unit
US11053856B2 (en) 2016-12-14 2021-07-06 Kawasaki Jukogyo Kabushiki Kaisha Starting device for gas turbine engine
CN110073091B (en) * 2016-12-14 2022-03-29 川崎重工业株式会社 Starting device for gas turbine engine

Also Published As

Publication number Publication date
JP5096958B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
CA2356026C (en) Corrosion-resisting and wear-resisting alloy and device using the same
US8876390B2 (en) Slotted bearings with wear-resistant treatments for gearbox mounting in a geared turbofan engine
US8789833B2 (en) Turbine assembly and method for assembling a turbine
EP2889454B1 (en) Steam turbine facility
Hou et al. Failure modes, mechanisms and causes of shafts in mechanical equipment
KR20110044995A (en) Bearings for Ford Propulsion Systems
James et al. Gas turbines: operating conditions, components and material requirements
US20180209281A1 (en) Bladed disc and method of manufacturing the same
JP5096958B2 (en) Joint structure of marine main engine turbine
US20100290902A1 (en) Repair of industrial gas turbine nozzle diaphragm packing
JP2009041449A (en) Repair method for gas turbine rotor vane
JP2007229721A (en) Method of reforming metallic surface
Dawood et al. A Review on Characterization, Classifications, and Applications of Super Alloys
De Barbadillo et al. Nickel-base superalloys for advanced power systems–an alloy producer’s perspective
US20200191060A1 (en) Manufacturing method of turbine casing
Yang et al. Creep performance evaluation considering the operating environment of gas turbine blades with rejuvenation maintenance
WO2006111520A1 (en) Turbine rotor and turbine engine
Stevenson et al. Failure analysis of a high-speed pinion shaft
Maker Failures of springs
JP2010101185A (en) Rocker arm assembly
Shantiswaroop et al. Fatigue Failure of a Spiral Bevel Gear in a Typical Low-Bypass Turbofan Engine
Kawiak et al. Destruction of Engine Exhaust Valves as the Source of a Vessel Loosing Steerage
deBarbadillo Age-Hardened Nickel-Base Alloys for Power Piping
Rahman Development of repair mechanism of FSX-414 based 1st stage nozzle of gas turbine
Viswanathan et al. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, October 25-28, 2004, Hilton Head Island, South Carolina

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5096958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250