JPH01283489A - Direct operated type rotary servo valve - Google Patents

Direct operated type rotary servo valve

Info

Publication number
JPH01283489A
JPH01283489A JP6099789A JP6099789A JPH01283489A JP H01283489 A JPH01283489 A JP H01283489A JP 6099789 A JP6099789 A JP 6099789A JP 6099789 A JP6099789 A JP 6099789A JP H01283489 A JPH01283489 A JP H01283489A
Authority
JP
Japan
Prior art keywords
rotor
rotary servo
servo valve
fluid
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6099789A
Other languages
Japanese (ja)
Other versions
JPH0341711B2 (en
Inventor
Tadahiko Nogami
忠彦 野上
Ichiro Nakamura
一朗 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6099789A priority Critical patent/JPH01283489A/en
Publication of JPH01283489A publication Critical patent/JPH01283489A/en
Publication of JPH0341711B2 publication Critical patent/JPH0341711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To attenuate a movable part without any need of angular velocity detection by containing a viscous fluid between the magnet of a rotary servo valve and a yoke. CONSTITUTION:A direct operated type rotary servo valve has a rotor 3 integrated with a valve body 2 and a magnetic circuit for turning the rotor 3. The magnetic circuit is constituted of a magnet 4 and a yoke 5. Furthermore, a space 15 to be filled with a fluid is formed between the rotor 3 and magnet 4, and the yoke 5. The space 15 is finally filled with a viscous fluid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直動型ロータリサーボ弁に係り、特に可動部に
減衰を付与するに好適な弁の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a direct-acting rotary servo valve, and particularly to a valve configuration suitable for imparting damping to a movable part.

〔従来の技術〕[Conventional technology]

直動型ロータリサーボ弁としては、特開昭61−153
074号に記載のようなロータリバルブを用い。
As a direct-acting rotary servo valve, JP-A-61-153
Using a rotary valve as described in No. 074.

弁体の角変位を検出、フィードバックして弁体の位置決
めを行うとともに、弁体の角速度を検出、フィードバッ
クして可動部に減衰を付与する方法が採られていた。
A method has been adopted in which the angular displacement of the valve body is detected and fed back to determine the position of the valve body, and the angular velocity of the valve body is detected and fed back to provide damping to the movable part.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この方法では角速度検出器を用いろために弁の
摺造が複雑となり大きさが増すだけでなく、角速度信号
帰環のための制御回路を必要とするために制御装置が複
雑、高価となるなどの問題があった。
However, since this method uses an angular velocity detector, the valve not only has a complicated sliding structure and an increased size, but also requires a control circuit for returning the angular velocity signal, making the control device complicated and expensive. There were problems such as:

本発明の目的は1以上のような従来技術の問題点を解消
するため、角速度検出を要せずして可動部に減衰を付与
し得る直動型ロータリサーボ弁を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a direct-acting rotary servo valve that can provide damping to a movable part without requiring angular velocity detection, in order to solve one or more problems of the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、弁体に一体的に結合された回転子と磁気回
路を構成する磁石及びヨークとの間に粘性流体を満たす
ことによって達成される。
The above object is achieved by filling a viscous fluid between the rotor, which is integrally coupled to the valve body, and the magnet and yoke that constitute the magnetic circuit.

〔作用〕[Effect]

本発明によれば1回転子が回動すると1回転子近傍の流
体中に速度勾配が生ずるため流体の粘性によって流体中
に剪断応力が生じ、この剪断応力によって回転子には回
動に対する抵抗力が作用する。この際、剪断応力は速度
勾配に比例するため回転子およびこれと結合された弁体
には角速度に比例した制動力が作用する。このようにし
て流体の粘性により可動部に制動、すなわち減衰を与え
ることができる。
According to the present invention, when one rotor rotates, a velocity gradient is generated in the fluid near the first rotor, so a shear stress is generated in the fluid due to the viscosity of the fluid, and this shear stress causes the rotor to resist the rotation. acts. At this time, since the shear stress is proportional to the velocity gradient, a braking force proportional to the angular velocity acts on the rotor and the valve body connected thereto. In this way, the viscosity of the fluid can provide damping, or damping, to the movable part.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図ないし第3図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は本考発明よる直動型ロータリサーボ弁の一実施
例を示す縦断面図、第2図は第1図の八−A線断面図、
第3図は第1図のB−B線断面図である。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of a direct-acting rotary servo valve according to the present invention, FIG. 2 is a cross-sectional view taken along line 8-A in FIG.
FIG. 3 is a sectional view taken along the line B--B in FIG. 1.

ケーシング1内には弁体2が回動可能に設けられており
、弁体2の一部には円板状の回転子3が一体的に結合さ
れている。一方、磁石4およびヨーク5により磁気回路
が構成されており1回転子3は磁石4およびヨーク5に
対し所定の間隙をもってこれらにはさまれるように配設
されている。
A valve body 2 is rotatably provided within the casing 1, and a disc-shaped rotor 3 is integrally connected to a portion of the valve body 2. On the other hand, a magnetic circuit is constituted by the magnet 4 and the yoke 5, and the first rotor 3 is arranged so as to be sandwiched between the magnet 4 and the yoke 5 with a predetermined gap therebetween.

また、弁体2には制御室6および7が設けられており、
ケーシング1には供給ボート8.排出ボート9、制御ボ
ート10および11が設けられている。さらに弁体2の
一端には角変位検出器12が連絡されており、他端には
ねじりバネ13が一体的に結合され、ねじりバネ13の
端部は雄ネジに成形されていてナツト14により中立位
置を調整し固定できるように構成されている。そして、
回転子3と、磁石4およびヨーク5で構成された磁気回
路との間の空間15には粘性流体が満たされており、こ
の流体と、弁により制御される作動流体とを分離するた
めにシール部材16が設けられている。また、第2図に
示すように、回転7−3には巻線3aが角ピッチTで円
周方向に複数施されており、巻線3aの巻き方向は相隣
3巻線の巻き方向が互いに反対の向きとなるように構成
されている。さらに、磁石4は巻線3aと同じ角ピッチ
ψで円周方向に交互に極性が反対となるように構成され
ている。
Further, the valve body 2 is provided with control chambers 6 and 7,
The casing 1 has a supply boat 8. A discharge boat 9 and control boats 10 and 11 are provided. Furthermore, an angular displacement detector 12 is connected to one end of the valve body 2, and a torsion spring 13 is integrally connected to the other end. It is configured so that the neutral position can be adjusted and fixed. and,
A space 15 between the rotor 3 and a magnetic circuit made up of magnets 4 and yoke 5 is filled with viscous fluid, and a seal is provided to separate this fluid from the working fluid controlled by the valve. A member 16 is provided. Further, as shown in Fig. 2, a plurality of windings 3a are arranged in the circumferential direction on the rotation 7-3 at an angular pitch T, and the winding direction of the winding 3a is the same as that of the three adjacent windings. They are configured to face in opposite directions. Further, the magnets 4 are configured to have the same angular pitch ψ as the winding 3a and have opposite polarities alternately in the circumferential direction.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

第2図に示すように、中立状態において、回転子3は巻
線3aの境界が磁石4の分割位置に対して角度θ=−だ
けずれた位置に設定されている。
As shown in FIG. 2, in the neutral state, the boundaries of the windings 3a of the rotor 3 are set at positions offset from the division positions of the magnets 4 by an angle θ=-.

いま磁界中に置かれた巻線3aに電流を流すと電磁力が
発生する。このとき、巻線3aは交互に巻き方向が反対
となるように構成されているから電流は矢印17の向き
に流れる。一方、磁石4は図中に示すように円周方向に
交互に極性が反対となるように構成されているから磁界
の向きが交互に反対の向きとなっている。したがって巻
線3aに作用する電磁力は全て同じ向きとなり、その結
果回転子3に矢印18の向きの回動力が発生する。
When current is passed through the winding 3a placed in the magnetic field, an electromagnetic force is generated. At this time, since the windings 3a are configured so that the winding directions are alternately opposite, the current flows in the direction of the arrow 17. On the other hand, as shown in the figure, the magnets 4 are constructed so that the polarities are alternately opposite in the circumferential direction, so that the directions of the magnetic fields are alternately opposite. Therefore, all the electromagnetic forces acting on the winding 3a are in the same direction, and as a result, a rotating force in the direction of the arrow 18 is generated in the rotor 3.

この回動力によって弁体2も矢印18の向きに回動する
。このとき、第3図に示すように、弁体2の制御室6は
アクチュエータに連通ずる供給ボート8と1、また制御
室7は排出ボート9とそれぞれつながるから、図中の矢
印で示すように、作動流体は制御ボート10に供給され
、制御ボート11から排出される。一方、巻線3aに流
す電流の向きを反対にすれば1回動力は反対の向きとな
り、弁体は矢印18と反対の向きに回動するから、作動
流体は制御ボート11に供給され、制御ボート10から
排出されるようになる。したがって、巻線3aに流す電
流の向きと大きさを制御することにより回転子3および
弁体2を±θまでの角度範囲で回動させることができ、
さらに角変位検出器12により弁体2の角変位を検出し
フィードバックすれば弁体を正確に位置決めし作l1l
s流体の流れの向きと流最を制御することができる。し
かし。
This rotational force also causes the valve body 2 to rotate in the direction of the arrow 18. At this time, as shown in FIG. 3, the control chamber 6 of the valve body 2 is connected to the supply boats 8 and 1 which communicate with the actuator, and the control chamber 7 is connected to the discharge boat 9, so as shown by the arrows in the figure. , the working fluid is supplied to the control boat 10 and discharged from the control boat 11. On the other hand, if the direction of the current flowing through the winding 3a is reversed, the power will be in the opposite direction, and the valve body will rotate in the opposite direction to the arrow 18, so the working fluid will be supplied to the control boat 11, and the control boat 11 will be supplied with the working fluid. The water will be discharged from the boat 10. Therefore, by controlling the direction and magnitude of the current flowing through the winding 3a, the rotor 3 and the valve body 2 can be rotated within an angular range of ±θ.
Furthermore, if the angular displacement of the valve body 2 is detected by the angular displacement detector 12 and fed back, the valve body can be accurately positioned and operated.
s The direction and flow direction of the fluid can be controlled. but.

より高速で制御するためには回転子3など可動部の動き
に適度な減衰を付与しないと発振現象などを生じてしま
う、しかしながら、本実施例においては、回転子3と、
磁石4およびヨーク5で構成された磁気回路との間の空
間15に粘性流体が満たされているから、回転子3が回
動する際、回転子3の近傍の流体中に速度勾配が生ずる
ため流体の粘性により流体中には速度勾配に比例した剪
断応力が生じ、この剪断応力によって回転子3および弁
体2の動きに対して角速度に比例した制御力すなわち減
衰力が作用する。これにより作動流体の流れをより高速
で正確に制御することができる。
In order to control at a higher speed, oscillation phenomena will occur unless appropriate damping is applied to the movement of the rotor 3 and other movable parts.However, in this embodiment, the rotor 3 and the
Since the space 15 between the magnet 4 and the magnetic circuit composed of the yoke 5 is filled with viscous fluid, when the rotor 3 rotates, a velocity gradient is generated in the fluid near the rotor 3. Due to the viscosity of the fluid, a shear stress proportional to the velocity gradient is generated in the fluid, and this shear stress exerts a control force, that is, a damping force, proportional to the angular velocity on the movement of the rotor 3 and the valve body 2. This allows for faster and more accurate control of the flow of the working fluid.

したがって、本実施例によれば、角速度検出を要せずし
て可動部に減衰を付与することができ。
Therefore, according to this embodiment, damping can be applied to the movable portion without requiring angular velocity detection.

弁の構造が簡単となり小形で商値となるだけでなく、角
速度信号帰環のための制御回路が不要となるため制御装
置も簡単で安価となる。
Not only is the structure of the valve simplified, resulting in a small size and commercial value, but also the control device is simple and inexpensive because a control circuit for returning the angular velocity signal is not required.

なお、減衰を得るための粘性流体を作動流体と同じとし
ても良く、この場合、第1図に示したシール部材16は
不要となる。
Note that the viscous fluid for obtaining damping may be the same as the working fluid, and in this case, the sealing member 16 shown in FIG. 1 becomes unnecessary.

また、第4図に示すように、減衰を得るための流体を磁
性粘性流体19としても良い。
Further, as shown in FIG. 4, the fluid for obtaining damping may be a magnetorheological fluid 19.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、角速度検出を要
せずして可動部に減衰を付与することができるため、弁
の構造が簡単となり小形で安価となるだけでなく、角速
度信号帰還のための制御回路が不要となるため制御装置
も簡単で安価となるなど、技術上だけでなく経済上の効
果も得られる。
As explained above, according to the present invention, it is possible to apply damping to the movable part without requiring angular velocity detection, which not only simplifies the structure of the valve, makes it compact and inexpensive, but also enables angular velocity signal feedback. Since there is no need for a control circuit for this, the control device is simple and inexpensive, which provides not only technical but also economic benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の直動型ロータリサーボ弁を
示す縦断面図、第2図は第1図のA−A線断面図、第3
図は第1図のB−B線断面図、第4図は本発明の他の実
施例の直動型ロータリサーボ弁を示す縦断面図である。 1・・・ケーシング、2・・・弁体、3・・・回転子、
4・・・磁石、5・・・ヨーク、15・・・流体を満た
す空間、19・・・磁性粘性流体。 代理人 弁理士 小川勝馬パ・□−゛−゛・。 一
FIG. 1 is a vertical sectional view showing a direct-acting rotary servo valve according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG.
The figure is a sectional view taken along the line B--B in FIG. 1, and FIG. 4 is a longitudinal sectional view showing a direct acting rotary servo valve according to another embodiment of the present invention. 1...Casing, 2...Valve body, 3...Rotor,
4... Magnet, 5... Yoke, 15... Space filled with fluid, 19... Magneto-rheological fluid. Agent Patent Attorney Katsuma Ogawa Pa・□−゛−゛・. one

Claims (1)

【特許請求の範囲】[Claims] 1、ケーシングと、該ケーシング内で回動可能に設けら
れた弁体と、該弁体に一体的に結合された回転子と、該
回転子を回動させるための磁気回路を構成する磁石及び
ヨークとを備えた直動型ロータリサーボ弁において、前
記回転子と前記磁石及び前記ヨークとの間に粘性流体を
有することを特徴とする直動型ロータリサーボ弁。
1. A casing, a valve body rotatably provided within the casing, a rotor integrally coupled to the valve body, and a magnet constituting a magnetic circuit for rotating the rotor. A direct-acting rotary servo valve comprising a yoke, the direct-acting rotary servo valve having a viscous fluid between the rotor, the magnet, and the yoke.
JP6099789A 1989-03-15 1989-03-15 Direct operated type rotary servo valve Granted JPH01283489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6099789A JPH01283489A (en) 1989-03-15 1989-03-15 Direct operated type rotary servo valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6099789A JPH01283489A (en) 1989-03-15 1989-03-15 Direct operated type rotary servo valve

Publications (2)

Publication Number Publication Date
JPH01283489A true JPH01283489A (en) 1989-11-15
JPH0341711B2 JPH0341711B2 (en) 1991-06-24

Family

ID=13158580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6099789A Granted JPH01283489A (en) 1989-03-15 1989-03-15 Direct operated type rotary servo valve

Country Status (1)

Country Link
JP (1) JPH01283489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112212A (en) * 2009-11-30 2011-06-09 Takara Belmont Co Ltd Electric valve
KR20160128914A (en) * 2015-04-29 2016-11-08 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Rotary fluid regulator
JP2016211737A (en) * 2015-04-29 2016-12-15 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Rotary fluid adjusting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112212A (en) * 2009-11-30 2011-06-09 Takara Belmont Co Ltd Electric valve
KR20160128914A (en) * 2015-04-29 2016-11-08 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 Rotary fluid regulator
JP2016211737A (en) * 2015-04-29 2016-12-15 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Rotary fluid adjusting device
JP2016211738A (en) * 2015-04-29 2016-12-15 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Rotary fluid adjustment device
US9939079B2 (en) 2015-04-29 2018-04-10 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Rotary fluid regulator
US10385984B2 (en) 2015-04-29 2019-08-20 Dr. Ing H.C.F. Porsche Aktiengesellschaft Rotary fluid regulator

Also Published As

Publication number Publication date
JPH0341711B2 (en) 1991-06-24

Similar Documents

Publication Publication Date Title
US6095295A (en) Rotary damper
US5099867A (en) Sealed valve and control means therefor
JPS5834208A (en) Single stage servo valve
US5083744A (en) Motor-operated valve
US6269838B1 (en) Rotary servovalve and control system
EP0349116A2 (en) Electromagnetic control apparatus for varying the driver steering effort of a hydraulic power steering apparatus
JP2644879B2 (en) Direct acting rotary servo valve and rolling mill using the same
US4735233A (en) Rotary valve
JPH01283489A (en) Direct operated type rotary servo valve
US5749432A (en) Power steering gear for motor vehicle
US5333833A (en) Rotary ball valve with lifting ball
US20030006729A1 (en) Rotary servovalve with precision controller
EP0741879B1 (en) Direct drive servovalve having motor position sensor
US5004940A (en) Direct drive valve force motor with gain shaping provision
JP6705675B2 (en) Simple rotation damper
WO2003014577A1 (en) Rotary servovalve and control system
KR100300361B1 (en) Directly operated servo valve with limited angle
JPS60164003A (en) Hydraulic servo-valve
JPH02212272A (en) Hydraulic power steering device
JP3589324B2 (en) Actuator
JP4002738B2 (en) Electric flow control valve
KR930003159B1 (en) Electromagnetic control apparatus for varying the driver steering effort of a hydraulic power steering system
JPH0483909A (en) Direct driven type servo valve
JPS5821123B2 (en) rotary servo valve
JPS61109982A (en) Electrically powered valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees