JP2006044879A - Image recording device - Google Patents

Image recording device Download PDF

Info

Publication number
JP2006044879A
JP2006044879A JP2004228356A JP2004228356A JP2006044879A JP 2006044879 A JP2006044879 A JP 2006044879A JP 2004228356 A JP2004228356 A JP 2004228356A JP 2004228356 A JP2004228356 A JP 2004228356A JP 2006044879 A JP2006044879 A JP 2006044879A
Authority
JP
Japan
Prior art keywords
sheet
film
medium
image recording
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004228356A
Other languages
Japanese (ja)
Inventor
Mamoru Umeki
守 梅木
Makoto Sumi
誠 角
Takehiro Shiraishi
岳大 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2004228356A priority Critical patent/JP2006044879A/en
Publication of JP2006044879A publication Critical patent/JP2006044879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection-Type Copiers In General (AREA)
  • Registering Or Overturning Sheets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image recording device capable of accurately positioning sheet-like media by the side-edge truing to an exposure part even with a dimensional error of the sheet-like media of each size. <P>SOLUTION: This image recording device has a conveying means capable of conveying sheet-like media of multiple sizes; an exposure means for scanning the conveyed sheet-like media to form latent images; a correcting means for correcting the position in an orthogonal direction to a conveyed direction of the sheet-like media to the scanning of the exposure means; and a control means for controlling the conveying means, exposure means and correcting means. The correcting means has a pair of engaging members 1, 2 normally and reversely movable in a direction X almost orthogonal to the conveyed direction of the sheet-like media and engaged with both ends of the sheet-like media to correct the position in the orthogonal direction to the conveyed direction, and a driving means for driving the engaging members. The control means has a detecting means 9 for detecting the deformation quantity of the sheet-like media F pressed in the almost orthogonal direction to the conveyed direction by the engaging members, and controls the normal and reverse moving timing of the engaging members based on the detected result. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シート状媒体を走査して潜像を形成し画像を記録する画像記録装置に関するものである。   The present invention relates to an image recording apparatus that scans a sheet-like medium to form a latent image and record an image.

露光部で熱現像感光フィルムにレーザ光を照射して露光し、現像部で熱現像して潜像を可視化する画像記録装置(イメージャ)において、露光部に搬送されるフィルムの幅方向位置を幅寄せして位置決めし、フィルムをニップローラで搬送しながら露光している。この露光部では、前段のニップローラでフィルム先端を係止しまたは進退可能なストッパで係止することで、位置決めを行っており、位置矯正(規制)のための部品点数が少なくてすむ利点がある反面、位置規制後に再度の回転駆動時やストッパ退避時にフィルム先端部分が影響を受け易く、フィルムに対する画像位置が変動することがあった。   In an image recording device (imager) that exposes a photothermographic film by irradiating a photothermographic film at an exposure unit and visualizes the latent image by heat development at the development unit, the width direction position of the film conveyed to the exposure unit The film is positioned while being moved, and the film is exposed while being conveyed by a nip roller. In this exposure part, positioning is performed by locking the film tip with a nip roller in the previous stage or with a stopper that can be advanced and retracted, and there is an advantage that the number of parts for position correction (regulation) can be reduced. On the other hand, when the rotational drive is performed again after the position is restricted or when the stopper is retracted, the leading edge of the film is easily affected, and the image position with respect to the film sometimes fluctuates.

これに対し、圧着解除可能な一対のニップローラを用い、圧着解除とほぼ同時にフィルム搬送方向への移動をローラ等の自重を作用させ、搬送方向への移動を抑制し、搬送方向と略直交する方向に幅寄せ爪を作用させることで、フィルムの位置を矯正し、しかる後、一対のニップローラを圧着し、露光部へフィルム搬送する方式は、位置矯正後にフィルム位置が変動し難く、好ましい。また、従来の位置規制方式は、例えば、下記特許文献1のような片側基準及び下記特許文献2のようなセンター基準の両方式が適宜用いられている。   On the other hand, using a pair of nip rollers capable of releasing the pressure bonding, the movement in the film conveying direction is applied at the same time as the pressure releasing and the weight of the roller or the like is applied, the movement in the conveying direction is suppressed, and the direction substantially orthogonal to the conveying direction. A method of correcting the position of the film by causing the width adjusting nail to act, and then pressing the pair of nip rollers and conveying the film to the exposure unit is preferable because the film position hardly changes after the position correction. In addition, as a conventional position regulation method, for example, both a one-side reference as in Patent Document 1 and a center reference as in Patent Document 2 are appropriately used.

従来タイプのイメージャは、幅方向14インチの半切・大角・大四切が処理可能なタイプのみであったが、近年は、六切・四切も同時に処理可能となるイメージャも要望されており、特許文献2には六切〜半切まで処理可能なイメージャが開示されている。   The conventional type imager was only the type that can process half-cut, large-angle, and large-quarter cuts of 14 inches in the width direction, but in recent years, an imager that can process six-cut and four-cuts simultaneously has been demanded. Patent Document 2 discloses an imager capable of processing from six to half cuts.

フィルムは、広幅の原反から各サイズに断裁されて製造されるが、寸法に誤差が生じる可能性があるため、所定量の誤差が許容されており、例えば、JIS規格では±1mmの許容幅がある。従って、フィルムを幅寄せするストロークは、片側基準及びセンター基準のどちらの方式においてもレンジ2mm+αを加味して設定される。また、幅寄せされ位置矯正されるシート状媒体の種類、代表的には、紙や医療用フィルム(170μm前後のPETベース)や蛍光体プレートの剛性に応じて、幅寄せのストローク(押し込み量)が調整される。   Film is manufactured by cutting into various sizes from a wide raw fabric, but there is a possibility of errors in dimensions, so a certain amount of error is allowed. For example, in the JIS standard, an allowable width of ± 1 mm is allowed. There is. Therefore, the stroke for narrowing the film is set in consideration of the range 2 mm + α in both the one-side reference and center-reference methods. In addition, depending on the type of sheet-like medium to be width-adjusted and position-corrected, typically paper, medical film (PET base of around 170 μm) or phosphor plate rigidity, the width-shifting stroke (push-in amount) Is adjusted.

また、シート状媒体と接触しているガイドの抵抗にうち勝つ力をシート状媒体に与えねばならず、オーバーストローク設定によっては、シート状媒体及び幅寄せ爪に過剰な力が作用することになり、シート状媒体の損傷にも繁がる恐れある場合には、幅寄せ爪、または、駆動系に弾性機能による過負荷の逃げ部が形成される。   In addition, a force that overcomes the resistance of the guide in contact with the sheet-shaped medium must be applied to the sheet-shaped medium, and depending on the overstroke setting, an excessive force may act on the sheet-shaped medium and the width nail. When there is a possibility that the sheet-like medium may be damaged, an overload relief portion is formed in the width-shifting claw or an elastic function in the driving system.

シート媒体が170μm前後のPETベースに乳剤を塗布し200μm前後の厚さとなっている熱現像感光フィルムの場合、幅寄せ爪(駆動系含む)には過負荷逃げは作らず、フィルム自体を撓ませて使用するか、または、弾性部材併用により撓みを緩和する場合があり、特許文献1は併用タイプであり、特許文献2はは併用しないタイプである。   In the case of a photothermographic film in which a sheet medium is coated with an emulsion on a PET base of about 170 μm and has a thickness of about 200 μm, the overhanging nail (including the drive system) is not overloaded and the film itself is bent. Or the elastic member is used together to alleviate the bending. Patent Document 1 is a combined type and Patent Document 2 is a type that is not used together.

しかし、特に六切〜半切の各サイズに対し、センター基準方式で少なくとも1対の幅寄せ爪を各端面に対し均等に作用させた場合、フィルム位置が同じようには矯正されないことがあった。
特開2003−167300 特開2004−099204
However, when at least one pair of width-shifting claws is applied uniformly to each end face by the center reference method, particularly for each size of six cuts to half cuts, the film position may not be corrected in the same way.
JP 2003-167300 A JP 2004-099204 A

本発明は、上述のような従来技術の問題に鑑み、各サイズのシート状媒体に寸法誤差があっても、露光部に対するシート状媒体の幅寄せによる位置決めを精度よく行うことのできる画像記録装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. An image recording apparatus capable of accurately positioning a sheet-shaped medium with respect to an exposure unit by shifting the width of the sheet-shaped medium even if there is a dimensional error. The purpose is to provide.

上記目的を達成するために、本発明による画像記録装置は、複数サイズのシート状媒体を搬送可能な搬送手段と、前記搬送されたシート状媒体を走査して潜像を形成する露光手段と、前記露光手段の走査に対する前記シート状媒体の搬送方向と直交する方向の位置を矯正する矯正手段と、前記搬送手段、前記露光手段及び前記矯正手段を制御する制御手段と、を備える画像記録装置であって、前記矯正手段は、前記シート状媒体の搬送方向と略直交する方向に正逆移動可能で前記シート状媒体の両端と係合して前記搬送方向と直交する方向の位置を矯正する1対の係合部材と、前記係合部材を駆動する駆動手段と、を有し、前記制御手段は、前記係合部材により前記搬送方向と略直交する方向に押圧されたシート状媒体の変形量を検出する検出手段を有し、その検出結果に基づいて前記係合部材の正逆移動のタイミングを制御することを特徴とする。   In order to achieve the above object, an image recording apparatus according to the present invention includes a conveying unit capable of conveying a plurality of sizes of sheet-like medium, an exposure unit that scans the conveyed sheet-like medium to form a latent image, and An image recording apparatus comprising: a correcting unit that corrects a position in a direction orthogonal to a conveying direction of the sheet-like medium with respect to scanning of the exposing unit; and a control unit that controls the conveying unit, the exposing unit, and the correcting unit. The correcting means can move forward and backward in a direction substantially orthogonal to the conveying direction of the sheet-like medium, engages with both ends of the sheet-like medium, and corrects the position in the direction orthogonal to the conveying direction. A deformation amount of the sheet-like medium pressed by the engagement member in a direction substantially orthogonal to the conveyance direction. Detect to detect It comprises means, and controlling the timing of the forward and reverse movement of the engagement member based on the detection result.

この画像記録装置によれば、シート状媒体を位置矯正のために搬送方向と略直交する方向に押圧したときの変形量を検出し、その検出結果に基づいて係合部材の正逆移動のタイミングを制御するので、押圧するときの変形量を寸法精度に関わりなく一定に制御でき、位置矯正のときにシート状媒体を一定の撓み(一定のエネルギー)に維持することができる。このため、係合部材が押圧方向の逆方向に移動し、シート状媒体が撓んだエネルギーの蓄積状態から元に戻ったときに暴れて位置ずれを起こすことがなく精度よく位置決めできるので、各サイズのシート状媒体に寸法誤差があっても、露光部に対するシート状媒体の幅寄せによる位置決めを精度よく行うことができる。   According to this image recording apparatus, the amount of deformation when the sheet-like medium is pressed in a direction substantially orthogonal to the conveying direction for position correction is detected, and the forward / reverse movement timing of the engaging member is determined based on the detection result. Therefore, the amount of deformation at the time of pressing can be controlled to be constant regardless of dimensional accuracy, and the sheet-like medium can be maintained at a constant deflection (a constant energy) during position correction. For this reason, since the engaging member moves in the reverse direction of the pressing direction and the sheet-like medium returns from the state where the accumulated energy is deflected, it can be accurately positioned without causing violent displacement. Even if there is a dimensional error in the size of the sheet-like medium, the positioning of the sheet-like medium with respect to the exposure portion can be performed with high accuracy.

上記画像記録装置において前記検出手段が位置検出デバイス(PSD)から構成されることが好ましい。   In the image recording apparatus, it is preferable that the detection means is constituted by a position detection device (PSD).

また、前記押圧されたシート状媒体が凸形状に変形し、その凸形状の高さを検出し、その検出した高さが所定量に達したとき、前記係合部材を前記押圧する方向から逆方向に移動させるように前記駆動手段を制御するようにできる。   In addition, when the pressed sheet-like medium is deformed into a convex shape, the height of the convex shape is detected, and the detected height reaches a predetermined amount, the engagement member is reversed from the pressing direction. The drive means can be controlled to move in the direction.

本発明の画像記録装置によれば、各サイズのシート状媒体に寸法誤差があっても、露光手段に対するシート状媒体の幅寄せによる位置決めを精度よく行うことができる。   According to the image recording apparatus of the present invention, even if there is a dimensional error in each size of the sheet-like medium, the positioning of the sheet-like medium with respect to the exposure unit can be performed with high accuracy.

以下、本発明を実施するための最良の形態について図面を用いて説明する。本実施による画像記録装置について図1,図2を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings. The image recording apparatus according to the present embodiment will be described with reference to FIGS.

図1は本実施の形態による画像記録装置の要部を示す正面図である。図2は図1の画像記録装置の露光部を概略的に示す図である。   FIG. 1 is a front view showing a main part of the image recording apparatus according to the present embodiment. FIG. 2 is a view schematically showing an exposure unit of the image recording apparatus of FIG.

図1に示すように画像記録装置100は、シート状の熱現像感光材料である熱現像感光フィルム(以下、「フィルム」という場合もある。)を所定枚数でパッケージした包装体を装填する第1及び第2の装填部11,12と、フィルムを1枚づつ露光・現像のために搬送する搬送部5Aとを有する供給部110と、供給部110から給送されたフィルムを露光し潜像を形成する露光部120と、潜像を形成されたフィルムを熱現像する熱現像部130と、現像されたフィルムの濃度を測定し濃度情報を得る濃度計200や搬送ローラ144A等を含む冷却搬送部150と、を備える。   As shown in FIG. 1, the image recording apparatus 100 is loaded with a package in which a predetermined number of photothermographic films (hereinafter also referred to as “films”), which are sheet-like photothermographic materials, are packaged. And a second loading unit 11, 12, a supply unit 110 having a conveyance unit 5 </ b> A for conveying the film one by one for exposure and development, and exposing the film fed from the supply unit 110 to expose a latent image. An exposure unit 120 to be formed, a thermal development unit 130 to thermally develop a film on which a latent image is formed, and a cooling and conveyance unit including a densitometer 200 and a conveyance roller 144A that measure density of the developed film and obtain density information 150.

供給部110の第1及び第2の装填部11,12には、サイズの異なるフィルムをそれぞれ装填し、第1の装填部11または第2の装填部12からフィルムが1枚づつ搬送部5A、搬送ローラ対139,140,141により図1の矢印方向(1)に搬送される。搬送ローラ対139,140,141がフィルムを露光部120に向け下降搬送する。   The first and second loading units 11 and 12 of the supply unit 110 are loaded with films of different sizes, respectively, and the conveyance unit 5A, one film at a time from the first loading unit 11 or the second loading unit 12, It is conveyed in the arrow direction (1) of FIG. 1 by the conveying roller pair 139, 140, 141. A pair of transport rollers 139, 140, and 141 transports the film downward toward the exposure unit 120.

次に、フィルムは、矢印方向(2)に搬送ローラ対4で水平搬送され、更に搬送ローラ対142,142’で副走査搬送されながら露光部120でレーザ光が照射され潜像が形成される。   Next, the film is horizontally transported by the transport roller pair 4 in the arrow direction (2), and further, sub-scan transported by the transport roller pairs 142 and 142 ′, and the exposure unit 120 emits laser light to form a latent image. .

次に、搬送ローラ対146,145,144,143により矢印方向(3)へ搬送される。搬送ローラ対146,145,144,143が潜像の形成されたフィルムを熱現像部130に向け上昇搬送する。   Next, the sheet is conveyed in the arrow direction (3) by the conveying roller pairs 146, 145, 144, and 143. A pair of transport rollers 146, 145, 144, 143 lifts and transports the film on which the latent image is formed toward the heat developing unit 130.

次に、フィルムは熱現像部130で潜像が可視像化され、更に、矢印方向(4)へ搬送ローラ144Aにより搬送され冷却搬送部150で冷却されてから排出部160に排出される。なお、搬送ローラ対4はモータ149(図5)により回転駆動され、他の搬送ローラ対139,141,4,142,142’,146,145,144,143も同様にモータにより回転駆動される。   Next, the latent image of the film is visualized by the heat developing unit 130, and the film is further conveyed by the conveying roller 144 </ b> A in the arrow direction (4), cooled by the cooling conveying unit 150, and then discharged to the discharging unit 160. The transport roller pair 4 is rotationally driven by a motor 149 (FIG. 5), and the other transport roller pairs 139, 141, 4, 142, 142 ′, 146, 145, 144, and 143 are similarly rotationally driven by the motor. .

次に、露光部について説明する。図2のように、露光部120は、画像信号Sに基づき強度変調されたレーザ光Lを、回転多面鏡113によって偏向して、フィルムF上を主走査すると共に、フィルムFをレーザ光Lに対して主走査の方向と略直角な方向に相対移動させることにより副走査し、レーザ光Lを用いてフィルムFに潜像を形成する。   Next, the exposure unit will be described. As shown in FIG. 2, the exposure unit 120 deflects the laser light L, which has been intensity-modulated based on the image signal S, by the rotary polygon mirror 113 to perform main scanning on the film F, and converts the film F into the laser light L. On the other hand, it is sub-scanned by relative movement in a direction substantially perpendicular to the main scanning direction, and a latent image is formed on the film F using the laser beam L.

露光部120のより具体的な構成を以下に述べる。図2において、外部の画像出力装置121から出力された画像データをネットワーク等を介して受信し、その画像データのデジタル信号である画像信号Sは、D/A変換器122においてアナログ信号に変換され、変調回路123に入力される。変調回路123は、かかるアナログ信号に基づき、レーザ光源部110aのドライバ124を制御して、レーザ光源部110aから変調されたレーザ光Lを照射させる。これらの各部122〜124は制御部50(図5)により制御される。   A more specific configuration of the exposure unit 120 will be described below. In FIG. 2, image data output from an external image output device 121 is received via a network or the like, and an image signal S which is a digital signal of the image data is converted into an analog signal by a D / A converter 122. , And input to the modulation circuit 123. Based on the analog signal, the modulation circuit 123 controls the driver 124 of the laser light source unit 110a to irradiate the laser beam L modulated from the laser light source unit 110a. These units 122 to 124 are controlled by the control unit 50 (FIG. 5).

レーザ光源部110aから照射されたレーザ光Lは、レンズ112を通過し、シリンドリカルレンズ115により上下方向にのみ収束されて、図中矢印A’方向に回転する回転多面鏡113に対し、その駆動軸に垂直な線像として入射するようになっている。回転多面鏡113は、レーザ光Lを主走査方向に反射し偏向し、偏向されたレーザ光Lは、2枚のレンズを組み合わせてなるシリンドリカルレンズを含むfθレンズ114を通過した後、光路上に主走査方向に延在して設けられたミラー116で反射されて、搬送ローラ対142,142’により、矢印Y方向に搬送されている(副走査される)フィルムFの被走査面117上を、矢印X方向に繰り返し主走査する。すなわち、レーザ光Lを、フィルムF上の被走査面117の全面にわたって走査する。このようにして、フィルムFに画像信号Sに基づく潜像が形成される。   The laser light L emitted from the laser light source unit 110a passes through the lens 112, is converged only in the vertical direction by the cylindrical lens 115, and rotates on the rotary polygon mirror 113 that rotates in the arrow A 'direction in the figure. It is made to enter as a line image perpendicular to. The rotary polygon mirror 113 reflects and deflects the laser light L in the main scanning direction, and the deflected laser light L passes through an fθ lens 114 including a cylindrical lens formed by combining two lenses and then enters the optical path. Reflected by the mirror 116 provided extending in the main scanning direction, and on the surface to be scanned 117 of the film F conveyed (sub-scanned) in the arrow Y direction by the conveying roller pair 142, 142 ′. The main scanning is repeated in the direction of the arrow X. That is, the laser beam L is scanned over the entire surface to be scanned 117 on the film F. In this way, a latent image based on the image signal S is formed on the film F.

図1のように、熱現像部130は、フィルムFを外周にほぼ密着して保持しつつ加熱可能な加熱ドラム14を有し、加熱ドラム14は回転自在な円筒形状のアルミニウム製のスリーブの内周面に貼り付けられた加熱源であるヒータに対する通電制御により所定温度に加熱される。   As shown in FIG. 1, the heat developing section 130 has a heating drum 14 that can be heated while holding the film F in close contact with the outer periphery, and the heating drum 14 is an inner sleeve made of a rotatable aluminum cylinder. It is heated to a predetermined temperature by energization control on a heater that is a heating source attached to the peripheral surface.

図1のように、加熱ドラム14の外方には、案内部材かつ押圧部材として加熱ドラム14に比べて小径の回転自在の対向ローラ16が複数本設けられており、加熱ドラム14の回転中心軸に対して平行にかつ加熱ドラム14の外周面に対向するように配置されている。   As shown in FIG. 1, a plurality of counter rollers 16 having a smaller diameter than the heating drum 14 as guide members and pressing members are provided outside the heating drum 14. Are arranged in parallel to the outer peripheral surface of the heating drum 14.

加熱ドラム14は、対向ローラ16との間にフィルムFを挟んだ状態で回転しながら、フィルムFを所定の最低熱現像温度以上に、所定の熱現像時間維持することで、フィルムFに形成された潜像を可視画像として形成する。ここで、最低熱現像温度とは、フィルムFに形成された潜像が熱現像され始める最低温度のことであり、例えば95℃以上である。一方、熱現像時間とは、フィルムFの潜像を所望の現像特性に現像するために、最低熱現像温度以上に維持するべき時間をいう。なお、フィルムFは、40℃以下では実質的に熱現像されないものであることが好ましい。   The heating drum 14 is formed on the film F by maintaining the film F at a predetermined heat development time above a predetermined minimum heat development temperature while rotating with the film F sandwiched between the opposing rollers 16. The latent image is formed as a visible image. Here, the minimum heat development temperature is a minimum temperature at which the latent image formed on the film F starts to be thermally developed, and is, for example, 95 ° C. or higher. On the other hand, the heat development time refers to a time that should be maintained at a temperature equal to or higher than the minimum heat development temperature in order to develop the latent image on the film F to a desired development characteristic. In addition, it is preferable that the film F is a thing which is not substantially thermally developed at 40 degrees C or less.

次に、図1,図2の露光部におけるフィルム位置決め機構について図3,図4,図7を参照して説明する。   Next, the film positioning mechanism in the exposure unit shown in FIGS. 1 and 2 will be described with reference to FIGS.

図3は、図1,図2の露光部におけるフィルム位置決め搬送機構を概略的に示す要部平面図(a)及びフィルム位置決め搬送機構の幅寄せ部材の要部正面図(b)である。図4は、図3のフィルム位置決め搬送機構の要部上面図(a)及び要部側面図(b)である。   3A and 3B are a main part plan view schematically showing the film positioning / conveying mechanism in the exposure unit of FIGS. 1 and 2 and a main part front view of the width adjusting member of the film positioning / conveying mechanism. FIG. 4 is a top view (a) and a side view (b) of the main part of the film positioning and conveying mechanism of FIG.

図3、図4に示すように、フィルム位置決め搬送機構は、略L字状に構成され互いに平行に対向し合う側面部1a,2a上にラック1b,2bが形成された一対の第1及び第2の幅寄せ部材1,2と、正逆回転可能なステッピングモータ7と、ステッピングモータ7により歯車7aを介して回転し幅寄せ部材1,2のラック1b,2bと噛み合うピニオン3と、シート状のフィルムFを搬送方向Yに搬送するように幅寄せ部材1,2の上流側に配置された搬送ローラ対4と、を備える。   As shown in FIG. 3 and FIG. 4, the film positioning and transporting mechanism includes a pair of first and first parts in which racks 1b and 2b are formed on side parts 1a and 2a that are substantially L-shaped and face each other in parallel. 2 width-adjusting members 1 and 2, a stepping motor 7 capable of rotating in the forward and reverse directions, a pinion 3 rotated by a stepping motor 7 via a gear 7a and meshed with the racks 1b and 2b of the width-adjusting members 1 and 2, and a sheet shape A pair of transport rollers 4 disposed on the upstream side of the width adjusting members 1 and 2 so as to transport the film F in the transport direction Y.

図3、図4のフィルム位置決め搬送機構は、図1,図2の露光部120において副走査搬送のための搬送ローラ対142の上流側に配置されている。   3 and 4 is disposed upstream of the conveyance roller pair 142 for sub-scanning conveyance in the exposure unit 120 of FIGS.

図3(a)のように、ステッピングモータ7が正回転することでピニオン3が回転方向rに回転すると、第1及び第2の幅寄せ部材1,2が搬送方向Yと直交する幅方向Xに互い接近するように移動し、フィルムFの両側端に向け移動しフィルムの両端と係合してフィルムFを幅寄せすることで幅方向の位置を矯正し、更に押し込み押圧することで凸形状に撓ませて変形させる。また、ステッピングモータ7が逆回転することでピニオン3が回転方向r’に回転すると、第1及び第2の幅寄せ部材1,2が搬送方向Yと直交する幅方向Xの逆の幅方向X’に互い遠ざかるように移動する。フィルムFを幅方向Xに押圧して凸形状に撓ませて変形させてから元の平坦状態に戻すことでより精度よく位置決めることができる。   As shown in FIG. 3A, when the pinion 3 rotates in the rotation direction r by forward rotation of the stepping motor 7, the first and second width-adjusting members 1 and 2 are crossed in the width direction X orthogonal to the transport direction Y. , Move toward both ends of the film F, engage with both ends of the film and widen the film F to correct the position in the width direction, and further press and press to form a convex shape To bend and deform. Further, when the pinion 3 rotates in the rotation direction r ′ due to the reverse rotation of the stepping motor 7, the first and second width-adjusting members 1 and 2 have a width direction X opposite to the width direction X orthogonal to the transport direction Y. 'Move away from each other. The film F can be positioned more accurately by pressing it in the width direction X to bend and deform it into a convex shape and then return it to its original flat state.

図3(b)のように、第2の幅寄せ部材2の上端面2cの上方に光反射型の位置センサ6が配置されている。図4(a)のように第2の幅寄せ部材2がホーム位置6aまで移動すると、位置センサ6が上端面2cを検知し、この検知信号によりステッピングモータ7がホーム位置6aで停止する。なお、第1及び第2の幅寄せ部材1,2は共通のピニオン3で互いに同じ移動量だけ移動するので、第2の幅寄せ部材2がホーム位置6aに位置するときは、第1の幅寄せ部材1もホーム位置にある。   As shown in FIG. 3B, the light reflection type position sensor 6 is disposed above the upper end surface 2 c of the second width adjusting member 2. If the 2nd width adjustment member 2 moves to the home position 6a like Fig.4 (a), the position sensor 6 will detect the upper end surface 2c, and the stepping motor 7 will stop at the home position 6a by this detection signal. Since the first and second width adjusting members 1 and 2 are moved by the same amount of movement by the common pinion 3, when the second width adjusting member 2 is located at the home position 6a, the first width The closing member 1 is also at the home position.

図4(b)のように、搬送ローラ対4は、駆動ローラ4aと従動ローラ4bを有し、従動ローラ4bは圧着解除可能であり、駆動ローラ4aに対し実線位置でフィルムを搬送可能なニップを形成し、破線位置でニップを解除している。   As shown in FIG. 4B, the conveying roller pair 4 includes a driving roller 4a and a driven roller 4b. The driven roller 4b can be released from pressure bonding, and a nip capable of conveying a film at a solid line position with respect to the driving roller 4a. And the nip is released at the position of the broken line.

図3(b)、図4(a)のように、第1及び第2の幅寄せ部材1、2の上方に位置検出デバイス(PSD)9が配置されている。位置検出デバイス9は、幅方向Xにおいて第1及び第2の幅寄せ部材1と2とのほぼ中間に位置し、幅寄せ部材1と2の間にあるフィルムまでの高さ距離を測定する。フイルムの位置矯正のために幅寄せ部材1と2の間でフィルムを幅方向Xに押圧し撓んだときに生じた凸形状の変形量を測定できる。   As shown in FIGS. 3B and 4A, the position detection device (PSD) 9 is disposed above the first and second width adjusting members 1 and 2. The position detection device 9 is positioned approximately in the middle between the first and second width adjusting members 1 and 2 in the width direction X, and measures the height distance to the film between the width adjusting members 1 and 2. The amount of convex deformation generated when the film is pressed in the width direction X and bent between the width-adjusting members 1 and 2 to correct the position of the film can be measured.

位置検出デバイス(PSD)9は、スポット光の入射位置によって出力が変化する位置センサから構成され基準面から反射面までの距離を測定できる測距センサであり、連続した電気信号が得られ、分解能・応答性に優れている。   The position detection device (PSD) 9 is a distance measurement sensor that is composed of a position sensor whose output changes depending on the incident position of the spot light and can measure the distance from the reference surface to the reflection surface, and can obtain a continuous electric signal with a resolution.・ Excellent response.

図7は図3(b)、図4(a)の位置検出デバイスで平坦状態のフィルム面までの距離を測定する様子(a)及び押圧されて凸形状に変形した状態のフィルム面までの距離を測定する様子(b)をそれぞれ模式的に示す要部側面図である。   FIG. 7 shows the state (a) of measuring the distance to the film surface in the flat state with the position detection device in FIGS. 3 (b) and 4 (a), and the distance to the film surface in the state of being pressed and deformed into a convex shape. It is a principal part side view which shows typically a mode (b) measured.

図7(a)のように、フィルムFが押圧される前の平坦な状態で位置検出デバイスがフィルム面までの距離h1を測定し、また、図7(b)のように、フィルムFが押圧されて撓んで凸形状に変形した変形部Fyの面までの距離h2を測定する。フィルムFの変形部Fyの変形高さhは、h1−h2で求められる。   The position detection device measures the distance h1 to the film surface in a flat state before the film F is pressed as shown in FIG. 7A, and the film F is pressed as shown in FIG. 7B. Then, the distance h2 to the surface of the deformed portion Fy that has been bent and deformed into a convex shape is measured. The deformation height h of the deformation portion Fy of the film F is obtained by h1-h2.

図4(a)のように、複数サイズのフィルムF1,F2,F3の内のいずれかのフィルムFが搬送されてくると、第1及び第2の幅寄せ部材1,2がステッピングモータ7の回転によりホーム位置から幅方向Xに互いに接近するように移動し、フィルムFの側端に係合することでフィルムFを幅寄せし、更にフィルムFが両端部で第1及び第2の幅寄せ部材1,2に当接してから凸形状になるように押圧し移動させた後に、幅方向Xと逆の幅方向X’に戻すようにして離間移動させることにより、フィルムFを目標位置に位置決めする。このとき、位置検出デバイス9により、第1及び第2の幅寄せ部材1,2によるフィルムFの押圧のときの凸形状の変形量を検出し、その検出した凸形状の変形高さh(図7(b))が所定の高さに達したら、幅寄せ部材1,2による幅方向XへのフィルムFの押圧を停止し、幅寄せ部材1,2を逆の幅方向X’に移動させてフィルムFから一定距離だけ離間させる。   As shown in FIG. 4A, when one of the films F 1, F 2, F 3 of a plurality of sizes is conveyed, the first and second width adjusting members 1, 2 are connected to the stepping motor 7. It moves so as to approach each other in the width direction X from the home position by rotation, and the film F is brought closer by being engaged with the side edge of the film F, and further, the film F is moved to the first and second widths at both ends. The film F is positioned at the target position by pressing and moving it so as to form a convex shape after coming into contact with the members 1 and 2 and then moving away from the width direction X ′ opposite to the width direction X. To do. At this time, the position detection device 9 detects the deformation amount of the convex shape when the film F is pressed by the first and second width adjusting members 1 and 2, and the detected convex deformation height h (FIG. 7 (b)) reaches a predetermined height, the pressing of the film F in the width direction X by the width adjusting members 1 and 2 is stopped, and the width adjusting members 1 and 2 are moved in the opposite width direction X ′. The film F is separated from the film F by a certain distance.

次に、図1、図2の画像記録装置の制御系について図5を参照して説明する。図5は図1、図2の画像記録装置の制御系の要部を示すブロック図である。   Next, the control system of the image recording apparatus of FIGS. 1 and 2 will be described with reference to FIG. FIG. 5 is a block diagram showing the main part of the control system of the image recording apparatus of FIGS.

図5に示すように、図1、図2の画像記録装置100は、中央演算処理装置(CPU)から構成される制御部50を備え、制御部50は、ステッピングモータ7,搬送ローラ対4のためのモータ149,露光部120の各部122〜124等を制御する。   As shown in FIG. 5, the image recording apparatus 100 in FIGS. 1 and 2 includes a control unit 50 including a central processing unit (CPU), and the control unit 50 includes a stepping motor 7 and a conveyance roller pair 4. For controlling the motor 149 and the units 122 to 124 of the exposure unit 120.

また、制御部50は、位置検出デバイス9で検出したフィルムFの押圧のときの凸形状の変形量に基づいてステッピングモータ7を制御し、凸形状の変形高さhが所定高さに達したことを検出すると、ステッピングモータ7の駆動を停止し、フィルムの幅寄せ部材1,2による幅方向Xへの移動を停止し、ステッピングモータ7を逆回転させて幅寄せ部材1,2を逆の幅方向X’に移動させフィルムFから一定距離だけ離間させるように制御する。   Further, the control unit 50 controls the stepping motor 7 based on the deformation amount of the convex shape when the film F is detected detected by the position detection device 9, and the convex deformation height h has reached a predetermined height. When this is detected, the driving of the stepping motor 7 is stopped, the movement of the film in the width direction X by the width adjusting members 1 and 2 is stopped, and the stepping motor 7 is rotated in the reverse direction so that the width adjusting members 1 and 2 are reversed. Control is made to move in the width direction X ′ and away from the film F by a certain distance.

なお、上述の凸形状の変形高さhの判断基準となる所定高さは、その撓んだ状態から平坦な状態の戻したときのエネルギー解放でフィルムが暴れて位置ずれを起こさない程度に設定することが好ましく、また、フィルムのサイズ毎に異なる値に設定してもよい。   The predetermined height, which is a criterion for determining the above-described convex deformation height h, is set to such an extent that the film is not exposed to misalignment due to energy release when the bent state is returned to the flat state. It is preferable to set the value different for each film size.

次に、図1乃至図5の画像記録装置における図3,図4のフィルム位置決め搬送機構による露光前の位置決め搬送の動作について図6,図7を参照して説明する。   Next, the positioning and transporting operation before exposure by the film positioning and transporting mechanism of FIGS. 3 and 4 in the image recording apparatus of FIGS. 1 to 5 will be described with reference to FIGS.

図6は偏った位置にあるフィルムFを図3,図4のフィルム位置決め搬送機構により搬送し幅寄せし目標位置に位置決める工程(a)乃至(e)を模式的に示す図である。   FIG. 6 is a diagram schematically showing steps (a) to (e) in which the film F at a biased position is transported by the film positioning transport mechanism of FIGS.

図6(a)のように、フィルムFはその側端Fa、Fbが第1及び第2の幅寄せ部材1,2に対し側端Fb側に偏っている状態で搬送方向Yに搬送ローラ対4により搬送されると、図6(b)のように、第1及び第2の幅寄せ部材1,2がステッピングモータ7の回転でホーム位置6aから幅方向Xに移動を開始する。そして、図6(c)のように、第2の幅寄せ部材2がフィルムFの側端Fbに係合し、第1の幅寄せ部材1が側端Faに当接するまで、フィルムFを片側の側端Fbで幅方向Xに移動させる。   As shown in FIG. 6A, the film F has a pair of transport rollers in the transport direction Y in a state where the side ends Fa and Fb are biased toward the side end Fb with respect to the first and second width adjusting members 1 and 2. 4, the first and second width adjusting members 1 and 2 start moving in the width direction X from the home position 6 a by the rotation of the stepping motor 7 as shown in FIG. Then, as shown in FIG. 6C, the film F is moved to one side until the second width adjusting member 2 is engaged with the side end Fb of the film F and the first width adjusting member 1 is in contact with the side end Fa. Is moved in the width direction X at the side end Fb.

次に、図6(d)のように、第1及び第2の幅寄せ部材1,2が幅方向Xに更に移動し、フィルムFの側端Fb側のみならずに第1の幅寄せ部材1が側端Faに当接する。このように幅寄せ部材1,2がフィルムFの両端部Fa,Fbに当接した後、図6(d)の破線のように幅寄せ部材1,2を幅方向Xに所定の押し込み移動量だけ押し込み、フィルムFを図7(b)のように凸形状に撓ませて弾性変形させる。   Next, as shown in FIG. 6 (d), the first and second width adjusting members 1 and 2 further move in the width direction X, and the first width adjusting member is not limited to the side end Fb side of the film F. 1 contacts the side end Fa. After the width adjusting members 1 and 2 come into contact with both end portions Fa and Fb of the film F as described above, the width adjusting members 1 and 2 are moved by a predetermined amount in the width direction X as indicated by a broken line in FIG. The film F is pushed in and bent into a convex shape as shown in FIG.

次に、フィルムFの図7(b)の変形部Fyの高さhが所定高さに達すると、ステッピングモータ7を停止して逆回転させ、図6(e)のように、第1及び第2の幅寄せ部材1,2を幅方向Xと逆の幅方向X’に離間させ、フィルムFを元の平坦な状態に戻す。このとき、フィルムFの両端部Fa、Fbは幅寄せ部材1,2にほぼ沿った状態、即ち位置規制された状態である。このようにして目標位置に位置決めされたフィルムFを露光部120の搬送ローラ対142へと図3(a)の一点鎖線のように搬送する。   Next, when the height h of the deformed portion Fy in FIG. 7B of the film F reaches a predetermined height, the stepping motor 7 is stopped and rotated in reverse, as shown in FIG. The second width adjusting members 1 and 2 are separated in the width direction X ′ opposite to the width direction X to return the film F to the original flat state. At this time, both ends Fa and Fb of the film F are in a state substantially along the width-shifting members 1 and 2, that is, in a state where the positions are restricted. The film F positioned at the target position in this way is conveyed to the conveyance roller pair 142 of the exposure unit 120 as indicated by a one-dot chain line in FIG.

以上のように、本実施の形態では、フィルムを位置矯正のために搬送方向Yと略直交する幅方向Xに押圧したときの変形量を検出し、その検出結果に基づいて幅寄せ部材1,2を幅方向X’に移動させ戻すように制御するので、フィルムを押圧するときの変形量を寸法精度に関わりなく一定に制御でき、位置矯正のときにフィルムを一定の撓み(一定のエネルギー)に維持することができる。このため、フィルムが撓んでエネルギが蓄積された凸形状の状態から元の平坦な状態に戻ったときに暴れて位置ずれを起こすことがなく精度よく位置決めできる。   As described above, in the present embodiment, the amount of deformation when the film is pressed in the width direction X substantially orthogonal to the transport direction Y for position correction is detected, and the width adjusting members 1, 1 are detected based on the detection result. 2 is controlled so as to be moved back in the width direction X ′, so that the amount of deformation when pressing the film can be controlled to be constant regardless of dimensional accuracy, and the film bends at a certain amount (constant energy) during position correction. Can be maintained. For this reason, when the film is bent and energy is accumulated, the film can be accurately positioned without causing a violent displacement when the film returns to the original flat state.

また、図6(e)で第1及び第2の幅寄せ部材1,2を幅方向X’に離間させるときの移動量は、各サイズに関わらず一定量であってよく、幅寄せ部材1,2が各サイズのフィルムの幅寸法と比べて僅かに広くなる程度の移動量であってよい。即ち、幅寄せ部材1,2を幅方向X’に離間させたとき、図6(e)のように、各サイズのフィルムの両端部Fa、Fbが幅寄せ部材1,2に沿って接近した状態とする。この離間は幅寄せ部材1,2が所定の速度で移動して行われるため、蓄積されたエネルギーが一気に開放されることはなく、この最終的に停止した幅寄せ部材1,2とフィルムの両端部Fa、Fbとの各隙間の範囲内にフィルムの暴れが抑制される。   In addition, the amount of movement when the first and second width adjusting members 1 and 2 are separated in the width direction X ′ in FIG. 6E may be a constant amount regardless of the size. , 2 may be a moving amount that is slightly wider than the width of each size film. That is, when the width adjusting members 1 and 2 are separated from each other in the width direction X ′, both end portions Fa and Fb of each size film approach each other along the width adjusting members 1 and 2 as shown in FIG. State. The separation is performed by moving the width adjusting members 1 and 2 at a predetermined speed, so that the accumulated energy is not released at a stretch. Film rampage is suppressed within the range of each gap with the parts Fa and Fb.

以上のようにフィルムFが幅寄せ部材1,2に対し偏ったり曲がったりした状態で搬送されてきたとき、図4(a)の各サイズのフィルムF1〜F3に寸法誤差があっても、幅寄せ部材1,2により幅方向に精度よく位置決めることができ、各サイズのフィルムを露光部120の搬送ローラ対142に対し精度よく搬送することができる。このため、露光部120においてレーザ光による潜像をフィルムFの正確な位置に形成できる。   As described above, when the film F is transported in a state of being biased or bent with respect to the width adjusting members 1 and 2, even if there is a dimensional error in each of the films F1 to F3 of FIG. Positioning members 1 and 2 can accurately position in the width direction, and each size film can be accurately transported to transport roller pair 142 of exposure unit 120. For this reason, the latent image by the laser beam can be formed at an accurate position of the film F in the exposure unit 120.

また、本実施の形態の画像記録装置において使用して好ましいフィルムは、幅方向サイズで六切(幅方向8インチ)乃至半切(幅方向14インチ)である。   Further, a film preferable for use in the image recording apparatus of the present embodiment is six cuts (8 inches in the width direction) to half cuts (14 inches in the width direction) in size in the width direction.

以上のように本発明を実施するための最良の形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図6においてフィルムFが幅寄せ部材1,2に対し略平行で偏った場合を例にして幅寄せ動作を説明したが、フィルムFが偏りかつ曲がった位置にある場合でも同様に動作し、フィルムを精度よく位置決めできる。   As described above, the best mode for carrying out the present invention has been described. However, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. For example, in FIG. 6, the width aligning operation has been described by taking the case where the film F is substantially parallel and biased with respect to the width aligning members 1 and 2, but the same operation is performed even when the film F is in a biased and bent position. The film can be accurately positioned.

本実施の形態による画像記録装置の要部を示す正面図である。It is a front view which shows the principal part of the image recording device by this Embodiment. 図1の画像記録装置の露光部を概略的に示す図である。It is a figure which shows schematically the exposure part of the image recording apparatus of FIG. 図1,図2の露光部におけるフィルム位置決め搬送機構を概略的に示す要部平面図(a)及びフィルム位置決め搬送機構の幅寄せ部材の要部正面図(b)である。FIG. 3 is a main part plan view (a) schematically showing a film positioning / conveying mechanism in the exposure unit of FIGS. 1 and 2 and a main part front view (b) of a width adjusting member of the film positioning / conveying mechanism. 図3のフィルム位置決め搬送機構の要部上面図(a)及び要部側面図(b)である。It is the principal part top view (a) and principal part side view (b) of the film positioning conveyance mechanism of FIG. 図1、図2の画像記録装置の制御系の要部を示すブロック図である。FIG. 3 is a block diagram illustrating a main part of a control system of the image recording apparatus in FIGS. 1 and 2. 偏った位置にあるフィルムFを図3,図4のフィルム位置決め搬送機構により搬送し幅寄せし目標位置に位置決める工程(a)乃至(e)を模式的に示す図である。It is a figure which shows typically the process (a) thru | or (e) which conveys the film F in the biased position by the film positioning conveyance mechanism of FIG. 3, FIG. 図3(b)、図4(a)の位置検出デバイスで平坦状態のフィルム面までの距離を測定する様子(a)及び押圧されて凸形状に変形した状態のフィルム面までの距離を測定する様子(b)をそれぞれ模式的に示す要部側面図である。Measuring the distance to the film surface in the flat state with the position detection device of FIG. 3B and FIG. 4A, and measuring the distance to the film surface in the state of being pressed and deformed. It is a principal part side view which shows each a mode (b) typically.

符号の説明Explanation of symbols

1,2 幅寄せ部材(係合部材)
1b,2b ラック
3 ピニオン
4 搬送ローラ対(搬送手段)
7 ステッピングモータ(駆動手段)
9 位置検出デバイス(検出手段)
11,12 装填部
50 制御部
100 画像記録装置
120 露光部
130 熱現像部
139,141,4,142,142 搬送ローラ対
F フィルム(シート状媒体)
F1,F2,F3 複数サイズのフィルム
F1 大サイズのフィルム
F2 中サイズのフィルム
F3 小サイズのフィルム
Fa,Fb 側端
X 幅方向
X’ 幅方向Xと逆の幅方向
Y 搬送方向
h 変形高さ

1, 2 Width adjustment member (engagement member)
1b, 2b Rack 3 Pinion 4 Conveying roller pair (conveying means)
7 Stepping motor (drive means)
9 Position detection device (detection means)
DESCRIPTION OF SYMBOLS 11, 12 Loading part 50 Control part 100 Image recording apparatus 120 Exposure part 130 Thermal development part 139,141,4,142,142 Conveyance roller pair F Film (sheet-like medium)
F1, F2, F3 Multiple size film F1 Large size film F2 Medium size film F3 Small size film Fa, Fb Side edge X Width direction X ′ Width direction X opposite to width direction X Conveyance direction h Deformation height

Claims (3)

複数サイズのシート状媒体を搬送可能な搬送手段と、前記搬送されたシート状媒体を走査して潜像を形成する露光手段と、前記露光手段の走査に対する前記シート状媒体の搬送方向と直交する方向の位置を矯正する矯正手段と、前記搬送手段、前記露光手段及び前記矯正手段を制御する制御手段と、を備える画像記録装置であって、
前記矯正手段は、前記シート状媒体の搬送方向と略直交する方向に正逆移動可能で前記シート状媒体の両端と係合して前記搬送方向と直交する方向の位置を矯正する1対の係合部材と、前記係合部材を駆動する駆動手段と、を有し、
前記制御手段は、前記係合部材により前記搬送方向と略直交する方向に押圧されたシート状媒体の変形量を検出する検出手段を有し、その検出結果に基づいて前記係合部材の正逆移動のタイミングを制御することを特徴とする画像記録装置。
Conveying means capable of conveying a plurality of sizes of sheet-like medium, exposure means for scanning the conveyed sheet-like medium to form a latent image, and orthogonal to the conveying direction of the sheet-like medium with respect to scanning by the exposing means An image recording apparatus comprising: a correction unit that corrects a position in a direction; and a control unit that controls the transport unit, the exposure unit, and the correction unit,
The correction means can move forward and backward in a direction substantially perpendicular to the conveyance direction of the sheet-like medium, engages with both ends of the sheet-like medium, and corrects the position in the direction orthogonal to the conveyance direction. A combination member and drive means for driving the engagement member;
The control means includes detection means for detecting a deformation amount of the sheet-like medium pressed in a direction substantially orthogonal to the transport direction by the engagement member, and based on the detection result, the forward and reverse of the engagement member An image recording apparatus that controls the timing of movement.
前記検出手段が位置検出デバイス(PSD)から構成される請求項1に記載の画像記録装置。   The image recording apparatus according to claim 1, wherein the detection unit includes a position detection device (PSD). 前記押圧されたシート状媒体が凸形状に変形し、その凸形状の高さを検出し、その検出した高さが所定量に達したとき、前記係合部材を前記押圧する方向から逆方向に移動させるように前記駆動手段を制御する請求項1または2に記載の画像記録装置。

When the pressed sheet-like medium is deformed into a convex shape, the height of the convex shape is detected, and the detected height reaches a predetermined amount, the engaging member is moved in the reverse direction from the direction in which the engaging member is pressed. The image recording apparatus according to claim 1, wherein the driving unit is controlled so as to be moved.

JP2004228356A 2004-08-04 2004-08-04 Image recording device Pending JP2006044879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228356A JP2006044879A (en) 2004-08-04 2004-08-04 Image recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228356A JP2006044879A (en) 2004-08-04 2004-08-04 Image recording device

Publications (1)

Publication Number Publication Date
JP2006044879A true JP2006044879A (en) 2006-02-16

Family

ID=36023899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228356A Pending JP2006044879A (en) 2004-08-04 2004-08-04 Image recording device

Country Status (1)

Country Link
JP (1) JP2006044879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119629A1 (en) * 2013-01-31 2017-01-26 ライオン株式会社 Composition, food and drink, visceral fat reducing agent and blood sugar level reducing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119629A1 (en) * 2013-01-31 2017-01-26 ライオン株式会社 Composition, food and drink, visceral fat reducing agent and blood sugar level reducing agent

Similar Documents

Publication Publication Date Title
US9001391B2 (en) Image reading device, image reading method, and image forming apparatus
US20200301326A1 (en) Conveyance control device and image reading apparatus
US9122062B2 (en) Polygon mirror, light scanning unit employing the same, and electrophotographic image forming apparatus
JP2006227278A (en) Method for detecting clamp member, image forming method, and image forming apparatus
US6559880B2 (en) Scan-exposure device
JP2006044879A (en) Image recording device
JP2006044880A (en) Image recording device
JP2009244808A (en) Distance measuring method, and exposure device
JP2011144008A (en) Conveying device and image reading device
JP2006234959A (en) Exposure method and exposure apparatus
JP2006047675A (en) Image recorder
US7095535B2 (en) Original scanning apparatus
WO2006090575A1 (en) Exposing method and aligner
US8400488B2 (en) Optical scanning apparatus and control method therefor
JP2006047674A (en) Image recording apparatus
JP2017159971A (en) Rotary roller, transportation device and image formation device
JP2006003514A (en) Sheet-like body positioning/conveyance mechanism and image recording apparatus
JP3808770B2 (en) Sheet transport device
JP2004153148A (en) Designing method of laser device, laser device and image recording apparatus
JP7162958B2 (en) document feeder
US20140239575A1 (en) Liquid ejection head and image forming apparatus including same
KR960017162A (en) Laser printing apparatus and method
JP2004238130A (en) Sheet transporting mechanism, sheet transporting method, and image formation device
JP3899914B2 (en) Laser imager
JP6226657B2 (en) Sheet processing apparatus and image forming apparatus