JP2006042430A - Control device for er fluid - Google Patents

Control device for er fluid Download PDF

Info

Publication number
JP2006042430A
JP2006042430A JP2004215316A JP2004215316A JP2006042430A JP 2006042430 A JP2006042430 A JP 2006042430A JP 2004215316 A JP2004215316 A JP 2004215316A JP 2004215316 A JP2004215316 A JP 2004215316A JP 2006042430 A JP2006042430 A JP 2006042430A
Authority
JP
Japan
Prior art keywords
fluid
flow
control device
electric field
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215316A
Other languages
Japanese (ja)
Inventor
Tetsuhiro Tsukiji
徹浩 築地
Sumio Shudo
澄男 周藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA RIKAGAKU KIKAI KK
Original Assignee
SHOWA RIKAGAKU KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA RIKAGAKU KIKAI KK filed Critical SHOWA RIKAGAKU KIKAI KK
Priority to JP2004215316A priority Critical patent/JP2006042430A/en
Publication of JP2006042430A publication Critical patent/JP2006042430A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To propose a control device for ER fluid which is applicable to a micromotor or a pump by enabling the flow of ER fluid to be controlled easily, and which is applicable to a micromachine by enabling the downsizing of a device. <P>SOLUTION: This control device for ER fluid enables the ER fluid to flow within a tube 10, being made of the tube 10 of a predetermined overall length. Flow is induced in the ER fluid and besides the flow is controlled, by arranging a plurality of electrodes 12 at intervals so as to form a tube wall, and shifting, in a predetermined direction, an electric field that is generated by applying voltage to the electrodes 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電場に応じてレオロジー特性が変化するER流体の制御デバイスに関するものである。   The present invention relates to a control device for an ER fluid whose rheological properties change according to an electric field.

電場を印加することで材料の弾性や粘性等のレオロジー特性が変化する性質はER(エレクトロ・レオロジー)効果と呼ばれ、このような特性を持つER流体として、絶縁性の液体に誘電性固体微粒子を分散させた懸濁液や液晶がある。従来、こうしたER流体のER効果の発現及びその制御方法としては、一対の平板電極を対向させた平行二平板電極とした構造や、内筒に正、負の一方の電極、外筒に他方の電極を配置した二重円筒構造としたものがある(特開2003−113814号公報参照)。   The property that changes rheological properties such as elasticity and viscosity of a material by applying an electric field is called ER (electro-rheological) effect. As an ER fluid having such properties, an insulating liquid is mixed with dielectric solid fine particles. There are suspensions and liquid crystals in which are dispersed. Conventionally, the expression of the ER effect of such an ER fluid and a control method thereof include a structure in which a pair of flat plate electrodes are opposed to each other in parallel, two flat plate electrodes, one positive and negative electrode on the inner cylinder, and the other on the outer cylinder. Some have a double cylindrical structure in which electrodes are arranged (see Japanese Patent Application Laid-Open No. 2003-113814).

こうしたER流体の制御方法において、平行二平板電極構造は平板電極に所定の面積を要し、二重円筒構造はその構造上、筒体の微小径化が困難であり、制御デバイスとして超小型化、マイクロデバイス化に限界があった。
特開2003−113814号公報
In such an ER fluid control method, the parallel two-plate electrode structure requires a predetermined area for the plate electrode, and the double-cylindrical structure makes it difficult to reduce the diameter of the cylinder due to the structure. There was a limit to microdevices.
JP 2003-113814 A

この発明は、所定全長の管体で形成したER流体の制御デバイスを提案し、ER流体の流動を簡単に制御することができ、例えば、ER流体を封入した管体内にロータを設けたマイクロモータとしての適用や、ER流体の流通路に設け、可動機構部を持たない駆動装置(ポンプ)として機能可能なER流体の制御デバイスを提案するものである。また、管体の微小径化によってデバイスの超小型化を図ることができ、マイクロマシンへの適用を可能としたER流体の制御デバイスを提案するものである。   The present invention proposes a control device for ER fluid formed by a tube having a predetermined length, and can easily control the flow of ER fluid. For example, a micromotor having a rotor in a tube enclosing ER fluid And an ER fluid control device that is provided in the ER fluid flow passage and can function as a driving device (pump) having no movable mechanism. Further, the present invention proposes an ER fluid control device that can be miniaturized by reducing the diameter of the tube and can be applied to a micromachine.

上記の課題を解決するため、この発明は、所定全長の管体10で形成し、管体10内をER流体が流動可能としたER流体の制御デバイスであって、複数の電極12を間隔を設けて配置して管壁を形成し、電極12に電圧を印加して生じる電場を所定方向へ移動させることでER流体に流動を誘起し、且つ流動を制御することを特徴とするものである。   In order to solve the above-described problem, the present invention is an ER fluid control device that is formed by a tube body 10 having a predetermined total length and that allows the ER fluid to flow in the tube body 10. A tube wall is formed by arranging and arranging, an electric field generated by applying a voltage to the electrode 12 is moved in a predetermined direction, thereby inducing a flow in the ER fluid and controlling the flow. .

請求項2に記載の構成は、管体10の管壁を、軸方向に沿って電極12を配置して形成するものである。   According to the second aspect of the present invention, the tube wall of the tube body 10 is formed by arranging the electrode 12 along the axial direction.

請求項3に記載の構成は、管体10の管壁を、環状に複数の電極12を配置して形成するものである。   According to a third aspect of the present invention, the tube wall of the tube body 10 is formed by arranging a plurality of electrodes 12 in an annular shape.

請求項4に記載の構成は、電極12に三相電圧を印加してER流体の流動を制御するものである。   According to the fourth aspect of the present invention, the flow of the ER fluid is controlled by applying a three-phase voltage to the electrode 12.

請求項5に記載の構成は、ER流体として液晶を用いるものである。   The structure of Claim 5 uses a liquid crystal as ER fluid.

この発明のER流体の制御デバイスは、ER流体が流動可能とした管体10の管壁を、複数の電極12を間隔を設けて配置して形成し、電場を所定方向へ移動させることでER流体に流動を誘起するもので、電場の移動方向を切り替えてER流体の流動方向を切り替え、電場強度、電場の移動速度を制御してER流体の流速、流量を制御するなど、ER流体の流動を簡単に制御することができる。また、従来の二重円筒構造と異なり、管体10の微小径化が可能であり、デバイスの超小型化を図り、マイクロデバイスとしてマイクロマシンへの適用が可能である。   In the ER fluid control device according to the present invention, the tube wall of the tube body 10 in which the ER fluid can flow is formed by arranging a plurality of electrodes 12 at intervals, and the electric field is moved in a predetermined direction. ER fluid flow that induces flow in the fluid, switching the electric field movement direction to switch the ER fluid flow direction, and controlling the electric field strength and electric field movement speed to control the flow rate and flow rate of the ER fluid. Can be controlled easily. Further, unlike the conventional double cylindrical structure, the tube body 10 can be reduced in diameter, the device can be miniaturized, and can be applied to a micromachine as a microdevice.

また、軸方向に沿った複数の電極12を配置して管壁を形成すれば、ER流体に回転流動を誘起し、渦流を生じさせることができる。本構成によれば、電場強度を制御してER流体の見かけの粘性を可変することにより、ER流体の軸方向の流速、流量を制御することができる。また、電場強度、電場の移動速度を制御することで、ER流体の回転流動速度を制御することができ、ER流体を封入した管体内にロータ(ギア)を設け、電場強度、電場の移動速度の制御でロータの回転数やトルクを制御するマイクロモータなどの応用機器として適用可能である。   Moreover, if a plurality of electrodes 12 along the axial direction are arranged to form a tube wall, a rotational flow can be induced in the ER fluid to generate a vortex. According to this configuration, by controlling the electric field strength to vary the apparent viscosity of the ER fluid, the axial flow velocity and flow rate of the ER fluid can be controlled. In addition, by controlling the electric field strength and the electric field moving speed, the rotational flow speed of the ER fluid can be controlled, and a rotor (gear) is provided in the tube enclosing the ER fluid, and the electric field strength and electric field moving speed are provided. It can be applied as an applied device such as a micromotor that controls the rotational speed and torque of the rotor by controlling the motor.

また、環状に複数の電極12を配置して管壁を形成すれば、ER流体に軸方向に沿った流動を誘起することができる。したがって、本構成によれば、ER流体の流通路に設けて可動機構部を持たないポンプとして機能することができる。   Further, if a plurality of electrodes 12 are arranged in an annular shape to form a tube wall, a flow along the axial direction can be induced in the ER fluid. Therefore, according to this structure, it can function as a pump which is provided in the flow path of ER fluid and does not have a movable mechanism part.

また、電極12に三相電圧を印加する構造とすれば、電圧、周波数、三相の順序等を制御することでER流体の流動を容易に制御することができ、その制御回路を簡単に構成することができる。   In addition, if the structure is such that a three-phase voltage is applied to the electrode 12, the flow of the ER fluid can be easily controlled by controlling the voltage, the frequency, the order of the three phases, etc., and the control circuit is simply configured. can do.

以下にこの発明の実施の形態を、図面の実施例について具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to examples of the drawings.

図1から4は、この発明の最初の実施例で、作動原理を説明するための最も基本的な構成である。図に示すように、この制御デバイスは所定全長の管体10で形成され、管体10内をER流体が流動可能としている。管体10の管壁は、絶縁部11を挟んで複数の電極12を配置して形成され、電極12は間隔を設けて軸方向に沿って並置され、放射状位置に配置されている。   1 to 4 show the first embodiment of the present invention and the most basic configuration for explaining the operation principle. As shown in the figure, this control device is formed of a tube body 10 having a predetermined full length, and the ER fluid can flow in the tube body 10. The tube wall of the tube body 10 is formed by arranging a plurality of electrodes 12 with the insulating portion 11 interposed therebetween, and the electrodes 12 are juxtaposed along the axial direction at intervals and arranged at radial positions.

次に、この制御デバイスの作動原理を説明する。
ER流体として液晶を用い、電極12に電圧が印加されない状態では、図2に示すように、液晶分子15は無秩序、不規則の状態である。
Next, the operating principle of this control device will be described.
In a state where liquid crystal is used as the ER fluid and no voltage is applied to the electrode 12, the liquid crystal molecules 15 are disordered and irregular as shown in FIG.

図3(イ)は、相対向した位置に位置する隣接した一対の電極(正極、負極)に電圧を印加した状態である。ここで、電圧の印加で生じた電場に従い、図に示すように、液晶分子15が一部配向する。次に、(ロ)に示すように、正極、負極が時計方向へ隣接した位置の電極12へ移動するように電圧を印加すると、電場が時計方向へ移動し、液晶分子15が電場の移動に従って再配向する。さらに、(ハ)、(ニ)に示すように、正極、負極が時計方向へ隣接した位置の電極12へ順次移動するように電圧を印加すると、液晶分子15が電場の移動に従って順次再配向する。このようにして、電場を所定方向へ移動すると、液晶分子15が順次再配向して移動し、その結果、図4に示すように、電場の移動方向(矢印方向)に従って、管体10内に白抜き矢印方向への回転流動(渦流)が誘起される。   FIG. 3 (a) shows a state in which a voltage is applied to a pair of adjacent electrodes (positive electrode and negative electrode) located at opposite positions. Here, according to the electric field generated by the application of voltage, the liquid crystal molecules 15 are partially aligned as shown in the figure. Next, as shown in (b), when a voltage is applied so that the positive electrode and the negative electrode move to the electrode 12 at the position adjacent in the clockwise direction, the electric field moves in the clockwise direction, and the liquid crystal molecules 15 follow the movement of the electric field. Reorient. Further, as shown in (c) and (d), when a voltage is applied so that the positive electrode and the negative electrode sequentially move to the electrode 12 at the position adjacent to the clockwise direction, the liquid crystal molecules 15 are sequentially reoriented as the electric field moves. . In this way, when the electric field is moved in a predetermined direction, the liquid crystal molecules 15 are sequentially reoriented and moved, and as a result, as shown in FIG. A rotational flow (vortex) in the direction of the white arrow is induced.

本例において、液晶分子15の配向の状態(強さ)は電場強度に依存するので、電場強度を制御して液晶の見かけの粘性を可変することができ、この制御デバイスを液晶の流通路に設け、電場強度の制御で液晶の軸方向の流速、流量を可変する制御弁として機能することができる。また、電場強度、電場の移動速度を制御することで、液晶の回転流動速度を制御することができ、液晶を封入した管体10内にロータを設けて制御デバイスを構成し、電場の移動方向、電場強度、電場の移動速度を制御してロータの回転方向、回転数、トルクを制御するマイクロモータなどの応用機器として適用可能である。   In this example, since the orientation state (strength) of the liquid crystal molecules 15 depends on the electric field strength, the apparent viscosity of the liquid crystal can be varied by controlling the electric field strength, and this control device can be used as a flow path of the liquid crystal. It can function as a control valve that varies the flow velocity and flow rate in the axial direction of the liquid crystal by controlling the electric field strength. Further, by controlling the electric field strength and the electric field moving speed, the rotational flow speed of the liquid crystal can be controlled, and a control device is configured by providing a rotor in the tube 10 enclosing the liquid crystal, and the electric field moving direction. It can be applied as an applied device such as a micro motor for controlling the rotation direction, rotation speed, and torque of the rotor by controlling the electric field strength and the electric field moving speed.

図5は、この発明の制御デバイスの第2実施例である。本例は、前例と同様に、複数の電極12を軸方向に沿って配置して管壁を形成するとともに、正極、負極を交番関係として電極12に電圧を印加したもので、管体10自体を所定方向へ回転させるものである。図に示すように、電圧の印加で生じた電場に従って液晶分子15が配向し、この管体10を時計方向(矢印方向)へ回転させれば、電場が同じく時計方向へ移動し、電場の移動方向に従って、前例と同様にして管体10内に回転流動を誘起することができる。したがって、管体10の回転速度を制御することで、液晶の回転流動速度を簡単に制御可能としたものである。   FIG. 5 shows a second embodiment of the control device of the present invention. In this example, as in the previous example, a plurality of electrodes 12 are arranged along the axial direction to form a tube wall, and a voltage is applied to the electrodes 12 with the positive electrode and the negative electrode in an alternating relationship. Is rotated in a predetermined direction. As shown in the figure, the liquid crystal molecules 15 are aligned according to the electric field generated by the application of the voltage, and when the tube body 10 is rotated in the clockwise direction (arrow direction), the electric field similarly moves in the clockwise direction. According to the direction, rotational flow can be induced in the tube body 10 in the same manner as in the previous example. Therefore, the rotational flow rate of the liquid crystal can be easily controlled by controlling the rotational speed of the tube body 10.

図6は、この発明の制御デバイスの第3実施例である。本例は、軸方向に沿って絶縁部11を挟んで6個の電極12を配置して管壁を形成し、電極12に2組の三相(RST)電圧を印加する構造としたものである。この制御デバイスは、所定周期で各相が正極、負極が反転して電場を所定方向へ移動させ、前例と同様にして液晶に回転流動を誘起し、電圧、周波数、三相の順序等を制御して回転流動を制御するものである。また、三相電圧を用いることで、その制御回路を簡単に構成可能としたものである。   FIG. 6 shows a third embodiment of the control device of the present invention. In this example, six electrodes 12 are arranged along the axial direction with the insulating portion 11 interposed therebetween to form a tube wall, and two sets of three-phase (RST) voltages are applied to the electrodes 12. is there. This control device moves the electric field in a predetermined direction by reversing the positive and negative electrodes of each phase in a predetermined cycle, and inducing the rotational flow in the liquid crystal as in the previous example, controlling the voltage, frequency, the order of three phases, etc. Thus, the rotational flow is controlled. Further, by using a three-phase voltage, the control circuit can be easily configured.

図7、8は、この発明の制御デバイスの第4実施例である。図に示すように、本例の制御デバイスも所定全長の管体10で形成され、管体10内を液晶が流動可能としている。管体10の管壁は、環状の電極12と絶縁部11を交互に並置し、多数の電極12を間隔を設けて環状に配置して形成されている。   7 and 8 show a fourth embodiment of the control device of the present invention. As shown in the figure, the control device of this example is also formed of a tube body 10 having a predetermined total length, and the liquid crystal can flow in the tube body 10. The tube wall of the tube body 10 is formed by arranging annular electrodes 12 and insulating portions 11 alternately in parallel and arranging a large number of electrodes 12 in an annular manner with intervals.

この制御デバイスは、軸方向に沿って所定の間隔を隔てて隣接した一対の電極(正極、負極)に電圧を印加し、正極、負極が順次右方向へ隣接した位置の電極12へ移動するように電圧を印加し、電場を順次移動する。このようにして、電場を所定方向へ移動すると、液晶分子15が順次再配向して移動し、その結果、図8に示すように、電場の移動方向(矢印方向)に従って、管体10内に白抜き矢印方向への軸方向流動が誘起される。この制御デバイスは、液晶の流通路に設け、電場の移動方向、電場強度、電場の移動速度を制御して軸方向流動の方向、流速、流量を制御することで、可動機構部を持たないポンプとして適用可能である。   The control device applies a voltage to a pair of electrodes (positive electrode and negative electrode) adjacent to each other at a predetermined interval along the axial direction so that the positive electrode and the negative electrode sequentially move to the electrode 12 at a position adjacent to the right direction. A voltage is applied to and the electric field is moved sequentially. In this way, when the electric field is moved in a predetermined direction, the liquid crystal molecules 15 are sequentially reoriented and moved, and as a result, as shown in FIG. An axial flow in the direction of the white arrow is induced. This control device is provided in the flow path of the liquid crystal and controls the direction of flow in the axial direction, the flow velocity, and the flow rate by controlling the moving direction of the electric field, the electric field strength, and the moving speed of the electric field. As applicable.

図9は、この発明の制御デバイスの第5実施例である。本例は、前例と同様に、管体10の管壁を多数の電極12を環状に配置して形成し、電極12に順次三相(RST)電圧を印加する構造としたものである。この制御デバイスは、所定周期で各相が正極、負極が反転して電場を所定方向へ移動させ、前例と同様にして液晶に軸方向流動を誘起し、電圧、周波数、三相の順序等を制御して軸方向流動を制御するものである。また、第3実施例と同様に、三相電圧を用いることで、その制御回路を簡単に構成可能としたものである。   FIG. 9 shows a fifth embodiment of the control device of the present invention. In this example, the tube wall of the tube body 10 is formed by arranging a large number of electrodes 12 in a ring shape, and a three-phase (RST) voltage is sequentially applied to the electrodes 12 as in the previous example. This control device moves the electric field in a predetermined direction by reversing the positive electrode and negative electrode of each phase in a predetermined cycle, and inducing axial flow in the liquid crystal in the same manner as in the previous example, and setting the voltage, frequency, three-phase order, etc. To control the axial flow. As in the third embodiment, the control circuit can be easily configured by using a three-phase voltage.

第1実施例の側面図。The side view of 1st Example. 図1中A−A線拡大断面図。The AA line expanded sectional view in FIG. 作動原理を示す説明図。Explanatory drawing which shows an operation principle. 作動状態を示す説明図。Explanatory drawing which shows an operation state. 第2実施例の断面図。Sectional drawing of 2nd Example. 第3実施例の断面図。Sectional drawing of 3rd Example. 第4実施例の側面図。The side view of 4th Example. 図7中B−B線拡大断面図。The BB line expanded sectional view in FIG. 第5実施例の断面図。Sectional drawing of 5th Example.

符号の説明Explanation of symbols

10 管体
12 電極
10 Tube 12 Electrode

Claims (5)

所定全長の管体10で形成し、管体10内をER流体が流動可能としたER流体の制御デバイスであって、
複数の電極12を間隔を設けて配置して管壁を形成し、電極12に電圧を印加して生じる電場を所定方向へ移動させることでER流体に流動を誘起し、且つ流動を制御することを特徴としたER流体の制御デバイス。
An ER fluid control device that is formed of a tube body 10 having a predetermined length, and that allows the ER fluid to flow in the tube body 10
A plurality of electrodes 12 are arranged at intervals to form a tube wall, and an electric field generated by applying a voltage to the electrodes 12 is moved in a predetermined direction to induce a flow in the ER fluid and control the flow. ER fluid control device characterized by the above.
軸方向に沿って電極12を配置した請求項1に記載のER流体の制御デバイス。   The ER fluid control device according to claim 1, wherein the electrode 12 is disposed along the axial direction. 環状に電極12を配置した請求項1に記載のER流体の制御デバイス。   The ER fluid control device according to claim 1, wherein the electrode 12 is arranged in an annular shape. 電極12に三相電圧を印加する請求項1、2又は3に記載のER流体の制御デバイス。   The ER fluid control device according to claim 1, wherein a three-phase voltage is applied to the electrode 12. ER流体が液晶である請求項1、2、3又は4に記載のER流体の制御デバイス。   The ER fluid control device according to claim 1, wherein the ER fluid is a liquid crystal.
JP2004215316A 2004-07-23 2004-07-23 Control device for er fluid Pending JP2006042430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215316A JP2006042430A (en) 2004-07-23 2004-07-23 Control device for er fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215316A JP2006042430A (en) 2004-07-23 2004-07-23 Control device for er fluid

Publications (1)

Publication Number Publication Date
JP2006042430A true JP2006042430A (en) 2006-02-09

Family

ID=35906805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215316A Pending JP2006042430A (en) 2004-07-23 2004-07-23 Control device for er fluid

Country Status (1)

Country Link
JP (1) JP2006042430A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183754A (en) * 2009-02-06 2010-08-19 Kochi Univ Of Technology Multipole liquid crystal motor
JP2014512793A (en) * 2011-04-06 2014-05-22 ポステック アカデミー−インダストリー ファウンデーション Micro pump
JP2015152028A (en) * 2014-02-10 2015-08-24 公立大学法人高知工科大学 Lateral electric field type liquid crystal fluidization formation mechanism and lateral electric field type object movement mechanism utilizing liquid crystal fluidization
JP7467967B2 (en) 2020-02-13 2024-04-16 株式会社デンソー Electric field-driven functional element, solid refrigerant cycle, and actuator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183754A (en) * 2009-02-06 2010-08-19 Kochi Univ Of Technology Multipole liquid crystal motor
JP2014512793A (en) * 2011-04-06 2014-05-22 ポステック アカデミー−インダストリー ファウンデーション Micro pump
US9726161B2 (en) 2011-04-06 2017-08-08 Postech Academy-Industry Foundation Micropump
JP2015152028A (en) * 2014-02-10 2015-08-24 公立大学法人高知工科大学 Lateral electric field type liquid crystal fluidization formation mechanism and lateral electric field type object movement mechanism utilizing liquid crystal fluidization
JP7467967B2 (en) 2020-02-13 2024-04-16 株式会社デンソー Electric field-driven functional element, solid refrigerant cycle, and actuator

Similar Documents

Publication Publication Date Title
KR102512154B1 (en) Joint mechanism and method for controlling it, multi-arm device and robot
JPH02292583A (en) Electrically driven control valve
US10352379B2 (en) Input device
JP2006042430A (en) Control device for er fluid
EP2234251B1 (en) Three stable oscillating electromagnetic actuator
EP2891820A1 (en) Actuator
JPS61153073A (en) Rotary valve
Yu et al. Design, fabrication, and characterization of a valveless magnetic travelling-wave micropump
Kohl Fluidic actuation by electrorheological microdevices
JP2005172096A (en) Mr fluid type rotary steer damper
JP2009219281A (en) Piezoelectric actuator
JP5550279B2 (en) Electroosmotic movable device
US11208998B2 (en) Adaptive self-sealing microfluidic gear pump
JP2017028808A (en) Variable gap type motor
JPH06284754A (en) Vibrating motor
KR101987560B1 (en) Microfluidic pump having internal pumping sturcture
JPH11325276A (en) Passage selector valve
RU2762288C1 (en) Method for constructing a linear electric drive
JP2009275884A (en) Changeover valve
JPH01283489A (en) Direct operated type rotary servo valve
JPH1038050A (en) Motion conversion transmission device and its transmitting method
JP2009219280A (en) Piezoelectric actuator
JPS6188771A (en) Rotary drive device
US20190024648A1 (en) Architecture for a system of integrated pumps, mixers, and gates for microfluidic devices
JP2004360724A (en) Control device for electrorheological fluid