JP2006043858A - Cutting method - Google Patents

Cutting method Download PDF

Info

Publication number
JP2006043858A
JP2006043858A JP2004232077A JP2004232077A JP2006043858A JP 2006043858 A JP2006043858 A JP 2006043858A JP 2004232077 A JP2004232077 A JP 2004232077A JP 2004232077 A JP2004232077 A JP 2004232077A JP 2006043858 A JP2006043858 A JP 2006043858A
Authority
JP
Japan
Prior art keywords
tool
machining
cutting
moved
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232077A
Other languages
Japanese (ja)
Inventor
Haruhisa Higasayama
晴久 日笠山
Yasuhisa Takada
泰久 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004232077A priority Critical patent/JP2006043858A/en
Publication of JP2006043858A publication Critical patent/JP2006043858A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting method, preventing vibration of a tool during cutting, preventing a defective of a cutting edge, easily controlling the cutting work, and improving the working efficiency and the working accuracy. <P>SOLUTION: This cutting method includes: a first working process for cutting a shape 20 of a recessed groove part 2 using a first tool 10; a second working process of repeating the operation of moving forward a second tool 11 in the axial direction to a working remaining part 21 of the first working process to perform cutting, and moving backward the same, again moving the second tool in the axial direction to perform cutting, and moving backward the same to form a groove part 22, and cutting and removing the working remainder; and a third working process of repeating the operation of moving forward the tool 11 to the working remainder of the second working process mainly in the axial direction to perform cutting, moving backward the same, moving the tool 11 by a predetermined amount D2 along the recessed groove part, again moving forward the tool 11 mainly in the axial direction to perform cutting, and moving backward the same to cut and remove the working remainder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金型等の切削加工方法に係り、特に、工具を軸方向に移動して切削する突き動作を主体とし、切削加工に要する時間を短縮して加工能率を向上でき、高精度な隅取り加工が可能な切削加工方法に関する。   The present invention relates to a cutting method for a mold or the like, and in particular, mainly a thrusting operation in which a tool is moved in the axial direction for cutting, and the time required for cutting can be shortened to improve the processing efficiency, and high accuracy. The present invention relates to a cutting method capable of chamfering.

従来、金型等で使用する金属製の素材に傾斜面を有する段差部50を形成するとき、図10aに示すように、先ず大径のエンドミル等の工具51を用いて、傾斜面52に沿って切削加工を行い、切削面の側部と底部との接合部分のアール部分の加工残部(隅肉)53を切削する必要があるときには、図10bのように小径のエンドミル等の工具54を用いて隅肉部分を除去している。この切削加工の場合、工具51,54を軸方向と直交する径方向に段差部50に沿わせて移動して切削しており、等高加工やモード加工等の横走り加工が主体であった。   Conventionally, when a stepped portion 50 having an inclined surface is formed on a metal material used in a mold or the like, first, a tool 51 such as a large-diameter end mill is first used along the inclined surface 52 as shown in FIG. 10a. When it is necessary to cut the remaining processing portion (fillet) 53 of the rounded portion of the joint portion between the side portion and the bottom portion of the cutting surface, a tool 54 such as a small-diameter end mill is used as shown in FIG. The fillet portion is removed. In this cutting process, the tools 51 and 54 are moved along the stepped portion 50 in the radial direction perpendicular to the axial direction for cutting, and the horizontal running process such as the contour process and the mode process was mainly performed. .

また、図10cに示すように、金属製の素材に両側傾斜面で構成されたV溝等の凹部55を形成するとき、大径のエンドミル等の工具51を用いてV溝の傾斜面56に当たるまで、あるいは傾斜面56の僅かに上まで切削する。次いで、図10dのように、下端の加工残部57を切削除去する必要がある場合は、小径の工具54を用いてV溝の底部まで切削して所望の形状としている。この切削加工の場合も、工具51,54を軸方向と直交する径方向、すなわち凹部55の延出方向に沿わせて移動して切削しており、等高加工やモード加工等の横走り加工が主体であった。   Further, as shown in FIG. 10c, when a concave portion 55 such as a V-groove composed of inclined surfaces on both sides is formed on a metal material, it hits the inclined surface 56 of the V-groove using a tool 51 such as a large-diameter end mill. Or slightly above the inclined surface 56. Next, as shown in FIG. 10d, when it is necessary to cut and remove the processing remaining portion 57 at the lower end, the bottom portion of the V groove is cut to a desired shape using a small diameter tool 54. Also in this cutting process, the tools 51 and 54 are moved and cut along the radial direction orthogonal to the axial direction, that is, the extending direction of the recessed part 55, and the transverse running process such as the contour process or the mode process is performed. Was the subject.

さらに、特許文献1に記載の従来の金型の切削加工方法は、金型に対し少なくとも一方向の輪郭が曲線である型面を形成するためにフライス工具をその回転軸の方向に突き出し移動しつつ切削する突き加工を金型の一方向に順次繰返して行う金型の切削加工方法において、突き加工のストロークエンドにてフライス工具を、先の突き加工で切削した位置にまで型面の輪郭に沿って斜め下方に移動して切削することを特徴としている。   Further, in the conventional die cutting method described in Patent Document 1, a milling tool is protruded and moved in the direction of its rotation axis in order to form a die surface having a curved outline in at least one direction with respect to the die. In the die cutting method, in which the piercing to be cut is sequentially repeated in one direction of the dies, the milling tool is moved to the end of the piercing process to the contour of the die surface at the stroke end of the piercing. It is characterized by moving along the diagonally downward along the cutting.

特開平8−243827号公報JP-A-8-243827

ところで、前記した図10に示す切削加工方法は、目標の仕上げ形状の凹部のアールが小径のため、切削に用いる工具は小径で工具長が長くなってしまう。また、工具は小径で工具長が長いため、従来のように、工具を水平方向に移動させる横走り加工を主体とした加工方法では、工具の剛性が不足することにより加工中に工具が撓み、そのため送り速度を上げることができず加工能率や加工精度が低下する。さらに、工具の撓みにより加工中に振動が発生し、刃具欠損が発生する。   By the way, in the cutting method shown in FIG. 10 described above, since the radius of the recess of the target finish shape is small, the tool used for cutting has a small diameter and a long tool length. In addition, since the tool has a small diameter and a long tool length, in the conventional machining method that mainly moves laterally, which moves the tool in the horizontal direction, the tool bends during machining due to insufficient rigidity of the tool, For this reason, the feed rate cannot be increased, and the machining efficiency and machining accuracy are reduced. In addition, vibrations occur during machining due to the bending of the tool, resulting in a cutting tool defect.

また、前記特許文献1に記載の切削加工方法は、突き加工のストロークエンドにてフライス工具を、先の突き加工で切削した位置まで型面の輪郭に沿って斜め下方に移動して切削するため制御が煩雑となり、プログラム制御の場合、プログラムの作成に時間を要する問題点があった。また、パート逃がし部やパーティング面を形成するフライス工具の突き出し方向と、型面、穴部分や縁部を形成するボールエンドミルやフラットエンドミルの突き出し方向が異なっており、切削加工が煩雑となるという問題点があった。   In the cutting method described in Patent Document 1, the milling tool is moved obliquely downward along the contour of the die surface to the cutting position at the stroke end of the punching process and cuts it. Control is complicated, and in the case of program control, there is a problem that it takes time to create a program. Also, the protruding direction of the milling tool that forms the part relief part and the parting surface is different from the protruding direction of the ball end mill and flat end mill that forms the mold surface, hole part and edge part, and the cutting process is complicated. There was a problem.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、切削加工中に工具に作用する加工反力の主成分が工具軸方向となるため、換言すると工具の径方向に作用する加工反力を小さくできるため工具が振動せず、刃具欠損を防止できる切削加工方法を提供することにある。また、切削加工の制御が容易であり、加工能率や加工精度を向上させることができる切削加工方法を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is that the main component of the machining reaction force acting on the tool during the cutting process is the tool axis direction. It is an object of the present invention to provide a cutting method capable of reducing the machining reaction force acting in the radial direction of the tool and preventing the tool from vibrating and preventing the cutting tool from being lost. It is another object of the present invention to provide a cutting method that can easily control the cutting process and can improve the processing efficiency and the processing accuracy.

前記目的を達成すべく、本発明に係る切削加工方法の第1の態様は、凹部または段差部の概略形状を切削加工する第1の加工工程と、第1の加工工程の加工残部を切削除去する第2の加工工程とを備える切削加工方法であって、第2の加工工程は、第1の加工工程の加工残部に対して工具を軸方向に進行させて切削したあと後退させ、この工具を径方向に所定量だけ移動させ、この工具を再度軸方向に進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去することを特徴とする。工具を軸方向に移動させ、すなわち突き動作により切削してから工具を径方向に移動して突き動作を繰返し、溝状の切削加工を行い、第1の加工工程の加工残部を除去する。   In order to achieve the above object, a first aspect of the cutting method according to the present invention includes a first machining step for cutting a rough shape of a concave portion or a stepped portion and a machining remaining portion of the first machining step. A second machining step, wherein the second machining step advances the tool in the axial direction with respect to the machining remainder of the first machining step, cuts the tool, and then retracts the tool. Is moved by a predetermined amount in the radial direction, the tool is advanced again in the axial direction, cut and then retreated, and the remaining machining is removed by cutting. The tool is moved in the axial direction, that is, cutting is performed by a thrusting operation, and then the tool is moved in the radial direction and the thrusting operation is repeated to perform a groove-shaped cutting process, and the remaining machining portion of the first processing step is removed.

前記のごとく構成された本発明の切削加工方法は、フライスやエンドミル等の工具を用いて、凹部あるいは段差部の概略形状を形成する第1の加工を行い、第1の加工で残された加工残部に対して工具を軸方向に進行させて切削し、この工具を後退させてフリーの状態として凹部または段差部の延出方向に沿って径方向に所定量だけ移動する。そして、移動した場所で工具を再度、軸方向に進行させて切削したあと後退させ、この動作を繰返すことで凹部または段差部の延出方向に沿って溝部を形成する。このように、第2の加工工程で、工具は軸方向の移動、すなわち突き動作で切削するため、加工時に工具に軸方向と直交する径方向の反力が発生せず、工具の振動を抑えて加工能率を高めることができると共に、加工精度を高めることができる。また、制御が容易で切削加工が容易に行える。   The cutting method of the present invention configured as described above performs a first process for forming a rough shape of a recess or a stepped part using a tool such as a milling cutter or an end mill, and a process left by the first process. The tool is advanced with respect to the remaining portion in the axial direction for cutting, and the tool is retracted to move in a free state to move in a radial direction along the extending direction of the recess or stepped portion. Then, the tool is advanced again in the axial direction at the moved position, cut and then retracted, and this operation is repeated to form a groove along the extending direction of the recess or stepped portion. In this way, in the second machining step, the tool is cut by moving in the axial direction, that is, by a pushing operation, so that no radial reaction force perpendicular to the axial direction is generated in the tool during machining, and the vibration of the tool is suppressed. As a result, the processing efficiency can be increased and the processing accuracy can be increased. Moreover, control is easy and cutting can be performed easily.

本発明に係る切削加工方法の第2の態様は、凹部または段差部の概略形状を切削加工する第1の加工工程と、第1の加工工程の加工残部を切削除去する第3の加工工程とを備える切削加工方法であって、第3の加工工程は、第1の加工工程の加工残部に対して工具を、軸方向を主として進行させて切削したあと後退移動させ、この工具を径方向に所定量だけ移動させ、この工具を再度、軸方向を主として進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去することを特徴としている。第3の加工工程では、第1の加工工程の加工残部に対し、工具を凹部または段差部の面に沿わせて軸方向を主に移動させ、斜め突き動作させて切削加工している。   A second aspect of the cutting method according to the present invention includes a first processing step for cutting a rough shape of the concave portion or the stepped portion, and a third processing step for cutting and removing a processing remaining portion of the first processing step. In the third machining step, the tool is moved backward with respect to the machining remainder of the first machining step after being cut mainly in the axial direction, and the tool is moved in the radial direction. The tool is moved by a predetermined amount, and this tool is again moved mainly in the axial direction to cut and then retreat, and the remaining machining portion is cut and removed. In the third machining step, the tool is mainly moved in the axial direction along the surface of the concave portion or the stepped portion with respect to the remaining machining portion of the first machining step, and is cut by performing an oblique thrust operation.

このように構成された切削加工方法によれば、工具を用いて、凹部あるいは段差部の概略形状を形成する第1の加工を行い、第1の加工で残された加工残部に対して工具を凹部または段差部の面に沿わせて軸方向を主として進行させて切削し、この工具を後退させてフリーの状態として凹部または段差部の延出方向に沿って径方向に所定量だけ移動する。そして、移動した場所で工具を再度凹部または段差部の面に沿わせて軸方向を主として進行させて切削したあと後退させ、この動作を繰返すことで凹部または段差部に沿って壁部を形成する。このように、第3の加工工程で、工具は凹部または段差部の面に沿わせて、すなわち軸方向を主とした工具の移動による斜め突き動作によって切削して壁加工するため、加工時に工具に大きな反力が作用せず、工具の振動を抑えて加工能率を高めることができると共に、加工精度を高めることができる。また、制御が容易で切削加工が容易に行える。   According to the cutting method configured as described above, the first processing for forming the approximate shape of the concave portion or the stepped portion is performed using the tool, and the tool is applied to the remaining processing portion remaining in the first processing. Cutting is carried out mainly in the axial direction along the surface of the recess or step portion, and the tool is moved backward to move in a free direction to a predetermined amount in the radial direction along the extending direction of the recess or step portion. Then, at the moved position, the tool is again moved along the surface of the concave portion or the stepped portion to advance mainly in the axial direction and cut back, and this operation is repeated to form a wall portion along the concave portion or the stepped portion. . Thus, in the third machining step, the tool is cut along the surface of the concave portion or the stepped portion, that is, the wall is machined by an oblique thrust operation by moving the tool mainly in the axial direction. Thus, a large reaction force does not act on the workpiece, so that the vibration of the tool can be suppressed and the machining efficiency can be increased, and the machining accuracy can be increased. Moreover, control is easy and cutting can be performed easily.

本発明に係る切削加工方法の第3の態様は、凹部または段差部の概略形状を切削加工する第1の加工工程と、第1の加工工程の加工残部を切削除去する第2、第3の加工工程を備える切削加工方法であって、第2の加工工程は、第1の加工工程の加工残部に対して工具を軸方向に進行させて切削したあと後退させ、この工具を凹部または段差部の延出方向に沿って径方向に所定量だけ移動させ、この工具を再度軸方向に進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去し、第3の加工工程は、第2の加工工程の加工残部に対して工具を、軸方向を主として進行させて切削したあと後退移動させ、この工具を凹部または段差部の延出方向に沿って径方向に所定量だけ移動させ、この工具を再度、軸方向を主として進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去することを特徴としている。   A third aspect of the cutting method according to the present invention includes a first processing step for cutting a rough shape of the concave portion or the step portion, and second and third processing for cutting and removing a processing remaining portion of the first processing step. A cutting method comprising a machining step, wherein the second machining step moves the tool in the axial direction with respect to the machining remainder of the first machining step, cuts the tool, and then retracts the tool to form a recess or step. The tool is moved by a predetermined amount in the radial direction along the extending direction of the tool, the tool is advanced again in the axial direction, cut and then retreated, and the remaining machining is removed by cutting. The tool is moved backward with respect to the remaining machining portion of the second machining step after cutting mainly in the axial direction, and this tool is moved by a predetermined amount in the radial direction along the extending direction of the recess or stepped portion. , This tool again proceeds mainly in the axial direction Is characterized by cutting and removing the machining remainder by repeating the operation for after recession was cut by.

前記のごとく構成された本発明の切削加工方法は、工具を用いて、凹部あるいは段差部の概略形状を形成する第1の切削加工を行い、第1の切削加工で残された加工残部に対して工具を軸方向に進行させて切削し、この工具を後退させてフリーの状態として凹部または段差部の延出方向に沿って径方向に所定量だけ移動する。そして移動した場所でこの工具を再度軸方向に進行させて切削したあと後退させ、この動作を繰返すことで凹部または段差部に沿って溝部を形成する。このあと、第2の加工工程の加工残部に対して工具を凹部または段差部の面に沿わせて軸方向を主として進行させて切削したあと後退させてフリーの状態とし、凹部または段差部の延出方向に沿って径方向に所定量だけ移動する。そして移動した場所でこの工具を再度、凹部または段差部の面に沿わせて軸方向を主として進行させて切削したあと後退させ、この動作を繰返すことで凹部または段差部に沿って壁部を形成する。このように、第2の加工工程で工具は軸方向の移動で溝部を切削加工し、第3の加工工程で工具は軸方向を主体とする移動で壁部を切削加工するため工具に加工時の反力が大きく作用せず、工具の振動を抑えて加工能率を高めることができると共に、加工精度を高めることができる。なお、本発明の切削加工方法では、工具に作用する加工反力の絶対値(XYZ3軸方向の合成値)を小さくするものではない。   The cutting method of the present invention configured as described above performs a first cutting process for forming a rough shape of a concave portion or a stepped portion using a tool, and a remaining processing portion remaining in the first cutting process. Then, the tool is advanced in the axial direction for cutting, and the tool is moved backward to move in a free state in the radial direction along the extending direction of the recess or stepped portion. Then, the tool is advanced again in the axial direction at the moved position, cut and then retracted, and this operation is repeated to form a groove along the recess or step. After that, the tool is moved mainly along the surface of the recess or stepped portion along the surface of the recess or stepped portion with respect to the remaining machining portion of the second machining step, and then cut back to a free state, and the extension of the recess or stepped portion is made. It moves by a predetermined amount in the radial direction along the exit direction. Then, at the moved position, this tool is again moved along the surface of the recess or stepped portion mainly in the axial direction and then cut back, and this operation is repeated to form a wall portion along the recessed portion or stepped portion. To do. In this way, in the second machining step, the tool cuts the groove by moving in the axial direction, and in the third machining step, the tool cuts the wall by moving mainly in the axial direction. The reaction force does not act greatly, the vibration of the tool can be suppressed and the machining efficiency can be increased, and the machining accuracy can be increased. In the cutting method of the present invention, the absolute value of the reaction force acting on the tool (the combined value in the XYZ three-axis directions) is not reduced.

本発明に係る切削加工方法の好ましい具体的な態様としては、前記第2の加工工程は、工具を短い軸方向ストロークで移動させて浅い突き切削加工を行ったあと、長い軸方向ストロークで移動させて深い突き切削加工を行うことを特徴としている。軸方向ストロークを複数段で徐々に増やして多段階切削を行ってもよい。このように構成すると、凹部または段差部が深くても、第2の加工工程で凹部や溝部を精度良く形成することができる。また、工具の径が小さくても折損を防止できる。   As a preferable specific aspect of the cutting method according to the present invention, the second machining step is performed by moving the tool with a short axial stroke and performing shallow thrust cutting, and then moving the tool with a long axial stroke. It is characterized by deep and deep cutting. Multi-stage cutting may be performed by gradually increasing the axial stroke in a plurality of stages. If comprised in this way, even if a recessed part or a level | step difference part is deep, a recessed part and a groove part can be formed with a sufficient precision at a 2nd process process. Moreover, breakage can be prevented even if the diameter of the tool is small.

また、本発明に係る切削加工方法の他の態様としては、前記した第1の態様において、前記第2の加工工程のあと、第2の加工工程の加工残部に対して工具を軸方向を主として進行させて切削したあと後退移動させ、この工具を径方向に前記第2の加工工程の移動の所定量より小さい移動量で移動させ、この工具を再度軸方向を主として進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去し、所定の表面に仕上るべく残隅加工を行う第4の加工工程を備えることを特徴としている。この構成によれば、第4の加工工程で工具を、第2の加工工程で使用した工具の移動の所定量より小さい移動量で移動させ、第2の加工工程の加工残部やカスプ部を許容範囲まで切削除去して所定の円滑な表面に仕上げている。この第4の加工工程も、凹部や段差部の面に合わせた突き動作を主体とした、斜め突き加工であり、第4の加工工程で使用される工具も切削加工時に振動が発生しにくく、加工能率の向上と加工精度の向上が達成される。   Further, as another aspect of the cutting method according to the present invention, in the first aspect described above, after the second processing step, the tool is mainly used in the axial direction with respect to the remaining processing portion of the second processing step. After moving and cutting, the tool is moved backward, the tool is moved in the radial direction by a moving amount smaller than a predetermined amount of movement in the second machining step, and the tool is moved again mainly in the axial direction and then moved backward. And a fourth machining step of performing a remaining corner machining to finish a predetermined surface by cutting and removing the machining remaining portion by repeating the above operation. According to this configuration, the tool is moved by a movement amount smaller than a predetermined amount of movement of the tool used in the second machining process in the fourth machining process, and the machining remainder and the cusp part in the second machining process are allowed. The surface is cut and removed to a predetermined smooth surface. This fourth machining step is also an oblique butt machining mainly based on the butt movement according to the surface of the recess or stepped portion, and the tool used in the fourth machining step is less likely to generate vibration during cutting, Improvement of machining efficiency and machining accuracy are achieved.

本発明に係る切削加工方法のさらに他の態様としては、前記した第2の態様または第3の態様において、前記第3の加工工程のあと、第3の加工工程の加工残部に対して工具を凹部または段差部の面に沿わせて、軸方向を主として進行させて切削したあと後退移動させ、この工具を凹部または段差部の延出方向に沿って径方向に前記第3の加工工程の移動の所定量より小さい移動量で移動させ、この工具を再度凹部または段差部の面に沿わせて、軸方向を主として進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去し、所定の表面に仕上るべく残隅加工を行う第4の加工工程を備えることを特徴としている。この構成によれば、第4の加工工程で工具を、第3の加工工程で使用した工具の移動の所定量より小さい移動量で移動させ、第3の加工工程の加工残部やカスプ部を切削して所定の表面に仕上げられ、凹部や段差部の面に沿わせた突き動作を主体とした、斜め突き加工であるため第4の加工工程で使用される工具も切削時に振動が発生しにくく、加工能率の向上と加工精度の向上が達成される。   As still another aspect of the cutting method according to the present invention, in the second aspect or the third aspect described above, after the third processing step, a tool is applied to the remaining processing portion of the third processing step. Along the surface of the recess or step portion, the axial direction is mainly advanced to cut and then retreat, and this tool is moved in the radial direction along the extending direction of the recess or step portion. The tool is moved by a movement amount smaller than a predetermined amount, and the tool is moved along the surface of the recessed portion or the stepped portion again, the axial direction is mainly advanced to cut and then retreat, and the machining remaining portion is cut and removed. It is characterized by comprising a fourth processing step for performing the remaining corner processing to finish a predetermined surface. According to this configuration, the tool is moved by a movement amount smaller than a predetermined amount of movement of the tool used in the third machining process in the fourth machining process, and the remaining machining part and the cusp part in the third machining process are cut. The tool used in the 4th machining process is less likely to vibrate during cutting because it is an oblique thrust process that is finished with a predetermined surface and is mainly thrust along the surface of the recess or step. Improvement of machining efficiency and machining accuracy are achieved.

本発明によれば、凹部や段差部の概略形状を形成したあと、工具を軸方向に移動して切削する突き動作で加工残部を切削除去し、工具を横方向に移動しないため、あるいは工具を軸方向を主とした方向に移動させて切削する斜め突き動作で加工残部を切削除去し、工具の横方向の移動を少なくしているため、切削時に工具に大きな加工反力が作用せず工具の振動が防止される。このため、加工精度を向上させることができ、工具の横方向の移動(ピック量)を大きくすることができ、加工能率を高めることができる。また、工具の刃部欠損が防止され、工具の耐久性を向上させることができる。   According to the present invention, after forming the rough shape of the concave portion or the stepped portion, the remaining processing portion is cut and removed by the thrusting operation of moving and cutting the tool in the axial direction, and the tool is not moved in the lateral direction, or the tool is The remaining part of the work is cut and removed by the oblique thrusting operation that moves in the axial direction, and the tool moves less in the lateral direction, so that a large working reaction force does not act on the tool during cutting. Is prevented from vibrating. For this reason, machining accuracy can be improved, lateral movement (pick amount) of the tool can be increased, and machining efficiency can be increased. In addition, the cutting edge portion of the tool is prevented, and the durability of the tool can be improved.

以下、本発明に係る切削加工方法の第1の実施形態を図面に基づき詳細に説明する。図1は、本実施形態に係る切削加工方法で切削加工する金属素材を示し、(a)は凹溝部を形成した斜視図、(b)は段差部を形成した斜視図、(c)は凹部を形成した斜視図、(d)はその長手方向の断面図、図2は切削加工の動作を説明する平面図と断面図、図3は切削加工の動作を説明する斜視図、図4は図3cの切削加工の動作を詳細に説明する平面図と断面図、図5は図3dの切削加工の動作を詳細に説明する斜視図と断面図、図6は図3dの切削加工の他の動作を説明する断面図、図7は切削加工方法の動作説明のためのフローチャートである。なお、この実施形態は、本発明に係る切削加工方法の請求項3に記載する第3の態様に対応する。   Hereinafter, a first embodiment of a cutting method according to the present invention will be described in detail with reference to the drawings. 1A and 1B show a metal material to be cut by the cutting method according to the present embodiment, wherein FIG. 1A is a perspective view in which a recessed groove portion is formed, FIG. 1B is a perspective view in which a step portion is formed, and FIG. (D) is a sectional view in the longitudinal direction, FIG. 2 is a plan view and a sectional view for explaining the cutting operation, FIG. 3 is a perspective view for explaining the cutting operation, and FIG. FIG. 5 is a perspective view and a cross-sectional view illustrating in detail the cutting operation of FIG. 3d, and FIG. 6 is another operation of the cutting operation of FIG. 3d. FIG. 7 is a flowchart for explaining the operation of the cutting method. In addition, this embodiment respond | corresponds to the 3rd aspect described in Claim 3 of the cutting method which concerns on this invention.

先ず、金型等の金属素材1に凹部として凹溝部2を形成する切削加工方法について図1を参照して説明する。図1aに示される金属素材1は、フライスやエンドミル等の工具を使用して凹溝部2が形成される。凹溝部2は両側の壁面が湾曲した傾斜面2a,2bで形成され、下端の先細部には小さなアール部2cが形成される形状をしており、上面からZ軸方向に掘り込まれ、X軸方向に延出している。また、詳細には後述するが、図1bに示される金属素材1Aには、段差部3が形成されている。図1c、dに示される金属素材1Bには、両端部が閉じられた凹部4が形成されている。本発明の切削加工方法は、例えば金型等で使用する金属製のブロックに、前記のような凹溝部2、段差部3、凹部4を形成する加工方法である。   First, a cutting method for forming a concave groove 2 as a concave portion in a metal material 1 such as a mold will be described with reference to FIG. In the metal material 1 shown in FIG. 1a, a groove 2 is formed using a tool such as a milling cutter or an end mill. The concave groove portion 2 is formed by inclined surfaces 2a and 2b whose wall surfaces on both sides are curved, and has a shape in which a small rounded portion 2c is formed at the tip of the lower end, and is dug in the Z-axis direction from the upper surface. It extends in the axial direction. Moreover, although mentioned later in detail, the level | step-difference part 3 is formed in 1 A of metal raw materials shown by FIG. 1b. The metal material 1B shown in FIGS. 1c and 1d is formed with a recess 4 whose both ends are closed. The cutting method of the present invention is a processing method for forming the concave groove portion 2, the stepped portion 3, and the concave portion 4 as described above, for example, in a metal block used in a mold or the like.

図1aに示されるような形状の凹溝部2を形成するときには、先ず、ステップS1で示す第1の加工工程で、図2a、b、図3aに示すように、第1の大径の工具10を用いて切削加工を行う。工具10は例えば先端形状がボール状のボールエンドミルを使用しているが、凹溝部の底面の形状に合わせて、先端が平坦なフラットエンドミルや、コーナー面取りをしたラジアスエンドミル等を使用してもよい。   When forming the concave groove portion 2 having the shape as shown in FIG. 1a, first, in the first machining step shown in step S1, as shown in FIGS. 2a, b and 3a, the first large diameter tool 10 is formed. Cutting is performed using. The tool 10 uses, for example, a ball end mill with a ball-shaped tip, but a flat end mill with a flat tip or a radius end mill with a chamfered corner may be used in accordance with the shape of the bottom surface of the groove. .

ボールエンドミル10を用いた第1の加工工程S1では、例えば、ボールエンドミルを回転させながら軸方向(Z方向)に進行移動させて所定の深さまで切削し、このあとボールエンドミル10を凹溝部2の延出方向に、すなわち径方向(X方向)に所定の切削速度で移動して凹溝部2の概略形状20に切削加工する。この凹溝部2は、底部のアール部2cの曲率半径が小さく、工具10による切削加工では所望の形状の凹溝部が得られず、第1の加工工程の加工残部21を他の工具、すなわち以下に説明する第2以降の工具を用いて切削加工を行う。この第1の加工工程S1では、大径の工具が使用できるため、切削加工時間を短縮することができる。なお、第1の加工工程では、第1のボールエンドミル10を軸方向のみ進行させて切削し、後退させてから径方向に移動して切削してもよく、概略形状20の切削は工具の移動方向を特定するものではない。   In the first processing step S1 using the ball end mill 10, for example, while the ball end mill is rotated, the ball end mill 10 is moved to the axial direction (Z direction) and cut to a predetermined depth. It moves in the extending direction, that is, in the radial direction (X direction) at a predetermined cutting speed, and is cut into the approximate shape 20 of the groove portion 2. The concave groove portion 2 has a small radius of curvature of the rounded portion 2c at the bottom, and a concave groove portion having a desired shape cannot be obtained by cutting with the tool 10, and the remaining machining portion 21 of the first machining step is used as another tool, that is, Cutting is performed using the second and subsequent tools described in (1). In the first machining step S1, a cutting tool can be shortened because a large-diameter tool can be used. In the first machining step, the first ball end mill 10 may be cut while being advanced only in the axial direction, moved backward in the radial direction, and may be cut in the radial direction. It does not specify the direction.

つぎに、第2の加工工程S3で第1の加工工程の加工残部21を切削除去するが、その前に第2の加工工程の必要性をステップS2で判断する。具体的には、第3の加工工程S5による壁加工時に、工具の進行方向側の工具側面での切削が行われないように、第2の加工工程での溝加工後に両側に加工残りによる壁ができ、両方の壁高さH0が予め与えられた横走り許容高さ以上となると判断された場合には、第2の加工工程を行う。逆に、第2の加工工程での溝加工後に、片側にしか加工残りによる壁ができないと判断された場合や、両側に壁ができても、少なくとも片側の壁高さが横走り許容高さ未満となると判断された場合には第2の加工工程を行わない。この判断については、後述する段差部3の切削加工において、図8b、fで詳細に説明する。   Next, the machining remaining portion 21 of the first machining process is cut and removed in the second machining process S3, but before that, the necessity of the second machining process is determined in step S2. Specifically, the wall due to the machining residue on both sides after the groove machining in the second machining step is performed so that the cutting on the side surface of the tool on the traveling direction side of the tool is not performed during the wall machining in the third machining step S5. If it is determined that both wall heights H0 are equal to or greater than the predetermined lateral running allowable height, the second processing step is performed. On the other hand, after it is determined that there is a wall due to the remaining machining on only one side after grooving in the second machining step, or even if walls are formed on both sides, at least the wall height on one side will run sideways. If it is determined that the value is less than the value, the second processing step is not performed. This determination will be described in detail with reference to FIGS.

また、ステップS2では、第1の加工工程での加工残部21が第2の加工工程S3をしないで、第3の加工工程S5でも十分加工できる範囲内にあるかを判断してもよい。例えば、凹溝部2の下端のアール部2cの半径が比較的大きく、加工残部21の高さが比較的小さい場合等には第2の加工工程を省略して、第3の加工工程に直接、移行させることができる。このように、例えば設計の段階で第2の加工工程が不要と判断できると第2の加工工程を通過させ、第3の加工工程に移行するようにプログラムを作成する。なお、第2の加工工程の必要性は、加工残部21の高さ等を目視で判断し、実施するか、しないかを決定してもよい。   Further, in step S2, it may be determined whether the remaining machining portion 21 in the first machining step is within a range that can be sufficiently machined in the third machining step S5 without performing the second machining step S3. For example, when the radius of the rounded portion 2c at the lower end of the concave groove portion 2 is relatively large and the height of the processing remaining portion 21 is relatively small, the second processing step is omitted, and the third processing step is directly performed. Can be migrated. Thus, for example, if it can be determined that the second machining step is unnecessary at the design stage, the second machining step is passed, and a program is created so as to shift to the third machining step. Note that the necessity of the second processing step may be determined by visually judging the height of the processing remaining portion 21 and the like and determining whether or not to implement it.

第2の加工工程の必要性が有りの場合、ステップS3で示す第2の加工工程S3を行う。第2の加工工程では、図2c、d、図3bに示すように、第2の工具として小径のフラットエンドミル11を回転させながら軸方向(Z方向)に進行させ、突き動作により第1の加工工程で残した加工残部21の切削加工を行う。フラットエンドミル11の先端部が両側の湾曲した傾斜面2a,2bに当接する深さ、あるいはその深さより僅かに上まで、フラットエンドミルを軸方向に進行移動させて穴部22aの切削加工を行う。そして、フラットエンドミル11を後退移動させて金属素材1から離してフリーの状態とし、フラットエンドミルを径方向(X方向)に、凹溝部2の延出方向に所定量(ピック量D1)だけ移動させる。このあと、移動位置で再度フラットエンドミル11を軸方向に進行させて突き動作により加工残部21を切削して穴部22bを形成し、後退させる動作を繰返して穴部22a,22b…を連続させ、凹溝部2の延出方向(X方向)に沿った溝部22を形成する。   If there is a need for the second processing step, the second processing step S3 shown in step S3 is performed. In the second machining step, as shown in FIGS. 2c, d, and 3b, the small-diameter flat end mill 11 is rotated as the second tool while being advanced in the axial direction (Z direction), and the first machining is performed by the thrusting operation. The remaining machining portion 21 left in the process is cut. The hole 22a is cut by moving the flat end mill in the axial direction to a depth at which the tip of the flat end mill 11 contacts the curved inclined surfaces 2a and 2b on both sides or slightly above the depth. Then, the flat end mill 11 is moved backward to be separated from the metal material 1 to be free, and the flat end mill is moved in the radial direction (X direction) by a predetermined amount (pick amount D1) in the extending direction of the groove 2. . Thereafter, the flat end mill 11 is advanced again in the axial direction at the moving position, and the machining remaining portion 21 is cut by the pushing operation to form the hole 22b, and the backward movement is repeated to make the holes 22a, 22b. A groove portion 22 is formed along the extending direction (X direction) of the recessed groove portion 2.

この第2の加工工程において、図2cに示すように凹溝部2の長手方向(X方向)の両端部は開いており、第1穴22aの切削を凹溝部の端部から離した状態で突き加工により行う。次いで、第1穴22aに隣接(図では下側)して凹溝部の端部側に第2穴22bの切削を行う。そして、第1穴22aの反対側に隣接(図では上側)して第3穴22c、第4穴22d…以降の切削を行い、凹溝部の他側の端部までの切削を行う。このようにして、凹溝部2の中心部に凹溝部に沿った溝部22が一側から他側まで形成される。なお、穴部22a,22b…の切削の順序は、開放している端部から行ってもよいが、端部から切削すると工具にX方向の大きな加工反力が発生し、工具が振動したり、刃部欠損が発生して好ましくない。また、第2穴22bで切削部を開放することにより、切りくずのかき込みを防止でき、工具刃先の欠損を防止できる。   In this second processing step, as shown in FIG. 2c, both end portions in the longitudinal direction (X direction) of the groove portion 2 are open, and the first hole 22a is cut away from the end portion of the groove portion. Perform by processing. Next, the second hole 22b is cut adjacent to the first hole 22a (lower side in the drawing) on the end side of the groove. Then, the third hole 22c, the fourth hole 22d, etc. are cut adjacent to the opposite side of the first hole 22a (upper side in the figure), and the other end of the groove is cut. Thus, the groove part 22 along the groove part is formed in the center part of the groove part 2 from one side to the other side. The holes 22a, 22b,... May be cut from the open end, but if the end is cut, a large reaction force in the X direction is generated on the tool, causing the tool to vibrate. This is not preferable because the blade part is broken. Further, by opening the cutting portion with the second hole 22b, it is possible to prevent chipping and to prevent the cutting edge of the tool from being lost.

このように、第2の加工工程では、フラットエンドミル11を軸方向(Z方向)のみに移動して形成した穴部22a,22b…をX方向に連続させて溝部22を形成し、溝部の両側が第2の加工工程の加工残部23,23となり、溝部の下方が加工残部24となる。溝部22は穴部を連続させて形成されているため、溝部22は底面が平坦となり、側面(壁面)は円筒面が連続して形成され、円弧状の段差のカスプ部25が形成される。このカスプ部の高さhは、フラットエンドミル11の直径や径方向の移動量(ピック量D1)により異なり、工具の直径が大きいとカスプ部25の高さは小さくなり、穴部22a,22b…のピッチ(ピック量D1)を大きく設定するとカスプ部の高さは大きくなる。   In this way, in the second processing step, the groove portions 22a, 22b... Formed by moving the flat end mill 11 only in the axial direction (Z direction) are continuously formed in the X direction to form the groove portions 22 on both sides of the groove portions. Becomes the remaining processing portions 23 and 23 of the second processing step, and the lower portion of the groove portion becomes the remaining processing portion 24. Since the groove portion 22 is formed with a continuous hole portion, the bottom surface of the groove portion 22 is flat, a cylindrical surface is continuously formed on the side surface (wall surface), and an arc-shaped stepped cusp portion 25 is formed. The height h of the cusp portion differs depending on the diameter of the flat end mill 11 and the amount of movement in the radial direction (pick amount D1). When the tool diameter is large, the height of the cusp portion 25 decreases, and the holes 22a, 22b,. When the pitch (pick amount D1) is set large, the height of the cusp portion becomes large.

このように、第2の加工工程では、フラットエンドミル11を軸方向(Z方向)に進行移動させる突き動作により切削を行うため、フラットエンドミル11には径方向(X方向、Y方向)の加工反力が小さいため大きな横方向移動量(ピック量)D1で移動させることができ、加工能率を高めることができる。また、フラットエンドミル11には径方向の加工反力が小さいため先端部に振動が発生しにくく、穴部22a,22b…が連続した溝部22の加工精度を高めることができる。   In this way, in the second machining step, the flat end mill 11 is cut by a thrusting operation that moves forward in the axial direction (Z direction), so that the flat end mill 11 has a machining reaction in the radial direction (X direction, Y direction). Since the force is small, it can be moved by a large lateral movement amount (pick amount) D1, and the processing efficiency can be increased. Further, since the flat end mill 11 has a small processing reaction force in the radial direction, it is difficult for vibration to occur at the tip portion, and the processing accuracy of the groove portion 22 in which the hole portions 22a, 22b,.

また、第2の加工工程において、図2dに示すように加工深さがあまり大きくない場合は、1回の切削加工ですむが、加工深さが大きくフラットエンドミル11を軸方向に進行させる移動距離が大きい場合には、移動距離を分けて切削加工を複数回行うことが好ましい。すなわち、図示していないが、フラットエンドミルを短い軸方向ストロークで移動させて浅い突き切削加工を行い浅い溝をX方向に形成し、ついで長い軸方向ストロークで移動させて深い突き切削加工により深い溝をX方向に形成する。2回に分けても所望の深さに達しない場合には、さらに軸方向ストロークを長くして多段の突き切削加工を行う。このように複数段の突き切削加工を行うことにより、エンドミル等の工具が小径で深く切削する場合でも段階的に切削するため折損することが防止できる。   Further, in the second machining step, when the machining depth is not so large as shown in FIG. 2d, one cutting process is sufficient, but the machining distance is large, and the moving distance for moving the flat end mill 11 in the axial direction is sufficient. When is large, it is preferable to perform cutting several times by dividing the moving distance. That is, although not shown, the flat end mill is moved with a short axial stroke to perform shallow piercing to form a shallow groove in the X direction, and then moved with a long axial stroke to deep groove by deep piercing. Are formed in the X direction. If the desired depth is not reached even after dividing into two times, the axial stroke is further lengthened to perform multi-stage piercing. By performing multi-step piercing in this way, even when a tool such as an end mill cuts deeply with a small diameter, it can be prevented from being broken because it cuts stepwise.

このあと、第3の加工工程S5で第2の加工工程S3の加工残部23,24を切削除去するが、その前に第3の加工工程の必要性をステップS4で判断する。具体的には、ステップS4では、後工程のボールエンドミル加工時に、複数回の切込みが不要なように、加工残部の厚みが予め与えられた工具許容切込み量以上であると判断されたとき、第3の加工工程を行う。また、第2の加工工程での加工残部23,24が第3の加工工程S5をしないで、第4の加工工程S6でも十分加工できる範囲内にあるかを判断する。例えば、凹溝部2の下端のアール部2cの半径が比較的大きく、加工残部24の厚さが小さい場合等には第3の加工工程S5を省略して、第4の加工工程S6に直接、移行させることができる。この場合も、例えば設計の段階で第3の加工工程の必要性が判断できるので、予めプログラムを作成できる。また、目視により、必要性の有無を判断してもよい。   Thereafter, the remaining machining portions 23 and 24 of the second machining step S3 are cut and removed in the third machining step S5, but before that, the necessity of the third machining step is determined in step S4. Specifically, in step S4, when it is determined that the thickness of the remaining machining portion is equal to or greater than a predetermined tool allowable depth of cut so that a plurality of depths of cutting are not required at the time of ball end milling in the subsequent process, Step 3 is performed. Further, it is determined whether the remaining machining portions 23 and 24 in the second machining step are within a range that can be sufficiently machined in the fourth machining step S6 without performing the third machining step S5. For example, when the radius of the rounded portion 2c at the lower end of the recessed groove portion 2 is relatively large and the thickness of the processing remaining portion 24 is small, the third processing step S5 is omitted, and the fourth processing step S6 is directly performed. Can be migrated. Also in this case, for example, since the necessity of the third machining process can be determined at the design stage, a program can be created in advance. Moreover, you may judge the presence or absence of necessity visually.

第3の加工工程の必要性が有りの場合、ステップS5で示す第3の加工工程を行う。第3の加工工程では、図2e、f、図3cで示すように、例えば第3の工具としてフラットエンドミル11を使用し、このフラットエンドミルを軸方向(Z方向)を主として進行移動させて、第2の加工工程の加工残部23の切削を行う。軸方向を主として移動させる動作とは、フラットエンドミル11を軸方向(Z方向)に進行移動させると共に、軸方向の移動量より小さい移動量で凹溝部2の中心部に向けてY方向に移動させる動作であり、実際には傾斜面2a,2bや曲面に沿って移動させている。傾斜面の傾斜角度が45度を超える場合は、Z方向の移動距離よりY方向の移動距離が小さく、軸方向を主として工具を移動させることができる。   If there is a need for the third processing step, the third processing step shown in step S5 is performed. In the third machining step, as shown in FIGS. 2e, f, and 3c, for example, a flat end mill 11 is used as a third tool, and this flat end mill is moved forward in the axial direction (Z direction), The remaining machining portion 23 in the second machining step is cut. The operation of mainly moving in the axial direction is to move the flat end mill 11 in the axial direction (Z direction) and move it in the Y direction toward the center of the groove 2 with a movement amount smaller than the movement amount in the axial direction. It is an operation, and is actually moved along the inclined surfaces 2a and 2b and the curved surface. When the inclination angle of the inclined surface exceeds 45 degrees, the movement distance in the Y direction is smaller than the movement distance in the Z direction, and the tool can be moved mainly in the axial direction.

すなわち、湾曲した傾斜面2aに沿って溝部22の下端まで壁面26が形成される。このように軸方向を主とした工具11の移動により、工具は突き動作を主とした切削が行なわれるため、径方向の加工反力が小さくなり工具11の撓み量が小さくなる。このため、フラットエンドミル11の切削時の振動が防止され、加工精度が向上する。また、X方向に移動させるピック量D2を大きく設定することができ、加工能率を高めることができる。なお、第3の工具として、第2の工具と同じフラットエンドミル11を使用したが、ラジアスエンドミル等の他の工具を使用してもよい。   That is, the wall surface 26 is formed to the lower end of the groove part 22 along the curved inclined surface 2a. As described above, the tool 11 is moved mainly in the axial direction, so that the tool is cut mainly in the pushing operation. Therefore, the machining reaction force in the radial direction is reduced, and the deflection amount of the tool 11 is reduced. For this reason, the vibration at the time of cutting of the flat end mill 11 is prevented, and the processing accuracy is improved. Further, the pick amount D2 to be moved in the X direction can be set large, and the processing efficiency can be increased. In addition, although the same flat end mill 11 as the 2nd tool was used as a 3rd tool, you may use other tools, such as a radius end mill.

1つの壁面26が形成されるとフラットエンドミル11を後退移動させ、フラットエンドミルを金属素材1から離してフリーの状態とする。そして、フラットエンドミル11をY方向に移動させ、反対側の壁面加工を行う。すなわち、反対側の傾斜面2bに沿わせてフラットエンドミル11を進入移動させ、溝部22の下端まで壁面27を形成する。対向する傾斜面2a,2bに壁面26,27を形成したあと、フラットエンドミル11をX方向に沿わせて移動させ、移動した位置でフラットエンドミル11を進入、後退させて壁面26,27を順次形成する。フラットエンドミル11は軸方向(Z方向)を主として移動されるため切削加工時に大きな加工反力が作用せず、X方向に大きな横方向移動量(ピック量)D2で移動させることができ、加工能率を高めることができる。   When one wall surface 26 is formed, the flat end mill 11 is moved backward, and the flat end mill is separated from the metal material 1 to be in a free state. Then, the flat end mill 11 is moved in the Y direction to perform the opposite wall processing. That is, the flat end mill 11 enters and moves along the opposite inclined surface 2 b to form the wall surface 27 up to the lower end of the groove 22. After the wall surfaces 26 and 27 are formed on the inclined surfaces 2a and 2b facing each other, the flat end mill 11 is moved along the X direction, and the flat end mill 11 enters and retreats at the moved position to sequentially form the wall surfaces 26 and 27. To do. Since the flat end mill 11 is mainly moved in the axial direction (Z direction), a large machining reaction force does not act at the time of cutting, and the flat end mill 11 can be moved by a large lateral movement amount (pick amount) D2 in the X direction. Can be increased.

第3の加工工程S5では、第2の加工工程S3で形成した溝部22を中心として両側の壁面の切削加工を行うが、一方の傾斜面2aに沿わせて片側の加工を行ったあと、他方の傾斜面2bに沿わせて他の側の加工を行うことが好ましい。このように溝部22を中心として第3の工具であるフラットエンドミル11による切削加工を交互に行うことで、第2の加工工程で残った対向する加工残部23のカスプ部25の影響をほとんど受けない切削加工が可能となる。すなわち、対向するカスプ部は、片側の第3の加工工程で半分程度が切削されているため、フラットエンドミル11を進行させて凹溝部の中央に移動する際、カスプ部の影響が少なくなるのである。   In the third machining step S5, the wall surface on both sides is cut with the groove portion 22 formed in the second machining step S3 as the center, but after the one side machining is performed along one inclined surface 2a, the other side It is preferable to process the other side along the inclined surface 2b. In this way, by alternately performing the cutting process by the flat end mill 11 as the third tool around the groove part 22, the cusp part 25 of the opposing machining remaining part 23 remaining in the second machining process is hardly affected. Cutting is possible. That is, since the opposite cusp part is cut about half in the third processing step on one side, the influence of the cusp part is reduced when the flat end mill 11 is advanced and moved to the center of the concave groove part. .

換言すると、図4aに示すように、一方の傾斜面2a側を全て切削してから他方の傾斜面2b側を切削すると、第2の加工工程で形成されたカスプ部25の突出する位置に進入してきた工具11が接触して干渉する。すなわち、図4cに示すように、溝部22の幅が大きい部分では工具11が進入しても反対側の壁面と接触しないが、図4dに示すように、幅の小さいカスプ部25では工具11の進入で反対側の壁面と接触して干渉する。このように工具11が壁面と干渉すると、工具に径方向の加工反力が作用して振動し加工精度が低下すると共に、刃部折損が発生する虞があるが、図4bに示すように、一方の傾斜面2aを切削したあと他方の傾斜面2bを切削するように交互に切削すると、工具11とカスプ部25との干渉が低減され、あるいは干渉を防止でき、第3の加工工程の精度が向上して凹溝部2の仕上げ状態を良好とすることができる。   In other words, as shown in FIG. 4a, when all of the one inclined surface 2a is cut and then the other inclined surface 2b is cut, the cusp portion 25 formed in the second machining step enters the protruding position. The tool 11 that has been touched and interferes. That is, as shown in FIG. 4c, even if the tool 11 enters the portion where the width of the groove portion 22 is large, it does not come into contact with the opposite wall surface. However, as shown in FIG. Contact and interfere with the opposite wall. When the tool 11 interferes with the wall surface in this manner, a machining reaction force in the radial direction acts on the tool and vibrates to reduce the machining accuracy, and there is a possibility that the blade portion may be broken, as shown in FIG. By alternately cutting so as to cut the other inclined surface 2b after cutting one inclined surface 2a, the interference between the tool 11 and the cusp portion 25 can be reduced or prevented, and the accuracy of the third machining step can be prevented. Is improved, and the finished state of the recessed groove portion 2 can be improved.

前記した第3の加工工程のあと、所定の表面に仕上げるべく残隅加工である第4の加工工程を行う。この第4の加工工程S6では、図3d、図5に示すように、第4の工具としてボールエンドミル12を使用し、凹溝部2の傾斜面2a,2bや曲面に沿ってボールエンドミル12を回転させながら移動させて第3の加工工程での加工残部24や、壁面26,27のカスプ部の切削加工を行う。ボールエンドミル12は軸方向を主とした移動により切削加工を行うため、工具先端の周速の低い切れ刃部分で切削でき、スラスト方向の加工反力成分を大きくとることができる。また、工具長が長い場合でも工具の撓み量を抑えて加工することができる。この結果、ボールエンドミル12の振動が防止され、加工精度が向上する。また、工具の寿命を延ばすことができる。なお、第4の加工工程S6は、第3の加工工程S5で凹溝部2の表面が十分に円滑に仕上げられている場合には必ずしも必要としない。   After the third processing step described above, a fourth processing step, which is a remaining corner processing, is performed to finish a predetermined surface. In the fourth machining step S6, as shown in FIGS. 3d and 5, the ball end mill 12 is used as the fourth tool, and the ball end mill 12 is rotated along the inclined surfaces 2a and 2b and the curved surface of the concave groove portion 2. The remaining machining portion 24 in the third machining step and the cusp portions of the wall surfaces 26 and 27 are cut. Since the ball end mill 12 performs cutting by moving mainly in the axial direction, cutting can be performed with a cutting edge portion having a low peripheral speed at the tip of the tool, and a machining reaction force component in the thrust direction can be increased. Further, even when the tool length is long, it is possible to perform processing while suppressing the amount of bending of the tool. As a result, the vibration of the ball end mill 12 is prevented and the processing accuracy is improved. In addition, the tool life can be extended. Note that the fourth processing step S6 is not necessarily required when the surface of the groove portion 2 is finished sufficiently smoothly in the third processing step S5.

片側の傾斜面2aに沿ってボールエンドミル12を進行させて切削したあとボールエンドミルを後退させ、対向する側の傾斜面2bに沿ってボールエンドミル12を進行させて切削したあとボールエンドミルを後退させ、工具を金属素材1から離してフリーの状態にして凹溝部2の延出方向(X方向)に沿って工具を径方向に移動量(ピック量D3)で移動させる。このピック量D3は、第2の工具11の移動量や、第3の工具11の移動量と同じ量に設定してもよいが、これらの移動量より小さいことが好ましく、小さくすることにより凹溝部2の切削カスプ高さを小さくでき、仕上げの表面状態を滑らかにすることができる。   The ball end mill 12 is moved along the inclined surface 2a on one side and cut, and then the ball end mill is moved back. The ball end mill 12 is moved along the inclined surface 2b on the opposite side and cut, and then the ball end mill is moved back. The tool is moved away from the metal material 1 to be in a free state, and the tool is moved in the radial direction by a moving amount (pick amount D3) along the extending direction (X direction) of the groove 2. The pick amount D3 may be set to the same amount as the amount of movement of the second tool 11 or the amount of movement of the third tool 11, but is preferably smaller than these amounts of movement. The cutting cusp height of the groove portion 2 can be reduced, and the finished surface state can be made smooth.

第4の加工工程S6では、傾斜面2aに沿って切削したあと、対向する傾斜面2bを交互に切削している。そして、図5b〜dに示すように、切削による切りくずの排出を良くするため、軸方向(Z方向)に進行させる移動量を複数回に分けて移動させている。すなわち、図5a、bに示すように、先ず傾斜面2a、2bの高い位置でボールエンドミル12を矢印28,29に沿って進行させて切削を行い、つぎに図5cに示すように傾斜面2a、2bの中程の位置でボールエンドミル12を矢印30,31に沿って進行させて切削を行い、最後に図5dに示すように傾斜面2a、2bの低い位置でボールエンドミル12を矢印32,33に沿って進行させて切削を3段階に行っている。一般にボールエンドミルによる先端突き加工は、切りくずの排出性が悪く効率良い切削ができないが、Z方向に段階を分けて切削することで切削の効率をあげることができる。   In the fourth processing step S6, after cutting along the inclined surface 2a, the opposing inclined surfaces 2b are alternately cut. Then, as shown in FIGS. 5b to 5d, in order to improve chip discharge by cutting, the amount of movement to be advanced in the axial direction (Z direction) is divided into a plurality of times. That is, as shown in FIGS. 5a and 5b, the ball end mill 12 is first advanced along the arrows 28 and 29 at a high position of the inclined surfaces 2a and 2b to perform cutting, and then the inclined surface 2a as shown in FIG. 5c. 2b, the ball end mill 12 is advanced along the arrows 30 and 31 to perform cutting. Finally, as shown in FIG. 5d, the ball end mill 12 is moved to the positions of the arrows 32 and 32 at the lower positions of the inclined surfaces 2a and 2b. The cutting is performed in three stages by proceeding along 33. In general, tip piercing by a ball end mill has poor chip evacuation and cannot be cut efficiently, but cutting can be performed in stages in the Z direction to increase cutting efficiency.

前記した第4の加工工程S6でも、ボールエンドミル12の移動は軸方向を主体としており、軸方向(Z方向)にボールエンドミルを進行移動させる共に、凹溝部2の中心方向(Y方向)に移動させている。このようにボールエンドミル12を横方向(X方向)に移動させないため、ボールエンドミルの径方向に大きな加工反力が作用せず、ボールエンドミルの振動を防止して加工精度を向上させることができる。また、ボールエンドミル12の振動が防止されるため、ボールエンドミルの刃部欠損が防止され耐久性を向上させることができる。   Also in the above-described fourth machining step S6, the movement of the ball end mill 12 is mainly in the axial direction, and the ball end mill is moved forward in the axial direction (Z direction) and moved in the central direction (Y direction) of the recessed groove portion 2. I am letting. Since the ball end mill 12 is not moved in the lateral direction (X direction) in this way, a large machining reaction force does not act in the radial direction of the ball end mill, and vibration of the ball end mill can be prevented to improve machining accuracy. Further, since the vibration of the ball end mill 12 is prevented, chipping of the ball end mill is prevented and durability can be improved.

また、第4の加工工程において、第3の加工工程の加工残部24を切削除去するとき図6に示すように加工するようにしてもよい。図6a、bでは、一方の傾斜面2aに沿わせてボールエンドミル12を徐々に進行させ、12a、12b、12cのように進行させて切削を行う。つぎに、他側の傾斜面2bに沿わせてボールエンドミル12を徐々に進行させ、残りの加工残部を12d、12e、12fのように進行させて切削する。このようにボールエンドミル12をZ方向に進行させると共に、Y方向に移動させて加工残部24を切削し、このあと順次X方向に切削を行うことで加工残部24を全て切削除去して円滑な状態にして凹溝部2を完成させることができる。   Further, in the fourth machining step, when the machining remaining portion 24 of the third machining step is removed by cutting, the machining may be performed as shown in FIG. In FIGS. 6a and 6b, the ball end mill 12 is gradually advanced along one inclined surface 2a, and cutting is performed by making it advance like 12a, 12b, and 12c. Next, the ball end mill 12 is gradually advanced along the inclined surface 2b on the other side, and the remaining machining remaining portions are advanced like 12d, 12e, and 12f to be cut. In this way, the ball end mill 12 is moved in the Z direction and moved in the Y direction to cut the remaining machining portion 24, and then the cutting is performed in the X direction successively to cut and remove all the remaining machining portion 24 in a smooth state. Thus, the groove portion 2 can be completed.

第4の加工工程では、前記のほかに、図6cに示すように切削することもできる。図6cでは、ボールエンドミル12は、左側の傾斜面2a側で12gのように切削したあと、右側の傾斜面2b側で12hのように切削する。ついで、左側で12iのように進行させ切削し、右側で12jのように進行させ切削し、同様に交互に12k、12l、12m、12nのように切削する。これにより、さらにスラスト方向の加工反力成分を大きくとることができる。そして、このあと前記のようにX方向にエンドミル12を移動させ、凹溝部2の加工残部24を全て除去して円滑面とする。   In the fourth processing step, cutting can be performed as shown in FIG. In FIG. 6c, the ball end mill 12 cuts on the left inclined surface 2a side like 12g, and then cuts on the right inclined surface 2b side like 12h. Next, the cutting is performed by proceeding as 12i on the left side, and the cutting is performed by proceeding as 12j on the right side. Similarly, cutting is performed as 12k, 12l, 12m, and 12n alternately. Thereby, the processing reaction force component in the thrust direction can be further increased. Then, as described above, the end mill 12 is moved in the X direction to remove all the remaining machining portion 24 of the groove 2 to make a smooth surface.

つぎに、本発明の第1の態様を示す他の実施形態を説明する。この実施形態の切削加工方法は、図7のフローチャートにおいて、ステップS4の第3の加工の必要性の有りの判断の際のN側の動作を行うものである。すなわち、この実施形態は前記した第1の実施形態に対し、第3の加工工程の無い本発明の第1の態様であることを特徴とする。そして、他の実質的に同等の構成については同じ符号を付して詳細な説明は省略する。   Next, another embodiment showing the first aspect of the present invention will be described. The cutting method of this embodiment performs an operation on the N side in the determination of the necessity of the third processing in step S4 in the flowchart of FIG. That is, this embodiment is characterized in that it is the first aspect of the present invention without the third processing step as compared to the first embodiment described above. Other substantially equivalent configurations are denoted by the same reference numerals, and detailed description thereof is omitted.

この実施形態は、第1の加工工程S1で凹部や段差部の概略形状の切削を行い、第2の加工工程S2で凹溝部2の底面に近接する溝加工を行い、第2の加工工程の加工残部が許容範囲内に入っているので、第3の加工工程を省略して第4の加工工程S6に進めるような加工を行う。すなわち、第1の加工工程S1、第2加工工程S2のあと、加工残部の高さや幅等が許容範囲であるため、ステップS4で第3の壁加工を行う加工工程を省略して第4の加工工程S6で加工残部であるカスプ部分等の残隅の除去加工を行う。   In this embodiment, the first machining step S1 cuts the rough shape of the concave portion and the stepped portion, the second machining step S2 performs the groove processing close to the bottom surface of the concave groove portion 2, and the second processing step. Since the remaining machining is within the allowable range, the third machining process is omitted and the machining is performed so as to proceed to the fourth machining process S6. That is, after the first machining step S1 and the second machining step S2, the height and width of the machining remaining portion are within the allowable range, so that the machining step for performing the third wall machining in step S4 is omitted. In the machining step S6, the remaining corners such as the cusp portion that is the remaining machining portion are removed.

この実施形態では、第1の工具10を用いて第1の加工工程を行ったあと、第2の工具11を用いて第1の加工の加工残部21を切削する第2の加工工程S2を行い、ついで第4の加工工程S6を行うが、第2の加工工程では前記の実施形態と同様に第2の工具11を軸方向(Z方向)に進行させて切削加工するため、第2の工具には径方向(X方向、Y方向)の加工反力が作用しない。このため、第2の工具11を軸方向に進入させて切削したあと後退させ、第2の工具を径方向、すなわち横方向に移動させるピック量D1を大きくすることができるため、加工能率を高めることができ、第2の工具11に振動が発生しにくいため加工精度を向上できる。   In this embodiment, after performing the first machining step using the first tool 10, the second machining step S <b> 2 for cutting the machining remaining portion 21 of the first machining using the second tool 11 is performed. Then, the fourth machining step S6 is performed. In the second machining step, the second tool 11 is advanced in the axial direction (Z direction) in the same manner as in the above embodiment, so that the second tool 11 is cut. No machining reaction force in the radial direction (X direction, Y direction) acts on. For this reason, it is possible to increase the picking amount D1 for moving the second tool 11 in the radial direction, that is, in the lateral direction by moving the second tool 11 in the axial direction and then retracting it, thereby increasing machining efficiency. In addition, since the second tool 11 hardly generates vibration, the processing accuracy can be improved.

また、第4の加工工程S6では第4の工具12を軸方向(Z方向)を主とする方向に進入移動し、すなわち垂直方向に対する水平方向の移動距離が小さい斜め突き加工により切削するため、第4の工具に大きな加工反力が作用しない。このため、第4の工具12で切削したあと後退させ、第4の工具を径方向(X方向)、すなわち横方向に移動させるピック量D3を大きくすることができるため、加工能率を高めることができる。また、加工反力が小さいため切削時に工具12の振動が防止され、加工精度を高めることができる。この実施形態では、凹部や段差部の形状により第3の加工工程を抜かして凹部や段差部を形成することができるため、第1の実施形態と比較して加工時間を大幅に短縮することができる。   Further, in the fourth machining step S6, the fourth tool 12 enters and moves in the axial direction (Z direction) as a main direction, that is, is cut by oblique thrusting with a small horizontal movement distance with respect to the vertical direction. A large machining reaction force does not act on the fourth tool. For this reason, it is possible to increase the picking efficiency D3 by moving the fourth tool in the radial direction (X direction), that is, in the lateral direction after cutting with the fourth tool 12, and thereby increasing the machining efficiency. it can. Further, since the machining reaction force is small, the vibration of the tool 12 is prevented during cutting, and the machining accuracy can be increased. In this embodiment, since the concave portion or the stepped portion can be formed by removing the third processing step depending on the shape of the concave portion or the stepped portion, the processing time can be significantly reduced as compared with the first embodiment. it can.

本発明の第2の態様を示すさらに他の実施形態を説明する。この実施形態の切削加工方法は、図7のフローチャートにおいて、ステップS2の第2の加工の必要性の有りの判断の際のN側の動作を行うものである。すなわち、この実施形態は前記した第1の実施形態に対し、第2の加工工程の無い本発明の第2の態様であることを特徴とする。そして、他の実質的に同等の構成については同じ符号を付して詳細な説明は省略する。   Still another embodiment showing the second aspect of the present invention will be described. The cutting method according to this embodiment performs an operation on the N side in the determination of the necessity of the second machining in step S2 in the flowchart of FIG. That is, this embodiment is characterized in that it is the second aspect of the present invention without the second processing step as compared to the first embodiment described above. Other substantially equivalent configurations are denoted by the same reference numerals, and detailed description thereof is omitted.

この実施形態は、第1の加工工程S1で凹部や段差部の概略形状の切削を行い、第1の加工工程での加工残部が許容範囲内に入っているので、第2の加工工程S3を省略して第3の加工工程S5に進めるような加工を行う。すなわち、第1の加工工程S1のあと、加工残部21の高さや幅等が許容範囲であるため、ステップS2で第2の溝加工を行う加工工程S3の必要性が無しとして第2の加工工程を省略して、ステップS4で第3の加工工程S5の必要性が有りとして第3の加工工程S5で凹溝部2の側面の壁加工を行う。このあと、第4の加工工程S6で加工残部であるカスプ部分等の残隅の除去加工を行う。   In this embodiment, the concave portion and the stepped portion are cut in the first processing step S1, and the remaining processing portion in the first processing step is within an allowable range. Therefore, the second processing step S3 is performed. Processing that is omitted and proceeds to the third processing step S5 is performed. That is, after the first machining step S1, the height, width, and the like of the machining remaining portion 21 are within an allowable range, so that there is no need for the machining step S3 in which the second groove machining is performed in step S2. In step S4, there is a need for the third machining step S5, and wall processing of the side surface of the groove 2 is performed in the third machining step S5. Thereafter, in the fourth machining step S6, the remaining corners such as the cusp portions that are the remaining machining portions are removed.

この実施形態では、第1の工具10を用いて第1の加工工程を行ったあと、第3の工具11を用いて第1の加工の加工残部21を切削する第3の加工工程S4を行い、ついで第4の加工工程S6を行うが、第3の加工工程では前記の実施形態と同様に第3の工具11を軸方向(Z方向)を主とした移動方向、すなわち垂直方向に対する水平方向の移動距離が小さい斜め突き加工により切削するため、第3の工具11に大きな加工反力が作用しない。このため、第3の工具で切削したあと後退させ、第3の工具を径方向、すなわち横方向(X方向)に移動させるピック量D2を大きくすることができるため、加工能率を高めることができる。また、第3の工具11に加わる加工反力が小さいため切削時に工具の振動が防止され、加工精度を高めることができる。   In this embodiment, after performing the first machining process using the first tool 10, the third machining process S <b> 4 for cutting the machining remaining portion 21 of the first machining using the third tool 11 is performed. Then, the fourth machining step S6 is performed. In the third machining step, the third tool 11 is moved in the axial direction (Z direction) as in the previous embodiment, that is, in the horizontal direction with respect to the vertical direction. Therefore, a large machining reaction force does not act on the third tool 11. For this reason, the cutting amount can be increased after cutting with the third tool, and the pick amount D2 for moving the third tool in the radial direction, that is, in the lateral direction (X direction) can be increased. . Further, since the machining reaction force applied to the third tool 11 is small, the vibration of the tool is prevented during cutting, and the machining accuracy can be increased.

また、第4の加工工程S6では第4の工具12を軸方向(Z方向)を主とする方向に進入移動し、すなわち垂直方向に対する水平方向の移動距離が小さい斜め突き加工により切削するため、第4の工具に大きな加工反力が作用しない。このため、第4の工具12で切削したあと後退させ、第4の工具を径方向(X方向)、すなわち横方向に移動させるピック量D3を大きくすることができるため、加工能率を高めることができる。また、加工反力が小さいため切削時に工具12の振動が防止され、加工精度を高めることができる。この実施形態では、凹部や段差部の形状により第2の加工工程を抜かして凹部や段差部を形成することができるため、第1の実施形態と比較して加工時間を大幅に短縮することができる。   Further, in the fourth machining step S6, the fourth tool 12 enters and moves in the axial direction (Z direction) as a main direction, that is, is cut by oblique thrusting with a small horizontal movement distance with respect to the vertical direction. A large machining reaction force does not act on the fourth tool. For this reason, it is possible to increase the picking efficiency D3 by moving the fourth tool in the radial direction (X direction), that is, in the lateral direction after cutting with the fourth tool 12, and thereby increasing the machining efficiency. it can. Further, since the machining reaction force is small, the vibration of the tool 12 is prevented during cutting, and the machining accuracy can be increased. In this embodiment, since the concave portion or the stepped portion can be formed by removing the second processing step depending on the shape of the concave portion or the stepped portion, the processing time can be greatly shortened as compared with the first embodiment. it can.

つぎに、本発明の切削加工方法で、図1bに示される段差部3の切削加工を行う場合について、図1bおよび図8を参照して説明する。金属素材1Aに形成される段差部3は上面3aと、段差面3bと、上面3aと段差面3bとを連結する傾斜面3cとを備えており、傾斜面3cと段差面3bとのコーナー部に、小さなアール部3dが形成されている。段差部を形成するときは、図8aに示すように、第1の加工工程で金属ブロックに段差部の概略形状として円弧部35をX方向に沿って切削加工する。図示していない半径の大きい第1の工具を用いて、曲率半径の大きい円弧部35をX方向に沿って形成する。第1の加工工程では、直径の大きい工具を使用できるため、X方向の移動が速やかに行え、加工能率を高めることができ、短時間で切削加工できる。   Next, a case where the step 3 shown in FIG. 1b is cut by the cutting method of the present invention will be described with reference to FIG. 1b and FIG. The step portion 3 formed on the metal material 1A includes an upper surface 3a, a step surface 3b, and an inclined surface 3c connecting the upper surface 3a and the step surface 3b, and a corner portion between the inclined surface 3c and the step surface 3b. In addition, a small rounded portion 3d is formed. When forming the stepped portion, as shown in FIG. 8a, the arc portion 35 is cut along the X direction as a rough shape of the stepped portion in the metal block in the first processing step. An arc portion 35 having a large curvature radius is formed along the X direction using a first tool having a large radius (not shown). In the first machining step, since a tool having a large diameter can be used, movement in the X direction can be performed quickly, the machining efficiency can be increased, and cutting can be performed in a short time.

第1の加工工程後に、図8bに示すように、第2の工具としてフラットエンドミル11を使用して溝部36をX方向に沿って切削加工する第2の加工工程を行う。フラットエンドミル11を回転させて、軸方向(Z方向)に進行させて切削し、後退させて金属素材1Aから離してからX方向にピック量D1で移動させる動作を繰返して、穴部36a、36b…を連続させて溝部36を形成する。この実施形態では、円弧部35の半径が大きく、溝部36を形成しても加工残部の高さH1が大きいため、もう1つの溝部を形成するべく溝部36は底面3bに到達しない距離まで進行させている。   After the first machining step, as shown in FIG. 8b, a second machining step is performed in which the groove portion 36 is cut along the X direction using the flat end mill 11 as the second tool. The flat end mill 11 is rotated to advance in the axial direction (Z direction), cut, retreat, move away from the metal material 1A, and then move in the X direction with the pick amount D1 to repeat the holes 36a, 36b. ... are continuously formed to form the groove 36. In this embodiment, since the radius of the circular arc portion 35 is large and the height H1 of the remaining machining portion is large even if the groove portion 36 is formed, the groove portion 36 is advanced to a distance that does not reach the bottom surface 3b in order to form another groove portion. ing.

すなわち、図8cに示すように、フラットエンドミル11で溝部36を形成したあと、溝部36と平行に溝部37を形成する。この溝部37もフラットエンドミル11を軸方向に進行させて段差面3bまで、溝部36よりやや深く切削したあと後退させ、X方向に移動させる切削動作を繰返して形成される。この第2の加工工程は、溝部36,37を平行に切削加工するものであるが、この第2の加工工程においても、フラットエンドミル等の工具11は軸方向に沿って進行させて切削するため、工具11に径方向の加工反力が作用せず、X方向へ移動させるピック量D1を大きく設定することができ、加工能率を高めることができる。また、工具11に径方向の加工反力が作用しないため工具の振動が防止され、加工精度を高めることができる。   That is, as shown in FIG. 8 c, after the groove portion 36 is formed by the flat end mill 11, the groove portion 37 is formed in parallel with the groove portion 36. This groove portion 37 is also formed by repeating the cutting operation of moving the flat end mill 11 in the axial direction to the stepped surface 3b, cutting it slightly deeper than the groove portion 36, then retracting it and moving it in the X direction. In this second machining step, the grooves 36 and 37 are cut in parallel, but also in this second machining step, the tool 11 such as a flat end mill advances along the axial direction for cutting. The machining reaction force in the radial direction does not act on the tool 11, and the pick amount D1 to be moved in the X direction can be set large, so that the machining efficiency can be increased. Moreover, since the machining reaction force in the radial direction does not act on the tool 11, the vibration of the tool is prevented, and the machining accuracy can be increased.

このように第2の加工工程を2段階で行ったあと、図8dに示すように、第3の加工工程に移行する。第3の加工工程では、フラットエンドミル11を軸方向(Z方向)を主として進行移動させて、第2の加工残部の切削を行う。すなわち、第2の加工で使用したフラットエンドミル11をそのまま第3の工具として使用し、傾斜面3cに沿わせて移動させると共に、段差面3bに沿わせて水平移動させ、壁加工および底面加工を行う。傾斜面3cに沿わせた移動では軸方向を主とした移動であるため、工具11に大きい加工反力が作用せず、段差面3bに沿わせた移動でも加工残部の厚さが小さいため大きい加工反力が作用せず、大きなピック量D2でX方向に移動させて加工することができ、加工能率が向上する。前記の軸方向を主とした移動とは、Z方向に大きく、Y方向に小さく移動させる斜め突き加工のことをいう。また、切削加工に際して、工具11に振動が発生しにくく、加工精度が向上する。   Thus, after performing the 2nd processing process in two steps, as shown in Drawing 8d, it shifts to the 3rd processing process. In the third processing step, the flat end mill 11 is mainly moved in the axial direction (Z direction) to cut the second processing remaining portion. That is, the flat end mill 11 used in the second machining is used as it is as the third tool, and is moved along the inclined surface 3c and is moved horizontally along the step surface 3b to perform wall machining and bottom machining. Do. Since the movement along the inclined surface 3c is mainly movement in the axial direction, a large machining reaction force does not act on the tool 11, and even the movement along the stepped surface 3b is large because the thickness of the remaining machining portion is small. The machining reaction force does not act, and the machining can be carried out by moving in the X direction with a large pick amount D2, thereby improving the machining efficiency. The movement mainly in the axial direction means an oblique thrusting process in which the movement is large in the Z direction and small in the Y direction. Further, during cutting, the tool 11 is unlikely to vibrate, and the processing accuracy is improved.

第3の加工工程のあと、図8eに示すように第4の加工工程を行い、第3の加工工程の加工残部を切削除去する。第4の工具としてボールエンドミル12を使用し、第3の加工工程の加工残部であるカスプ部分等の切削を行う。ボールエンドミル12を傾斜面3cに沿わせて軸方向を主として進行移動させてカスプ部分の切削除去を行い、壁面を円滑面に仕上げる。段差面3bは前工程でフラットエンドミル11により平坦に仕上げられているため、ボールエンドミルによる加工は特に行わなくてもよい。この壁加工も、工具12を軸方向を主として進行させているため工具に大きな加工反力が作用せず、X方向へ移動させるピック量D3を大きく設定でき、加工能率を高めることができる。また、工具12に振動が発生しにくく、加工精度が向上する。   After the third processing step, a fourth processing step is performed as shown in FIG. 8e, and the remaining processing portion of the third processing step is cut off. The ball end mill 12 is used as the fourth tool, and the cusp portion or the like that is the remaining processing portion of the third processing step is cut. The ball end mill 12 is moved along the inclined surface 3c mainly in the axial direction to cut and remove the cusp portion to finish the wall surface smoothly. Since the stepped surface 3b is flattened by the flat end mill 11 in the previous step, the processing by the ball end mill is not particularly required. Also in this wall machining, since the tool 12 is mainly advanced in the axial direction, a large machining reaction force does not act on the tool, the pick amount D3 to be moved in the X direction can be set large, and the machining efficiency can be increased. Further, the tool 12 is less likely to vibrate and the machining accuracy is improved.

なお、この実施形態では、図8b、cに示すように第2の加工工程を2段階で行い、溝部36と溝部37とを形成する例を示したが、第1の加工工程で形成した円弧部が図8fに示す円弧部35Aのように曲率半径が小さく、第2の加工工程でフラットエンドミル11で切削形成した溝部36Aの加工残部の高さH2が許容範囲H内に入っている場合には、1回の溝部形成のみで第2の加工工程を終えることができる。すなわち、高さH2が小さいため、つぎの第3の加工工程で十分切削加工できる範囲である場合には、第2の加工工程を1段階で終了できる。   In this embodiment, as shown in FIGS. 8B and 8C, the second machining process is performed in two stages to form the groove 36 and the groove 37. However, the arc formed in the first machining process is shown. When the radius of curvature is small, such as the arc portion 35A shown in FIG. 8f, and the height H2 of the remaining machining portion 36A of the groove portion 36A cut and formed by the flat end mill 11 in the second machining step is within the allowable range H. Can finish the second processing step with only one groove formation. That is, since the height H2 is small, the second machining process can be completed in one stage when it is in a range that can be sufficiently cut by the next third machining process.

さらに、本発明の切削加工方法で、図1cに示される両端の閉じた凹部4の切削加工を行う場合について図9を参照して説明する。金属素材1Bに凹部4を形成するときは、図9a、b、cに示す第1の加工工程で凹部の概略形状41をX方向に沿って切削加工したあと、第2の加工工程を行う。第2の加工工程では、フラットエンドミル等の第2の工具を使用し、前記の実施形態と同様に工具を軸方向(Z方向)に進行させて切削加工を行う。この場合、凹部4の端部から離した状態で突き加工による第1穴42aの切削を行う。次いで、第1穴に隣接(図では左側)して凹部の端部側に第2穴42bの切削を行う。そして、第1穴の反対側に隣接(図では右側)して第3穴42c、第4穴42d…以降の切削を行い、凹部4の他側の端部までの切削を行う。   Furthermore, the case where the cutting process of the closed recessed part 4 shown in FIG. 1c is performed with the cutting method of the present invention will be described with reference to FIG. When the concave portion 4 is formed in the metal material 1B, the second processing step is performed after the rough shape 41 of the concave portion is cut along the X direction in the first processing step shown in FIGS. 9a, 9b, and 9c. In the second machining step, a second tool such as a flat end mill is used, and cutting is performed by advancing the tool in the axial direction (Z direction) as in the above embodiment. In this case, the first hole 42a is cut by thrusting while being separated from the end of the recess 4. Next, the second hole 42b is cut on the end side of the recess adjacent to the first hole (left side in the figure). Then, the third hole 42c, the fourth hole 42d, etc. are cut adjacent to the opposite side of the first hole (right side in the figure), and the other end of the recess 4 is cut.

このようにして、凹部4の中心部に凹部に沿って形成した穴部が連続する溝部42が一側から他側まで形成される。このように穴部を連続させて溝部42を形成しているため、溝部の側面には隣接する円弧が接合するカスプ部43が形成され、連続する穴部のピッチ(ピック量)が大きいほどカスプ高さが大きくなる。第2の加工工程で、溝部をさらに深く形成するときには、図9dに示すように、溝部42の下方に、溝部44をさらに形成する。この溝部44も、工具を軸方向に進行させて溝部4の底面45まで、あるいは底面の近くまで切削し、第1の加工工程の加工残部の除去を行う。溝部4の底部の曲率半径が小さいときには、下方の溝部44を形成する工具の直径は小さい径のものを使用することが好ましい。第2の加工工程での溝部42,44の切削形成も、工具を軸方向に進行させて行うため、工具に径方向の加工反力が作用せず、X方向に移動するピック量を大きく取れるため加工能率を高めることができる。また、工具に振動が発生しにくいため、工具の刃部欠損を防止でき、加工精度を向上できる。   In this way, a groove portion 42 is formed from one side to the other side in which a hole formed along the recess is continuous at the center of the recess 4. Thus, since the groove part 42 is formed by connecting the hole parts, the cusp part 43 where the adjacent arcs are joined is formed on the side surface of the groove part, and the cusp part increases as the pitch (pick amount) of the continuous hole parts increases. Height increases. When the groove is formed deeper in the second processing step, a groove 44 is further formed below the groove 42 as shown in FIG. 9d. The groove portion 44 is also cut to the bottom surface 45 of the groove portion 4 or near the bottom surface by advancing the tool in the axial direction, and the remaining machining portion in the first machining step is removed. When the radius of curvature of the bottom of the groove 4 is small, it is preferable to use a tool having a small diameter for forming the lower groove 44. Since the cutting of the grooves 42 and 44 in the second machining step is also performed by advancing the tool in the axial direction, the machining reaction force in the radial direction does not act on the tool, and a large amount of pick can be taken to move in the X direction. Therefore, the processing efficiency can be increased. In addition, since the tool is unlikely to vibrate, it is possible to prevent the cutting edge of the tool from being lost and improve the processing accuracy.

このあと、前記の実施形態と同様に、ステップS4で第3の加工工程S5の必要性を判断し、必要性有りの場合には第3の加工工程を行う。この第3の加工工程S5では、前記の実施形態と同様に、フラットエンドミルやボールエンドミル等の第3の工具を使用し、第2の加工工程S3の溝加工で形成した溝部の側面の壁部分の加工を行う。すなわち、図9eに示すように、溝部42の壁面に形成された加工残部やカスプ部43の除去を、工具を軸方向を主として進行させ、第3の工具で切削部46aを形成する。そして、工具を後退させ、工具をX方向に移動した位置で、工具を壁面に沿ってZ方向を主として進行させ、切削部46bを形成する。ついで、同様にして切削部46c、46d…を形成し、この動作を繰返すことで加工残部を切削除去する。この例でも、第3の加工の切削部は、X方向に沿って交互に切削除去されることが好ましい。   Thereafter, as in the above-described embodiment, the necessity of the third machining step S5 is determined in step S4, and if necessary, the third machining step is performed. In the third machining step S5, a wall portion on the side surface of the groove formed by grooving in the second machining step S3 using a third tool such as a flat end mill or a ball end mill, as in the above embodiment. Processing is performed. That is, as shown in FIG. 9e, the removal of the machining remaining portion and the cusp portion 43 formed on the wall surface of the groove portion 42 is performed mainly in the axial direction of the tool, and the cutting portion 46a is formed with the third tool. Then, the tool is retracted, and the tool is mainly advanced in the Z direction along the wall surface at the position where the tool is moved in the X direction to form the cutting portion 46b. Next, the cutting portions 46c, 46d,... Are formed in the same manner, and this operation is repeated to cut and remove the remaining processing. Also in this example, it is preferable that the cutting parts of the third processing are alternately cut and removed along the X direction.

さらに、第3の加工工程S5のあと、図示していないが、必要に応じて前記の実施形態と同様に、第4の加工工程S5で残隅部分の切削除去加工を行う。この第4の加工工程で、ボールエンドミル等の工具を使用し、第3の加工残部であるカスプ部分等を除去して円滑な状態とし凹部4の形状を完成させる。なお、図9aで示す第2の加工工程で、図9fに示すように第1穴47aを、図9aの第1穴42aより右寄りに形成し、ついで左側に第2穴47b、第3穴47cを形成したあと、右側に第3穴47d以降を形成するように順序を変更してもよい。   Further, although not shown after the third machining step S5, the remaining corner portion is cut and removed in the fourth machining step S5 as necessary, as in the above embodiment. In this fourth machining step, a tool such as a ball end mill is used to remove the cusp portion or the like that is the third machining remaining portion to make it smooth and complete the shape of the recess 4. In the second processing step shown in FIG. 9a, the first hole 47a is formed on the right side of the first hole 42a in FIG. 9a as shown in FIG. 9f, and then the second hole 47b and the third hole 47c are formed on the left side. , The order may be changed so that the third hole 47d and subsequent holes are formed on the right side.

以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、形成される凹部、凹溝部、段差部等は、傾斜面により形成されている例を示したが、垂直面により凹部等を形成した形状でもよい。また、各工程で使用される工具は、フライスや各種のエンドミル等、適宜の工具を使用することができる。   Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention described in the claims. Design changes can be made. For example, although the example in which the recessed part, the recessed groove part, the step part, and the like are formed by an inclined surface is shown, a shape in which the recessed part or the like is formed by a vertical surface may be used. Moreover, the tool used at each process can use appropriate tools, such as a milling machine and various end mills.

本発明の活用例として、この切削加工方法を用いて金型以外の例えばブロック状の金属塊の切削加工を行うことができる。また、切削加工の対象物としては金属に限られるものでなく、如何なる材質の切削加工の用途にも適用できる。   As an application example of the present invention, for example, a block-shaped metal lump other than the mold can be cut using this cutting method. In addition, the object to be cut is not limited to metal, and can be applied to cutting use of any material.

本発明に係る切削加工方法の一実施形態で使用する金属素材を示し、(a)は凹溝部を形成した状態の斜視図、(b)は段差部を形成した状態の斜視図、(c)は凹部を形成した状態の斜視図、(d)は(c)の長手方向に沿う断面図。The metal raw material used by one Embodiment of the cutting method which concerns on this invention is shown, (a) is a perspective view of the state which formed the ditch | groove part, (b) is a perspective view of the state which formed the level | step difference part, (c) Is a perspective view of a state in which a recess is formed, (d) is a cross-sectional view along the longitudinal direction of (c). 図1(a)で示す凹溝部の切削加工方法の動作説明を示し、(a)、(b)は第1の加工工程を示す平面図と断面図、(c)、(d)は第2の加工工程を示す平面図と断面図、(e)、(f)は第3の加工工程を示す平面図と断面図。Operation | movement description of the cutting method of the ditch | groove part shown to Fig.1 (a) is shown, (a), (b) is the top view and sectional drawing which show a 1st process process, (c), (d) is 2nd. The top view and sectional drawing which show these processing processes, (e), (f) is the top view and sectional drawing which show a 3rd processing process. 本発明に係る切削加工方法の動作説明を示し、(a)は第1の加工工程を示す斜視図、(b)は第2の加工工程を示す斜視図、(c)は第3の加工工程を示す斜視図(d)は第4の加工工程を示す斜視図。The operation | movement description of the cutting method which concerns on this invention is shown, (a) is a perspective view which shows a 1st process process, (b) is a perspective view which shows a 2nd process process, (c) is a 3rd process process. FIG. 8D is a perspective view showing a fourth processing step. 図3(c)の第3の加工工程の動作説明を詳細に示し、(a)、(b)は切削順序を示す平面図、(c)、(d)は(a)のA−A線断面図とB−B線断面図。3 (c) shows in detail the operation of the third machining step, (a) and (b) are plan views showing the cutting sequence, and (c) and (d) are AA lines in (a). Sectional drawing and BB sectional drawing. 図3(d)の第4の加工工程の動作説明を詳細に示し、(a)は斜視図、(b)〜(d)は切削段階を示す断面図。The operation | movement description of the 4th manufacturing process of FIG.3 (d) is shown in detail, (a) is a perspective view, (b)-(d) is sectional drawing which shows a cutting step. 図3(d)の第4の加工工程の動作説明の他の例を詳細に示す断面図。Sectional drawing which shows the other example of operation | movement description of the 4th manufacturing process of FIG.3 (d) in detail. 本発明に係る切削加工方法の動作説明を示すフローチャート。The flowchart which shows operation | movement description of the cutting method which concerns on this invention. 図1bに示す段差部を切削加工する動作説明をする斜視図。The perspective view explaining operation | movement which cuts the level | step-difference part shown to FIG. 1b. 図1cに示す凹部を切削加工する動作説明を示し、(a)は第2の加工工程を示す平面図、(b)はそのC−C線断面図、(c)はD−D線断面図、(d)は他の動作説明の要部断面図、(e)は第3の加工工程を示す平面図、(f)は第2の加工工程の他の動作説明を示す平面図。The operation | movement description which cuts the recessed part shown to FIG. 1c is shown, (a) is a top view which shows a 2nd manufacturing process, (b) is the CC sectional view taken on the line, (c) is DD sectional view. (D) is principal part sectional drawing of other operation | movement description, (e) is a top view which shows a 3rd process process, (f) is a top view which shows the other operation | movement description of a 2nd process process. 従来の切削加工方法を示し、(a)は凹部の前加工の断面図、(b)はその後加工の断面図、(c)は段差部の前加工の断面図、(d)はその後加工の断面図。The conventional cutting method is shown, (a) is a cross-sectional view of the pre-processing of the recess, (b) is a cross-sectional view of the post-processing, (c) is a cross-sectional view of the pre-processing of the step portion, (d) is the post-processing Sectional drawing.

符号の説明Explanation of symbols

1:金属素材、2:凹溝部(凹部)、2a,2b:傾斜曲面、2c:アール部、3:段差部、3a:上面、3b:段差面、3c:傾斜面、3d:アール部、4:凹部、10:ボールエンドミル(第1の工具)、11:フラットエンドミル(第2、第3の工具)、12:ボールエンドミル(第4の工具)、20,41:第1の加工工程の概略形状、21,23,24:加工残部、22,36,36A,37,42:溝部、22a,22b…、42a,42b…:穴部、25:カスプ部(加工残部)、35,35A:円弧部(第1の加工工程の概略形状)、S1:第1の加工工程、S3:第2の加工工程、S5:第3の加工工程、S6:第4の加工工程、D1:第2の工具の移動量(ピック量)、D2:第3の工具の移動量(ピック量)、D3:第4の工具の移動量(ピック量)   1: metal material, 2: concave groove (recess), 2a, 2b: inclined curved surface, 2c: rounded portion, 3: stepped portion, 3a: upper surface, 3b: stepped surface, 3c: inclined surface, 3d: rounded portion, 4 : Concave part, 10: Ball end mill (first tool), 11: Flat end mill (second and third tools), 12: Ball end mill (fourth tool), 20, 41: Outline of first processing step Shape, 21, 23, 24: processing remainder, 22, 36, 36A, 37, 42: groove, 22a, 22b ..., 42a, 42b ...: hole, 25: cusp part (processing rest), 35, 35A: arc Part (schematic shape of the first machining process), S1: first machining process, S3: second machining process, S5: third machining process, S6: fourth machining process, D1: second tool Movement amount (pick amount), D2: third tool movement amount (pick amount), D3: The amount of movement of the 4 of the tool (the amount of pick)

Claims (6)

凹部または段差部の概略形状を切削加工する第1の加工工程と、第1の加工工程の加工残部を切削除去する第2の加工工程とを備える切削加工方法であって、
前記第2の加工工程は、第1の加工工程の加工残部に対して工具を軸方向に進行させて切削したあと後退させ、該工具を径方向に所定量だけ移動させ、前記工具を再度軸方向に進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去することを特徴とする切削加工方法。
A cutting method comprising: a first processing step of cutting a rough shape of a recess or a step portion; and a second processing step of cutting and removing a processing remaining portion of the first processing step,
In the second machining step, the tool is advanced in the axial direction with respect to the machining remainder of the first machining step, cut and then retracted, the tool is moved by a predetermined amount in the radial direction, and the tool is re-axially moved. A cutting method characterized by cutting and removing the remaining machining portion by repeatedly moving in a direction and cutting and then moving backward.
凹部または段差部の概略形状を切削加工する第1の加工工程と、第1の加工工程の加工残部を切削除去する第3の加工工程とを備える切削加工方法であって、
前記第3の加工工程は、第1の加工工程の加工残部に対して工具を、軸方向を主として進行させて切削したあと後退移動させ、該工具を径方向に所定量だけ移動させ、前記工具を再度、軸方向を主として進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去することを特徴とする切削加工方法。
A cutting method comprising: a first processing step of cutting a rough shape of a recess or a step portion; and a third processing step of cutting and removing a processing remaining portion of the first processing step,
In the third machining step, the tool is moved backward with respect to the remaining machining portion of the first machining step after being cut mainly in the axial direction, and the tool is moved by a predetermined amount in the radial direction. The cutting process is characterized in that the remaining part of the process is cut and removed by repeating the operation of retreating after cutting with the axial direction mainly advanced again.
凹部または段差部の概略形状を切削加工する第1の加工工程と、第1の加工工程の加工残部を切削除去する第2、第3の加工工程とを備える切削加工方法であって、
前記第2の加工工程は、第1の加工工程の加工残部に対して工具を軸方向に進行させて切削したあと後退させ、該工具を凹部または段差部の延出方向に沿って径方向に所定量だけ移動させ、前記工具を再度軸方向に進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去し、
前記第3の加工工程は、第2の加工工程の加工残部に対して工具を、軸方向を主として進行させて切削したあと後退移動させ、該工具を凹部または段差部の延出方向に沿って径方向に所定量だけ移動させ、前記工具を再度、軸方向を主として進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去することを特徴とする切削加工方法。
A cutting method comprising: a first processing step of cutting a rough shape of a recess or a step portion; and a second and third processing step of cutting and removing a processing remaining portion of the first processing step,
In the second machining step, the tool is moved in the axial direction with respect to the machining remaining portion of the first machining step, cut and then retracted, and the tool is moved in the radial direction along the extending direction of the recessed portion or the stepped portion. Move by a predetermined amount, and repeat the operation of moving the tool in the axial direction again and cutting it back and then removing the remaining machining by cutting,
In the third machining step, the tool is moved backward with respect to the remaining machining portion of the second machining step after being cut mainly in the axial direction, and the tool is moved along the extending direction of the recessed portion or the stepped portion. A cutting method characterized by moving the tool by a predetermined amount in the radial direction and cutting and removing the remaining machining portion by repeatedly moving the tool again in the axial direction and then cutting back.
前記第2の加工工程は、工具を短い軸方向ストロークで移動させて浅い突き切削加工を行ったあと、長い軸方向ストロークで移動させて深い突き切削加工を行うことを特徴とする請求項1または3に記載の切削加工方法。   2. The second machining step according to claim 1, wherein after the tool is moved with a short axial stroke to perform shallow piercing, the tool is moved with a long axial stroke to perform deep piercing. 3. The cutting method according to 3. 前記第2の加工工程のあと、第2の加工工程の加工残部に対して工具を軸方向を主として進行させて切削したあと後退移動させ、該工具を径方向に前記第2の加工工程の移動の所定量より小さい移動量で移動させ、前記工具を再度軸方向を主として進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去し、所定の表面に仕上るべく残隅加工を行う第4の加工工程を備えることを特徴とする請求項1または4に記載の切削加工方法。   After the second machining step, the tool is moved backward in the axial direction with respect to the machining remaining portion of the second machining step and then moved backward, and the tool is moved in the radial direction in the second machining step. The tool is moved by a movement amount smaller than a predetermined amount, the operation of the tool is again advanced mainly in the axial direction, and then the operation of retreating is repeated to cut and remove the remaining machining portion, and the remaining corner machining is performed to finish the predetermined surface. The cutting method according to claim 1, further comprising a fourth machining step. 前記第3の加工工程のあと、第3の加工工程の加工残部に対して工具を軸方向を主として進行させて切削したあと後退移動させ、該工具を径方向に前記第3の加工工程の移動の所定量より小さい移動量で移動させ、前記工具を再度軸方向を主として進行させて切削したあと後退させる動作を繰返して前記加工残部を切削除去し、所定の表面に仕上るべく残隅加工を行う第4の加工工程を備えることを特徴とする請求項2,3,4のいずれかに記載の切削加工方法。   After the third machining step, the tool is moved in the axial direction with respect to the remaining machining portion of the third machining step and then moved backward, and the tool is moved in the radial direction in the third machining step. The tool is moved by a movement amount smaller than a predetermined amount, the operation of the tool is again advanced mainly in the axial direction, and then the operation of retreating is repeated to cut and remove the remaining machining portion, and the remaining corner machining is performed to finish the predetermined surface. The cutting method according to claim 2, further comprising a fourth machining step.
JP2004232077A 2004-08-09 2004-08-09 Cutting method Pending JP2006043858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232077A JP2006043858A (en) 2004-08-09 2004-08-09 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232077A JP2006043858A (en) 2004-08-09 2004-08-09 Cutting method

Publications (1)

Publication Number Publication Date
JP2006043858A true JP2006043858A (en) 2006-02-16

Family

ID=36022999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232077A Pending JP2006043858A (en) 2004-08-09 2004-08-09 Cutting method

Country Status (1)

Country Link
JP (1) JP2006043858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055744A (en) * 2022-06-29 2022-09-16 中国航发动力股份有限公司 Arc groove milling method based on numerical control machine tool and application
JP7481617B2 (en) 2020-03-23 2024-05-13 株式会社Moldino Processing method and mold manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481617B2 (en) 2020-03-23 2024-05-13 株式会社Moldino Processing method and mold manufacturing method
CN115055744A (en) * 2022-06-29 2022-09-16 中国航发动力股份有限公司 Arc groove milling method based on numerical control machine tool and application

Similar Documents

Publication Publication Date Title
EP2140959B1 (en) Cutting insert, and cutting method
KR100771032B1 (en) Cutting insert for grooving and profiling
CN102137729B (en) Method for producing a prefabricated part from an unmachined part by means of a milling tool
US20200222992A1 (en) Deep hole machining method
JPWO2011052667A1 (en) Cutting insert, cutting tool, and method of manufacturing a cut product using the same
KR20090078791A (en) Modular drilling tool and method for the production thereof
JP5549527B2 (en) Grooving method
KR102113349B1 (en) Support pad for a drill head and method for designing and manufacturing a support pad
JP2004074394A5 (en) Radius end mill and manufacturing method of forging die
JP2014226737A (en) Cutting-processing method
CN1756611B (en) Deep hole boring drill
JP3474549B2 (en) Groove machining method by end mill
JP2006043858A (en) Cutting method
JP4556676B2 (en) The second relief part processing method of the punching die of the press die
JP6751571B2 (en) Hole drilling method using an end mill
JP4614935B2 (en) Cutting method and tool path generation device
JP2007245278A (en) End mill
JP2011098427A (en) Cutting insert
JP4702288B2 (en) Method for forming hole shape of mold by CAM
JP6069566B1 (en) Screw machining tool and screw machining method
JP3967213B2 (en) Drill
JP5802008B2 (en) Workpiece cut by laser cutting device and method for chamfering product member cut from the workpiece
JP4099835B2 (en) Method for forming hole shape of mold by CAM
JP2013020436A (en) Machining device and machining method
KR101910329B1 (en) Bite for manufacturing stick type pin