JP2006045593A - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
JP2006045593A
JP2006045593A JP2004225096A JP2004225096A JP2006045593A JP 2006045593 A JP2006045593 A JP 2006045593A JP 2004225096 A JP2004225096 A JP 2004225096A JP 2004225096 A JP2004225096 A JP 2004225096A JP 2006045593 A JP2006045593 A JP 2006045593A
Authority
JP
Japan
Prior art keywords
flexible substrate
substrate
processing
chamber
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004225096A
Other languages
Japanese (ja)
Inventor
Katsuhito Wada
雄人 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004225096A priority Critical patent/JP2006045593A/en
Publication of JP2006045593A publication Critical patent/JP2006045593A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate treatment device and a substrate treatment method by which the occurrence of wrinkles in a substrate can be prevented or suppressed at the time of substrate treatment, thereby reducing the nonuniformity of the substrate treatment. <P>SOLUTION: In the substrate treatment device, a groove part having a prescribed wavy shape is formed on the surface of a contact part with a flexible substrate in a heater installed in each treatment chamber. In this way, the part to be thermally expanded in the flexible substrate at the time of surface treatment is adsorbed. Thus, the occurrence of wrinkles caused by thermal expansion in the flexible substrate and the nonuniformity of the surface treatment accompanied thereby can be suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、帯状に連続した可撓性基板を搬送しつつ、その少なくとも一部に所定の表面処理を順次実行する基板処理装置および基板処理方法に関する。   The present invention relates to a substrate processing apparatus and a substrate processing method for sequentially executing a predetermined surface treatment on at least a part of a flexible substrate that is continuous in a belt shape.

従来、連続した帯状の可撓性基板に複数層の薄膜を効率的に形成する方式として、可撓性基板を連続的に搬送して各処理室内を移動する過程で成膜するロールツーロール方式と、可撓性基板を断続的に搬送して各処理室内で停止させて成膜し、成膜の終わった基板部分を隣接する次の処理室へ送り出すステッピングロール方式とが知られている。   Conventionally, as a method for efficiently forming a plurality of layers of thin films on a continuous belt-like flexible substrate, a roll-to-roll method in which a flexible substrate is continuously transported and formed in the process of moving through each processing chamber. In addition, there is known a stepping roll method in which a flexible substrate is intermittently transported and stopped in each processing chamber to form a film, and the substrate portion after film formation is sent to the next adjacent processing chamber.

特に後者のステッピングロール方式を採用した基板処理装置によれば、連続した可撓性基板を断続的に搬送することで、基板の表面処理や基板上への素子の実装処理を順次効率よく実行することができる。その際、基板の一部を外部から機械的に隔離して処理を行うため、隣接する処理室間のガス相互拡散を防止することができ、薄膜や基板の品質の低下を防ぐことができる(例えば、特許文献1参照)。   In particular, according to the substrate processing apparatus adopting the latter stepping roll method, the substrate surface processing and the element mounting processing on the substrate are sequentially and efficiently performed by intermittently transporting the continuous flexible substrate. be able to. At that time, since processing is performed by mechanically isolating a part of the substrate from the outside, gas mutual diffusion between adjacent processing chambers can be prevented, and deterioration of the quality of the thin film and the substrate can be prevented ( For example, see Patent Document 1).

図6は、このようなステッピングロール方式により表面処理がなされる基板の処理部分周辺を、ある横断面でみた模式図である。
同図に示すように、帯状の基板101は、その搬送方向に所定の張力が付与された状態で搬送され、その処理部分が処理空間102に停止される。このとき、基板101は、処理空間102を規定する上下の枠体103により、その境界部分が保持・固定される。その際、上下の枠体103の間にはOリング等のシール部材104が介装されているため、処理空間102内のガスが外部に漏れるのが防止される。そして、基板101の処理空間102に配置された所定の処理部分をヒータ等の加熱手段105により加熱した状態で、プラズマCVD、蒸着、スパッタリングなどにより薄膜を堆積する。
特開平9−63970号公報
FIG. 6 is a schematic view of a periphery of a processing portion of a substrate that is surface-treated by such a stepping roll method, as seen in a certain cross section.
As shown in the figure, the belt-like substrate 101 is transported in a state where a predetermined tension is applied in the transport direction, and the processing portion is stopped in the processing space 102. At this time, the boundary portion of the substrate 101 is held and fixed by the upper and lower frame bodies 103 that define the processing space 102. At this time, since a sealing member 104 such as an O-ring is interposed between the upper and lower frame bodies 103, the gas in the processing space 102 is prevented from leaking to the outside. Then, a thin film is deposited by plasma CVD, vapor deposition, sputtering or the like in a state where a predetermined processing portion disposed in the processing space 102 of the substrate 101 is heated by a heating means 105 such as a heater.
JP-A-9-63970

しかしながら、このような基板処理装置では、基板101の処理空間102に配置された部分のみを加熱するため、基板101が部分的に熱膨張する。この場合、基板101の搬送方向には張力が加わっており、その熱膨張分が吸収されるために特に問題が生じない。しかし、基板101の搬送方向とは直角な方向には張力が加わっておらず、両端が固定された状態で膨張する結果、皺が発生する。そして、この皺状になった基板101に薄膜を堆積すると、その形状に応じた膜厚の分布ができてしまう。また、基板101にプラズマエッチングやプラズマによる改質処理(プラズマ処理)等を行う場合においても同様に、皺の発生した基板101の形状に応じてその表面処理に分布ができる。このため、表面処理が不均一になり、基板101とこれに実装される素子の特性の低下、不良の増加を引き起こしてしまうといった問題があった。   However, in such a substrate processing apparatus, only the portion of the substrate 101 disposed in the processing space 102 is heated, so that the substrate 101 partially thermally expands. In this case, tension is applied in the transport direction of the substrate 101, and the thermal expansion is absorbed, so that no particular problem occurs. However, no tension is applied in a direction perpendicular to the transport direction of the substrate 101, and wrinkles are generated as a result of expansion with both ends fixed. When a thin film is deposited on the bowl-like substrate 101, a film thickness distribution corresponding to the shape is formed. Similarly, when the substrate 101 is subjected to plasma etching or plasma modification treatment (plasma treatment), the surface treatment can be distributed according to the shape of the substrate 101 in which wrinkles are generated. For this reason, there is a problem that the surface treatment becomes non-uniform, and the characteristics of the substrate 101 and the elements mounted thereon are deteriorated and the number of defects is increased.

このような問題は、基板101の固定と加熱による温度分布により生ずるものであるため、基板101の搬送に係わる部分全体を加熱するようにすれば防ぐことができるとも考えられる。しかし、基板101の処理部分を機械的に隔離する部分をも加熱すると、気体の拡散を防ぐために枠体103に設けられたシール部材104が劣化してしまう等の別の問題が生じる。   Such a problem is caused by the temperature distribution due to the fixing and heating of the substrate 101. Therefore, it is considered that the entire portion related to the conveyance of the substrate 101 can be prevented by heating. However, if the portion of the substrate 101 that mechanically isolates the processing portion is heated, another problem such as deterioration of the seal member 104 provided on the frame 103 to prevent gas diffusion occurs.

本発明はこのような点に鑑みてなされたものであり、基板処理において基板に皺が発生するのを防止又は抑制でき、それにより基板処理の不均一性を抑えることができる基板処理装置および基板処理方法を提供することを目的とする。   The present invention has been made in view of the above points, and a substrate processing apparatus and a substrate that can prevent or suppress generation of wrinkles on a substrate during substrate processing, thereby suppressing non-uniformity in substrate processing. An object is to provide a processing method.

本発明では上記問題を解決するために、帯状に連続した可撓性基板を、その長手方向に沿って所定の張力を付与しつつ搬送する搬送手段と、前記搬送手段に搬送された前記可撓性基板の少なくとも一部に接触してこれを加熱する加熱手段と、前記加熱手段により加熱された状態の前記可撓性基板の部分に所定の表面処理を実行する処理手段とを内部に有する処理室と、を備えた基板処理装置において、前記加熱手段の前記可撓性基板との接触部の表面において、前記可撓性基板の搬送方向とほぼ直角な方向に波形状をなす溝部が形成されており、前記溝部の前記波形状が、ほぼ周期x、高さ±yなる形状を有し、前記周期xおよび前記高さyが、前記可撓性基板の熱膨張の割合をσ、前記可撓性基板の厚さをtとしたとき、下記式を満たしていることを特徴とする基板処理装置が提供される。   In the present invention, in order to solve the above-described problem, a conveying means for conveying a flexible substrate continuous in a strip shape while applying a predetermined tension along the longitudinal direction thereof, and the flexible substrate conveyed to the conveying means. A process having heating means for contacting and heating at least a part of the conductive substrate, and processing means for performing a predetermined surface treatment on the portion of the flexible substrate heated by the heating means A groove portion having a wave shape in a direction substantially perpendicular to the transport direction of the flexible substrate is formed on the surface of the contact portion of the heating means with the flexible substrate. The wave shape of the groove has a shape with a period of about x and a height of ± y, and the period of x and the height of y is the rate of thermal expansion of the flexible substrate, σ, When the thickness of the flexible substrate is t, the following formula is satisfied: A substrate processing apparatus is provided.

Figure 2006045593
Figure 2006045593

このような基板処理装置によれば、加熱手段に接触して加熱された可撓性基板の部分が熱膨張しても、その可撓性基板の搬送方向には所定の張力が付与されているため、この熱膨張分を吸収することができる。一方、加熱手段の可撓性基板との接触部表面には、可撓性基板の搬送方向とは直角な方向に波形状をなす溝部が形成されているため、可撓性基板がその搬送方向とは直角な方向に熱膨張しても、その膨張部分が溝部に沿って変形する。   According to such a substrate processing apparatus, even if the portion of the flexible substrate heated by contacting the heating means is thermally expanded, a predetermined tension is applied in the conveyance direction of the flexible substrate. Therefore, this thermal expansion component can be absorbed. On the other hand, a groove having a wave shape is formed on the surface of the contact portion of the heating means with the flexible substrate in a direction perpendicular to the conveyance direction of the flexible substrate. Even if it is thermally expanded in a direction perpendicular to the direction, the expanded portion is deformed along the groove.

なお、この加熱手段の溝部の波形状の周期があまりに小さいと、可撓性基板がその溝部の形状に沿って変形できずに大きな皺が形成されてしまうが、加熱手段の溝部の形状が上記式を満たすことにより、可撓性基板の熱膨張分を十分に吸収することができる。   If the period of the wave shape of the groove portion of the heating means is too small, the flexible substrate cannot be deformed along the shape of the groove portion and a large wrinkle is formed, but the shape of the groove portion of the heating means is By satisfying the equation, the thermal expansion of the flexible substrate can be sufficiently absorbed.

また、本発明では、帯状に連続した可撓性基板を、搬送機構によりその長手方向に沿って所定の張力を付与しつつ処理室へ搬送し、前記処理室に搬送された前記可撓性基板の少なくとも一部に加熱手段を接触させてこれを加熱するとともに、加熱された状態の前記可撓性基板の部分に処理手段により所定の表面処理を実行する基板処理方法において、前記加熱手段として、その前記可撓性基板との接触部の表面に、前記可撓性基板の搬送方向とほぼ直角な方向にほぼ周期x、高さ±yなる波形状をなす溝部が形成され、前記周期xおよび前記高さyが、前記可撓性基板の熱膨張の割合をσ、前記可撓性基板の厚さをtとしたときに下記式を満たすものを使用することを特徴とする基板処理方法が提供される。   In the present invention, the flexible substrate that is continuous in a strip shape is transported to a processing chamber while applying a predetermined tension along the longitudinal direction thereof by a transport mechanism, and the flexible substrate is transported to the processing chamber. In the substrate processing method in which the heating means is brought into contact with at least a part of the substrate and heated, and a predetermined surface treatment is performed by the processing means on the heated portion of the flexible substrate. On the surface of the contact portion with the flexible substrate, a groove portion having a wave shape with a period of approximately x and a height of ± y is formed in a direction substantially perpendicular to the conveyance direction of the flexible substrate, and the period x and The substrate processing method is characterized in that the height y satisfies the following formula when the rate of thermal expansion of the flexible substrate is σ and the thickness of the flexible substrate is t. Provided.

Figure 2006045593
Figure 2006045593

このような基板処理方法によれば、加熱手段の接触部の表面における可撓性基板の搬送方向とは直角な方向に形成された波形状の溝部により、可撓性基板がその搬送方向とは直角な方向に熱膨張しても、その熱膨張分を十分に吸収することができる。   According to such a substrate processing method, the flexible substrate is separated from the conveyance direction by the wavy groove formed in the direction perpendicular to the conveyance direction of the flexible substrate on the surface of the contact portion of the heating unit. Even if it thermally expands in a direction perpendicular to it, the thermal expansion can be sufficiently absorbed.

本発明の基板処理装置および基板処理方法によれば、加熱手段の接触部の表面に形成された波形状の溝部により、表面処理時における可撓性基板の熱膨張分が吸収される。
その結果、可撓性基板の熱膨張による皺の発生およびそれに伴う表面処理の不均一性を抑制することができる。
According to the substrate processing apparatus and the substrate processing method of the present invention, the thermal expansion of the flexible substrate during the surface treatment is absorbed by the wavy groove formed on the surface of the contact portion of the heating means.
As a result, the generation of wrinkles due to the thermal expansion of the flexible substrate and the accompanying nonuniformity in the surface treatment can be suppressed.

以下、本発明の実施の形態を、図面を参照して詳細に説明する。
図1は、本実施の形態に係る基板処理装置全体の構成を模式的に表す説明図であり、図2は、この基板処理装置を構成する処理室の構造を模式的に表す説明図である。図3は、この基板処理装置で表面処理が施された光電変換素子の概略構造を表す断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram schematically illustrating the entire configuration of the substrate processing apparatus according to the present embodiment, and FIG. 2 is an explanatory diagram schematically illustrating the structure of a processing chamber configuring the substrate processing apparatus. . FIG. 3 is a cross-sectional view illustrating a schematic structure of a photoelectric conversion element that has been surface-treated by the substrate processing apparatus.

この基板処理装置では、複数の処理室において帯状の可撓性を有する基板(可撓性基板)に順次表面処理を行うことにより所定の膜を積層していき、複数層からなる非晶質シリコン光電変換素子を形成する。   In this substrate processing apparatus, a predetermined film is laminated by sequentially performing a surface treatment on a belt-like flexible substrate (flexible substrate) in a plurality of processing chambers, thereby forming amorphous silicon composed of a plurality of layers. A photoelectric conversion element is formed.

図3に示すように、この光電変換素子は、連続した基板1上に、金属電極2、n型の導電層3、実質的に真正な光活性層(i層)4、p型の導電層5、および透明酸化物からなる透明電極6を順次積層して構成される。ここでは、基板1として、厚さが10〜200μm,幅が500mm,全長が500m程度のポリイミド基板を用いる。この基板1としては、この他にもポリエステル、ポリエチレン、ポリアミド、ポリプロピレン、ポリ塩化ビニル、ポリカーボネート、ポリスチレンなどの樹脂製の基板や、ステンレス基板を用いることができる。基板1の厚さや幅は、要求される光電変換素子のサイズによって変えることができる。基板1の全長については、基板処理装置の全長よりも長く、この基板処理装置に必要なメンテナンスサイクルから決まる長さよりも短ければよい。   As shown in FIG. 3, the photoelectric conversion element includes a metal electrode 2, an n-type conductive layer 3, a substantially authentic photoactive layer (i layer) 4, and a p-type conductive layer on a continuous substrate 1. 5 and a transparent electrode 6 made of a transparent oxide are sequentially laminated. Here, a polyimide substrate having a thickness of 10 to 200 μm, a width of 500 mm, and a total length of about 500 m is used as the substrate 1. In addition to this, a substrate made of resin such as polyester, polyethylene, polyamide, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, or a stainless substrate can be used as the substrate 1. The thickness and width of the substrate 1 can be changed according to the required size of the photoelectric conversion element. The total length of the substrate 1 may be longer than the total length of the substrate processing apparatus and shorter than the length determined from the maintenance cycle necessary for the substrate processing apparatus.

図1に示すように、基板処理装置10は、ロール状に巻回された可撓性基板を巻き出して複数の処理室間を断続的に搬送し、順次表面処理を実行するステッピングロール方式による成膜装置である。   As shown in FIG. 1, the substrate processing apparatus 10 uses a stepping roll method in which a flexible substrate wound in a roll shape is unwound, intermittently conveyed between a plurality of processing chambers, and sequentially subjected to surface treatment. A film forming apparatus.

すなわち、基板処理装置10は、予め上記基板1に金属電極2が成膜された帯状の可撓性基板7を巻回して収容する巻出室11と、巻出室11から巻き出された可撓性基板7に順次成膜処理を行う複数の処理室と、成膜後の可撓性基板8をロール状に巻き取る巻取室16とを備えている。処理室は、工程上流側から導電層3を成膜するn層用成膜室12、i層4を成膜するi層用成膜室13、導電層5を成膜するp層用成膜室14、および透明電極6を成膜する透明電極用成膜室15により構成されている。これら巻出室11、複数の処理室および巻取室16は、複数の搬送ローラを備えた搬送装置17(搬送手段)の作業コンベアラインに沿って並設されている。巻出室11から巻き出された可撓性基板7は、この搬送装置17によってn層用成膜室12、i層用成膜室13、p層用成膜室14、および透明電極用成膜室15の各処理室に順次断続的に搬送されて各々成膜処理がなされた後、巻取室16で巻き取られる。   In other words, the substrate processing apparatus 10 includes an unwinding chamber 11 in which a belt-shaped flexible substrate 7 on which the metal electrode 2 is formed on the substrate 1 is wound and accommodated, and an unwindable chamber 11 unwound from the unwinding chamber 11. A plurality of processing chambers that sequentially perform film formation on the flexible substrate 7 and a winding chamber 16 that winds the flexible substrate 8 after film formation into a roll shape are provided. The processing chamber includes an n-layer deposition chamber 12 for depositing the conductive layer 3 from the upstream side of the process, an i-layer deposition chamber 13 for depositing the i layer 4, and a p-layer deposition for depositing the conductive layer 5. The chamber 14 and the transparent electrode film forming chamber 15 for forming the transparent electrode 6 are formed. The unwinding chamber 11, the plurality of processing chambers, and the winding chamber 16 are arranged side by side along a work conveyor line of a conveying device 17 (conveying means) provided with a plurality of conveying rollers. The flexible substrate 7 unwound from the unwind chamber 11 is transferred to the n-layer film forming chamber 12, the i-layer film forming chamber 13, the p-layer film forming chamber 14, and the transparent electrode film forming device 17 by the transfer device 17. After being sequentially transferred to the respective processing chambers of the film chamber 15 to perform film forming processing, the film is wound in the winding chamber 16.

次に、基板処理装置における処理室の構成について説明する。なお、上述のように、処理室は、n層用成膜室12〜透明電極用成膜室15と複数隣接して配置されているが、その原理的構成についてはほぼ同様であるため、ここでは代表してn層用成膜室12を例に説明する。また、同図に表れない処理室およびその周辺の詳細構造については、上述した特許文献1(特開平9−63970号公報)に記載の構造とほぼ同様であるため、その説明については省略する。   Next, the configuration of the processing chamber in the substrate processing apparatus will be described. As described above, the processing chambers are disposed adjacent to the n-layer film forming chamber 12 to the transparent electrode film forming chamber 15, but the principle configuration is substantially the same. Then, the n-layer film forming chamber 12 will be described as an example. Further, the detailed structure of the processing chamber and its surroundings that do not appear in the figure is substantially the same as the structure described in Patent Document 1 (Japanese Patent Laid-Open No. 9-63970) described above, and therefore the description thereof is omitted.

図2に示すように、n層用成膜室12は、搬送装置17により断続的に搬送された可撓性基板7の処理部分を囲んで固定するとともに、内部を気密に封止可能な枠体20を備える。この枠体20は、下部成膜室壁体21と、これに対向する上部成膜室壁体22とからなる。下部成膜室壁体21が区画する下部成膜室には、図示しない電源に接続された高電圧電極23が設けられ、上部成膜室壁体22が区画する上部成膜室には、接触式のヒータ24(加熱手段)を内蔵した接地電極25が設けられている。このヒータ24は、成膜処理時に可撓性基板7に接触してこれを加熱し、その温度を制御するものであるが、その熱接触を確保して温度の制御性を確保するため、可撓性基板7に当接する位置から1mm程度下方に押し込まれる。このヒータ24には、その腐食を防ぐとともに膜が付着してその加熱能力が変動することを防止するため、プレートヒータが用いられる。高電圧電極23と接地電極25との電極間距離は30mm程度に設定されている。また、下部成膜室壁体21および上部成膜室壁体22の各開口端面の対応する位置には、シール用のOリング26,27が、内部の成膜空間を取り囲むようにそれぞれ設けられている。   As shown in FIG. 2, the n-layer film forming chamber 12 surrounds and fixes a processing portion of the flexible substrate 7 that is intermittently transported by the transport device 17, and can be hermetically sealed. A body 20 is provided. The frame 20 includes a lower film forming chamber wall 21 and an upper film forming chamber wall 22 facing the lower film forming chamber wall 21. The lower film forming chamber partitioned by the lower film forming chamber wall 21 is provided with a high voltage electrode 23 connected to a power source (not shown), and the upper film forming chamber partitioned by the upper film forming chamber wall 22 is in contact with the upper film forming chamber. A ground electrode 25 having a built-in heater 24 (heating means) is provided. This heater 24 controls the temperature by contacting and heating the flexible substrate 7 during the film forming process, but it is possible to ensure the thermal control and ensure the temperature controllability. It is pushed downward by about 1 mm from the position in contact with the flexible substrate 7. A plate heater is used for the heater 24 in order to prevent the corrosion and to prevent the film from adhering and changing its heating capacity. The distance between the high voltage electrode 23 and the ground electrode 25 is set to about 30 mm. Further, sealing O-rings 26 and 27 are provided at positions corresponding to the respective opening end faces of the lower film forming chamber wall 21 and the upper film forming chamber wall 22 so as to surround the inner film forming space. ing.

そして、導電層3の成膜時には、上部成膜室壁体22が下降し、下部成膜室壁体21との間に可撓性基板7を挟んで固定する。このとき、Oリング26,27が可撓性基板7の処理部分を取り囲むように密着するため、下部成膜室壁体21と可撓性基板7により気密に密閉された成膜空間28が形成される。n層用成膜室12に搬送されてきた可撓性基板7は、その処理部分が成膜空間28の決められた位置にきたときに停止される。そして、高電圧電極23への高周波電圧の印加によりプラズマを成膜空間28に発生させ、図示しない導入管から導入された原料ガスを分解して可撓性基板7上に導電層3を形成する。このとき、Oリング26,27により成膜空間28が他の処理室と隔離され、気体の拡散が防止されている。   When the conductive layer 3 is formed, the upper film formation chamber wall 22 is lowered and the flexible substrate 7 is sandwiched and fixed between the lower film formation chamber wall 21. At this time, since the O-rings 26 and 27 are in close contact with each other so as to surround the processing portion of the flexible substrate 7, a film formation space 28 hermetically sealed by the lower film formation chamber wall 21 and the flexible substrate 7 is formed. Is done. The flexible substrate 7 transported to the n-layer deposition chamber 12 is stopped when the processing portion reaches a predetermined position in the deposition space 28. Then, plasma is generated in the film forming space 28 by applying a high frequency voltage to the high voltage electrode 23, and the raw material gas introduced from the introduction pipe (not shown) is decomposed to form the conductive layer 3 on the flexible substrate 7. . At this time, the O-rings 26 and 27 isolate the film formation space 28 from other processing chambers, thereby preventing gas diffusion.

ここで、連続した可撓性基板7は、搬送装置17の搬送ロール31,32等によって支持されつつ、約30m/minの搬送速度で搬送される。この可撓性基板7の搬送時には、これを安定して保持し、精度良く搬送する必要があるため、搬送装置17によって可撓性基板7に対し、その搬送方向に約20kgfの張力が加えられる。この張力は基板処理装置の構成、搬送される基板の重量により決まる適切な値にするとよいが、搬送時と搬送停止時で変えてもよい。また、搬送速度については、生産性向上の観点からは搬送時間を短縮するために速くする必要があるが、やはり基板処理装置の構成、搬送される基板の重量、必要とされる搬送精度等の各要素から決められる。また、ここでは搬送速度を一定としたが、部分的に搬送速度を変えて時間を短縮することもできる。   Here, the continuous flexible substrate 7 is transported at a transport speed of about 30 m / min while being supported by the transport rolls 31 and 32 of the transport device 17. When the flexible substrate 7 is transported, it is necessary to stably hold and transport the flexible substrate 7 with high accuracy. Therefore, the transport device 17 applies a tension of about 20 kgf to the flexible substrate 7 in the transport direction. . This tension is preferably set to an appropriate value determined by the configuration of the substrate processing apparatus and the weight of the substrate to be transferred, but may be changed between when the transfer is performed and when the transfer is stopped. In addition, the transport speed needs to be increased in order to shorten the transport time from the viewpoint of productivity improvement, but also the configuration of the substrate processing apparatus, the weight of the substrate to be transported, the required transport accuracy, etc. Determined from each element. Although the transport speed is constant here, it is possible to shorten the time by partially changing the transport speed.

そして、本実施の形態では、成膜処理時に可撓性基板7が熱膨張してこれに皺が発生するのを防止又は抑制するために、ヒータ24の可撓性基板7との接触部の表面において、その可撓性基板7の搬送方向とほぼ直角な方向に波形状をなす溝部が形成されている。図4は、このヒータの溝部の波形状の例を表す説明図である。(A)は溝部を円弧状波形に形成したものであり、(B)は溝部を三角波形に形成したものである。   In this embodiment, in order to prevent or suppress the flexible substrate 7 from thermally expanding during the film forming process and causing wrinkles, a contact portion of the heater 24 with the flexible substrate 7 is prevented. On the surface, a groove portion having a wave shape is formed in a direction substantially perpendicular to the conveying direction of the flexible substrate 7. FIG. 4 is an explanatory diagram showing an example of the wave shape of the groove portion of the heater. (A) is a groove portion formed in an arcuate waveform, and (B) is a groove portion formed in a triangular waveform.

これらの溝部の波形は、それぞれ周期x、高さ±y(振幅がy)とすると、可撓性基板7の加熱による熱膨張の割合をσ、可撓性基板7の厚さをtとしたとき、xおよびyが、下記式を満たすように設定されている。   Assuming that the waveform of these groove portions is a period x and a height ± y (amplitude is y), the rate of thermal expansion due to heating of the flexible substrate 7 is σ, and the thickness of the flexible substrate 7 is t. X and y are set to satisfy the following formula.

Figure 2006045593
Figure 2006045593

以下、上記式(1)のように設定した理由について説明する。すなわち、枠体20が封止されて可撓性基板7がヒータ24に押し付けられると、可撓性基板7とヒータ24とが接触する溝部の凸部により、可撓性基板7とヒータ24との位置関係が固定される。   Hereinafter, the reason why it is set as in the above formula (1) will be described. That is, when the frame body 20 is sealed and the flexible substrate 7 is pressed against the heater 24, the flexible substrate 7 and the heater 24 are formed by the convex portions of the grooves where the flexible substrate 7 and the heater 24 come into contact. The positional relationship of is fixed.

そして、可撓性基板7がヒータ24によって加熱されると熱膨張が生じる。このとき可撓性基板7の膨張した部分は、その搬送方向とは直角な方向の数箇所でヒータ24との接触摩擦によって固定されているため、上下のいずれかに膨らんでヒータ24の表面の溝部の形状に沿って凹凸状に変形する。このとき、可撓性基板7に皺が発生しないためには、この膨らみがヒータ24の溝部において吸収される必要がある。そのためには、次の条件を満たす必要がある。   When the flexible substrate 7 is heated by the heater 24, thermal expansion occurs. At this time, the expanded portion of the flexible substrate 7 is fixed by contact friction with the heater 24 at several points in a direction perpendicular to the conveying direction. It deforms into an uneven shape along the shape of the groove. At this time, in order to prevent wrinkles from occurring on the flexible substrate 7, this swelling needs to be absorbed in the groove portion of the heater 24. For that purpose, the following conditions must be satisfied.

a)ヒータ24の溝部の波形の周期が小さいと、可撓性基板7がその溝部の凹凸に沿って変形することができず、これより大きな周期の皺が形成されてしまう。このため、溝部の波形の周期xと可撓性基板7の厚さtとの関係は、上記式(1)の2つめの不等式を満たす必要がある。   a) If the period of the waveform of the groove portion of the heater 24 is small, the flexible substrate 7 cannot be deformed along the unevenness of the groove portion, and a wrinkle having a longer period is formed. For this reason, the relationship between the period x of the waveform of the groove and the thickness t of the flexible substrate 7 needs to satisfy the second inequality of the above formula (1).

b)可撓性基板7の熱膨張による長さの増加分が、溝部の構造に沿って十分に吸収できる必要がある。この吸収可能な限度は溝部の形状によって異なるが、上記式(1)の1つめの不等式を満たす必要がある。   b) The increase in length due to thermal expansion of the flexible substrate 7 must be able to be sufficiently absorbed along the structure of the groove. Although this absorbable limit changes with the shape of a groove part, it is necessary to satisfy | fill the 1st inequality of said Formula (1).

まず、上記a)の理由について具体的に説明する。まず、板状基板の長さをl,厚さをt,ヤング率をE,幅Wとした場合、その長さ方向の座屈荷重Pcは、   First, the reason for a) will be specifically described. First, when the length of the plate-like substrate is l, the thickness is t, the Young's modulus is E, and the width is W, the buckling load Pc in the length direction is:

Figure 2006045593
Figure 2006045593

ここでは、板状基板を溝部に沿って湾曲させるために座屈させる必要があるが、その座屈をする条件は、荷重をPとすると、   Here, it is necessary to buckle the plate-like substrate in order to bend along the groove, but the condition for buckling is that if the load is P,

Figure 2006045593
Figure 2006045593

を満たす必要がある。
ここで、板状基板が加熱されて伸びようとするが、その板状基板が溝部の表面に押し付けられている部分(凸部)で固定されているとすると、板状基板にかかる荷重は、
P=σtEW (ただし、σは熱膨張の割合)
となる。このとき、凸部が固定されているため、端末条件係数は4となる。したがって、座屈をする条件は、
It is necessary to satisfy.
Here, when the plate-like substrate is heated and tries to stretch, if the plate-like substrate is fixed at the portion pressed against the surface of the groove (projection), the load applied to the plate-like substrate is
P = σtEW (where σ is the rate of thermal expansion)
It becomes. At this time, since the convex portion is fixed, the terminal condition coefficient is 4. Therefore, the condition for buckling is

Figure 2006045593
Figure 2006045593

ここで、溝部の波形の周期xがlに相当するため、   Here, since the period x of the waveform of the groove corresponds to l,

Figure 2006045593
Figure 2006045593

次に、上記b)の理由について具体的に説明する。まず、溝部が図4(B)に示すような三角波形の場合、その周期をx、高さを±yとすると、表面の搬送方向とは直角な方向の長さは、平面の場合と比べてほぼ次の値だけ伸びている(伸びの割合=伸び分/元の長さ)。   Next, the reason for b) will be specifically described. First, in the case where the groove has a triangular waveform as shown in FIG. 4B, if the period is x and the height is ± y, the length in the direction perpendicular to the transport direction of the surface is longer than that of the plane. The elongation is approximately the following value (elongation ratio = elongation / original length).

Figure 2006045593
Figure 2006045593

次に、溝部が図4(A)に示すような円弧状波形の場合、円弧の部分の半径は、   Next, when the groove has an arcuate waveform as shown in FIG. 4A, the radius of the arc portion is

Figure 2006045593
Figure 2006045593

このとき、1周期を構成する部分の1/4が弧をなし、その中心の角度は、   At this time, 1/4 of the part constituting one cycle forms an arc, and the angle of the center is

Figure 2006045593
Figure 2006045593

以上より、1周期を構成する部分の長さは、   From the above, the length of the portion constituting one cycle is

Figure 2006045593
Figure 2006045593

この構造がない場合(フラットな場合)の長さはxであるから、伸びの割合は、   Since the length without this structure (when flat) is x, the elongation percentage is

Figure 2006045593
Figure 2006045593

となる。図5は、ヒータの溝部の構造による伸びを吸収する効果を表す説明図であり、(A)は、波形の高さと周期との比に対する、上記伸びの割合を表すグラフであり、(B)は、波形の高さと周期との比に対する、伸びの割合と、高さと周期との比の2乗との比を表すグラフである。   It becomes. FIG. 5 is an explanatory diagram showing the effect of absorbing the elongation due to the structure of the groove portion of the heater, and (A) is a graph showing the ratio of the elongation to the ratio between the height of the waveform and the period, and (B). These are graphs showing the ratio of the ratio of elongation to the ratio of the height of the waveform to the period and the square of the ratio of the height to the period.

図5(B)に示されるように、伸びの効果は、高さと周期との比の2乗に対して7.5倍から11倍の範囲にある。また、図示しないが、正弦波形その他の波形状についても同様の結果が得られている。ここで、伸びの割合は、熱膨張の割合σに一致するため、上記b)の不等式が得られる。   As shown in FIG. 5B, the effect of elongation is in the range of 7.5 to 11 times the square of the ratio of height to period. Although not shown, similar results are obtained for sinusoidal waveforms and other wave shapes. Here, since the rate of elongation coincides with the rate of thermal expansion σ, the inequality of b) is obtained.

なお、溝部の高さyが、高電圧電極23と接地電極25との間の電極間距離に対して大きくなると、成膜処理において膜厚分布を均一に制御することが難しくなる。発明者らの実験によると、膜厚分布を均一にするためには、この溝部の高さyを電極間距離の10%以下にするのが好ましい。   Note that when the height y of the groove portion becomes larger than the inter-electrode distance between the high voltage electrode 23 and the ground electrode 25, it is difficult to uniformly control the film thickness distribution in the film forming process. According to the experiments by the inventors, in order to make the film thickness distribution uniform, the height y of the groove is preferably 10% or less of the distance between the electrodes.

発明者らは、上記実施の形態の効果を確認するために、ヒータの溝部を、上記式(1)の関係を満たす下記実施例1〜3に示す構造と、上記式(1)の関係を満たさない下記比較例1〜3の構造とにそれぞれ設定し、その結果得られた光電変換素子の膜厚の分布と光電変換効率を比較した。   In order to confirm the effect of the above-described embodiment, the inventors have obtained the relationship between the structure shown in Examples 1 to 3 below that satisfies the relationship of the above formula (1) and the relationship of the above formula (1). It set to the structure of the following comparative examples 1-3 which is not satisfy | filled, respectively, and compared with the film thickness distribution and photoelectric conversion efficiency of the photoelectric conversion element which were obtained as a result.

下記の表1には、成膜される各層の処理温度、つまり各処理室におけるヒータの温度が示されている。表2には、各処理室のヒータの波形状の周期および高さと、成膜が終了した光電変換素子の膜厚の分布と光電変換効率とが、それぞれ示されている。   Table 1 below shows the processing temperature of each layer to be deposited, that is, the temperature of the heater in each processing chamber. Table 2 shows the period and height of the wave shape of the heater of each processing chamber, the film thickness distribution of the photoelectric conversion element after film formation, and the photoelectric conversion efficiency.

Figure 2006045593
Figure 2006045593

Figure 2006045593
Figure 2006045593

[実施例1]
本実施例では、各処理室のヒータの溝部を図4(A)に示した形状に設定し、図3に示したnip型の非晶質シリコン(a-Si)光電変換素子を作製した。
[Example 1]
In this example, the groove of the heater in each processing chamber was set to the shape shown in FIG. 4A, and the nip-type amorphous silicon (a-Si) photoelectric conversion element shown in FIG. 3 was produced.

すなわち、表1および表2に示すように、n層用成膜室12およびi層用成膜室13について、各ヒータの溝部の周期が30mm、高さが±1mmとなるようにし、ヒータによる加熱温度が300℃となるようにした。また、p層用成膜室14および透明電極用成膜室15については、各ヒータの溝部の周期が38mm、高さが±1mmとなるようにし、ヒータによる加熱温度が200℃となるようにした。   That is, as shown in Table 1 and Table 2, in the n-layer deposition chamber 12 and the i-layer deposition chamber 13, the groove period of each heater is set to 30 mm and the height is ± 1 mm. The heating temperature was set to 300 ° C. Further, in the p-layer film forming chamber 14 and the transparent electrode film forming chamber 15, the period of the groove of each heater is set to 38 mm, the height is ± 1 mm, and the heating temperature by the heater is set to 200 ° C. did.

可撓性基板7には、厚さが50μmで幅が500mmのポリイミドからなる基板1に、所定形状の貫通孔および銀からなる金属電極2をその両面に形成したものを用いた。この基板1の熱膨張係数は、約5×10-5/℃である。また、可撓性基板7における処理部分の幅(搬送方向と直角な方向の長さ)は400mmに設定されている。 As the flexible substrate 7, a substrate 1 made of polyimide having a thickness of 50 μm and a width of 500 mm and a through-hole having a predetermined shape and metal electrodes 2 made of silver were formed on both surfaces thereof. The substrate 1 has a thermal expansion coefficient of about 5 × 10 −5 / ° C. Further, the width of the processing portion (the length in the direction perpendicular to the transport direction) in the flexible substrate 7 is set to 400 mm.

そして、図1に示す基板処理装置において、n型に制御されたa-Si、実質的に真性なa-Si、p型に制御されたa-Si、および酸化インジウムスズ(ITO)からなる透明電極を成膜して巻き取った。このとき、可撓性基板7(又はこれに成膜処理がされたもの)は、各処理室で300℃又は200℃に加熱された各ヒータに接触し、それぞれ250℃、150℃程度に加熱され、その搬送方向と直角方向の伸びがそれぞれ1.3%、0.8%程度となった。なお、可撓性基板7(又はこれに成膜処理がされたもの)は搬送中に熱輻射により冷却されるため、各ヒータから枠体まで搬送されるまでに温度が50〜80℃まで低下した。   In the substrate processing apparatus shown in FIG. 1, a transparent material composed of n-type controlled a-Si, substantially intrinsic a-Si, p-type controlled a-Si, and indium tin oxide (ITO). An electrode was formed and wound up. At this time, the flexible substrate 7 (or the film formed thereon) is brought into contact with each heater heated to 300 ° C. or 200 ° C. in each processing chamber, and heated to about 250 ° C. and 150 ° C., respectively. The elongation in the direction perpendicular to the conveying direction was about 1.3% and 0.8%, respectively. In addition, since the flexible substrate 7 (or the substrate on which the film is formed) is cooled by heat radiation during transportation, the temperature drops to 50 to 80 ° C. before being transported from each heater to the frame. did.

その結果、表2に示したように、膜厚分布が15〜20%となり、光電変換効率が7.6%となった。
[実施例2]
本実施例では、表1および表2に示すように、n層用成膜室12およびi層用成膜室13について、各ヒータの溝部の周期が44mm、高さが±1.5mmとなるようにし、ヒータによる加熱温度が300℃となるようにした。また、p層用成膜室14および透明電極用成膜室15については、各ヒータの溝部の周期が58mm、高さが±1.5mmとなるようにし、ヒータによる加熱温度が200℃となるようにした。その他の点については、実施例1と同様である。
As a result, as shown in Table 2, the film thickness distribution was 15 to 20%, and the photoelectric conversion efficiency was 7.6%.
[Example 2]
In this example, as shown in Table 1 and Table 2, the groove period of each heater is 44 mm and the height is ± 1.5 mm in the n-layer deposition chamber 12 and the i-layer deposition chamber 13. Thus, the heating temperature by the heater was set to 300 ° C. Further, in the p-layer film forming chamber 14 and the transparent electrode film forming chamber 15, the groove period of each heater is set to 58 mm and the height is ± 1.5 mm, and the heating temperature by the heater is 200 ° C. I did it. The other points are the same as in the first embodiment.

その結果、表2に示したように、膜厚分布が15〜20%となり、光電変換効率が7.5%となった。
[実施例3]
本実施例では、表2に示すように、n層用成膜室12およびi層用成膜室13について、各ヒータの溝部の周期が28mm、高さが±1mmとなるようにした。また、p層用成膜室14および透明電極用成膜室15については、各ヒータの溝部の周期が40mm、高さが±1mmとなるようにした。その他の点については、実施例1と同様である。
As a result, as shown in Table 2, the film thickness distribution was 15 to 20%, and the photoelectric conversion efficiency was 7.5%.
[Example 3]
In this example, as shown in Table 2, in the n-layer film forming chamber 12 and the i-layer film forming chamber 13, the period of the groove portion of each heater was 28 mm and the height was ± 1 mm. In addition, in the p-layer film forming chamber 14 and the transparent electrode film forming chamber 15, the period of the groove portion of each heater was set to 40 mm and the height was ± 1 mm. The other points are the same as in the first embodiment.

その結果、表2に示したように、膜厚分布が15〜20%となり、光電変換効率が7.6%となった。
[比較例1]
本比較例では、表2に示すように、n層用成膜室12、i層用成膜室13、p層用成膜室14および透明電極用成膜室15の各処理室においては、各ヒータの溝部の形状を平坦なものとした。
As a result, as shown in Table 2, the film thickness distribution was 15 to 20%, and the photoelectric conversion efficiency was 7.6%.
[Comparative Example 1]
In this comparative example, as shown in Table 2, in each processing chamber of the n-layer deposition chamber 12, the i-layer deposition chamber 13, the p-layer deposition chamber 14, and the transparent electrode deposition chamber 15, The shape of the groove of each heater was made flat.

その結果、成膜後の可撓性基板8に、幅が180mm程度、高さが6mm程度の皺ができた。また、表2に示したように、膜厚分布が30〜50%と大きくなり、光電変換効率が7.2%となった。
[比較例2]
本比較例では、表2に示すように、n層用成膜室12およびi層用成膜室13について、各ヒータの溝部の周期が1mm、高さが±0.03mmとなるようにした。また、p層用成膜室14および透明電極用成膜室15については、各ヒータの溝部の周期が1mm、高さが±0.02mmとなるようにした。その他の点については、実施例1と同様である。
As a result, wrinkles having a width of about 180 mm and a height of about 6 mm were formed on the flexible substrate 8 after film formation. Moreover, as shown in Table 2, the film thickness distribution was as large as 30 to 50%, and the photoelectric conversion efficiency was 7.2%.
[Comparative Example 2]
In this comparative example, as shown in Table 2, with respect to the n-layer deposition chamber 12 and the i-layer deposition chamber 13, the groove period of each heater was set to 1 mm and the height was ± 0.03 mm. . In addition, in the p-layer film forming chamber 14 and the transparent electrode film forming chamber 15, the period of the groove of each heater was set to 1 mm and the height was set to ± 0.02 mm. The other points are the same as in the first embodiment.

その結果、可撓性基板7(又はこれに成膜処理がされたもの)が、その熱膨張時にヒータの溝部の形状に沿わず、表2に示したように、膜厚分布が30〜50%と大きくなり、光電変換効率が7.3%となった。
[比較例3]
本比較例では、表2に示すように、n層用成膜室12およびi層用成膜室13について、各ヒータの溝部の周期が120mm、高さが±4mmとなるようにした。また、p層用成膜室14および透明電極用成膜室15については、各ヒータの溝部の周期が150mm、高さが±4mmとなるようにした。その他の点については、実施例1と同様である。
As a result, the flexible substrate 7 (or the substrate on which the film is formed) does not follow the shape of the groove of the heater at the time of thermal expansion, and as shown in Table 2, the film thickness distribution is 30-50. %, And the photoelectric conversion efficiency was 7.3%.
[Comparative Example 3]
In this comparative example, as shown in Table 2, with respect to the n-layer deposition chamber 12 and the i-layer deposition chamber 13, the groove period of each heater was set to 120 mm and the height was ± 4 mm. In addition, in the p-layer film forming chamber 14 and the transparent electrode film forming chamber 15, the period of the groove portion of each heater was set to 150 mm and the height was set to ± 4 mm. The other points are the same as in the first embodiment.

その結果、可撓性基板7(又はこれに成膜処理がされたもの)が、ヒータの溝部の形状に沿ったが、表2に示したように、膜厚分布が30〜50%と大きくなり、光電変換効率が7.2%となった。   As a result, the flexible substrate 7 (or the substrate on which the film was formed) followed the shape of the groove of the heater, but as shown in Table 2, the film thickness distribution was as large as 30 to 50%. The photoelectric conversion efficiency was 7.2%.

以上のように、上記式(1)を満たす実施例1〜3によれば、成膜処理時における可撓性基板の皺の発生を抑えて膜厚の変化を抑制することができ、その結果、光電変換素子の光電変換効率を向上させることができることが分かった。   As described above, according to Examples 1 to 3 satisfying the above formula (1), it is possible to suppress the occurrence of wrinkles on the flexible substrate during the film forming process and suppress the change in the film thickness. It was found that the photoelectric conversion efficiency of the photoelectric conversion element can be improved.

以上、本発明の好適な実施の形態について説明したが、本発明はその特定の実施の形態に限定されるものではなく、本発明の精神の範囲内での変化変形が可能であることはいうまでもない。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the specific embodiments, and changes and modifications can be made within the spirit of the present invention. Not too long.

例えば、上記実施の形態では、ヒータの溝部の形状として図4で示した円弧波形および三角波形のものを示したが、上記式(1)を満たす凹凸形状であればよく、正弦波形状その他の波形状として構成することもできる。   For example, in the above-described embodiment, the shape of the groove portion of the heater has the circular arc shape and the triangular waveform shown in FIG. It can also be configured as a wave shape.

また、上記実施の形態では、本発明をステッピングロール方式の基板処理装置として構成した例を示したが、ロールツーロール方式の基板処理装置として構成してもよい。このロールツーロール方式は基本的に処理時に可撓性基板を固定しないが、ヒータを押し当て加熱する際にその摩擦力等で皺が発生しないとは言い切れず、一定の効果は得られると考えられる。   Moreover, although the example which comprised this invention as a substrate processing apparatus of a stepping roll system was shown in the said embodiment, you may comprise as a substrate processing apparatus of a roll-to-roll system. This roll-to-roll method basically does not fix the flexible substrate at the time of processing, but it can not be said that wrinkles do not occur due to the frictional force etc. when the heater is pressed and heated, and a certain effect can be obtained Conceivable.

また、上記実施の形態では、可撓性基板の表面処理にプラズマCVDを適用した例を示したが、蒸着やスパッタリングその他の堆積膜形成処理を適用することもできる。また、プラズマエッチングやプラズマによる改質処理などのプラズマ処理を適用することもできる。   Moreover, although the example which applied plasma CVD to the surface treatment of the flexible substrate was shown in the said embodiment, vapor deposition, sputtering, and other deposited film formation processes can also be applied. Further, plasma treatment such as plasma etching or plasma modification treatment can be applied.

さらに、上記実施の形態では、基板処理装置にて図3に示した比較的単純な構造の光電変換素子を形成する例を示したが、各層間に界面層を形成してもよい。また、2つ以上の光電変換素子を接合して2層タンデム太陽電池、トリプル太陽電池として形成することもできる。さらに、本発明の基板処理装置は、光電変換素子のみではなく、画像デバイスなどの形成や、エッチング処理に適用することもできる。   Further, in the above-described embodiment, an example in which the photoelectric conversion element having a relatively simple structure illustrated in FIG. 3 is formed in the substrate processing apparatus, but an interface layer may be formed between each layer. Two or more photoelectric conversion elements can be joined to form a two-layer tandem solar cell or a triple solar cell. Furthermore, the substrate processing apparatus of the present invention can be applied not only to photoelectric conversion elements but also to the formation of image devices and the like and etching processes.

実施の形態に係る基板処理装置全体の構成を模式的に表す説明図である。It is explanatory drawing which represents typically the structure of the whole substrate processing apparatus which concerns on embodiment. 基板処理装置を構成する処理室の構造を模式的に表す説明図である。It is explanatory drawing which represents typically the structure of the process chamber which comprises a substrate processing apparatus. 基板処理装置で表面処理が施されて作製される光電変換素子の概略構造を表す断面図である。It is sectional drawing showing the schematic structure of the photoelectric conversion element produced by performing a surface treatment with a substrate processing apparatus. ヒータの溝部の形状の例を表す説明図である。It is explanatory drawing showing the example of the shape of the groove part of a heater. ヒータの溝部の構造による伸びを吸収する効果を表す説明図である。It is explanatory drawing showing the effect which absorbs the elongation by the structure of the groove part of a heater. ステッピングロール方式を採用した基板処理装置による基板の処理部分周辺をある横断面でみた模式図である。It is the schematic diagram which looked at the processing section periphery of the board | substrate by the substrate processing apparatus which employ | adopted the stepping roll system in a certain cross section.

符号の説明Explanation of symbols

7,8 可撓性基板
10 基板処理装置
11 巻出室
12 n層用成膜室
13 i層用成膜室
14 p層用成膜室
15 透明電極用成膜室
16 巻取室
17 搬送装置
20 枠体
21 下部成膜室壁体
22 上部成膜室壁体
23 高電圧電極
24 ヒータ
25 接地電極
26,27 Oリング
28 成膜空間
7, 8 Flexible substrate 10 Substrate processing apparatus 11 Unwinding chamber 12 N-layer film forming chamber 13 i-layer film forming chamber 14 p-layer film forming chamber 15 Transparent electrode film forming chamber 16 Winding chamber 17 Conveying device 20 Frame body 21 Lower film forming chamber wall body 22 Upper film forming chamber wall body 23 High voltage electrode 24 Heater 25 Ground electrode 26, 27 O-ring 28 Film forming space

Claims (12)

帯状に連続した可撓性基板を、その長手方向に沿って所定の張力を付与しつつ搬送する搬送手段と、
前記搬送手段に搬送された前記可撓性基板の少なくとも一部に接触してこれを加熱する加熱手段と、前記加熱手段により加熱された状態の前記可撓性基板の部分に所定の表面処理を実行する処理手段とを内部に有する処理室と、
を備えた基板処理装置において、
前記加熱手段の前記可撓性基板との接触部の表面において、前記可撓性基板の搬送方向とほぼ直角な方向に波形状をなす溝部が形成されており、前記溝部の前記波形状が、ほぼ周期x、高さ±yなる形状を有し、前記周期xおよび前記高さyが、前記可撓性基板の熱膨張の割合をσ、前記可撓性基板の厚さをtとしたとき、下記式を満たしていることを特徴とする基板処理装置。
Figure 2006045593
A transport means for transporting the flexible substrate continuous in a strip shape while applying a predetermined tension along its longitudinal direction;
A heating unit that contacts and heats at least a part of the flexible substrate conveyed to the conveying unit, and a predetermined surface treatment is applied to the portion of the flexible substrate heated by the heating unit. A processing chamber having processing means for executing inside,
In a substrate processing apparatus comprising:
On the surface of the contact portion of the heating means with the flexible substrate, a groove portion having a wave shape is formed in a direction substantially perpendicular to the conveyance direction of the flexible substrate, and the wave shape of the groove portion is It has a shape with a period of approximately x and a height of ± y, where the period x and the height y are σ as the rate of thermal expansion of the flexible substrate and t as the thickness of the flexible substrate. A substrate processing apparatus satisfying the following formula:
Figure 2006045593
前記搬送手段は、前記可撓性基板を前記処理室に断続的に搬送し、
前記処理室は、前記加熱手段および前記処理手段を内部に収容し、前記可撓性基板の搬送ごとに前記可撓性基板の処理部分を囲んで固定するとともに、その内部を気密に封止可能な枠体を有すること、
を特徴とする請求項1記載の基板処理装置。
The transport means intermittently transports the flexible substrate to the processing chamber,
The processing chamber accommodates the heating means and the processing means therein, and surrounds and fixes the processing portion of the flexible substrate each time the flexible substrate is transported, and the inside thereof can be hermetically sealed. Having a frame,
The substrate processing apparatus according to claim 1.
前記処理室が、前記可撓性基板の搬送路に沿って複数隣接して設けられ、
前記搬送手段は、各処理室での前記表面処理の終了ごとに、前記可撓性基板を隣接する処理室に順次に搬送すること、
を特徴とする請求項2記載の基板処理装置。
A plurality of the processing chambers are provided adjacent to each other along a conveyance path of the flexible substrate;
The transfer means sequentially transfers the flexible substrate to an adjacent process chamber at the end of the surface treatment in each process chamber.
The substrate processing apparatus according to claim 2.
前記処理室に、前記処理手段を構成する平行平板型の一対の電極が設けられ、その電極の一方が前記加熱手段を内蔵し、
前記高さyが、前記一対の電極の電極間距離の10%以下の大きさに設定されたことを特徴とする請求項2記載の基板処理装置。
The processing chamber is provided with a pair of parallel plate type electrodes constituting the processing means, and one of the electrodes incorporates the heating means,
The substrate processing apparatus according to claim 2, wherein the height y is set to 10% or less of a distance between the pair of electrodes.
前記処理手段は、前記表面処理として、前記可撓性基板に対して堆積膜形成を行う機構として構成されたことを特徴とする請求項4記載の基板処理装置。   The substrate processing apparatus according to claim 4, wherein the processing unit is configured as a mechanism for forming a deposited film on the flexible substrate as the surface treatment. 前記処理手段は、前記表面処理として、前記可撓性基板に対してプラズマ処理を行う機構として構成されたことを特徴とする請求項4記載の基板処理装置。   The substrate processing apparatus according to claim 4, wherein the processing unit is configured as a mechanism for performing plasma processing on the flexible substrate as the surface processing. 帯状に連続した可撓性基板を、搬送機構によりその長手方向に沿って所定の張力を付与しつつ処理室へ搬送し、前記処理室に搬送された前記可撓性基板の少なくとも一部に加熱手段を接触させてこれを加熱するとともに、加熱された状態の前記可撓性基板の部分に処理手段により所定の表面処理を実行する基板処理方法において、
前記加熱手段として、その前記可撓性基板との接触部の表面に、前記可撓性基板の搬送方向とほぼ直角な方向にほぼ周期x、高さ±yなる波形状をなす溝部が形成され、前記周期xおよび前記高さyが、前記可撓性基板の熱膨張の割合をσ、前記可撓性基板の厚さをtとしたときに下記式を満たすものを使用することを特徴とする基板処理方法。
Figure 2006045593
A flexible substrate that is continuous in a strip shape is transported to a processing chamber while applying a predetermined tension along its longitudinal direction by a transport mechanism, and at least a part of the flexible substrate transported to the processing chamber is heated. In the substrate processing method in which the means is brought into contact and heated, and a predetermined surface treatment is performed by the processing means on the heated portion of the flexible substrate.
As the heating means, on the surface of the contact portion with the flexible substrate, a groove portion having a wave shape with a period of approximately x and a height of ± y is formed in a direction substantially perpendicular to the conveyance direction of the flexible substrate. The period x and the height y are those satisfying the following formula when the rate of thermal expansion of the flexible substrate is σ and the thickness of the flexible substrate is t: Substrate processing method.
Figure 2006045593
前記搬送手段により前記可撓性基板を前記処理室に断続的に搬送し、
前記処理室において、前記可撓性基板の搬送ごとに枠体により前記可撓性基板の処理部分を囲んで固定するとともに、その枠体の内部を気密に封止し、前記枠体の内部に配置された前記加熱手段および前記処理手段により前記表面処理を実行すること、
を特徴とする請求項7記載の基板処理方法。
The flexible substrate is intermittently transported to the processing chamber by the transport means,
In the processing chamber, each time the flexible substrate is transported, the processing portion of the flexible substrate is surrounded and fixed by a frame, and the inside of the frame is hermetically sealed. Performing the surface treatment by the heating means and the treatment means arranged;
The substrate processing method according to claim 7.
前記処理室を前記可撓性基板の搬送路に沿って複数隣接して設け、
各処理室での前記表面処理の終了ごとに、前記搬送手段により前記可撓性基板を順次隣接する処理室に搬送すること、
を特徴とする請求項8記載の基板処理方法。
A plurality of the processing chambers are provided adjacent to each other along the conveyance path of the flexible substrate,
Each time the surface treatment in each processing chamber is completed, the flexible substrate is sequentially transferred to the adjacent processing chamber by the transfer means;
The substrate processing method according to claim 8.
前記処理手段を構成する平行平板型の一対の電極の一方に内臓され、前記高さyが前記一対の電極の電極間距離の10%以下の大きさに設定された前記加熱手段を用いて、前記表面処理を実行することを特徴とする請求項8記載の基板処理方法。   Using the heating means incorporated in one of a pair of parallel plate type electrodes constituting the processing means, and the height y is set to a size of 10% or less of the distance between the electrodes of the pair of electrodes, The substrate processing method according to claim 8, wherein the surface treatment is performed. 前記処理手段により、前記表面処理として、前記可撓性基板に対して堆積膜形成を行うことを特徴とする請求項10記載の基板処理方法。   The substrate processing method according to claim 10, wherein the processing unit forms a deposited film on the flexible substrate as the surface treatment. 前記処理手段により、前記表面処理として、前記可撓性基板に対してプラズマ処理を行うことを特徴とする請求項10記載の基板処理方法。
The substrate processing method according to claim 10, wherein plasma processing is performed on the flexible substrate as the surface treatment by the processing unit.
JP2004225096A 2004-08-02 2004-08-02 Substrate treatment device and substrate treatment method Withdrawn JP2006045593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225096A JP2006045593A (en) 2004-08-02 2004-08-02 Substrate treatment device and substrate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225096A JP2006045593A (en) 2004-08-02 2004-08-02 Substrate treatment device and substrate treatment method

Publications (1)

Publication Number Publication Date
JP2006045593A true JP2006045593A (en) 2006-02-16

Family

ID=36024524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225096A Withdrawn JP2006045593A (en) 2004-08-02 2004-08-02 Substrate treatment device and substrate treatment method

Country Status (1)

Country Link
JP (1) JP2006045593A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065804A1 (en) * 2006-12-01 2008-06-05 Sharp Kabushiki Kaisha Apparatus and method for manufacturing semiconductor element and semiconductor element manufactured by the method
JP2009270161A (en) * 2008-05-08 2009-11-19 Fuji Electric Advanced Technology Co Ltd Apparatus for producing thin film
JP2010121156A (en) * 2008-11-18 2010-06-03 Fuji Electric Holdings Co Ltd Capacitance-coupling type plasma cvd apparatus
JP2010174288A (en) * 2009-01-28 2010-08-12 Fuji Electric Holdings Co Ltd Equipment for manufacturing thin film
JPWO2010032530A1 (en) * 2008-09-18 2012-02-09 富士電機株式会社 Thin film structure and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116812A (en) * 1984-11-13 1986-06-04 Anelva Corp Vertically magnetizing film forming apparatus
JPS61211832A (en) * 1985-03-18 1986-09-19 Hitachi Ltd Apparatus for producing magnetic recording medium
JPH0963970A (en) * 1995-08-30 1997-03-07 Fuji Electric Co Ltd Thin film manufacturing device and manufacture thereof
JPH09181005A (en) * 1995-12-22 1997-07-11 Canon Inc Deposited film forming method and deposited film forming apparatus
JP2001226776A (en) * 2000-02-14 2001-08-21 Fuji Electric Co Ltd Thin film deposition system by plasma discharge and method of manufacturing shower electrode for the system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116812A (en) * 1984-11-13 1986-06-04 Anelva Corp Vertically magnetizing film forming apparatus
JPS61211832A (en) * 1985-03-18 1986-09-19 Hitachi Ltd Apparatus for producing magnetic recording medium
JPH0963970A (en) * 1995-08-30 1997-03-07 Fuji Electric Co Ltd Thin film manufacturing device and manufacture thereof
JPH09181005A (en) * 1995-12-22 1997-07-11 Canon Inc Deposited film forming method and deposited film forming apparatus
JP2001226776A (en) * 2000-02-14 2001-08-21 Fuji Electric Co Ltd Thin film deposition system by plasma discharge and method of manufacturing shower electrode for the system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065804A1 (en) * 2006-12-01 2008-06-05 Sharp Kabushiki Kaisha Apparatus and method for manufacturing semiconductor element and semiconductor element manufactured by the method
JP2009270161A (en) * 2008-05-08 2009-11-19 Fuji Electric Advanced Technology Co Ltd Apparatus for producing thin film
JPWO2010032530A1 (en) * 2008-09-18 2012-02-09 富士電機株式会社 Thin film structure and manufacturing method thereof
JP2010121156A (en) * 2008-11-18 2010-06-03 Fuji Electric Holdings Co Ltd Capacitance-coupling type plasma cvd apparatus
JP2010174288A (en) * 2009-01-28 2010-08-12 Fuji Electric Holdings Co Ltd Equipment for manufacturing thin film

Similar Documents

Publication Publication Date Title
JP3332700B2 (en) Method and apparatus for forming deposited film
JP4841023B2 (en) Film forming apparatus and method for manufacturing solar cell
JP2009094399A (en) Manufacturing apparatus of thin film solar cell
JP2006152416A (en) Plasma cvd apparatus
JPH04247879A (en) Method and device for continuously forming large-area functional deposited film by microwave plasma cvd method
JP2006045593A (en) Substrate treatment device and substrate treatment method
JP2722114B2 (en) Method and apparatus for continuously forming large-area functional deposition film by microwave plasma CVD
JP2000261015A (en) Solar battery film-forming apparatus
JP6376685B2 (en) Thin film forming apparatus and thin film forming method
JP2000303178A (en) Thin film forming device
JP4257586B2 (en) Substrate processing method
JP5315228B2 (en) Film forming apparatus and method for manufacturing solar cell
JP2801498B2 (en) Thin film manufacturing equipment
JP3560109B2 (en) Method and apparatus for manufacturing thin film photoelectric conversion element
JP4857456B2 (en) Vacuum deposition system
JP2722115B2 (en) Method and apparatus for continuously forming large-area functional deposition film by microwave plasma CVD
JP2002076394A (en) Thin film semiconductor material manufacturing device
KR101777139B1 (en) Apparatus for processing flexible substrate
JP2020090701A (en) Thin film deposition apparatus
JP3244803B2 (en) Method for manufacturing electronic device
JP5169068B2 (en) Thin film solar cell manufacturing equipment
JP2011063846A (en) Substrate treatment method and substrate treatment device
JP5238530B2 (en) Thin film manufacturing equipment
JPH0927459A (en) Processing equipment for semiconductor device
JP2001288572A (en) Deposited film forming equipment and the method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100809