JP2006043741A - Method and device for evaluating laser welding quality - Google Patents

Method and device for evaluating laser welding quality Download PDF

Info

Publication number
JP2006043741A
JP2006043741A JP2004229192A JP2004229192A JP2006043741A JP 2006043741 A JP2006043741 A JP 2006043741A JP 2004229192 A JP2004229192 A JP 2004229192A JP 2004229192 A JP2004229192 A JP 2004229192A JP 2006043741 A JP2006043741 A JP 2006043741A
Authority
JP
Japan
Prior art keywords
welding
laser
image
welding quality
quality evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004229192A
Other languages
Japanese (ja)
Other versions
JP4324052B2 (en
Inventor
Seiichi Matsumoto
清市 松本
Kazuhisa Sanpei
和久 三瓶
Yoshiro Awano
芳朗 粟野
Hiroyuki Kawaki
博行 河木
Koji Kitayama
綱次 北山
Yasuhiro Ishii
靖弘 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2004229192A priority Critical patent/JP4324052B2/en
Publication of JP2006043741A publication Critical patent/JP2006043741A/en
Application granted granted Critical
Publication of JP4324052B2 publication Critical patent/JP4324052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for evaluating the laser welding quality capable of correctly grasping the welding situation related to various welding defects. <P>SOLUTION: A CCD camera 8 to receive the reflected laser beams B to be reflected by a laser beam irradiation area via an optical filter 7 is mounted on a laser torch 1 to irradiate laser beams A on a work W to be welded, and the CCD camera 8 picks up images of a molten part 5 including a key hole 4 and its periphery. The obtained images are transmitted to an image analysis means 11 in a signal processing device 9 to allow the image analysis means 11 to operate the length/width ratio of the molten part 5 to be grasped from the images, and the result of operation is transmitted to a quality determination means 12, and defective shrinkage is determined if the length/width ratio is larger than the threshold stored in advance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザ溶接状況をリアルタイムに把握し、評価する技術に係り、特にレーザ照射域から反射されるレーザ光の反射光を用いてレーザ溶接状況を把握し、評価するレーザ溶接品質評価方法および装置に関する。   The present invention relates to a technique for grasping and evaluating a laser welding situation in real time, and in particular, a laser welding quality evaluation method for grasping and evaluating a laser welding situation using reflected light of a laser beam reflected from a laser irradiation region, and Relates to the device.

従来、レーザ光の反射光を用いてレーザ溶接状況を把握し、評価するレーザ溶接品質評価方法、装置としては、特許文献1に記載されたものがある。このものは、レーザ照射域から反射されるレーザ光の反射光を集光レンズで集光してCCDカメラ(撮像装置)へ送り、CCDカメラからの各画素の輝度レベルに基いて溶接欠陥の有無を判定するようにしている。
特開2000−42769号公報
Conventionally, as a laser welding quality evaluation method and apparatus for grasping and evaluating a laser welding situation using reflected light of a laser beam, there is one described in Patent Document 1. With this, the reflected light of the laser beam reflected from the laser irradiation area is collected by a condensing lens and sent to a CCD camera (imaging device). Based on the luminance level of each pixel from the CCD camera, there is a weld defect Is determined.
JP 2000-42769 A

ところで、たとえば、二枚の板材(鋼板等)を重ね合せてレーザ溶接する、いわゆるレーザ重ね溶接においては、板材間に存在する隙間の大きさによって溶接状況が大きく変化し、該隙間が大きくなると引け、溶け落ち等の溶接欠陥が発生する。しかしながら、上記特許文献1に記載されるようにレーザの反射光の輝度レベルから溶接欠陥の有無を判断する方式では、これら引け、溶け落ち等が発生している溶接状況を正確に把握することが困難である、という問題があった。   By the way, for example, in so-called laser lap welding, in which two plate materials (steel plates, etc.) are overlapped and laser-welded, the welding situation varies greatly depending on the size of the gaps existing between the plate materials, and if the gap becomes larger, it is closed. , Welding defects such as burn-off occur. However, as described in Patent Document 1, in the method of determining the presence or absence of welding defects from the brightness level of the reflected light of the laser, it is possible to accurately grasp the welding situation in which these shrinkage, burnout, etc. occur. There was a problem that it was difficult.

本発明は、上記した問題点に鑑みてなされたもので、その課題とするところは、種々の溶接欠陥につながる溶接状況を的確に把握できるようにし、もって信頼性の向上に大きく寄与するレーザ溶接品質評価方法および装置を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to make it possible to accurately grasp the welding situation that leads to various welding defects, and thereby greatly contribute to the improvement of reliability. The object is to provide a quality evaluation method and apparatus.

本発明は、上記した課題を解決するためになされたもので、本発明に係るレーザ溶接品質評価方法は、レーザ照射域から反射されるレーザ光の反射光により溶融部およびその周辺を撮像し、この撮像した画像から把握される溶融部の形状的な特徴に基いて溶接品質を評価することを特徴とする。この場合、前記溶融部の形状的な特徴は、画像についての輝度積算プロファイルから把握するようにしてもよい。   The present invention has been made in order to solve the above-described problem, and the laser welding quality evaluation method according to the present invention images the melted part and its periphery by the reflected light of the laser light reflected from the laser irradiation area, It is characterized in that the welding quality is evaluated based on the shape characteristic of the melted portion grasped from the captured image. In this case, the shape characteristic of the fusion part may be grasped from the luminance integration profile for the image.

また、本発明に係るレーザ溶接品質評価装置は、レーザ照射域から反射されるレーザ光の反射光により溶融部およびその周辺を撮像する撮像手段と、該撮像手段により撮像した画像から溶融部の形状的な特徴を求めると共に、該形状的な特徴に基いて溶接品質を判定する信号処理手段とを備えていることを特徴とする。この場合、前記撮像手段としては、CCDカメラを用いることができる。   Further, the laser welding quality evaluation apparatus according to the present invention includes an imaging unit that captures an image of the melted part and its periphery by reflected light of laser light reflected from the laser irradiation area, and a shape of the melted part from the image captured by the imaging unit. And a signal processing means for determining a welding quality based on the shape characteristic. In this case, a CCD camera can be used as the imaging means.

本発明に係るレーザ溶接品質評価方法および装置によれば、撮像した画像から把握される溶融部の形状的な特徴に基いて溶接品質を評価するので、引け、溶け落ち、非貫通溶接等を含めた種々の溶接欠陥を正確に把握することができ、溶接品質の評価に対する信頼性が著しく向上する。   According to the laser welding quality evaluation method and apparatus according to the present invention, since the welding quality is evaluated based on the shape characteristics of the melted part grasped from the captured image, it includes shrinkage, burnout, non-penetrating welding, and the like. Therefore, it is possible to accurately grasp various welding defects, and the reliability of the evaluation of the welding quality is remarkably improved.

以下、本発明を実施するための最良の形態を添付図面に基いて説明する。
図1は、本発明に係るレーザ溶接品質評価装置の一つの実施形態を示したものである。同図において、1はレーザトーチであり、レーザトーチ1内には、レーザ発振器2から光ファイバ3を通して送られたレーザ光Aを被溶接物Wへ向けて照射する光学系が内蔵されている。被溶接物Wは、ここでは相互に重ね合された2枚の鋼板W1、W2からなっており、レーザ溶接に際しては、レーザトーチ1から出射されるレーザ光Aが上側の鋼板W1上に所定の大きさのパターンとなるように照射され、この状態で、レーザトーチ1が被溶接物Wに対して溶接方向Fへ移動される。なお、レーザトーチ1の位置を固定して被溶接物Wを溶接方向Fへ移動させてもよいことはもちろんである。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows one embodiment of a laser welding quality evaluation apparatus according to the present invention. In the figure, reference numeral 1 denotes a laser torch. In the laser torch 1, an optical system for irradiating a workpiece W with a laser beam A sent from a laser oscillator 2 through an optical fiber 3 is incorporated. The workpiece W is composed of two steel plates W1 and W2 that are superposed on each other. During laser welding, the laser beam A emitted from the laser torch 1 has a predetermined size on the upper steel plate W1. In this state, the laser torch 1 is moved in the welding direction F with respect to the workpiece W. Of course, the position of the laser torch 1 may be fixed and the workpiece W may be moved in the welding direction F.

レーザ溶接においては、同じく図1に示されるように、被溶接物Wに対するレーザ光Aの照射域にキーホール4が形成されると共に、このキーホール4の周りに金属の溶融部(溶融池)5が形成される。溶融部5は溶接方向Fの後側へ延びるように形成され、溶融金属は、レーザトーチ1の移動(被溶接物Wとの相対移動)に応じて溶融部5の後端側から順次凝固する。図1中、6は、前記溶融金属の凝固跡である溶接ビードを示しており、被溶接物Wとしての2枚の鋼板W1、W2は、この溶接ビード6を介して相互に重ね溶接される。なお、溶接用レーザ光Aとしては、YAGレーザ光、炭酸ガスレーザ光等の高出力レーザ光が用いられる。   In laser welding, as shown in FIG. 1, a keyhole 4 is formed in the irradiation region of the laser beam A on the workpiece W, and a molten portion (melt pool) of metal around the keyhole 4. 5 is formed. The molten part 5 is formed so as to extend to the rear side of the welding direction F, and the molten metal is sequentially solidified from the rear end side of the molten part 5 in accordance with the movement of the laser torch 1 (relative movement with the workpiece W). In FIG. 1, reference numeral 6 denotes a weld bead that is a solidification mark of the molten metal, and two steel plates W <b> 1 and W <b> 2 as the workpieces W are lap welded to each other via the weld bead 6. . As the welding laser beam A, a high output laser beam such as a YAG laser beam or a carbon dioxide laser beam is used.

本実施形態において、上記レーザトーチ1の後端部には、溶融部5およびその周辺から反射されるレーザ光の反射光Bを光学フィルタ7を通して、溶接用レーザ光Aと同軸で受光するCCDカメラ(撮像手段)8が取付けられている。光学フィルタ7は、レーザ光の波長成分を透過帯域とする干渉フィルタであり、CCDカメラ8は、この光学フィルタ7を透過したレーザ光の反射光Bにより溶融部5およびその周辺を撮像し、該溶融部5およびその周辺の画像(可視化画像)を得る。また、別途、信号処理装置(信号処理手段)9が設けられており、この信号処理装置9には、前記CCDカメラ8によって撮像した画像が信号線10を介して送出されるようになっている。信号処理装置9は、CCDカメラ8で撮像された画像を後述の手法で解析し、溶融部の形状的な特徴を特定する画像解析手段11とこの画像解析手段11での解析結果に基いて溶接品質の良否を判定する良否判定手段12とを備えている。   In the present embodiment, at the rear end portion of the laser torch 1, a CCD camera that receives the reflected light B of the laser light reflected from the melting portion 5 and its periphery through the optical filter 7 coaxially with the welding laser light A ( An imaging means) 8 is attached. The optical filter 7 is an interference filter whose transmission band is the wavelength component of the laser light. The CCD camera 8 images the melted part 5 and its surroundings with the reflected light B of the laser light that has passed through the optical filter 7, An image (visualized image) of the fusion part 5 and its periphery is obtained. In addition, a signal processing device (signal processing means) 9 is separately provided, and an image captured by the CCD camera 8 is sent to the signal processing device 9 through a signal line 10. . The signal processing device 9 analyzes an image picked up by the CCD camera 8 by a method described later, and determines the shape characteristic of the melted part and welding based on the analysis result of the image analyzing means 11. And a quality judgment means 12 for judging quality quality.

ここで、レーザ光の反射光Bから得られる溶融部5の画像は、正常な溶接時には、図2(a)に示されるように、上記したキーホール4を暗視野20として高輝度領域21がドーナツ状に現われる。そして、この高輝度領域21の形状は、溶接状況に応じて変化し、たとえば、同図(b)、(c)に示されるように溶接方向Fの前・後に分裂する。この場合、溶接方向の前側に位置する弓形の前側高輝度部21aは前記キーホール4の前壁部分に、溶接方向の後側に位置する後側高輝度部21bは前記キーホール4の後壁部分(通常、ここを溶融池先端部と呼んでいる)にそれぞれ相当しており、その分裂は、前側高輝度部21aに対して後側高輝度部21bが溶接方向Fの後側へ後退する現象として、すなわち溶融池先端部が後退する現象として現われる。なお、図2には、明瞭化を図るため、画像を模式図として表わしている。以下、画像については全て模式図として表わすこととする。   Here, the image of the melted portion 5 obtained from the reflected light B of the laser beam has a high-luminance region 21 with the above-described keyhole 4 as a dark field 20 as shown in FIG. Appears in a donut shape. And the shape of this high-intensity area | region 21 changes according to a welding condition, for example, is divided | segmented before and after the welding direction F, as shown to the same figure (b) and (c). In this case, the arcuate front high brightness portion 21a located on the front side in the welding direction is on the front wall portion of the keyhole 4, and the rear high brightness portion 21b located on the rear side in the welding direction is the rear wall of the keyhole 4. Each of which corresponds to a portion (usually called a weld pool tip), and the splitting of the rear high-luminance portion 21b moves backward in the welding direction F with respect to the front high-luminance portion 21a. It appears as a phenomenon, that is, as a phenomenon that the tip of the molten pool recedes. In FIG. 2, the image is represented as a schematic diagram for the sake of clarity. Hereinafter, all the images are represented as schematic diagrams.

本発明者等は、上記した高輝度領域21の分裂状況と実際の溶接品質との関係について種々調査した結果、引け量が大きくなる程、図2(b)に示されるように前側高輝度部21aに対して後側高輝度部21bが溶接方向Fの後ろ側へ後退し、溶け落ちに近い状況では、図2(c)に示されるように前側高輝度部21aに対して後側高輝度部21bが溶接方向Fの後側へ大きく後退することを見出した。   As a result of various investigations on the relationship between the split state of the high-luminance region 21 and the actual welding quality, the present inventors have found that as the amount of shrinkage increases, the front high-luminance portion as shown in FIG. In a situation in which the rear high-luminance part 21b recedes to the rear side in the welding direction F with respect to 21a and is nearly burned out, as shown in FIG. It has been found that the part 21b is largely retracted to the rear side in the welding direction F.

そこで、本発明者等は、図3に示すように高輝度領域(画像)21から把握される溶融部の全長Lを該溶融部の幅(ビード幅)Wで正規化し、この正規化した数値(L/W)と溶接品質との関係について種々調査した。図4は、板厚0.7mmの2枚の鋼板W1、W2をレーザ重ね溶接した際の結果を示したもので、これより前記L/W比が大きくなる程、実際の引け量(実測引け量)が直線的に増大することが分かった。   Therefore, the inventors normalize the total length L of the melted portion grasped from the high luminance region (image) 21 with the width (bead width) W of the melted portion as shown in FIG. Various investigations were made on the relationship between (L / W) and welding quality. FIG. 4 shows the result of laser lap welding of two steel plates W1 and W2 having a thickness of 0.7 mm. As the L / W ratio increases, the actual shrinkage (actual shrinkage) is shown. Amount) was found to increase linearly.

ところで、上記図2(a)〜(c)に示される溶融部の画像について、垂直軸方向に輝度値を積算して、この輝度積算値の水平軸方向(溶接方向)の分布をみると、図5(a)〜(c)に示すようになる。この図5(a),(b),(c)は前記図2の(a),(b),(c)にそれぞれ対応しており、各輝度積算値の分布(以下、これを輝度積算プロファイルという)には、上記前側高輝度部21a、後側高輝度部21bに対応したピークP1、P2が現われる。本実施形態においては、前側高輝度部21aに対応したピークP1の立上り点と後側高輝度部21bに対応したピークP2の位置との距離lを上記溶融部5の全長L(図3)とし、この長さLを上記信号処理装置9内の画像解析手段11に演算させるようにしている。また、図2(a)〜(c)に示される溶融部の画像について、水平軸方向に輝度値を積算して、この輝度積算値の垂直軸方向(溶接方向と直交する方向)の分布をみると、台形状の輝度積算プロファイル(図示略)となる。本実施形態においては、前記台形状の輝度積算プロファイルの上下に生じる立上り点を結ぶ距離を上記溶融部5の全幅W(図3)として、この幅Wを同じく画像解析手段11に演算させるようにしている。   By the way, about the image of the fusion part shown in the above-mentioned FIG. As shown in FIGS. 5 (a), (b), and (c) correspond to (a), (b), and (c) in FIG. 2, respectively, and the distribution of each luminance integrated value (hereinafter referred to as luminance integration). In the profile, peaks P1 and P2 corresponding to the front high luminance part 21a and the rear high luminance part 21b appear. In the present embodiment, the distance l between the rising point of the peak P1 corresponding to the front high luminance part 21a and the position of the peak P2 corresponding to the rear high luminance part 21b is the total length L (FIG. 3) of the melting part 5. The length L is calculated by the image analysis means 11 in the signal processing device 9. 2A to 2C, the luminance values are integrated in the horizontal axis direction, and the distribution of the luminance integrated values in the vertical axis direction (direction orthogonal to the welding direction) is obtained. When viewed, a trapezoidal luminance integration profile (not shown) is obtained. In the present embodiment, the distance connecting rising points generated above and below the trapezoidal luminance integration profile is defined as the full width W (FIG. 3) of the melting portion 5, and this width W is also calculated by the image analysis means 11. ing.

また、画像解析手段11による画像解析の精度向上と迅速化とを図るため、CCDカメラ8で得られた画像に対して解析エリアを設定している。この解析エリアの設定は、図3に示されるように、上記水平軸方向の輝度積算プロファイル(図5)に示されたピークP1(前側高輝度部21aに対応)の立上り点の左側に所定の画素数をオフセットさせた位置を水平軸方向の解析開始位置S1、この解析開始位置S1から溶接方向の後側へ所定の画素数をオフセットさせた位置を解析終了位置S2、上記垂直軸方向の台形状の輝度積算プロファイルの上側立上り点から上方向へ所定の画素数をオフセットさせた位置を上解析位置S3、同じ台形状の輝度積算プロファイルの下側立上り点から下方向へ所定の画素数をオフセットさせた位置を下解析位置S4として、これら位置S1〜S4で囲まれた領域とした。この場合、解析終了位置S2は、溶融池先端部が大きく後退した場合(図2(c))にも該先端部が入るように十分大きくとる。   An analysis area is set for the image obtained by the CCD camera 8 in order to improve the accuracy and speed of image analysis by the image analysis means 11. As shown in FIG. 3, this analysis area is set to a predetermined value on the left side of the rising point of the peak P1 (corresponding to the front high luminance portion 21a) shown in the luminance integration profile in the horizontal axis direction (FIG. 5). The position where the number of pixels is offset is the analysis start position S1 in the horizontal axis direction, the position where the predetermined number of pixels is offset from the analysis start position S1 to the rear side in the welding direction is the analysis end position S2, and the vertical axis direction table The position obtained by offsetting the predetermined number of pixels upward from the upper rising point of the shape luminance integration profile is the upper analysis position S3, and the predetermined number of pixels is offset downward from the lower rising point of the same trapezoidal luminance integration profile. This position was designated as a lower analysis position S4, which was an area surrounded by these positions S1 to S4. In this case, the analysis end position S2 is set to be sufficiently large so that the tip portion can enter even when the tip portion of the molten pool is largely retracted (FIG. 2 (c)).

信号処理装置9内の画像解析手段11は、CCDカメラ8により撮像した画像に上記解析エリアSを設定する機能と、この解析エリアS内の画像から把握される溶融部の長さLおよび幅Wを演算する機能と、これらLおよびWに基づいてL/W比を演算する機能とを有している。一方、良否判定手段12には、図4に示される相関図に設定した、L/W比のしきい値Raが予め記憶されている。図4は、前記したように板厚0.7mmの2枚の鋼板W1、W2をレーザ重ね溶接した場合の結果であり、たとえば、引け量が板厚の50%に達した場合に引け不良とするには、前記しきい値Raを1.75程度にすればよい。良否判定手段12は、前記画像解析手段11で得られたL/W比と予め記憶したしきい値Raとを比較し、L/W比がしきい値Raを超えたときに溶接不良(引け不良)と判断する機能を有している。   The image analysis means 11 in the signal processing device 9 has a function of setting the analysis area S in the image captured by the CCD camera 8 and the length L and width W of the melting part grasped from the image in the analysis area S. And a function of calculating the L / W ratio based on these L and W. On the other hand, the pass / fail judgment means 12 stores in advance a threshold Ra of the L / W ratio set in the correlation diagram shown in FIG. FIG. 4 shows a result of laser lap welding of two steel plates W1 and W2 having a plate thickness of 0.7 mm as described above. For example, when the amount of shrinkage reaches 50% of the plate thickness, For this purpose, the threshold value Ra may be set to about 1.75. The pass / fail judgment means 12 compares the L / W ratio obtained by the image analysis means 11 with a threshold value Ra stored in advance, and when the L / W ratio exceeds the threshold value Ra, welding failure (retraction) It has a function to determine that it is defective.

上記のように構成したレーザ溶接品質評価装置においては、溶接開始と同時に、CCDカメラ8による高速(例えば、毎秒30コマ)での撮影が開始され、これにより、信号処理装置9内の画像解析手段11にはCCDカメラ8により撮像された1コマごとの画像が高速で送出される。画像解析手段11は、CCDカメラ8から送出された画像に前記解析エリアSを設定し、この解析エリアS内の画像を解析して、前記した高輝度領域21の全長Lと全幅Wとの比(L/W比)、すなわち画像から把握される溶接部の長さ/幅比を求め、このデータを良否判定手段12へ送出する。すると、良否判定手段12は、このL/W比と予め記憶したしきい値Ra(図4)とを比較し、L/W比がしきい値Raを超えるときに引け不良と判断する。なお、必要により、この判定結果を、前記CCDカメラ8により撮像した画像と合せて表示装置に表示させるようにしてもよい。   In the laser welding quality evaluation apparatus configured as described above, imaging at a high speed (for example, 30 frames per second) by the CCD camera 8 is started simultaneously with the start of welding, whereby image analysis means in the signal processing apparatus 9 is started. 11 is sent at high speed an image of each frame picked up by the CCD camera 8. The image analysis means 11 sets the analysis area S in the image sent from the CCD camera 8, analyzes the image in the analysis area S, and calculates the ratio between the total length L and the total width W of the high luminance region 21. (L / W ratio), that is, the length / width ratio of the welded portion grasped from the image is obtained, and this data is sent to the quality determination means 12. Then, the pass / fail determination means 12 compares this L / W ratio with a previously stored threshold value Ra (FIG. 4), and determines that it is poor when the L / W ratio exceeds the threshold value Ra. If necessary, this determination result may be displayed on the display device together with the image captured by the CCD camera 8.

ところで、レーザ重ね溶接においては、被溶接物Wである2枚の鋼板W1、W2の間に存在する隙間が大きくなると、溶け落ちの現象が発生するが、この溶け落ちの現象は、溶接途中で発生する場合と溶接開始直後から発生する場合とで異なっている。溶接途中で溶け落ちが発生する場合は、溶融池先端部が異常後退した後に溶け落ちて、その点から新たに溶接が開始されるため、溶け落ち直後の画像は、正常な溶接に近い状態(図2(a))となる。この場合、画像から把握される溶融部5の全長Lは、一旦拡大した後、急激に正常溶接の値まで復帰することになり、したがって、この全長Lの動きを、画像解析手段11による画像解析によって捉えることで、溶接途中の溶け落ちを把握できる。   By the way, in laser lap welding, if the gap between the two steel plates W1 and W2 that are the workpieces W is increased, the phenomenon of burn-out occurs, but this phenomenon of burn-out occurs during welding. The case where it occurs and the case where it occurs immediately after the start of welding are different. If burnout occurs during welding, the molten pool tip melts back after abnormally retreating, and welding starts again from that point, so the image immediately after the burnout is close to normal welding ( FIG. 2 (a)). In this case, the full length L of the melted part 5 grasped from the image is once expanded and then suddenly returns to the value of normal welding. Therefore, the movement of the full length L is analyzed by the image analysis means 11. By grasping by, it is possible to grasp the burn-out during welding.

一方、溶接開始直後から溶け落ちが発生している場合は、溶融池先端部(キーホールの後壁部分)からの反射光が得られないため、CCDカメラ8で得られた画像は、図6(a)に示されるように、一見、正常溶接時の画像(図2(a))と類似したものとなる。この場合、上記したように求めた水平軸方向の輝度積算プロファイルも、図6(b)に示されるように正常溶接時の輝度積算プロファイル(図5(a))と明確に区別することが困難である。しかし、図6(a)に示される画像を詳細に観察すると、前側高輝度部21aの後方(キーホール4の部分)にリング状の高輝度部21cが観察される。そこで、前記画像について最小値フィルタ処理を行い、この処理後の画像について水平軸方向の輝度積算プロファイルを求めると、図6(c)に示されるように、3つのピークPa、Pb,Pcが明瞭に現われる。このうち、左側のピークPaはキーホール4の前壁部分からの反射光によるもので、前記した弓形をなす前側高輝度部21aに対応するピークP1(図5)に相当する。また、右側の2つのピークPb,Pcは前記リング状の高輝度部21cの両側部分からの反射光によるものである。したがって、この輝度積算プロファイルの特徴を画像解析手段11による画像解析によって捉えることで、溶接開始直後からの溶け落ちを把握できる。この場合、ピークの数で特徴付けしても、各ピークの相互間の距離で特徴付けしてもよい。   On the other hand, when burn-off has occurred immediately after the start of welding, the reflected light from the tip of the molten pool (the rear wall portion of the keyhole) cannot be obtained, so the image obtained with the CCD camera 8 is shown in FIG. As shown in (a), at first glance, it is similar to the image at normal welding (FIG. 2 (a)). In this case, it is difficult to clearly distinguish the luminance integration profile in the horizontal axis direction obtained as described above from the luminance integration profile during normal welding (FIG. 5A) as shown in FIG. 6B. It is. However, when the image shown in FIG. 6A is observed in detail, a ring-shaped high luminance portion 21c is observed behind the front high luminance portion 21a (the portion of the keyhole 4). Therefore, when the minimum value filter processing is performed on the image and the luminance integration profile in the horizontal axis direction is obtained for the image after this processing, as shown in FIG. 6C, the three peaks Pa, Pb, and Pc are clear. Appears on Among these, the left peak Pa is due to the reflected light from the front wall portion of the keyhole 4, and corresponds to the peak P1 (FIG. 5) corresponding to the above-described front high brightness portion 21a having an arcuate shape. The two peaks Pb and Pc on the right side are due to the reflected light from both side portions of the ring-shaped high luminance portion 21c. Therefore, it is possible to grasp the burn-out immediately after the start of welding by capturing the characteristics of the luminance integration profile by image analysis by the image analysis unit 11. In this case, it may be characterized by the number of peaks or by the distance between each peak.

レーザ重ね溶接においてはまた、レーザ光Aが被溶接物Wを貫通しない、いわゆる非貫通溶接の現象が発生する場合がある。このような非貫通溶接の場合、レーザ照射域中心からの反射光が極めて強くなるため、CCDカメラ8により得られた画像は、図7(b)の上段に示されるように、前記した弓形をなす前側高輝度部21aの後方に円形状の高輝度部21dが存在する形態となる。この場合、該画像についての水平軸方向の輝度積算プロファイルは、図7(b)の下段に示されるように、谷部を中心としてその右側が左側に対して幅広く現われる。一方、正常溶接時(貫通溶接時)の場合は、図7(a)の上段に示されるように高輝度領域21がドーナツ状に現われることから、その輝度積算プロファイルは、図7(a)の下段に示されるように、谷部を中心としてその左側が右側に対して幅広く現われる。この谷部を中心とした左右の幅E1,E2はエネルギーに相当し、図7中の(a)と(b)との比較から、正常溶接時にはこの左右のエネルギー比E1/E2が比較的大きく現われ、非貫通溶接時にはこの左右のエネルギー比E1/E2が比較的小さく現われることが分かる。したがって、画像解析手段11による画像解析によってこのエネルギー比E1/E2比を捉えることで、該E1/E2比が所定値以下のときに、非貫通溶接が発生しているとを判断することができる。   In laser lap welding, a so-called non-penetrating welding phenomenon may occur in which the laser beam A does not penetrate the workpiece W. In such non-penetrating welding, the reflected light from the center of the laser irradiation area becomes extremely strong, so that the image obtained by the CCD camera 8 has the above-mentioned bow shape as shown in the upper part of FIG. A circular high luminance part 21d is present behind the front high luminance part 21a. In this case, as shown in the lower part of FIG. 7B, the luminance integration profile in the horizontal axis direction for the image appears widely on the right side with respect to the left side with the valley portion as the center. On the other hand, at the time of normal welding (through welding), the high luminance region 21 appears in a donut shape as shown in the upper part of FIG. 7A, and the luminance integration profile is shown in FIG. As shown in the lower part, the left side of the valley appears widely with respect to the right side. The left and right widths E1 and E2 centering on the valley correspond to energy, and the comparison between (a) and (b) in FIG. 7 shows that the right and left energy ratio E1 / E2 is relatively large during normal welding. It appears that the left / right energy ratio E1 / E2 appears relatively small during non-penetrating welding. Accordingly, by capturing this energy ratio E1 / E2 ratio by image analysis by the image analysis means 11, it is possible to determine that non-penetrating welding has occurred when the E1 / E2 ratio is equal to or less than a predetermined value. .

なお、上記実施形態においては、溶接用レーザ光Aの反射光Bを、レーザ光Aと同軸でCCDカメラ8に取込むようにしたが、本発明は、CCDカメラ8をレーザトーチ1の側方に配置して、溶接用レーザ光Aと非同軸で反射光BをCCDカメラ8に取込むようにしてもよいものである。ただし、この場合は、得られる画像が前記同軸で反射光を取込む場合と異なるので、CCDカメラによって得られた画像と溶接品質との関係について、事前に把握しておく必要がある。   In the above embodiment, the reflected light B of the welding laser beam A is taken into the CCD camera 8 coaxially with the laser beam A. However, in the present invention, the CCD camera 8 is placed on the side of the laser torch 1. It may be arranged so that the reflected light B is taken into the CCD camera 8 non-coaxially with the welding laser light A. However, in this case, since the obtained image is different from the case where the reflected light is captured coaxially, it is necessary to grasp in advance the relationship between the image obtained by the CCD camera and the welding quality.

また、上記実施形態においては、2枚の鋼板W1、W2の重ね合せ溶接に適用した例を示したが、本発明は、これ以外にも2つの部材の突合せ溶接、隅肉溶接等に適用できることはもちろんである。   Moreover, in the said embodiment, although the example applied to the lap welding of the two steel plates W1 and W2 was shown, this invention can be applied to butt welding of two members, fillet welding, etc. besides this Of course.

本発明に係るレーザ溶接品質評価装置の一つの実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of a laser welding quality evaluation device concerning the present invention. 本レーザ溶接品質評価装置で得られる画像を、溶接状況に応じて示す模式図である。It is a schematic diagram which shows the image obtained with this laser welding quality evaluation apparatus according to a welding condition. 画像に対する全長および全幅の設定要領と解析領域の設定要領とを示す模式図である。It is a schematic diagram which shows the setting point of the full length and full width with respect to an image, and the setting point of an analysis area | region. 画像から把握される溶融部の長さ/幅比と実測引けとの相関を示すグラフである。It is a graph which shows the correlation with the length / width ratio of the fusion | melting part grasped | ascertained from an image, and measurement shrinkage. 図2に示した各画像についての水平軸方向の輝度積算プロファイルを示すグラフである。3 is a graph showing a luminance integration profile in the horizontal axis direction for each image shown in FIG. 2. 溶接開始直後から溶け落ちが発生している場合の画像と該画像についての輝度積算プロファイル並びに信号処理後の木戸積算プロファイルとを示す図である。It is a figure which shows the image in case burn-out has generate | occur | produced immediately after the start of welding, the luminance integration profile about the image, and the Kido integration profile after signal processing. 非貫通溶接時の画像および輝度積算プロファイルを正常溶接時の画像および輝度積算プロファイルと対比して示す図である。It is a figure which contrasts the image and brightness | luminance integration profile at the time of non-penetrating welding with the image and brightness | luminance integration profile at the time of normal welding.

符号の説明Explanation of symbols

1 レーザトーチ
4 キーホール
5 溶融池(溶融部)
7 光学フィルタ
8 CCDカメラ(撮像手段)
9 信号処理装置(信号処理手段)
11 画像解析手段
12 良否判定手段
21 画像内の高輝度部分
A 溶接用レーザ光
B レーザ光の反射光
W 被溶接物

1 Laser torch 4 Keyhole 5 Weld pool (melting part)
7 Optical filter 8 CCD camera (imaging means)
9 Signal processing equipment (signal processing means)
DESCRIPTION OF SYMBOLS 11 Image analysis means 12 Pass / fail judgment means 21 High-intensity part in image A Laser beam for welding B Reflected light of laser light W

Claims (8)

レーザ照射域から反射されるレーザ光の反射光により溶融部およびその周辺を撮像し、この撮像した画像から把握される溶融部の形状的な特徴に基いて溶接品質を評価することを特徴とするレーザ溶接品質評価方法。   The fusion part and its periphery are imaged by the reflected light of the laser beam reflected from the laser irradiation area, and the welding quality is evaluated based on the shape characteristic of the fusion part grasped from the taken image. Laser welding quality evaluation method. 画像についての輝度積算プロファイルから溶融部の形状的な特徴を把握することを特徴とする請求項1に記載のレーザ溶接品質評価方法。   2. The laser welding quality evaluation method according to claim 1, wherein a shape characteristic of the melted portion is grasped from a luminance integrated profile for the image. 溶接方向についての輝度積算プロファイと溶接方向に直交する方向についての輝度積算プロファイルから溶融部の長さ/巾比を求め、該長さ/巾比が、所定値よりも大きい場合に引け不良と判断することを特徴とする請求項2に記載のレーザ溶接品質評価方法。   The length / width ratio of the melted portion is obtained from the luminance integration profile in the welding direction and the luminance integration profile in the direction orthogonal to the welding direction, and if the length / width ratio is greater than a predetermined value, it is determined that the shrinkage is defective. The laser welding quality evaluation method according to claim 2, wherein: 溶接方向についての輝度積算プロファイルから溶融部の長さを求め、該長さが、異常拡大した後、急減したときに、溶接途中で溶け落ちが発生したと判断することを特徴とする請求項2に記載のレーザ溶接品質評価方法。   3. The length of the melted portion is obtained from a luminance integrated profile in the welding direction, and when the length rapidly decreases after abnormally expanding, it is determined that burn-out has occurred during welding. The laser welding quality evaluation method described in 1. 溶接方向についての輝度積算プロファイルに、キーホールを中心とする3つのピークが現われたときに、溶接開始直後から溶け落ちが発生していると判断することを特徴とする請求項2に記載のレーザ溶接品質評価方法。   3. The laser according to claim 2, wherein when the three peaks centering on the keyhole appear in the luminance integration profile in the welding direction, it is determined that burn-out has occurred immediately after the start of welding. Welding quality evaluation method. 溶接方向についての輝度積算プロファイルの谷部の前・後のエネルギー比を求め、該エネルギー比が所定値よりも小さいときに、非貫通溶接と判断することを特徴とする請求項2に記載のレーザ溶接品質評価方法。   3. The laser according to claim 2, wherein an energy ratio before and after the valley portion of the luminance integration profile in the welding direction is obtained, and non-penetrating welding is determined when the energy ratio is smaller than a predetermined value. Welding quality evaluation method. レーザ照射域から反射されるレーザ光の反射光により溶融部およびその周辺を撮像する撮像手段と、該撮像手段により撮像した画像から溶融部の形状的な特徴を求めると共に、該形状的な特徴に基いて溶接品質を判定する信号処理手段とを備えていることを特徴とするレーザ溶接品質評価装置。   An imaging unit that captures an image of the melted part and its periphery by reflected light of laser light reflected from the laser irradiation area, and obtains a shape characteristic of the melted part from an image captured by the image capturing unit, and the shape characteristic A laser welding quality evaluation apparatus comprising signal processing means for determining welding quality based on the signal processing means. 撮像手段が、CCDカメラであることを特徴とする請求項7に記載のレーザ溶接品質評価装置。

8. The laser welding quality evaluation apparatus according to claim 7, wherein the imaging means is a CCD camera.

JP2004229192A 2004-08-05 2004-08-05 Laser welding quality evaluation method Expired - Fee Related JP4324052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229192A JP4324052B2 (en) 2004-08-05 2004-08-05 Laser welding quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229192A JP4324052B2 (en) 2004-08-05 2004-08-05 Laser welding quality evaluation method

Publications (2)

Publication Number Publication Date
JP2006043741A true JP2006043741A (en) 2006-02-16
JP4324052B2 JP4324052B2 (en) 2009-09-02

Family

ID=36022895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229192A Expired - Fee Related JP4324052B2 (en) 2004-08-05 2004-08-05 Laser welding quality evaluation method

Country Status (1)

Country Link
JP (1) JP4324052B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068816A (en) * 2006-09-15 2008-03-27 Tokyu Car Corp Structural body for railway vehicle and its manufacturing method
WO2009022699A1 (en) 2007-08-10 2009-02-19 Toyota Jidosha Kabushiki Kaisha Laser welding quality evaluation method and its device
JP2009241118A (en) * 2008-03-31 2009-10-22 Tokyu Car Corp Laser welding method
JP2010184273A (en) * 2009-02-13 2010-08-26 Mazda Motor Corp Laser welding method and laser welding apparatus
JP2010197247A (en) * 2009-02-25 2010-09-09 Ngk Spark Plug Co Ltd Method for manufacturing gas sensor
JP2010260095A (en) * 2009-05-11 2010-11-18 Toyota Motor Corp Method and apparatus for evaluating laser welding quality
DE102010029694A1 (en) * 2010-06-04 2011-12-08 Robert Bosch Gmbh Welding device and method for welding
JPWO2011024904A1 (en) * 2009-08-27 2013-01-31 株式会社Ihi検査計測 Laser welding quality determination method and quality determination device
DE102012216928A1 (en) * 2012-09-20 2014-03-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for determining laser processing parameter of workpiece, involves image processing diagnosis images produced by image processing of recorded consecutive frames of processing area, for determining laser processing parameter
JP2016168596A (en) * 2015-03-11 2016-09-23 プライムアースEvエナジー株式会社 Welding mode discriminator, welding mode discrimination method and laser welding apparatus
DE102010063236B4 (en) * 2010-12-16 2016-12-15 Robert Bosch Gmbh Method and device for welding components by means of a laser beam
DE112017001389T5 (en) 2016-03-18 2018-12-06 Hitachi Automotive Systems, Ltd. Quality determination method for welding with a high-energy jet, quality-determining device using the quality-determining method and welding-management system using the quality-determining method
JPWO2020110694A1 (en) * 2018-11-27 2021-09-30 株式会社アマダ Laser welding machine and welding condition monitoring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218701A1 (en) * 2022-05-10 2023-11-16 パナソニックIpマネジメント株式会社 Machining condition determination method and determination device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068816A (en) * 2006-09-15 2008-03-27 Tokyu Car Corp Structural body for railway vehicle and its manufacturing method
US8633419B2 (en) 2007-08-10 2014-01-21 Toyota Jidosha Kabushiki Kaisha Laser welding quality evaluation method and apparatus
WO2009022699A1 (en) 2007-08-10 2009-02-19 Toyota Jidosha Kabushiki Kaisha Laser welding quality evaluation method and its device
JP2009241118A (en) * 2008-03-31 2009-10-22 Tokyu Car Corp Laser welding method
JP2010184273A (en) * 2009-02-13 2010-08-26 Mazda Motor Corp Laser welding method and laser welding apparatus
JP2010197247A (en) * 2009-02-25 2010-09-09 Ngk Spark Plug Co Ltd Method for manufacturing gas sensor
JP2010260095A (en) * 2009-05-11 2010-11-18 Toyota Motor Corp Method and apparatus for evaluating laser welding quality
JPWO2011024904A1 (en) * 2009-08-27 2013-01-31 株式会社Ihi検査計測 Laser welding quality determination method and quality determination device
JP5819727B2 (en) * 2009-08-27 2015-11-24 株式会社Ihi検査計測 Laser welding quality determination method and quality determination device
DE102010029694A1 (en) * 2010-06-04 2011-12-08 Robert Bosch Gmbh Welding device and method for welding
US9067275B2 (en) 2010-06-04 2015-06-30 Robert Bosch Gmbh Welding device and method for welding
DE102010063236B4 (en) * 2010-12-16 2016-12-15 Robert Bosch Gmbh Method and device for welding components by means of a laser beam
DE102012216928A1 (en) * 2012-09-20 2014-03-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for determining laser processing parameter of workpiece, involves image processing diagnosis images produced by image processing of recorded consecutive frames of processing area, for determining laser processing parameter
JP2016168596A (en) * 2015-03-11 2016-09-23 プライムアースEvエナジー株式会社 Welding mode discriminator, welding mode discrimination method and laser welding apparatus
DE112017001389T5 (en) 2016-03-18 2018-12-06 Hitachi Automotive Systems, Ltd. Quality determination method for welding with a high-energy jet, quality-determining device using the quality-determining method and welding-management system using the quality-determining method
JPWO2020110694A1 (en) * 2018-11-27 2021-09-30 株式会社アマダ Laser welding machine and welding condition monitoring method

Also Published As

Publication number Publication date
JP4324052B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4324052B2 (en) Laser welding quality evaluation method
US10632570B2 (en) Laser welding quality determination method and apparatus
JP4531396B2 (en) Method and apparatus for evaluating workpiece joints
JP4179558B2 (en) Laser welding quality evaluation method and apparatus
WO2020110694A1 (en) Laser welding machine, and method for monitoring welding condition
JP2008087056A (en) System and method for determining laser welding quality
JP4240220B2 (en) Laser welding quality inspection method and apparatus
JP2012254477A (en) Method and system for detecting welding anomaly
JP2005014027A (en) Weld zone image processing method, welding management system, feedback system for welding machine, and butt line detection system
CN113195149A (en) Method and device for monitoring a welding process for welding glass workpieces
JP5224061B2 (en) Laser welding quality evaluation method and apparatus
JP2885040B2 (en) Laser welding quality control method
JP2007330987A (en) Apparatus and method for analyzing welding condition using weld zone visualizing apparatus
JP3579788B2 (en) Uranami welding control method and apparatus
JP2009034731A (en) Weld zone visualizing apparatus
JP3994276B2 (en) Laser welding quality inspection method and apparatus
JP3272591B2 (en) Monitoring device for laser orbital welding
JP2005334957A (en) Weld zone visualizing apparatus
JP3949076B2 (en) Laser welding quality evaluation apparatus and method
JP4147390B2 (en) Laser welding quality inspection method and apparatus
JP6418005B2 (en) Undercut defect detection method, undercut defect detection device, and fillet arc welding method
JP2003220480A (en) Laser beam welding machine and laser beam welding method
JP2006043722A (en) Laser welding quality evaluation device
JPH11309576A (en) Automatic welding equipment
JP6693612B1 (en) Laser beam abnormality detection method and laser processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

R151 Written notification of patent or utility model registration

Ref document number: 4324052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140612

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees