JP2006043542A - Operation control method of oxidation ditch and operation control device of oxidation ditch - Google Patents

Operation control method of oxidation ditch and operation control device of oxidation ditch Download PDF

Info

Publication number
JP2006043542A
JP2006043542A JP2004225985A JP2004225985A JP2006043542A JP 2006043542 A JP2006043542 A JP 2006043542A JP 2004225985 A JP2004225985 A JP 2004225985A JP 2004225985 A JP2004225985 A JP 2004225985A JP 2006043542 A JP2006043542 A JP 2006043542A
Authority
JP
Japan
Prior art keywords
aeration
inflow
oxidation ditch
operation cycle
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004225985A
Other languages
Japanese (ja)
Other versions
JP4837267B2 (en
Inventor
Eiji Sato
英二 佐藤
Takeshi Sugiyama
健 杉山
Kazuo Sekizawa
一夫 関沢
Masanobu Okata
政信 大方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2004225985A priority Critical patent/JP4837267B2/en
Publication of JP2006043542A publication Critical patent/JP2006043542A/en
Application granted granted Critical
Publication of JP4837267B2 publication Critical patent/JP4837267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation control method of an oxidation ditch capable of enhancing the stabilization of the quality of water to be treated, and an operation control device of the oxidation ditch. <P>SOLUTION: In calculating the aeration time A<SB>n+1</SB>of the (n+1)-th operation cycle by setting the period from the start of aeration to the resumption of the next aeration to one operation cycle, the inflow amount (q) of water to be treated flowing in a tank is measured in the n-th just-before operation cycle to set the aeration time A<SB>n+1</SB>on the basis of the inflow amount (q) of the water to be treated. Accordingly, a suitable operation cycle reflecting the fluctuations in the inflow amount (q) of the water to be treated can be set. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、オキシデーションディッチの運転制御方法及びオキシデーションディッチの運転制御装置に関する。   The present invention relates to an operation control method for an oxidation ditch and an operation control apparatus for an oxidation ditch.

従来、例えば汚水等の被処理水を、曝気して硝化反応を行う好気工程と撹拌して脱窒反応を行う無酸素工程とを交互に行って処理するオキシデーションディッチが知られている。このようなオキシデーションディッチの運転方法として、一日当たりの処理水量の合計である積算放水量qを計測し、例えば1週間〜1ヶ月程度の期間における積算放水量qの平均値を求め、この平均値に基づいて1日に必要な曝気時間を設定して、曝気時間を1日中固定し、例えば30分間の曝気を1日12回行って運転するものが開示されている(例えば、特許文献1参照)。
特開平11−683号公報
2. Description of the Related Art Conventionally, an oxidation ditch that treats water to be treated such as sewage by alternately performing an aerobic process in which a nitrification reaction is performed by aeration and an oxygen-free process in which a denitrification reaction is performed by stirring is known. As an operation method of such an oxidation ditch, an integrated water discharge amount q X that is the total amount of treated water per day is measured, for example, an average value of the integrated water discharge amount q X in a period of about one week to one month is obtained, Based on this average value, an aeration time necessary for one day is set, the aeration time is fixed throughout the day, and for example, 30 minutes of aeration is performed 12 times a day for operation (for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-683

しかしながら、上記オキシデーションディッチの運転方法にあっては、曝気時間が固定され、流入被処理水量の変動に逐次対応するものでないため、流入被処理水量の変動により酸素の供給不足、供給過多が生じ、安定した処理が困難であった。   However, in the above operation method of the oxidation ditch, since the aeration time is fixed and does not sequentially correspond to the fluctuation of the inflow treated water amount, the fluctuation of the inflow treated water amount causes insufficient supply of oxygen and excessive supply. Stable processing was difficult.

本発明は、このような課題を解決するために成されたものであり、適切な曝気時間の設定が可能とされ、処理水質の安定化が図られたオキシデーションディッチの運転制御方法及びオキシデーションディッチの運転制御装置を提供することを目的とする。   The present invention has been made in order to solve such problems, and it is possible to set an appropriate aeration time and stabilize the quality of the treated water. An object of the present invention is to provide a ditch operation control device.

本発明によるオキシデーションディッチの運転制御方法は、槽内の被処理水に対して、曝気により硝化反応を行う好気工程と、撹拌により脱窒反応を行う無酸素工程とを交互に行うオキシデーションディッチの運転制御方法であって、曝気を開始してから、次に曝気を再開するまでを1運転サイクルとして、所定時間内に槽内へ流入する流入被処理水量を測定し、この流入被処理水量に基づいて、次の運転サイクルの曝気時間を制御することを特徴としている。   The operation control method of the oxidation ditch according to the present invention is an oxidation method in which an aerobic process in which nitrification reaction is performed by aeration and an oxygen-free process in which denitrification reaction is performed by stirring are alternately performed on water to be treated in a tank. This is a ditch operation control method, in which the amount of inflow treated water flowing into the tank within a predetermined time is measured from the start of aeration until the next resumption of aeration, and this inflow treated It is characterized by controlling the aeration time of the next operation cycle based on the amount of water.

また、本発明によるオキシデーションディッチの運転制御装置は、槽内の被処理水に対して、曝気により硝化反応を行う好気工程と、撹拌により脱窒反応を行う無酸素工程とを交互に行うオキシデーションディッチの運転制御装置であって、曝気を開始してから、次に曝気を再開するまでを1運転サイクルとして、所定時間内に槽内へ流入する流入被処理水量を測定する流量測定手段と、流入被処理水量に基づいて、次の運転サイクルの曝気時間を制御する制御手段と、を具備することを特徴としている。   In addition, the operation controller for the oxidation ditch according to the present invention alternately performs an aerobic process in which nitrification reaction is performed by aeration and an oxygen-free process in which denitrification reaction is performed by stirring with respect to the water to be treated in the tank. An operation controller for the oxidation ditch, which measures the amount of inflow treated water flowing into the tank within a predetermined time period from the start of aeration until the next restart of aeration. And a control means for controlling the aeration time of the next operation cycle based on the inflow treated water amount.

このようなオキシデーションディッチの運転制御方法及びオキシデーションディッチの運転制御装置によれば、直前の運転サイクルにおいて、槽内への流入被処理量を測定し、その流入被処理水量に基づいて曝気時間が設定されるため、流入被処理水量の変動が反映され、好適な曝気時間を設定することが可能とされる。   According to the oxidation ditch operation control method and the oxidation ditch operation control apparatus, the inflow treatment amount into the tank is measured in the immediately preceding operation cycle, and the aeration time is based on the inflow treatment water amount. Therefore, a change in the inflow treated water amount is reflected, and a suitable aeration time can be set.

ここで、運転サイクル内に槽内へ流入する流入被処理水量を測定し、この流入被処理水量と、別の日の対応する運転サイクルの流入被処理水量とその次の運転サイクルの流入被処理水量との変動傾向と、に基づいて、次の運転サイクルの曝気時間を制御することが好ましい。例えば、一般家庭から排出される生活排水等の排水量は、人間の生活時間に合わせて変動する。この排水量の変動は、日(昼と夜)、週(平日と休日)、季節(夏と冬)等で、一定の傾向がある。従って、従前で対応する運転サイクルの流入被処理水量とその次の運転サイクルの流入被処理水量との変動傾向と、直前の運転サイクルの流入被処理水量とに基づいて、制御することにより、一層好適な曝気時間を設定することが可能とされる。   Here, the inflow treated water amount that flows into the tank in the operation cycle is measured, and this inflow treated water amount, the inflow treated water amount in the corresponding operation cycle on another day, and the inflow treated treatment in the next operation cycle. It is preferable to control the aeration time of the next operation cycle based on the fluctuation tendency with the amount of water. For example, the amount of effluent such as domestic effluent discharged from ordinary households varies according to human life time. This variation in the amount of drainage has a certain tendency by day (day and night), week (weekday and holiday), season (summer and winter), and the like. Therefore, by controlling based on the fluctuation tendency of the inflow treated water amount in the previous operation cycle and the inflow treated water amount in the next operation cycle, and by controlling based on the inflow treated water amount in the immediately preceding operation cycle, It is possible to set a suitable aeration time.

このように本発明によるオキシデーションディッチの運転制御方法及び運転制御装置によれば、流入被処理水量の変動が反映され、好適な曝気時間を設定することが可能とされるため、処理水質の安定化が可能とされる。   As described above, according to the operation control method and the operation control device for the oxidation ditch according to the present invention, the fluctuation of the inflow treated water amount is reflected, and it is possible to set a suitable aeration time. Is possible.

以下、本発明によるオキシデーションディッチの運転制御方法及び運転制御装置の好適な実施形態について図面を参照しながら説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。図1は、本発明の実施形態に係るオキシデーションディッチの概略構成図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an oxidation ditch operation control method and an operation control apparatus according to the present invention will be described with reference to the drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is a schematic configuration diagram of an oxidation ditch according to an embodiment of the present invention.

本実施形態のオキシデーションディッチ1は、例えば、家庭等から排出される生活排水、工場から排出される工場排水等の有機性排水(被処理水)(以下「汚水」という)等を生物処理するものであり、好気状態で汚水中の有機物を分解し、無酸素状態で窒素分を除去する処理施設である。   The oxidation ditch 1 of the present embodiment biologically treats organic wastewater (treated water) (hereinafter referred to as “sewage”) such as domestic wastewater discharged from households, factory wastewater discharged from factories, and the like. It is a treatment facility that decomposes organic matter in wastewater in an aerobic state and removes nitrogen in an oxygen-free state.

このオキシデーションディッチ1は概略、汚水を曝気/撹拌する曝気撹拌装置5を備え汚水を生物処理する生物反応槽(槽)3と、この生物反応槽3に汚水を移送する流入ポンプ槽2と、生物反応槽3に流入する流入汚水量を計測する積算流量計(流量測定手段)4と、生物反応槽3の後段に設置された最終沈殿池6と、を具備している。   The oxidation ditch 1 generally includes a biological reaction tank (tank) 3 that includes an aeration stirring device 5 for aeration / stirring sewage to biologically treat the sewage, an inflow pump tank 2 that transfers sewage to the biological reaction tank 3, An integrated flow meter (flow rate measuring means) 4 for measuring the amount of inflow sewage flowing into the biological reaction tank 3 and a final sedimentation tank 6 installed at the rear stage of the biological reaction tank 3 are provided.

流入ポンプ槽2は、その流入側が汚水を供給する汚水供給配管L1に接続されると共に、その流出側が汚水を生物反応槽3に移送する汚水移送配管L2に接続され、この汚水移送配管L2に、上記積算流量計4が設置されている。汚水は、汚水供給配管L1、流入ポンプ槽2及び汚水移送配管L2を経由して、生物反応槽3に流入し、生物反応槽3に流入する流入汚水量は、積算流量計4でその流量が計測される。   The inflow pump tank 2 has an inflow side connected to a sewage supply pipe L1 that supplies sewage, and an outflow side connected to a sewage transfer pipe L2 that transfers sewage to the biological reaction tank 3, and the sewage transfer pipe L2 The integrated flow meter 4 is installed. The sewage flows into the biological reaction tank 3 via the sewage supply pipe L1, the inflow pump tank 2 and the sewage transfer pipe L2, and the amount of inflow sewage flowing into the biological reaction tank 3 is measured by the integrating flow meter 4. It is measured.

生物反応槽3は、平面視長円形状を成し、その中央部に長手方向に延在する隔壁3aが配設されて、この隔壁3a周囲の領域が無終端状の循環水路7とされていると共に、処理水を最終沈殿池6へ送る処理水移送配管L3が接続されている。循環水路7には、汚水移送配管L2を通して汚水が導入され、この循環水路7からは当該循環水路7で生物処理により浄化された処理水としての浄化水が処理水移送配管L3を通して最終沈殿池6に送られる。   The biological reaction tank 3 has an oval shape in plan view, and a partition wall 3a extending in the longitudinal direction is disposed at the center thereof, and a region around the partition wall 3a is formed as an endless circulation channel 7. In addition, a treated water transfer pipe L3 for sending treated water to the final sedimentation basin 6 is connected. Sewage is introduced into the circulating water channel 7 through the sewage transfer pipe L2, and purified water as treated water purified by biological treatment in the circulating water channel 7 from the circulating water channel 7 is passed through the treated water transfer pipe L3 to the final settling tank 6 Sent to.

曝気撹拌装置5は、上記生物処理を行わせるもので、回転自在なインペラ(不図示)と、インペラ回転用駆動源であり所定の高速/低速での運転が可能とされたインペラ回転用電動機(不図示)とを備えている。この曝気撹拌装置5は、上記生物反応槽3の隔壁3aの両端付近に、各々配設され、インペラが生物反応槽3内の汚水に浸漬された状態とされている。そして、電動機を高速運転することでインペラが高速回転して、生物反応槽3内の汚水を曝気撹拌し、低速運転することでインペラが低速回転して、生物反応槽3内の汚水を無酸素撹拌する。   The aeration and agitation device 5 performs the above biological treatment, and is a rotatable impeller (not shown) and an impeller rotating motor that is a driving source for rotating the impeller and can be operated at a predetermined high speed / low speed ( (Not shown). The aeration and agitation device 5 is disposed in the vicinity of both ends of the partition wall 3a of the biological reaction tank 3, and the impeller is immersed in the sewage in the biological reaction tank 3. The impeller is rotated at a high speed by operating the motor at high speed, and the sewage in the biological reaction tank 3 is aerated and stirred, and the impeller is rotated at a low speed by operating at a low speed so that the sewage in the biological reaction tank 3 is oxygen-free. Stir.

また、本実施形態においては、オキシデーションディッチ1の運転を制御する運転制御装置10を具備している。この運転制御装置10は、上記積算流量計4と、時間を計測するタイマ11と、これらに接続されて、曝気撹拌装置5のインペラ回転用電動機に制御信号を出力する制御手段12と、を備えている。   Moreover, in this embodiment, the operation control apparatus 10 which controls the driving | operation of the oxidation ditch 1 is comprised. The operation control device 10 includes the integrated flow meter 4, a timer 11 that measures time, and a control unit 12 that is connected to these and outputs a control signal to the impeller rotation motor of the aeration and agitation device 5. ing.

制御手段12はCPUで構成され、積算流量計4で計測された流入汚水量に基づいて、インペラ回転用電動機の回転数を制御して、インペラの高速/低速を制御する。   The control means 12 is constituted by a CPU, and controls the rotational speed of the impeller rotating motor based on the amount of inflow sewage measured by the integrating flow meter 4 to control the high / low speed of the impeller.

さらに、運転制御装置10は、制御手段12に接続される記憶手段13と、処理手順をプログラムの形で格納するROM14とを備えている。記憶手段13は、1運転サイクルの時間(詳しくは後述)、電動機の高速運転時の回転数、低速運転時の回転数等に関する予め設定されている情報、曝気時間に関する情報、所定の演算式等を記憶する。   The operation control apparatus 10 further includes a storage unit 13 connected to the control unit 12 and a ROM 14 that stores the processing procedure in the form of a program. The storage means 13 is a time of one operation cycle (details will be described later), information set in advance regarding the rotational speed at the time of high-speed operation of the motor, speed at the time of low-speed operation, information on the aeration time, a predetermined arithmetic expression, etc. Remember.

図2は、図1に示すオキシデーションディッチ1の運転サイクルを示すタイムチャートである。上述したようにオキシデーションディッチ1では、曝気撹拌装置5を、高速運転して、循環水路7内を曝気撹拌し硝化反応を行う好気工程と、低速運転して、循環水路7内を無酸素撹拌し脱窒反応を行う無酸素工程とを交互に繰り返す。ここで、好気工程とこれに続く無酸素工程とで1運転サイクルを構成するものとすると、n回目の運転サイクルの継続時間Tは、好気時間Cと無酸素時間Dとの和として表せる。 FIG. 2 is a time chart showing an operation cycle of the oxidation ditch 1 shown in FIG. As described above, in the oxidation ditch 1, the aeration stirrer 5 is operated at a high speed to perform a nitrification reaction by aeration and stirring in the circulating water channel 7, and at a low speed to perform an oxygen-free operation in the circulating water channel 7. The oxygen-free process in which the denitrification reaction is performed by stirring is repeated alternately. Here, assuming that an aerobic process and the subsequent anaerobic process constitute one operation cycle, the duration T n of the nth operation cycle is the aerobic time C n and the anaerobic time D n . It can be expressed as a sum.

次に、このように構成されたオキシデーションディッチの運転制御方法について説明する。図3は、図1に示すオキシデーションディッチの運転制御方法を示すフロー図である。   Next, an operation control method for the oxidation ditch configured as described above will be described. FIG. 3 is a flowchart showing an operation control method of the oxidation ditch shown in FIG.

ここでは、n回目とその直後のn+1回目の運転サイクルを例に説明する。まず、生物反応槽3の循環水路7には、汚水が供給されて所定の循環流が形成されている。ステップS301では、曝気撹拌装置5のインペラ回転用電動機を制御して、インペラを高速回転させることで、生物反応槽3内の曝気撹拌を開始する。そして、タイマ11による曝気時間A及び運転サイクルの継続時間Tの計測を開始すると共に、積算流量計4による流入汚水量qの測定を開始する。 Here, the n-th operation cycle and the (n + 1) -th operation cycle immediately thereafter will be described as an example. First, sewage is supplied to the circulation channel 7 of the biological reaction tank 3 to form a predetermined circulation flow. In step S301, aeration stirring in the biological reaction tank 3 is started by controlling the motor for rotating the impeller of the aeration stirring device 5 and rotating the impeller at high speed. Then, the starts measuring the duration time T n of the aeration period A n and the operating cycle by the timer 11, starts measuring the inflow wastewater quantity q by integrating flowmeter 4.

ステップS302では、インペラが所定の高速回転となるように制御する。そして、ステップS303で曝気開始(時刻a)から予め設定されたA時間経過したか否かを判定し、経過していない場合には、判定を繰り返し、時刻b〜時刻cにおいて、インペラの高速回転を維持する。これにより、生物反応槽3内は、好気状態に保たれるので、生物反応槽3内の微生物による有機物の分解と硝化反応を進行させることができる。 In step S302, control is performed so that the impeller rotates at a predetermined high speed. Then, it is determined whether elapsed preset A n time from the start aeration (time a) at step S303, if not elapsed, repeats the determination, at the time b~ time c, speed impeller Maintain rotation. Thereby, since the inside of the biological reaction tank 3 is maintained in an aerobic state, decomposition and nitrification of organic substances by microorganisms in the biological reaction tank 3 can be advanced.

ステップS303で、曝気開始から予め設定されたA時間経過した(時刻c)と判定されると、ステップS304へと移行し、インペラが所定の低速回転となるようにインペラ回転用電動機を制御する。そして、ステップS305で曝気開始(時刻a)から予め設定されたT時間経過したか否かを判定し、経過していない場合には、判定を繰り返し、時刻c〜時刻dにおいて、インペラの低速回転を維持する。これにより、生物反応槽3内は、無酸素状態に保たれるので、脱窒反応を進行させることができる。 In step S303, it is determined that the elapsed preset A n time after aeration start (time c), the operation proceeds to step S304, controls the impeller rotating motor so impeller has a predetermined low-speed rotation . Then, it is determined whether elapsed predetermined T n time from the start aeration (time a) at step S305, if not elapsed, it repeats the determination, at the time c~ time d, slow impeller Maintain rotation. Thereby, since the inside of the biological reaction tank 3 is maintained in an oxygen-free state, denitrification reaction can be advanced.

そして、曝気開始から予め設定されたT時間経過すると(時刻d)、ステップS306へと移行し、積算流量計4による流入汚水量qの計測を終了する。 When the elapsed predetermined T n times from the aeration starts (time d), the operation proceeds to step S306, and ends the measurement of the inflow wastewater quantity q by integrating flowmeter 4.

続くステップS307では、次(n+1回目)の運転サイクルの曝気時間An+1を設定する。具体的には、このオキシデーションディッチの装置能力である計画流入汚水量Qに対する流入汚水量qの割合を求め、これの割合に計画流入汚水量を適切に処理するために必要な曝気時間tを掛けて、次の運転サイクルの曝気時間An+1を算出する。 In subsequent step S307, an aeration time An + 1 for the next (n + 1) th operation cycle is set. Specifically, the ratio of the inflow sewage amount q to the planned inflow sewage amount Q, which is the equipment capacity of this oxidation ditch, is obtained, and the aeration time t 0 necessary for appropriately processing the planned inflow sewage amount to this ratio To calculate the aeration time An + 1 for the next operation cycle.

続いて、ステップS308へ移行し、運転サイクルのカウンタをn+1に更新して処理を終了し、再度、ステップS301へと戻り、n+1回目の運転サイクルを開始することで、オキシデーションディッチの運転を継続する。   Subsequently, the process proceeds to step S308, the operation cycle counter is updated to n + 1, the process is terminated, the process returns to step S301, and the operation of the oxidation ditch is continued by starting the n + 1th operation cycle. To do.

このように、本実施形態のオキシデーションディッチの運転制御方法及びオキシデーションディッチの運転制御装置では、直前の運転サイクルにおいて、生物反応槽3内への流入汚水量qを測定し、その流入汚水量qに基づいて曝気時間が設定されるため、流入汚水量の変動が反映され、好適な曝気時間が設定されている。その結果、処理水質の安定化が図られている。   Thus, in the oxidation ditch operation control method and the oxidation ditch operation control apparatus of the present embodiment, the inflow sewage amount q into the biological reaction tank 3 is measured and the inflow sewage amount in the immediately preceding operation cycle. Since the aeration time is set based on q, the variation of the inflow sewage amount is reflected, and a suitable aeration time is set. As a result, the quality of treated water is stabilized.

また、制御手段12により、曝気時間が容易に設定されるため、運転管理者が手動で曝気時間を調整する場合に比して、運転管理性の向上が図られている。流入汚水量の変動が大きな装置にあっては、特に有効である。   Further, since the aeration time is easily set by the control means 12, operation management is improved as compared with the case where the operation manager manually adjusts the aeration time. This is particularly effective for devices that have a large fluctuation in the amount of inflow sewage.

以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態にあっては、曝気時間An+1の算出に際し、計画流入汚水量Qに対する流入汚水量qの割合を求め、この割合に曝気時間tを掛けて、次の運転サイクルの曝気時間An+1を算出しているが、計画流入汚水量Qに対する流入汚水量qの割合を求め、この割合に曝気時間tを掛けたものに、補正係数Kを掛けてもよく、更に補正値Lを加えても良い。係数K及び補正値Lは、例えば前日の同時間の運転サイクルの流入汚水量と、その次の運転サイクルの流入汚水量との変動傾向に基づいて算出される。なお、補正値Lは、負の値であっても良い。また、前日ではなく、前週の同曜日の流入汚水量に基づいて算出してもよい。このように、別の日の流入汚水量の変動傾向に基づいて補正することにより、一層好適な曝気時間を設定することが可能とされる。 As mentioned above, although this invention was concretely demonstrated based on the embodiment, this invention is not limited to the said embodiment. For example, in the above embodiment, when calculating the aeration period A n + 1, we obtain the ratio of the inflow wastewater quantity q against planned inflow wastewater quantity Q, over the aeration time t 0 to the percentage aeration of the next operation cycle While calculating the time a n + 1, obtains the ratio of the inflow wastewater quantity q against planned inflow wastewater quantity Q, the multiplied by the aeration time t 0 in this ratio may be multiplied by the correction coefficient K, further correction value L may be added. The coefficient K and the correction value L are calculated, for example, based on the fluctuation tendency of the inflow sewage amount in the operation cycle during the same day the previous day and the inflow sewage amount in the next operation cycle. The correction value L may be a negative value. Moreover, you may calculate based on the amount of inflow sewage of the same day of the previous week instead of the previous day. Thus, it is possible to set a more suitable aeration time by correcting based on the fluctuation tendency of the amount of inflow sewage on another day.

また、上記実施形態では、流入汚水量を積算流量計4により計測しているが、汚水を移送する流入ポンプ槽2の消費電力、稼働時間等から流入汚水量を算出しても良く、要は、生物反応槽3内に流入する流入汚水量が判れば良い。   Moreover, in the said embodiment, although the inflow sewage amount is measured with the integrating | accumulating flow meter 4, you may calculate inflow sewage amount from the power consumption, operation time, etc. of the inflow pump tank 2 which transfers sewage. The amount of sewage flowing into the biological reaction tank 3 may be known.

また、上記実施形態では、流入汚水量を運転サイクルを通して継続して測定しているが、運転サイクル内の所定時間の計測に基づいて流入汚水量を算出しても良い。   Moreover, in the said embodiment, although the inflow sewage amount is measured continuously through an operation cycle, you may calculate an inflow sewage amount based on the measurement of the predetermined time in an operation cycle.

また、上記実施形態では、生物反応槽3の形状を長円形状としているが、馬蹄形状やU字形状を始めとしたその他の形状であっても良い。   Moreover, in the said embodiment, although the shape of the biological reaction tank 3 is made into the ellipse shape, other shapes including a horseshoe shape and U shape may be sufficient.

本発明の実施形態に係るオキシデーションディッチの概略構成図である。It is a schematic block diagram of the oxidation ditch which concerns on embodiment of this invention. 図1に示すオキシデーションディッチの運転サイクルを示すタイムチャートである。It is a time chart which shows the driving cycle of the oxidation ditch shown in FIG. 図1に示すオキシデーションディッチの運転制御方法を示すフロー図である。It is a flowchart which shows the operation control method of the oxidation ditch shown in FIG.

符号の説明Explanation of symbols

1…オキシデーションディッチ、3…生物反応槽(槽)、4…積算流量計(流量測定手段)、5…曝気撹拌装置、10…運転制御装置、12…制御手段。   DESCRIPTION OF SYMBOLS 1 ... Oxidation ditch, 3 ... Biological reaction tank (tank), 4 ... Integrated flow meter (flow rate measuring means), 5 ... Aeration stirring apparatus, 10 ... Operation control apparatus, 12 ... Control means.

Claims (3)

槽内の被処理水に対して、曝気により硝化反応を行う好気工程と、撹拌により脱窒反応を行う無酸素工程とを交互に行うオキシデーションディッチの運転制御方法であって、
曝気を開始してから、次に曝気を再開するまでを1運転サイクルとして、
所定時間内に前記槽内へ流入する流入被処理水量を測定し、この流入被処理水量に基づいて、次の運転サイクルの曝気時間を制御することを特徴とするオキシデーションディッチの運転制御方法。
An oxidation ditch operation control method that alternately performs an aerobic process in which nitrification reaction is performed by aeration and an oxygen-free process in which denitrification reaction is performed by stirring with respect to water to be treated in a tank,
The period from the start of aeration until the next restart of aeration is taken as one operation cycle.
An operation control method for an oxidation ditch characterized by measuring an inflow treated water amount flowing into the tank within a predetermined time and controlling an aeration time of the next operation cycle based on the inflow treated water amount.
運転サイクル内に前記槽内へ流入する流入被処理水量を測定し、この流入被処理水量と、
別の日の対応する運転サイクルの流入被処理水量とその次の運転サイクルの流入被処理水量との変動傾向と、に基づいて、次の運転サイクルの曝気時間を制御することを特徴とする請求項1記載のオキシデーションディッチの運転制御方法。
Measure the amount of inflow treated water flowing into the tank during the operation cycle,
The aeration time of the next operation cycle is controlled based on the fluctuation tendency of the inflow treated water amount in the operation cycle corresponding to another day and the inflow treated water amount in the next operation cycle. The operation control method of the oxidation ditch of claim | item 1.
槽内の被処理水に対して、曝気により硝化反応を行う好気工程と、撹拌により脱窒反応を行う無酸素工程とを交互に行うオキシデーションディッチの運転制御装置であって、
曝気を開始してから、次に曝気を再開するまでを1運転サイクルとして、
所定時間内に前記槽内へ流入する流入被処理水量を測定する流量測定手段と、
前記流入被処理水量に基づいて、次の運転サイクルの曝気時間を制御する制御手段と、を具備することを特徴とするオキシデーションディッチの運転制御装置。
An oxidation ditch operation control device that alternately performs an aerobic process in which nitrification reaction is performed by aeration and an oxygen-free process in which denitrification reaction is performed by stirring with respect to water to be treated in a tank,
The period from the start of aeration until the next restart of aeration is taken as one operation cycle.
A flow rate measuring means for measuring an inflow treated water amount flowing into the tank within a predetermined time;
And a control means for controlling the aeration time of the next operation cycle based on the inflow treated water amount.
JP2004225985A 2004-08-02 2004-08-02 Oxidation ditch operation control method and oxidation ditch operation control apparatus Expired - Fee Related JP4837267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225985A JP4837267B2 (en) 2004-08-02 2004-08-02 Oxidation ditch operation control method and oxidation ditch operation control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225985A JP4837267B2 (en) 2004-08-02 2004-08-02 Oxidation ditch operation control method and oxidation ditch operation control apparatus

Publications (2)

Publication Number Publication Date
JP2006043542A true JP2006043542A (en) 2006-02-16
JP4837267B2 JP4837267B2 (en) 2011-12-14

Family

ID=36022710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225985A Expired - Fee Related JP4837267B2 (en) 2004-08-02 2004-08-02 Oxidation ditch operation control method and oxidation ditch operation control apparatus

Country Status (1)

Country Link
JP (1) JP4837267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116542A (en) * 2019-01-25 2020-08-06 住友重機械エンバイロメント株式会社 Aeration and agitation system and method of operating aeration and agitation system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174083A (en) * 1995-12-26 1997-07-08 Hitachi Chem Co Ltd Intermittent aeration method
JPH1015577A (en) * 1996-07-09 1998-01-20 Fuji Electric Co Ltd Control of intermittent aeration type activated sludge method
JPH1043787A (en) * 1996-07-31 1998-02-17 Meidensha Corp Device for simulating amount of nitrous oxide of activated sludge method
JPH11683A (en) * 1997-06-11 1999-01-06 Hitachi Kiden Kogyo Ltd Operation method for small-scale waste water treatment equipment
JPH11128976A (en) * 1996-11-21 1999-05-18 Nkk Corp Control of intermittent aeration type activated sludge method
JP2000084585A (en) * 1998-09-09 2000-03-28 Hitachi Kiden Kogyo Ltd Aerator and method for controlling operation of sludge removal pump
JP2002336892A (en) * 2001-05-15 2002-11-26 Sumitomo Heavy Ind Ltd Control method in intermittent sewage treatment
JP2003320391A (en) * 2002-04-26 2003-11-11 Taiyo Toyo Sanso Co Ltd Sewage treatment system and operation method therefor
JP2003334593A (en) * 2002-05-20 2003-11-25 Taiyo Toyo Sanso Co Ltd Sewage treatment system by oxidation ditch method
JP2004041933A (en) * 2002-07-11 2004-02-12 Sumitomo Heavy Ind Ltd Method of operating oxidation ditch

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174083A (en) * 1995-12-26 1997-07-08 Hitachi Chem Co Ltd Intermittent aeration method
JPH1015577A (en) * 1996-07-09 1998-01-20 Fuji Electric Co Ltd Control of intermittent aeration type activated sludge method
JPH1043787A (en) * 1996-07-31 1998-02-17 Meidensha Corp Device for simulating amount of nitrous oxide of activated sludge method
JPH11128976A (en) * 1996-11-21 1999-05-18 Nkk Corp Control of intermittent aeration type activated sludge method
JPH11683A (en) * 1997-06-11 1999-01-06 Hitachi Kiden Kogyo Ltd Operation method for small-scale waste water treatment equipment
JP2000084585A (en) * 1998-09-09 2000-03-28 Hitachi Kiden Kogyo Ltd Aerator and method for controlling operation of sludge removal pump
JP2002336892A (en) * 2001-05-15 2002-11-26 Sumitomo Heavy Ind Ltd Control method in intermittent sewage treatment
JP2003320391A (en) * 2002-04-26 2003-11-11 Taiyo Toyo Sanso Co Ltd Sewage treatment system and operation method therefor
JP2003334593A (en) * 2002-05-20 2003-11-25 Taiyo Toyo Sanso Co Ltd Sewage treatment system by oxidation ditch method
JP2004041933A (en) * 2002-07-11 2004-02-12 Sumitomo Heavy Ind Ltd Method of operating oxidation ditch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116542A (en) * 2019-01-25 2020-08-06 住友重機械エンバイロメント株式会社 Aeration and agitation system and method of operating aeration and agitation system
JP7166181B2 (en) 2019-01-25 2022-11-07 住友重機械エンバイロメント株式会社 Aeration and agitation system and method of operating the aeration and agitation system

Also Published As

Publication number Publication date
JP4837267B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP5833791B1 (en) Aeration control method for activated sludge
JP3771870B2 (en) Sewage treatment system by oxidation ditch method
JP4837267B2 (en) Oxidation ditch operation control method and oxidation ditch operation control apparatus
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JP3452162B2 (en) Water quality control device
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JP2006247586A (en) Method for controlling operation of aeration apparatus
JP4837266B2 (en) Operation method of oxidation ditch
JP2006043543A (en) Operation method of oxidation ditch
JP2987103B2 (en) Intermittent aeration
JPH11128976A (en) Control of intermittent aeration type activated sludge method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3690537B2 (en) Intermittent aeration
JP2005000715A (en) Method for controlling operation of aerating stirrer
JP2000084585A (en) Aerator and method for controlling operation of sludge removal pump
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JP2019171235A (en) Wastewater treatment apparatus
JPH10249386A (en) Treatment of nitrogen-containing waste water
JP3444021B2 (en) Control method and control device for oxidation ditch type water treatment apparatus
JPH0738992B2 (en) Oxidation ditch
JPH11692A (en) Method for operation control of oxidation ditch
JPH08117789A (en) Operation control of two-stage activated sludge circulation variation
JP2021151646A (en) Water treatment apparatus and water treatment method
JPH11691A (en) Method for operation control of oxidation ditch

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees